linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <asm/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/mount.h>
  53#include <linux/socket.h>
  54#include <linux/mqueue.h>
  55#include <linux/audit.h>
  56#include <linux/personality.h>
  57#include <linux/time.h>
  58#include <linux/netlink.h>
  59#include <linux/compiler.h>
  60#include <asm/unistd.h>
  61#include <linux/security.h>
  62#include <linux/list.h>
  63#include <linux/tty.h>
  64#include <linux/binfmts.h>
  65#include <linux/highmem.h>
  66#include <linux/syscalls.h>
  67#include <linux/inotify.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70
  71#include "audit.h"
  72
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90        kernel_cap_t            permitted;
  91        kernel_cap_t            inheritable;
  92        union {
  93                unsigned int    fE;             /* effective bit of a file capability */
  94                kernel_cap_t    effective;      /* effective set of a process */
  95        };
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 104        const char      *name;
 105        int             name_len;       /* number of name's characters to log */
 106        unsigned        name_put;       /* call __putname() for this name */
 107        unsigned long   ino;
 108        dev_t           dev;
 109        umode_t         mode;
 110        uid_t           uid;
 111        gid_t           gid;
 112        dev_t           rdev;
 113        u32             osid;
 114        struct audit_cap_data fcap;
 115        unsigned int    fcap_ver;
 116};
 117
 118struct audit_aux_data {
 119        struct audit_aux_data   *next;
 120        int                     type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM       0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS  16
 127
 128struct audit_aux_data_execve {
 129        struct audit_aux_data   d;
 130        int argc;
 131        int envc;
 132        struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136        struct audit_aux_data   d;
 137        pid_t                   target_pid[AUDIT_AUX_PIDS];
 138        uid_t                   target_auid[AUDIT_AUX_PIDS];
 139        uid_t                   target_uid[AUDIT_AUX_PIDS];
 140        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 141        u32                     target_sid[AUDIT_AUX_PIDS];
 142        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143        int                     pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147        struct audit_aux_data   d;
 148        struct audit_cap_data   fcap;
 149        unsigned int            fcap_ver;
 150        struct audit_cap_data   old_pcap;
 151        struct audit_cap_data   new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155        struct audit_aux_data   d;
 156        pid_t                   pid;
 157        struct audit_cap_data   cap;
 158};
 159
 160struct audit_tree_refs {
 161        struct audit_tree_refs *next;
 162        struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167        int                 dummy;      /* must be the first element */
 168        int                 in_syscall; /* 1 if task is in a syscall */
 169        enum audit_state    state, current_state;
 170        unsigned int        serial;     /* serial number for record */
 171        int                 major;      /* syscall number */
 172        struct timespec     ctime;      /* time of syscall entry */
 173        unsigned long       argv[4];    /* syscall arguments */
 174        long                return_code;/* syscall return code */
 175        u64                 prio;
 176        int                 return_valid; /* return code is valid */
 177        int                 name_count;
 178        struct audit_names  names[AUDIT_NAMES];
 179        char *              filterkey;  /* key for rule that triggered record */
 180        struct path         pwd;
 181        struct audit_context *previous; /* For nested syscalls */
 182        struct audit_aux_data *aux;
 183        struct audit_aux_data *aux_pids;
 184        struct sockaddr_storage *sockaddr;
 185        size_t sockaddr_len;
 186                                /* Save things to print about task_struct */
 187        pid_t               pid, ppid;
 188        uid_t               uid, euid, suid, fsuid;
 189        gid_t               gid, egid, sgid, fsgid;
 190        unsigned long       personality;
 191        int                 arch;
 192
 193        pid_t               target_pid;
 194        uid_t               target_auid;
 195        uid_t               target_uid;
 196        unsigned int        target_sessionid;
 197        u32                 target_sid;
 198        char                target_comm[TASK_COMM_LEN];
 199
 200        struct audit_tree_refs *trees, *first_trees;
 201        struct list_head killed_trees;
 202        int tree_count;
 203
 204        int type;
 205        union {
 206                struct {
 207                        int nargs;
 208                        long args[6];
 209                } socketcall;
 210                struct {
 211                        uid_t                   uid;
 212                        gid_t                   gid;
 213                        mode_t                  mode;
 214                        u32                     osid;
 215                        int                     has_perm;
 216                        uid_t                   perm_uid;
 217                        gid_t                   perm_gid;
 218                        mode_t                  perm_mode;
 219                        unsigned long           qbytes;
 220                } ipc;
 221                struct {
 222                        mqd_t                   mqdes;
 223                        struct mq_attr          mqstat;
 224                } mq_getsetattr;
 225                struct {
 226                        mqd_t                   mqdes;
 227                        int                     sigev_signo;
 228                } mq_notify;
 229                struct {
 230                        mqd_t                   mqdes;
 231                        size_t                  msg_len;
 232                        unsigned int            msg_prio;
 233                        struct timespec         abs_timeout;
 234                } mq_sendrecv;
 235                struct {
 236                        int                     oflag;
 237                        mode_t                  mode;
 238                        struct mq_attr          attr;
 239                } mq_open;
 240                struct {
 241                        pid_t                   pid;
 242                        struct audit_cap_data   cap;
