linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/kernel.h>
  44#include <linux/list.h>
  45#include <linux/list_nulls.h>
  46#include <linux/timer.h>
  47#include <linux/cache.h>
  48#include <linux/module.h>
  49#include <linux/lockdep.h>
  50#include <linux/netdevice.h>
  51#include <linux/skbuff.h>       /* struct sk_buff */
  52#include <linux/mm.h>
  53#include <linux/security.h>
  54
  55#include <linux/filter.h>
  56#include <linux/rculist_nulls.h>
  57#include <linux/poll.h>
  58
  59#include <asm/atomic.h>
  60#include <net/dst.h>
  61#include <net/checksum.h>
  62
  63/*
  64 * This structure really needs to be cleaned up.
  65 * Most of it is for TCP, and not used by any of
  66 * the other protocols.
  67 */
  68
  69/* Define this to get the SOCK_DBG debugging facility. */
  70#define SOCK_DEBUGGING
  71#ifdef SOCK_DEBUGGING
  72#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  73                                        printk(KERN_DEBUG msg); } while (0)
  74#else
  75/* Validate arguments and do nothing */
  76static void inline int __attribute__ ((format (printf, 2, 3)))
  77SOCK_DEBUG(struct sock *sk, const char *msg, ...)
  78{
  79}
  80#endif
  81
  82/* This is the per-socket lock.  The spinlock provides a synchronization
  83 * between user contexts and software interrupt processing, whereas the
  84 * mini-semaphore synchronizes multiple users amongst themselves.
  85 */
  86typedef struct {
  87        spinlock_t              slock;
  88        int                     owned;
  89        wait_queue_head_t       wq;
  90        /*
  91         * We express the mutex-alike socket_lock semantics
  92         * to the lock validator by explicitly managing
  93         * the slock as a lock variant (in addition to
  94         * the slock itself):
  95         */
  96#ifdef CONFIG_DEBUG_LOCK_ALLOC
  97        struct lockdep_map dep_map;
  98#endif
  99} socket_lock_t;
 100
 101struct sock;
 102struct proto;
 103struct net;
 104
 105/**
 106 *      struct sock_common - minimal network layer representation of sockets
 107 *      @skc_node: main hash linkage for various protocol lookup tables
 108 *      @skc_nulls_node: main hash linkage for UDP/UDP-Lite protocol
 109 *      @skc_refcnt: reference count
 110 *      @skc_hash: hash value used with various protocol lookup tables
 111 *      @skc_family: network address family
 112 *      @skc_state: Connection state
 113 *      @skc_reuse: %SO_REUSEADDR setting
 114 *      @skc_bound_dev_if: bound device index if != 0
 115 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 116 *      @skc_prot: protocol handlers inside a network family
 117 *      @skc_net: reference to the network namespace of this socket
 118 *
 119 *      This is the minimal network layer representation of sockets, the header
 120 *      for struct sock and struct inet_timewait_sock.
 121 */
 122struct sock_common {
 123        /*
 124         * first fields are not copied in sock_copy()
 125         */
 126        union {
 127                struct hlist_node       skc_node;
 128                struct hlist_nulls_node skc_nulls_node;
 129        };
 130        atomic_t                skc_refcnt;
 131
 132        unsigned int            skc_hash;
 133        unsigned short          skc_family;
 134        volatile unsigned char  skc_state;
 135        unsigned char           skc_reuse;
 136        int                     skc_bound_dev_if;
 137        struct hlist_node       skc_bind_node;
 138        struct proto            *skc_prot;
 139#ifdef CONFIG_NET_NS
 140        struct net              *skc_net;
 141#endif
 142};
 143
 144/**
 145  *     struct sock - network layer representation of sockets
 146  *     @__sk_common: shared layout with inet_timewait_sock
 147  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 148  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 149  *     @sk_lock:       synchronizer
 150  *     @sk_rcvbuf: size of receive buffer in bytes
 151  *     @sk_sleep: sock wait queue
 152  *     @sk_dst_cache: destination cache
 153  *     @sk_dst_lock: destination cache lock
 154  *     @sk_policy: flow policy
 155  *     @sk_rmem_alloc: receive queue bytes committed
 156  *     @sk_receive_queue: incoming packets
 157  *     @sk_wmem_alloc: transmit queue bytes committed
 158  *     @sk_write_queue: Packet sending queue
 159  *     @sk_async_wait_queue: DMA copied packets
 160  *     @sk_omem_alloc: "o" is "option" or "other"
 161  *     @sk_wmem_queued: persistent queue size
 162  *     @sk_forward_alloc: space allocated forward
 163  *     @sk_allocation: allocation mode
 164  *     @sk_sndbuf: size of send buffer in bytes
 165  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 166  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 167  *     @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 168  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 169  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 170  *     @sk_gso_max_size: Maximum GSO segment size to build
 171  *     @sk_lingertime: %SO_LINGER l_linger setting
 172  *     @sk_backlog: always used with the per-socket spinlock held
 173  *     @sk_callback_lock: used with the callbacks in the end of this struct
 174  *     @sk_error_queue: rarely used
 175  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 176  *                       IPV6_ADDRFORM for instance)
 177  *     @sk_err: last error
 178  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 179  *                   persistent failure not just 'timed out'
 180  *     @sk_drops: raw/udp drops counter
 181  *     @sk_ack_backlog: current listen backlog
 182  *     @sk_max_ack_backlog: listen backlog set in listen()
 183  *     @sk_priority: %SO_PRIORITY setting
 184  *     @sk_type: socket type (%SOCK_STREAM, etc)
 185  *     @sk_protocol: which protocol this socket belongs in this network family
 186  *     @sk_peercred: %SO_PEERCRED setting
 187  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 188  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 189  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 190  *     @sk_filter: socket filtering instructions
 191  *     @sk_protinfo: private area, net family specific, when not using slab
 192  *     @sk_timer: sock cleanup timer
 193  *     @sk_stamp: time stamp of last packet received
 194  *     @sk_socket: Identd and reporting IO signals
 195  *     @sk_user_data: RPC layer private data
 196  *     @sk_sndmsg_page: cached page for sendmsg
 197  *     @sk_sndmsg_off: cached offset for sendmsg
 198  *     @sk_send_head: front of stuff to transmit
 199  *     @sk_security: used by security modules
 200  *     @sk_mark: generic packet mark
 201  *     @sk_write_pending: a write to stream socket waits to start
 202  *     @sk_state_change: callback to indicate change in the state of the sock
 203  *     @sk_data_ready: callback to indicate there is data to be processed
 204  *     @sk_write_space: callback to indicate there is bf sending space available
 205  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 206  *     @sk_backlog_rcv: callback to process the backlog
 207  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 208 */
 209struct sock {
 210        /*
 211         * Now struct inet_timewait_sock also uses sock_common, so please just
 212         * don't add nothing before this first member (__sk_common) --acme
 213         */
 214        struct sock_common      __sk_common;
 215#define sk_node                 __sk_common.skc_node
 216#define sk_nulls_node           __sk_common.skc_nulls_node
 217#define sk_refcnt               __sk_common.skc_refcnt
 218
 219#define sk_copy_start           __sk_common.skc_hash
 220#define sk_hash                 __sk_common.skc_hash
 221#define sk_family               __sk_common.skc_family
 222#define sk_state                __sk_common.skc_state
 223#define sk_reuse                __sk_common.skc_reuse
 224#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 225#define sk_bind_node            __sk_common.skc_bind_node
 226#define sk_prot                 __sk_common.skc_prot
 227#define sk_net                  __sk_common.skc_net
 228        kmemcheck_bitfield_begin(flags);
 229        unsigned int            sk_shutdown  : 2,
 230                                sk_no_check  : 2,
 231                                sk_userlocks : 4,
 232                                sk_protocol  : 8,
 233                                sk_type      : 16;
 234        kmemcheck_bitfield_end(flags);
 235        int                     sk_rcvbuf;
 236        socket_lock_t           sk_lock;
 237        /*
 238         * The backlog queue is special, it is always used with
 239         * the per-socket spinlock held and requires low latency
 240         * access. Therefore we special case it's implementation.
