linux/include/linux/slub_def.h
<<
>>
Prefs
   1#ifndef _LINUX_SLUB_DEF_H
   2#define _LINUX_SLUB_DEF_H
   3
   4/*
   5 * SLUB : A Slab allocator without object queues.
   6 *
   7 * (C) 2007 SGI, Christoph Lameter
   8 */
   9#include <linux/types.h>
  10#include <linux/gfp.h>
  11#include <linux/workqueue.h>
  12#include <linux/kobject.h>
  13#include <linux/kmemtrace.h>
  14#include <linux/kmemleak.h>
  15
  16enum stat_item {
  17        ALLOC_FASTPATH,         /* Allocation from cpu slab */
  18        ALLOC_SLOWPATH,         /* Allocation by getting a new cpu slab */
  19        FREE_FASTPATH,          /* Free to cpu slub */
  20        FREE_SLOWPATH,          /* Freeing not to cpu slab */
  21        FREE_FROZEN,            /* Freeing to frozen slab */
  22        FREE_ADD_PARTIAL,       /* Freeing moves slab to partial list */
  23        FREE_REMOVE_PARTIAL,    /* Freeing removes last object */
  24        ALLOC_FROM_PARTIAL,     /* Cpu slab acquired from partial list */
  25        ALLOC_SLAB,             /* Cpu slab acquired from page allocator */
  26        ALLOC_REFILL,           /* Refill cpu slab from slab freelist */
  27        FREE_SLAB,              /* Slab freed to the page allocator */
  28        CPUSLAB_FLUSH,          /* Abandoning of the cpu slab */
  29        DEACTIVATE_FULL,        /* Cpu slab was full when deactivated */
  30        DEACTIVATE_EMPTY,       /* Cpu slab was empty when deactivated */
  31        DEACTIVATE_TO_HEAD,     /* Cpu slab was moved to the head of partials */
  32        DEACTIVATE_TO_TAIL,     /* Cpu slab was moved to the tail of partials */
  33        DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  34        ORDER_FALLBACK,         /* Number of times fallback was necessary */
  35        NR_SLUB_STAT_ITEMS };
  36
  37struct kmem_cache_cpu {
  38        void **freelist;        /* Pointer to first free per cpu object */
  39        struct page *page;      /* The slab from which we are allocating */
  40        int node;               /* The node of the page (or -1 for debug) */
  41        unsigned int offset;    /* Freepointer offset (in word units) */
  42        unsigned int objsize;   /* Size of an object (from kmem_cache) */
  43#ifdef CONFIG_SLUB_STATS
  44        unsigned stat[NR_SLUB_STAT_ITEMS];
  45#endif
  46};
  47
  48struct kmem_cache_node {
  49        spinlock_t list_lock;   /* Protect partial list and nr_partial */
  50        unsigned long nr_partial;
  51        struct list_head partial;
  52#ifdef CONFIG_SLUB_DEBUG
  53        atomic_long_t nr_slabs;
  54        atomic_long_t total_objects;
  55        struct list_head full;
  56#endif
  57};
  58
  59/*
  60 * Word size structure that can be atomically updated or read and that
  61 * contains both the order and the number of objects that a slab of the
  62 * given order would contain.
  63 */
  64struct kmem_cache_order_objects {
  65        unsigned long x;
  66};
  67
  68/*
  69 * Slab cache management.
  70 */
  71struct kmem_cache {
  72        /* Used for retriving partial slabs etc */
  73        unsigned long flags;
  74        int size;               /* The size of an object including meta data */
  75        int objsize;            /* The size of an object without meta data */
  76        int offset;             /* Free pointer offset. */
  77        struct kmem_cache_order_objects oo;
  78
  79        /*
  80         * Avoid an extra cache line for UP, SMP and for the node local to
  81         * struct kmem_cache.
  82         */
  83        struct kmem_cache_node local_node;
  84
  85        /* Allocation and freeing of slabs */
  86        struct kmem_cache_order_objects max;
  87        struct kmem_cache_order_objects min;
  88        gfp_t allocflags;       /* gfp flags to use on each alloc */
  89        int refcount;           /* Refcount for slab cache destroy */
  90        void (*ctor)(void *);
  91        int inuse;              /* Offset to metadata */
  92        int align;              /* Alignment */
  93        unsigned long min_partial;
  94        const char *name;       /* Name (only for display!) */
  95        struct list_head list;  /* List of slab caches */
  96#ifdef CONFIG_SLUB_DEBUG
  97        struct kobject kobj;    /* For sysfs */
  98#endif
  99
 100#ifdef CONFIG_NUMA
 101        /*
 102         * Defragmentation by allocating from a remote node.
 103         */
 104        int remote_node_defrag_ratio;
 105        struct kmem_cache_node *node[MAX_NUMNODES];
 106#endif
 107#ifdef CONFIG_SMP
 108        struct kmem_cache_cpu *cpu_slab[NR_CPUS];
 109#else
 110        struct kmem_cache_cpu cpu_slab;
 111#endif
 112};
 113
 114/*
 115 * Kmalloc subsystem.
 116 */
 117#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
 118#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
 119#else
 120#define KMALLOC_MIN_SIZE 8
 121#endif
 122
 123#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
 124
 125/*
 126 * Maximum kmalloc object size handled by SLUB. Larger object allocations
 127 * are passed through to the page allocator. The page allocator "fastpath"
 128 * is relatively slow so we need this value sufficiently high so that
 129 * performance critical objects are allocated through the SLUB fastpath.