 241         */
 242        struct {
 243                struct sk_buff *head;
 244                struct sk_buff *tail;
 245        } sk_backlog;
 246        wait_queue_head_t       *sk_sleep;
 247        struct dst_entry        *sk_dst_cache;
 248#ifdef CONFIG_XFRM
 249        struct xfrm_policy      *sk_policy[2];
 250#endif
 251        rwlock_t                sk_dst_lock;
 252        atomic_t                sk_rmem_alloc;
 253        atomic_t                sk_wmem_alloc;
 254        atomic_t                sk_omem_alloc;
 255        int                     sk_sndbuf;
 256        struct sk_buff_head     sk_receive_queue;
 257        struct sk_buff_head     sk_write_queue;
 258#ifdef CONFIG_NET_DMA
 259        struct sk_buff_head     sk_async_wait_queue;
 260#endif
 261        int                     sk_wmem_queued;
 262        int                     sk_forward_alloc;
 263        gfp_t                   sk_allocation;
 264        int                     sk_route_caps;
 265        int                     sk_gso_type;
 266        unsigned int            sk_gso_max_size;
 267        int                     sk_rcvlowat;
 268        unsigned long           sk_flags;
 269        unsigned long           sk_lingertime;
 270        struct sk_buff_head     sk_error_queue;
 271        struct proto            *sk_prot_creator;
 272        rwlock_t                sk_callback_lock;
 273        int                     sk_err,
 274                                sk_err_soft;
 275        atomic_t                sk_drops;
 276        unsigned short          sk_ack_backlog;
 277        unsigned short          sk_max_ack_backlog;
 278        __u32                   sk_priority;
 279        struct ucred            sk_peercred;
 280        long                    sk_rcvtimeo;
 281        long                    sk_sndtimeo;
 282        struct sk_filter        *sk_filter;
 283        void                    *sk_protinfo;
 284        struct timer_list       sk_timer;
 285        ktime_t                 sk_stamp;
 286        struct socket           *sk_socket;
 287        void                    *sk_user_data;
 288        struct page             *sk_sndmsg_page;
 289        struct sk_buff          *sk_send_head;
 290        __u32                   sk_sndmsg_off;
 291        int                     sk_write_pending;
 292#ifdef CONFIG_SECURITY
 293        void                    *sk_security;
 294#endif
 295        __u32                   sk_mark;
 296        /* XXX 4 bytes hole on 64 bit */
 297        void                    (*sk_state_change)(struct sock *sk);
 298        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 299        void                    (*sk_write_space)(struct sock *sk);
 300        void                    (*sk_error_report)(struct sock *sk);
 301        int                     (*sk_backlog_rcv)(struct sock *sk,
 302                                                  struct sk_buff *skb);  
 303        void                    (*sk_destruct)(struct sock *sk);
 304};
 305
 306/*
 307 * Hashed lists helper routines
 308 */
 309static inline struct sock *__sk_head(const struct hlist_head *head)
 310{
 311        return hlist_entry(head->first, struct sock, sk_node);
 312}
 313
 314static inline struct sock *sk_head(const struct hlist_head *head)
 315{
 316        return hlist_empty(head) ? NULL : __sk_head(head);
 317}
 318
 319static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 320{
 321        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 322}
 323
 324static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 325{
 326        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 327}
 328
 329static inline struct sock *sk_next(const struct sock *sk)
 330{
 331        return sk->sk_node.next ?
 332                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 333}
 334
 335static inline struct sock *sk_nulls_next(const struct sock *sk)
 336{
 337        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 338                hlist_nulls_entry(sk->sk_nulls_node.next,
 339                                  struct sock, sk_nulls_node) :
 340                NULL;
 341}
 342
 343static inline int sk_unhashed(const struct sock *sk)
 344{
 345        return hlist_unhashed(&sk->sk_node);
 346}
 347
 348static inline int sk_hashed(const struct sock *sk)
 349{
 350        return !sk_unhashed(sk);
 351}
 352
 353static __inline__ void sk_node_init(struct hlist_node *node)
 354{
 355        node->pprev = NULL;
 356}
 357
 358static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
 359{
 360        node->pprev = NULL;
 361}
 362
 363static __inline__ void __sk_del_node(struct sock *sk)
 364{
 365        __hlist_del(&sk->sk_node);
 366}
 367
 368static __inline__ int __sk_del_node_init(struct sock *sk)
 369{
 370        if (sk_hashed(sk)) {
 371                __sk_del_node(sk);
 372                sk_node_init(&sk->sk_node);
 373                return 1;
 374        }
 375        return 0;
 376}
 377
 378/* Grab socket reference count. This operation is valid only
 379   when sk is ALREADY grabbed f.e. it is found in hash table
 380   or a list and the lookup is made under lock preventing hash table
 381   modifications.
 382 */
 383
 384static inline void sock_hold(struct sock *sk)
 385{
 386        atomic_inc(&sk->sk_refcnt);
 387}
 388
 389/* Ungrab socket in the context, which assumes that socket refcnt
 390   cannot hit zero, f.e. it is true in context of any socketcall.
 391 */
 392static inline void __sock_put(struct sock *sk)
 393{
 394        atomic_dec(&sk->sk_refcnt);
 395}
 396
 397static __inline__ int sk_del_node_init(struct sock *sk)
 398{
 399        int rc = __sk_del_node_init(sk);
 400
 401        if (rc) {
 402                /* paranoid for a while -acme */
 403                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 404                __sock_put(sk);
 405        }
 406        return rc;
 407}
 408
 409static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
 410{
 411        if (sk_hashed(sk)) {
 412                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 413                return 1;
 414        }
 415        return 0;
 416}
 417
 418static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
 419{
 420        int rc = __sk_nulls_del_node_init_rcu(sk);
 421
 422        if (rc) {
 423                /* paranoid for a while -acme */
 424                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 425                __sock_put(sk);
 426        }
 427        return rc;
 428}
 429
 430static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
 431{
 432        hlist_add_head(&sk->sk_node, list);
 433}
 434
 435static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
 436{
 437        sock_hold(sk);
 438        __sk_add_node(sk, list);
 439}
 440
 441static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 442{
 443        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 444}
 445
 446static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 447{
 448        sock_hold(sk);
 449        __sk_nulls_add_node_rcu(sk, list);
 450}
 451
 452static __inline__ void __sk_del_bind_node(struct sock *sk)
 453{
 454        __hlist_del(&sk->sk_bind_node);
 455}
 456
 457static __inline__ void sk_add_bind_node(struct sock *sk,
 458                                        struct hlist_head *list)
 459{
 460        hlist_add_head(&sk->sk_bind_node, list);
 461}
 462
 463#define sk_for_each(__sk, node, list) \
 464        hlist_for_each_entry(__sk, node, list, sk_node)
 465#define sk_nulls_for_each(__sk, node, list) \
 466        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 467#define sk_nulls_for_each_rcu(__sk, node, list) \
 468        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 469#define sk_for_each_from(__sk, node) \
 470        if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 471                hlist_for_each_entry_from(__sk, node, sk_node)
 472#define sk_nulls_for_each_from(__sk, node) \
 473        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 474                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 475#define sk_for_each_continue(__sk, node) \
 476        if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 477                hlist_for_each_entry_continue(__sk, node, sk_node)
 478#define sk_for_each_safe(__sk, node, tmp, list) \
 479        hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 480#define sk_for_each_bound(__sk, node, list) \
 481        hlist_for_each_entry(__sk, node, list, sk_bind_node)
 482
 483/* Sock flags */
 484enum sock_flags {
 485        SOCK_DEAD,
 486        SOCK_DONE,
 487        SOCK_URGINLINE,
 488        SOCK_KEEPOPEN,
 489        SOCK_LINGER,
 490        SOCK_DESTROY,
 491        SOCK_BROADCAST,
 492        SOCK_TIMESTAMP,
 493        SOCK_ZAPPED,
 494        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 495        SOCK_DBG, /* %SO_DEBUG setting */
 496        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 497        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 498        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 499        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 500        SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 501        SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 502        SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 503        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 504        SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 505        SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 506        SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 507};
 508
 509static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 510{
 511        nsk->sk_flags = osk->sk_flags;
 512}
 513
 514static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 515{
 516        __set_bit(flag, &sk->sk_flags);
 517}
 518
 519static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 520{
 521        __clear_bit(flag, &sk->sk_flags);
 522}
 523
 524static inline int sock_flag(struct sock *sk, enum sock_flags flag)
 525{
 526        return test_bit(flag, &sk->sk_flags);
 527}
 528
 529static inline void sk_acceptq_removed(struct sock *sk)
 530{
 531        sk->sk_ack_backlog--;
 532}
 533
 534static inline void sk_acceptq_added(struct sock *sk)
 535{
 536        sk->sk_ack_backlog++;
 537}
 538
 539static inline int sk_acceptq_is_full(struct sock *sk)
 540{
 541        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 542}
 543
 544/*
 545 * Compute minimal free write space needed to queue new packets.
 546 */
 547static inline int sk_stream_min_wspace(struct sock *sk)
 548{
 549        return sk->sk_wmem_queued >> 1;
 550}
 551
 552static inline int sk_stream_wspace(struct sock *sk)
 553{
 554        return sk->sk_sndbuf - sk->sk_wmem_queued;
 555}
 556
 557extern void sk_stream_write_space(struct sock *sk);
 558
 559static inline int sk_stream_memory_free(struct sock *sk)
 560{
 561        return sk->sk_wmem_queued < sk->sk_sndbuf;
 562}
 563
 564/* The per-socket spinlock must be held here. */
 565static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 566{
 567        if (!sk->sk_backlog.tail) {
 568                sk->sk_backlog.head = sk->sk_backlog.tail = skb;
 569        } else {
 570                sk->sk_backlog.tail->next = skb;
 571                sk->sk_backlog.tail = skb;
 572        }
 573        skb->next = NULL;
 574}
 575
 576static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 577{
 578        return sk->sk_backlog_rcv(sk, skb);
 579}
 580
 581#define sk_wait_event(__sk, __timeo, __condition)                       \
 582        ({      int __rc;                                               \
 583                release_sock(__sk);                                     \
 584                __rc = __condition;                                     \
 585                if (!__rc) {                                            \
 586                        *(__timeo) = schedule_timeout(*(__timeo));      \
 587                }                                                       \
 588                lock_sock(__sk);                                        \
 589                __rc = __condition;                                     \
 590                __rc;                                                   \
 591        })
 592
 593extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 594extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 595extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 596extern int sk_stream_error(struct sock *sk, int flags, int err);
 597extern void sk_stream_kill_queues(struct sock *sk);
 598
 599extern int sk_wait_data(struct sock *sk, long *timeo);
 600
 601struct request_sock_ops;
 602struct timewait_sock_ops;
 603struct inet_hashinfo;
 604struct raw_hashinfo;
 605
 606/* Networking protocol blocks we attach to sockets.