 130 *
 131 * This should be dropped to PAGE_SIZE / 2 once the page allocator
 132 * "fastpath" becomes competitive with the slab allocator fastpaths.
 133 */
 134#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
 135
 136#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
 137
 138/*
 139 * We keep the general caches in an array of slab caches that are used for
 140 * 2^x bytes of allocations.
 141 */
 142extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
 143
 144/*
 145 * Sorry that the following has to be that ugly but some versions of GCC
 146 * have trouble with constant propagation and loops.
 147 */
 148static __always_inline int kmalloc_index(size_t size)
 149{
 150        if (!size)
 151                return 0;
 152
 153        if (size <= KMALLOC_MIN_SIZE)
 154                return KMALLOC_SHIFT_LOW;
 155
 156        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 157                return 1;
 158        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 159                return 2;
 160        if (size <=          8) return 3;
 161        if (size <=         16) return 4;
 162        if (size <=         32) return 5;
 163        if (size <=         64) return 6;
 164        if (size <=        128) return 7;
 165        if (size <=        256) return 8;
 166        if (size <=        512) return 9;
 167        if (size <=       1024) return 10;
 168        if (size <=   2 * 1024) return 11;
 169        if (size <=   4 * 1024) return 12;
 170/*
 171 * The following is only needed to support architectures with a larger page
 172 * size than 4k.
 173 */
 174        if (size <=   8 * 1024) return 13;
 175        if (size <=  16 * 1024) return 14;
 176        if (size <=  32 * 1024) return 15;
 177        if (size <=  64 * 1024) return 16;
 178        if (size <= 128 * 1024) return 17;
 179        if (size <= 256 * 1024) return 18;
 180        if (size <= 512 * 1024) return 19;
 181        if (size <= 1024 * 1024) return 20;
 182        if (size <=  2 * 1024 * 1024) return 21;
 183        return -1;
 184
 185/*
 186 * What we really wanted to do and cannot do because of compiler issues is:
 187 *      int i;
 188 *      for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
 189 *              if (size <= (1 << i))
 190 *                      return i;
 191 */
 192}
 193
 194/*
 195 * Find the slab cache for a given combination of allocation flags and size.
 196 *
 197 * This ought to end up with a global pointer to the right cache
 198 * in kmalloc_caches.
 199 */
 200static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
 201{
 202        int index = kmalloc_index(size);
 203
 204        if (index == 0)
 205                return NULL;
 206
 207        return &kmalloc_caches[index];
 208}
 209
 210#ifdef CONFIG_ZONE_DMA
 211#define SLUB_DMA __GFP_DMA
 212#else
 213/* Disable DMA functionality */
 214#define SLUB_DMA (__force gfp_t)0
 215#endif
 216
 217void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 218void *__kmalloc(size_t size, gfp_t flags);
 219
 220#ifdef CONFIG_KMEMTRACE
 221extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
 222#else
 223static __always_inline void *
 224kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
 225{
 226        return kmem_cache_alloc(s, gfpflags);
 227}
 228#endif
 229
 230static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
 231{
 232        unsigned int order = get_order(size);
 233        void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
 234
 235        kmemleak_alloc(ret, size, 1, flags);
 236        trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
 237
 238        return ret;
 239}
 240
 241static __always_inline void *kmalloc(size_t size, gfp_t flags)
 242{
 243        void *ret;
 244
 245        if (__builtin_constant_p(size)) {
 246                if (size > SLUB_MAX_SIZE)
 247                        return kmalloc_large(size, flags);
 248
 249                if (!(flags & SLUB_DMA)) {
 250                        struct kmem_cache *s = kmalloc_slab(size);
 251
 252                        if (!s)
 253                                return ZERO_SIZE_PTR;
 254
 255                        ret = kmem_cache_alloc_notrace(s, flags);
 256
 257                        trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
 258
 259                        return ret;
 260                }
 261        }
 262        return __kmalloc(size, flags);
 263}
 264
 265#ifdef CONFIG_NUMA
 266void *__kmalloc_node(size_t size, gfp_t flags, int node);
 267void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
 268
 269#ifdef CONFIG_KMEMTRACE
 270extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
 271                                           gfp_t gfpflags,
 272                                           int node);
 273#else
 274static __always_inline void *
 275kmem_cache_alloc_node_notrace(struct kmem_cache *s,
 276                              gfp_t gfpflags,
 277                              int node)
 278{
 279        return kmem_cache_alloc_node(s, gfpflags, node);
 280}
 281#endif
 282
 283static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 284{
 285        void *ret;
 286
 287        if (__builtin_constant_p(size) &&
 288                size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
 289                        struct kmem_cache *s = kmalloc_slab(size);
 290
 291                if (!s)
 292                        return ZERO_SIZE_PTR;
 293
 294                ret = kmem_cache_alloc_node_notrace(s, flags, node);
 295
 296                trace_kmalloc_node(_THIS_IP_, ret,
 297                                   size, s->size, flags, node);
 298
 299                return ret;
 300        }
 301        return __kmalloc_node(size, flags, node);
 302}
 303#endif
 304
 305#endif /* _LINUX_SLUB_DEF_H */
 306