 607 * socket layer -> transport layer interface
 608 * transport -> network interface is defined by struct inet_proto
 609 */
 610struct proto {
 611        void                    (*close)(struct sock *sk, 
 612                                        long timeout);
 613        int                     (*connect)(struct sock *sk,
 614                                        struct sockaddr *uaddr, 
 615                                        int addr_len);
 616        int                     (*disconnect)(struct sock *sk, int flags);
 617
 618        struct sock *           (*accept) (struct sock *sk, int flags, int *err);
 619
 620        int                     (*ioctl)(struct sock *sk, int cmd,
 621                                         unsigned long arg);
 622        int                     (*init)(struct sock *sk);
 623        void                    (*destroy)(struct sock *sk);
 624        void                    (*shutdown)(struct sock *sk, int how);
 625        int                     (*setsockopt)(struct sock *sk, int level, 
 626                                        int optname, char __user *optval,
 627                                        unsigned int optlen);
 628        int                     (*getsockopt)(struct sock *sk, int level, 
 629                                        int optname, char __user *optval, 
 630                                        int __user *option);     
 631#ifdef CONFIG_COMPAT
 632        int                     (*compat_setsockopt)(struct sock *sk,
 633                                        int level,
 634                                        int optname, char __user *optval,
 635                                        unsigned int optlen);
 636        int                     (*compat_getsockopt)(struct sock *sk,
 637                                        int level,
 638                                        int optname, char __user *optval,
 639                                        int __user *option);
 640#endif
 641        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
 642                                           struct msghdr *msg, size_t len);
 643        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
 644                                           struct msghdr *msg,
 645                                        size_t len, int noblock, int flags, 
 646                                        int *addr_len);
 647        int                     (*sendpage)(struct sock *sk, struct page *page,
 648                                        int offset, size_t size, int flags);
 649        int                     (*bind)(struct sock *sk, 
 650                                        struct sockaddr *uaddr, int addr_len);
 651
 652        int                     (*backlog_rcv) (struct sock *sk, 
 653                                                struct sk_buff *skb);
 654
 655        /* Keeping track of sk's, looking them up, and port selection methods. */
 656        void                    (*hash)(struct sock *sk);
 657        void                    (*unhash)(struct sock *sk);
 658        int                     (*get_port)(struct sock *sk, unsigned short snum);
 659
 660        /* Keeping track of sockets in use */
 661#ifdef CONFIG_PROC_FS
 662        unsigned int            inuse_idx;
 663#endif
 664
 665        /* Memory pressure */
 666        void                    (*enter_memory_pressure)(struct sock *sk);
 667        atomic_t                *memory_allocated;      /* Current allocated memory. */
 668        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 669        /*
 670         * Pressure flag: try to collapse.
 671         * Technical note: it is used by multiple contexts non atomically.
 672         * All the __sk_mem_schedule() is of this nature: accounting
 673         * is strict, actions are advisory and have some latency.
 674         */
 675        int                     *memory_pressure;
 676        int                     *sysctl_mem;
 677        int                     *sysctl_wmem;
 678        int                     *sysctl_rmem;
 679        int                     max_header;
 680
 681        struct kmem_cache       *slab;
 682        unsigned int            obj_size;
 683        int                     slab_flags;
 684
 685        struct percpu_counter   *orphan_count;
 686
 687        struct request_sock_ops *rsk_prot;
 688        struct timewait_sock_ops *twsk_prot;
 689
 690        union {
 691                struct inet_hashinfo    *hashinfo;
 692                struct udp_table        *udp_table;
 693                struct raw_hashinfo     *raw_hash;
 694        } h;
 695
 696        struct module           *owner;
 697
 698        char                    name[32];
 699
 700        struct list_head        node;
 701#ifdef SOCK_REFCNT_DEBUG
 702        atomic_t                socks;
 703#endif
 704};
 705
 706extern int proto_register(struct proto *prot, int alloc_slab);
 707extern void proto_unregister(struct proto *prot);
 708
 709#ifdef SOCK_REFCNT_DEBUG
 710static inline void sk_refcnt_debug_inc(struct sock *sk)
 711{
 712        atomic_inc(&sk->sk_prot->socks);
 713}
 714
 715static inline void sk_refcnt_debug_dec(struct sock *sk)
 716{
 717        atomic_dec(&sk->sk_prot->socks);
 718        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 719               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 720}
 721
 722static inline void sk_refcnt_debug_release(const struct sock *sk)
 723{
 724        if (atomic_read(&sk->sk_refcnt) != 1)
 725                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 726                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 727}
 728#else /* SOCK_REFCNT_DEBUG */
 729#define sk_refcnt_debug_inc(sk) do { } while (0)
 730#define sk_refcnt_debug_dec(sk) do { } while (0)
 731#define sk_refcnt_debug_release(sk) do { } while (0)
 732#endif /* SOCK_REFCNT_DEBUG */
 733
 734
 735#ifdef CONFIG_PROC_FS
 736/* Called with local bh disabled */
 737extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
 738extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
 739#else
 740static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
 741                int inc)
 742{
 743}
 744#endif
 745
 746
 747/* With per-bucket locks this operation is not-atomic, so that
 748 * this version is not worse.
 749 */
 750static inline void __sk_prot_rehash(struct sock *sk)
 751{
 752        sk->sk_prot->unhash(sk);
 753        sk->sk_prot->hash(sk);
 754}
 755
 756/* About 10 seconds */
 757#define SOCK_DESTROY_TIME (10*HZ)
 758
 759/* Sockets 0-1023 can't be bound to unless you are superuser */
 760#define PROT_SOCK       1024
 761
 762#define SHUTDOWN_MASK   3
 763#define RCV_SHUTDOWN    1
 764#define SEND_SHUTDOWN   2
 765
 766#define SOCK_SNDBUF_LOCK        1
 767#define SOCK_RCVBUF_LOCK        2
 768#define SOCK_BINDADDR_LOCK      4
 769#define SOCK_BINDPORT_LOCK      8
 770
 771/* sock_iocb: used to kick off async processing of socket ios */
 772struct sock_iocb {
 773        struct list_head        list;
 774
 775        int                     flags;
 776        int                     size;
 777        struct socket           *sock;
 778        struct sock             *sk;
 779        struct scm_cookie       *scm;
 780        struct msghdr           *msg, async_msg;
 781        struct kiocb            *kiocb;
 782};
 783
 784static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
 785{
 786        return (struct sock_iocb *)iocb->private;
 787}
 788
 789static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
 790{
 791        return si->kiocb;
 792}
 793
 794struct socket_alloc {
 795        struct socket socket;
 796        struct inode vfs_inode;
 797};
 798
 799static inline struct socket *SOCKET_I(struct inode *inode)
 800{
 801        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
 802}
 803
 804static inline struct inode *SOCK_INODE(struct socket *socket)
 805{
 806        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
 807}
 808
 809/*
 810 * Functions for memory accounting
 811 */
 812extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
 813extern void __sk_mem_reclaim(struct sock *sk);
 814
 815#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 816#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
 817#define SK_MEM_SEND     0
 818#define SK_MEM_RECV     1
 819
 820static inline int sk_mem_pages(int amt)
 821{
 822        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
 823}
 824
 825static inline int sk_has_account(struct sock *sk)
 826{
 827        /* return true if protocol supports memory accounting */
 828        return !!sk->sk_prot->memory_allocated;
 829}
 830
 831static inline int sk_wmem_schedule(struct sock *sk, int size)
 832{
 833        if (!sk_has_account(sk))
 834                return 1;
 835        return size <= sk->sk_forward_alloc ||
 836                __sk_mem_schedule(sk, size, SK_MEM_SEND);
 837}
 838
 839static inline int sk_rmem_schedule(struct sock *sk, int size)
 840{
 841        if (!sk_has_account(sk))
 842                return 1;
 843        return size <= sk->sk_forward_alloc ||
 844                __sk_mem_schedule(sk, size, SK_MEM_RECV);
 845}
 846
 847static inline void sk_mem_reclaim(struct sock *sk)
 848{
 849        if (!sk_has_account(sk))
 850                return;
 851        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
 852                __sk_mem_reclaim(sk);
 853}
 854
 855static inline void sk_mem_reclaim_partial(struct sock *sk)
 856{
 857        if (!sk_has_account(sk))
 858                return;
 859        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
 860                __sk_mem_reclaim(sk);
 861}
 862
 863static inline void sk_mem_charge(struct sock *sk, int size)
 864{
 865        if (!sk_has_account(sk))
 866                return;
 867        sk->sk_forward_alloc -= size;
 868}
 869
 870static inline void sk_mem_uncharge(struct sock *sk, int size)
 871{
 872        if (!sk_has_account(sk))
 873                return;
 874        sk->sk_forward_alloc += size;
 875}
 876
 877static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 878{
 879        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
 880        sk->sk_wmem_queued -= skb->truesize;
 881        sk_mem_uncharge(sk, skb->truesize);
 882        __kfree_skb(skb);
 883}
 884
 885/* Used by processes to "lock" a socket state, so that
 886 * interrupts and bottom half handlers won't change it
 887 * from under us. It essentially blocks any incoming
 888 * packets, so that we won't get any new data or any
 889 * packets that change the state of the socket.
 890 *
 891 * While locked, BH processing will add new packets to
 892 * the backlog queue.  This queue is processed by the
 893 * owner of the socket lock right before it is released.
 894 *
 895 * Since ~2.3.5 it is also exclusive sleep lock serializing
 896 * accesses from user process context.
 897 */
 898#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
 899
 900/*
 901 * Macro so as to not evaluate some arguments when
 902 * lockdep is not enabled.
 903 *
 904 * Mark both the sk_lock and the sk_lock.slock as a
 905 * per-address-family lock class.
 906 */
 907#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
 908do {                                                                    \
 909        sk->sk_lock.owned = 0;                                          \
 910        init_waitqueue_head(&sk->sk_lock.wq);                           \
 911        spin_lock_init(&(sk)->sk_lock.slock);                           \
 912        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
 913                        sizeof((sk)->sk_lock));                         \
 914        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
 915                        (skey), (sname));                               \
 916        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
 917} while (0)
 918
 919extern void lock_sock_nested(struct sock *sk, int subclass);
 920
 921static inline void lock_sock(struct sock *sk)
 922{
 923        lock_sock_nested(sk, 0);
 924}
 925
 926extern void release_sock(struct sock *sk);
 927
 928/* BH context may only use the following locking interface. */
 929#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
 930#define bh_lock_sock_nested(__sk) \
 931                                spin_lock_nested(&((__sk)->sk_lock.slock), \
 932                                SINGLE_DEPTH_NESTING)
 933#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
 934
 935extern struct sock              *sk_alloc(struct net *net, int family,
 936                                          gfp_t priority,
 937                                          struct proto *prot);
 938extern void                     sk_free(struct sock *sk);
 939extern void                     sk_release_kernel(struct sock *sk);
 940extern struct sock              *sk_clone(const struct sock *sk,
 941                                          const gfp_t priority);
 942
 943extern struct sk_buff           *sock_wmalloc(struct sock *sk,
 944                                              unsigned long size, int force,
 945                                              gfp_t priority);
 946extern struct sk_buff           *sock_rmalloc(struct sock *sk,
 947                                              unsigned long size, int force,
 948                                              gfp_t priority);
 949extern void                     sock_wfree(struct sk_buff *skb);
 950extern void                     sock_rfree(struct sk_buff *skb);
 951
 952extern int                      sock_setsockopt(struct socket *sock, int level,
 953                                                int op, char __user *optval,
 954                                                unsigned int optlen);
 955
 956extern int                      sock_getsockopt(struct socket *sock, int level,
 957                                                int op, char __user *optval, 
 958                                                int __user *optlen);
 959extern struct sk_buff           *sock_alloc_send_skb(struct sock *sk,
 960                                                     unsigned long size,
 961                                                     int noblock,
 962                                                     int *errcode);
 963extern struct sk_buff           *sock_alloc_send_pskb(struct sock *sk,
 964                                                      unsigned long header_len,
 965                                                      unsigned long data_len,
 966                                                      int noblock,
 967                                                      int *errcode);
 968extern void *sock_kmalloc(struct sock *sk, int size,
 969                          gfp_t priority);
 970extern void sock_kfree_s(struct sock *sk, void *mem, int size);
 971extern void sk_send_sigurg(struct sock *sk);
 972
 973/*
 974 * Functions to fill in entries in struct proto_ops when a protocol
 975 * does not implement a particular function.
 976 */
 977extern int                      sock_no_bind(struct socket *, 
 978                                             struct sockaddr *, int);
 979extern int                      sock_no_connect(struct socket *,
 980                                                struct sockaddr *, int, int);
 981extern int                      sock_no_socketpair(struct socket *,
 982                                                   struct socket *);
 983extern int                      sock_no_accept(struct socket *,
 984                                               struct socket *, int);
 985extern int                      sock_no_getname(struct socket *,
 986                                                struct sockaddr *, int *, int);
 987extern unsigned int             sock_no_poll(struct file *, struct socket *,
 988                                             struct poll_table_struct *);
 989extern int                      sock_no_ioctl(struct socket *, unsigned int,
 990                                              unsigned long);
 991extern int                      sock_no_listen(struct socket *, int);
 992extern int                      sock_no_shutdown(struct socket *, int);
 993extern int                      sock_no_getsockopt(struct socket *, int , int,
 994                                                   char __user *, int __user *);
 995extern int                      sock_no_setsockopt(struct socket *, int, int,
 996                                                   char __user *, unsigned int);
 997extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
 998                                                struct msghdr *, size_t);
 999extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1000                                                struct msghdr *, size_t, int);
1001extern int                      sock_no_mmap(struct file *file,
1002                                             struct socket *sock,
1003                                             struct vm_area_struct *vma);
1004extern ssize_t                  sock_no_sendpage(struct socket *sock,
1005                                                struct page *page,
1006                                                int offset, size_t size, 
1007                                                int flags);
1008
1009/*
1010 * Functions to fill in entries in struct proto_ops when a protocol
1011 * uses the inet style.
1012 */
1013extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1014                                  char __user *optval, int __user *optlen);
1015extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1016                               struct msghdr *msg, size_t size, int flags);
1017extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1018                                  char __user *optval, unsigned int optlen);
1019extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1020                int optname, char __user *optval, int __user *optlen);
1021extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1022                int optname, char __user *optval, unsigned int optlen);
1023
1024extern void sk_common_release(struct sock *sk);
1025
1026/*
1027 *      Default socket callbacks and setup code
1028 */
1029 
1030/* Initialise core socket variables */
1031extern void sock_init_data(struct socket *sock, struct sock *sk);
1032
1033/**
1034 *      sk_filter_release: Release a socket filter
1035 *      @fp: filter to remove
1036 *
1037 *      Remove a filter from a socket and release its resources.
1038 */
1039
1040static inline void sk_filter_release(struct sk_filter *fp)
1041{
1042        if (atomic_dec_and_test(&fp->refcnt))
1043                kfree(fp);
1044}
1045
1046static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1047{
1048        unsigned int size = sk_filter_len(fp);
1049
1050        atomic_sub(size, &sk->sk_omem_alloc);
1051        sk_filter_release(fp);
1052}
1053
1054static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1055{
1056        atomic_inc(&fp->refcnt);
1057        atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1058}
1059
1060/*
1061 * Socket reference counting postulates.
1062 *
1063 * * Each user of socket SHOULD hold a reference count.
1064 * * Each access point to socket (an hash table bucket, reference from a list,
1065 *   running timer, skb in flight MUST hold a reference count.
1066 * * When reference count hits 0, it means it will never increase back.
1067 * * When reference count hits 0, it means that no references from
1068 *   outside exist to this socket and current process on current CPU
1069 *   is last user and may/should destroy this socket.
1070 * * sk_free is called from any context: process, BH, IRQ. When
1071 *   it is called, socket has no references from outside -> sk_free
1072 *   may release descendant resources allocated by the socket, but
1073 *   to the time when it is called, socket is NOT referenced by any
1074 *   hash tables, lists etc.
1075 * * Packets, delivered from outside (from network or from another process)
1076 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1077 *   when they sit in queue. Otherwise, packets will leak to hole, when
1078 *   socket is looked up by one cpu and unhasing is made by another CPU.
1079 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1080 *   (leak to backlog). Packet socket does all the processing inside
1081 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1082 *   use separate SMP lock, so that they are prone too.
1083 */
1084
1085/* Ungrab socket and destroy it, if it was the last reference. */
1086static inline void sock_put(struct sock *sk)
1087{
1088        if (atomic_dec_and_test(&sk->sk_refcnt))
1089                sk_free(sk);
1090}
1091
1092extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1093                          const int nested);
1094
1095static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1096{
1097        sk->sk_socket = sock;
1098}
1099
1100/* Detach socket from process context.
1101 * Announce socket dead, detach it from wait queue and inode.
1102 * Note that parent inode held reference count on this struct sock,
1103 * we do not release it in this function, because protocol
1104 * probably wants some additional cleanups or even continuing
1105 * to work with this socket (TCP).
1106 */
1107static inline void sock_orphan(struct sock *sk)
1108{
1109        write_lock_bh(&sk->sk_callback_lock);
1110        sock_set_flag(sk, SOCK_DEAD);
1111        sk_set_socket(sk, NULL);
1112        sk->sk_sleep  = NULL;
1113        write_unlock_bh(&sk->sk_callback_lock);
1114}
1115
1116static inline void sock_graft(struct sock *sk, struct socket *parent)
1117{
1118        write_lock_bh(&sk->sk_callback_lock);
1119        sk->sk_sleep = &parent->wait;
1120        parent->sk = sk;
1121        sk_set_socket(sk, parent);
1122        security_sock_graft(sk, parent);
1123        write_unlock_bh(&sk->sk_callback_lock);
1124}
1125
1126extern int sock_i_uid(struct sock *sk);
1127extern unsigned long sock_i_ino(struct sock *sk);
1128
1129static inline struct dst_entry *
1130__sk_dst_get(struct sock *sk)
1131{
1132        return sk->sk_dst_cache;
1133}
1134
1135static inline struct dst_entry *
1136sk_dst_get(struct sock *sk)
1137{
1138        struct dst_entry *dst;
1139
1140        read_lock(&sk->sk_dst_lock);
1141        dst = sk->sk_dst_cache;
1142        if (dst)
1143                dst_hold(dst);
1144        read_unlock(&sk->sk_dst_lock);
1145        return dst;
1146}
1147
1148static inline void
1149__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1150{
1151        struct dst_entry *old_dst;
1152
1153        old_dst = sk->sk_dst_cache;
1154        sk->sk_dst_cache = dst;
1155        dst_release(old_dst);
1156}
1157
1158static inline void
1159sk_dst_set(struct sock *sk, struct dst_entry *dst)
1160{
1161        write_lock(&sk->sk_dst_lock);
1162        __sk_dst_set(sk, dst);
1163        write_unlock(&sk->sk_dst_lock);
1164}
1165
1166static inline void
1167__sk_dst_reset(struct sock *sk)
1168{
1169        struct dst_entry *old_dst;
1170
1171        old_dst = sk->sk_dst_cache;
1172        sk->sk_dst_cache = NULL;
1173        dst_release(old_dst);
1174}
1175
1176static inline void
1177sk_dst_reset(struct sock *sk)
1178{
1179        write_lock(&sk->sk_dst_lock);
1180        __sk_dst_reset(sk);
1181        write_unlock(&sk->sk_dst_lock);
1182}
1183
1184extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1185
1186extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1187
1188static inline int sk_can_gso(const struct sock *sk)
1189{
1190        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1191}
1192
1193extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1194
1195static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1196                                   struct sk_buff *skb, struct page *page,
1197                                   int off, int copy)
1198{
1199        if (skb->ip_summed == CHECKSUM_NONE) {
1200                int err = 0;
1201                __wsum csum = csum_and_copy_from_user(from,
1202                                                     page_address(page) + off,
1203                                                            copy, 0, &err);
1204                if (err)
1205                        return err;
1206                skb->csum = csum_block_add(skb->csum, csum, skb->len);
1207        } else if (copy_from_user(page_address(page) + off, from, copy))
1208                return -EFAULT;
1209
1210        skb->len             += copy;
1211        skb->data_len        += copy;
1212        skb->truesize        += copy;
1213        sk->sk_wmem_queued   += copy;
1214        sk_mem_charge(sk, copy);
1215        return 0;
1216}
1217
1218/**
1219 * sk_wmem_alloc_get - returns write allocations
1220 * @sk: socket
1221 *
1222 * Returns sk_wmem_alloc minus initial offset of one
1223 */
1224static inline int sk_wmem_alloc_get(const struct sock *sk)
1225{
1226        return atomic_read(&sk->sk_wmem_alloc) - 1;
1227}
1228
1229/**
1230 * sk_rmem_alloc_get - returns read allocations
1231 * @sk: socket
1232 *
1233 * Returns sk_rmem_alloc
1234 */
1235static inline int sk_rmem_alloc_get(const struct sock *sk)
1236{
1237        return atomic_read(&sk->sk_rmem_alloc);
1238}
1239
1240/**
1241 * sk_has_allocations - check if allocations are outstanding
1242 * @sk: socket
1243 *
1244 * Returns true if socket has write or read allocations
1245 */
1246static inline int sk_has_allocations(const struct sock *sk)
1247{
1248        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1249}
1250
1251/**
1252 * sk_has_sleeper - check if there are any waiting processes
1253 * @sk: socket
1254 *
1255 * Returns true if socket has waiting processes
1256 *
1257 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1258 * barrier call. They were added due to the race found within the tcp code.
1259 *
1260 * Consider following tcp code paths:
1261 *
1262 * CPU1                  CPU2
1263 *
1264 * sys_select            receive packet
1265 *   ...                 ...
1266 *   __add_wait_queue    update tp->rcv_nxt
1267 *   ...                 ...
1268 *   tp->rcv_nxt check   sock_def_readable
1269 *   ...                 {
1270 *   schedule               ...
1271 *                          if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1272 *                              wake_up_interruptible(sk->sk_sleep)
1273 *                          ...
1274 *                       }
1275 *
1276 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1277 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1278 * could then endup calling schedule and sleep forever if there are no more
1279 * data on the socket.
1280 *
1281 * The sk_has_sleeper is always called right after a call to read_lock, so we
1282 * can use smp_mb__after_lock barrier.
1283 */
1284static inline int sk_has_sleeper(struct sock *sk)
1285{
1286        /*
1287         * We need to be sure we are in sync with the
1288         * add_wait_queue modifications to the wait queue.
1289         *
1290         * This memory barrier is paired in the sock_poll_wait.
1291         */
1292        smp_mb__after_lock();
1293        return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1294}
1295
1296/**
1297 * sock_poll_wait - place memory barrier behind the poll_wait call.
1298 * @filp:           file
1299 * @wait_address:   socket wait queue
1300 * @p:              poll_table
1301 *
1302 * See the comments in the sk_has_sleeper function.
1303 */
1304static inline void sock_poll_wait(struct file *filp,
1305                wait_queue_head_t *wait_address, poll_table *p)
1306{
1307        if (p && wait_address) {
1308                poll_wait(filp, wait_address, p);
1309                /*
1310                 * We need to be sure we are in sync with the
1311                 * socket flags modification.
1312                 *
1313                 * This memory barrier is paired in the sk_has_sleeper.
1314                */
1315                smp_mb();
1316        }
1317}
1318
1319/*
1320 *      Queue a received datagram if it will fit. Stream and sequenced
1321 *      protocols can't normally use this as they need to fit buffers in
1322 *      and play with them.
1323 *
1324 *      Inlined as it's very short and called for pretty much every
1325 *      packet ever received.
1326 */
1327
1328static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1329{
1330        skb_orphan(skb);
1331        skb->sk = sk;
1332        skb->destructor = sock_wfree;
1333        /*
1334         * We used to take a refcount on sk, but following operation
1335         * is enough to guarantee sk_free() wont free this sock until
1336         * all in-flight packets are completed
1337         */
1338        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1339}
1340
1341static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1342{
1343        skb_orphan(skb);
1344        skb->sk = sk;
1345        skb->destructor = sock_rfree;
1346        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1347        sk_mem_charge(sk, skb->truesize);
1348}
1349
1350extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1351                           unsigned long expires);
1352
1353extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1354
1355extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1356
1357static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1358{
1359        /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1360           number of warnings when compiling with -W --ANK
1361         */
1362        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1363            (unsigned)sk->sk_rcvbuf)
1364                return -ENOMEM;
1365        skb_set_owner_r(skb, sk);
1366        skb_queue_tail(&sk->sk_error_queue, skb);
1367        if (!sock_flag(sk, SOCK_DEAD))
1368                sk->sk_data_ready(sk, skb->len);
1369        return 0;
1370}
1371
1372/*
1373 *      Recover an error report and clear atomically
1374 */
1375 
1376static inline int sock_error(struct sock *sk)
1377{
1378        int err;
1379        if (likely(!sk->sk_err))
1380                return 0;
1381        err = xchg(&sk->sk_err, 0);
1382        return -err;
1383}
1384
1385static inline unsigned long sock_wspace(struct sock *sk)
1386{
1387        int amt = 0;
1388
1389        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1390                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1391                if (amt < 0) 
1392                        amt = 0;
1393        }
1394        return amt;
1395}
1396
1397static inline void sk_wake_async(struct sock *sk, int how, int band)
1398{
1399        if (sk->sk_socket && sk->sk_socket->fasync_list)
1400                sock_wake_async(sk->sk_socket, how, band);
1401}
1402
1403#define SOCK_MIN_SNDBUF 2048
1404#define SOCK_MIN_RCVBUF 256
1405
1406static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1407{
1408        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1409                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1410                sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1411        }
1412}
1413
1414struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1415
1416static inline struct page *sk_stream_alloc_page(struct sock *sk)
1417{
1418        struct page *page = NULL;
1419
1420        page = alloc_pages(sk->sk_allocation, 0);
1421        if (!page) {
1422                sk->sk_prot->enter_memory_pressure(sk);
1423                sk_stream_moderate_sndbuf(sk);
1424        }
1425        return page;
1426}
1427
1428/*
1429 *      Default write policy as shown to user space via poll/select/SIGIO
1430 */
1431static inline int sock_writeable(const struct sock *sk) 
1432{
1433        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1434}
1435
1436static inline gfp_t gfp_any(void)
1437{
1438        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1439}
1440
1441static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1442{
1443        return noblock ? 0 : sk->sk_rcvtimeo;
1444}
1445
1446static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1447{
1448        return noblock ? 0 : sk->sk_sndtimeo;
1449}
1450
1451static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1452{
1453        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1454}
1455
1456/* Alas, with timeout socket operations are not restartable.
1457 * Compare this to poll().
1458 */
1459static inline int sock_intr_errno(long timeo)
1460{
1461        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1462}
1463
1464extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1465        struct sk_buff *skb);
1466
1467static __inline__ void
1468sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1469{
1470        ktime_t kt = skb->tstamp;
1471        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1472
1473        /*
1474         * generate control messages if
1475         * - receive time stamping in software requested (SOCK_RCVTSTAMP
1476         *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1477         * - software time stamp available and wanted
1478         *   (SOCK_TIMESTAMPING_SOFTWARE)
1479         * - hardware time stamps available and wanted
1480         *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1481         *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1482         */
1483        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1484            sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1485            (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1486            (hwtstamps->hwtstamp.tv64 &&
1487             sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1488            (hwtstamps->syststamp.tv64 &&
1489             sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1490                __sock_recv_timestamp(msg, sk, skb);
1491        else
1492                sk->sk_stamp = kt;
1493}
1494
1495/**
1496 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1497 * @msg:        outgoing packet
1498 * @sk:         socket sending this packet
1499 * @shtx:       filled with instructions for time stamping
1500 *
1501 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1502 * parameters are invalid.
1503 */
1504extern int sock_tx_timestamp(struct msghdr *msg,
1505                             struct sock *sk,
1506                             union skb_shared_tx *shtx);
1507
1508
1509/**
1510 * sk_eat_skb - Release a skb if it is no longer needed
1511 * @sk: socket to eat this skb from
1512 * @skb: socket buffer to eat
1513 * @copied_early: flag indicating whether DMA operations copied this data early
1514 *
1515 * This routine must be called with interrupts disabled or with the socket
1516 * locked so that the sk_buff queue operation is ok.
1517*/
1518#ifdef CONFIG_NET_DMA
1519static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1520{
1521        __skb_unlink(skb, &sk->sk_receive_queue);
1522        if (!copied_early)
1523                __kfree_skb(skb);
1524        else
1525                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1526}
1527#else
1528static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1529{
1530        __skb_unlink(skb, &sk->sk_receive_queue);
1531        __kfree_skb(skb);
1532}
1533#endif
1534
1535static inline
1536struct net *sock_net(const struct sock *sk)
1537{
1538#ifdef CONFIG_NET_NS
1539        return sk->sk_net;
1540#else
1541        return &init_net;
1542#endif
1543}
1544
1545static inline
1546void sock_net_set(struct sock *sk, struct net *net)
1547{
1548#ifdef CONFIG_NET_NS
1549        sk->sk_net = net;
1550#endif
1551}
1552
1553/*
1554 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1555 * They should not hold a referrence to a namespace in order to allow
1556 * to stop it.
1557 * Sockets after sk_change_net should be released using sk_release_kernel
1558 */
1559static inline void sk_change_net(struct sock *sk, struct net *net)
1560{
1561        put_net(sock_net(sk));
1562        sock_net_set(sk, hold_net(net));
1563}
1564
1565static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1566{
1567        if (unlikely(skb->sk)) {
1568                struct sock *sk = skb->sk;
1569
1570                skb->destructor = NULL;
1571                skb->sk = NULL;
1572                return sk;
1573        }
1574        return NULL;
1575}
1576
1577extern void sock_enable_timestamp(struct sock *sk, int flag);
1578extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1579extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1580
1581/* 
1582 *      Enable debug/info messages 
1583 */
1584extern int net_msg_warn;
1585#define NETDEBUG(fmt, args...) \
1586        do { if (net_msg_warn) printk(fmt,##args); } while (0)
1587
1588#define LIMIT_NETDEBUG(fmt, args...) \
1589        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1590
1591extern __u32 sysctl_wmem_max;
1592extern __u32 sysctl_rmem_max;
1593
1594extern void sk_init(void);
1595
1596extern int sysctl_optmem_max;
1597
1598extern __u32 sysctl_wmem_default;
1599extern __u32 sysctl_rmem_default;
1600
1601#endif  /* _SOCK_H */
1602