 243                } capset;
 244        };
 245        int fds[2];
 246
 247#if AUDIT_DEBUG
 248        int                 put_count;
 249        int                 ino_count;
 250#endif
 251};
 252
 253#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
 254static inline int open_arg(int flags, int mask)
 255{
 256        int n = ACC_MODE(flags);
 257        if (flags & (O_TRUNC | O_CREAT))
 258                n |= AUDIT_PERM_WRITE;
 259        return n & mask;
 260}
 261
 262static int audit_match_perm(struct audit_context *ctx, int mask)
 263{
 264        unsigned n;
 265        if (unlikely(!ctx))
 266                return 0;
 267        n = ctx->major;
 268
 269        switch (audit_classify_syscall(ctx->arch, n)) {
 270        case 0: /* native */
 271                if ((mask & AUDIT_PERM_WRITE) &&
 272                     audit_match_class(AUDIT_CLASS_WRITE, n))
 273                        return 1;
 274                if ((mask & AUDIT_PERM_READ) &&
 275                     audit_match_class(AUDIT_CLASS_READ, n))
 276                        return 1;
 277                if ((mask & AUDIT_PERM_ATTR) &&
 278                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 279                        return 1;
 280                return 0;
 281        case 1: /* 32bit on biarch */
 282                if ((mask & AUDIT_PERM_WRITE) &&
 283                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 284                        return 1;
 285                if ((mask & AUDIT_PERM_READ) &&
 286                     audit_match_class(AUDIT_CLASS_READ_32, n))
 287                        return 1;
 288                if ((mask & AUDIT_PERM_ATTR) &&
 289                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 290                        return 1;
 291                return 0;
 292        case 2: /* open */
 293                return mask & ACC_MODE(ctx->argv[1]);
 294        case 3: /* openat */
 295                return mask & ACC_MODE(ctx->argv[2]);
 296        case 4: /* socketcall */
 297                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 298        case 5: /* execve */
 299                return mask & AUDIT_PERM_EXEC;
 300        default:
 301                return 0;
 302        }
 303}
 304
 305static int audit_match_filetype(struct audit_context *ctx, int which)
 306{
 307        unsigned index = which & ~S_IFMT;
 308        mode_t mode = which & S_IFMT;
 309
 310        if (unlikely(!ctx))
 311                return 0;
 312
 313        if (index >= ctx->name_count)
 314                return 0;
 315        if (ctx->names[index].ino == -1)
 316                return 0;
 317        if ((ctx->names[index].mode ^ mode) & S_IFMT)
 318                return 0;
 319        return 1;
 320}
 321
 322/*
 323 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 324 * ->first_trees points to its beginning, ->trees - to the current end of data.
 325 * ->tree_count is the number of free entries in array pointed to by ->trees.
 326 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 327 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 328 * it's going to remain 1-element for almost any setup) until we free context itself.
 329 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 330 */
 331
 332#ifdef CONFIG_AUDIT_TREE
 333static void audit_set_auditable(struct audit_context *ctx)
 334{
 335        if (!ctx->prio) {
 336                ctx->prio = 1;
 337                ctx->current_state = AUDIT_RECORD_CONTEXT;
 338        }
 339}
 340
 341static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 342{
 343        struct audit_tree_refs *p = ctx->trees;
 344        int left = ctx->tree_count;
 345        if (likely(left)) {
 346                p->c[--left] = chunk;
 347                ctx->tree_count = left;
 348                return 1;
 349        }
 350        if (!p)
 351                return 0;
 352        p = p->next;
 353        if (p) {
 354                p->c[30] = chunk;
 355                ctx->trees = p;
 356                ctx->tree_count = 30;
 357                return 1;
 358        }
 359        return 0;
 360}
 361
 362static int grow_tree_refs(struct audit_context *ctx)
 363{
 364        struct audit_tree_refs *p = ctx->trees;
 365        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 366        if (!ctx->trees) {
 367                ctx->trees = p;
 368                return 0;
 369        }
 370        if (p)
 371                p->next = ctx->trees;
 372        else
 373                ctx->first_trees = ctx->trees;
 374        ctx->tree_count = 31;
 375        return 1;
 376}
 377#endif
 378
 379static void unroll_tree_refs(struct audit_context *ctx,
 380                      struct audit_tree_refs *p, int count)
 381{
 382#ifdef CONFIG_AUDIT_TREE
 383        struct audit_tree_refs *q;
 384        int n;
 385        if (!p) {
 386                /* we started with empty chain */
 387                p = ctx->first_trees;
 388                count = 31;
 389                /* if the very first allocation has failed, nothing to do */
 390                if (!p)
 391                        return;
 392        }
 393        n = count;
 394        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 395                while (n--) {
 396                        audit_put_chunk(q->c[n]);
 397                        q->c[n] = NULL;
 398                }
 399        }
 400        while (n-- > ctx->tree_count) {
 401                audit_put_chunk(q->c[n]);
 402                q->c[n] = NULL;
 403        }
 404        ctx->trees = p;
 405        ctx->tree_count = count;
 406#endif
 407}
 408
 409static void free_tree_refs(struct audit_context *ctx)
 410{
 411        struct audit_tree_refs *p, *q;
 412        for (p = ctx->first_trees; p; p = q) {
 413                q = p->next;
 414                kfree(p);
 415        }
 416}
 417
 418static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 419{
 420#ifdef CONFIG_AUDIT_TREE
 421        struct audit_tree_refs *p;
 422        int n;
 423        if (!tree)
 424                return 0;
 425        /* full ones */
 426        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 427                for (n = 0; n < 31; n++)
 428                        if (audit_tree_match(p->c[n], tree))
 429                                return 1;
 430        }
 431        /* partial */
 432        if (p) {
 433                for (n = ctx->tree_count; n < 31; n++)
 434                        if (audit_tree_match(p->c[n], tree))
 435                                return 1;
 436        }
 437#endif
 438        return 0;
 439}
 440
 441/* Determine if any context name data matches a rule's watch data */
 442/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 443 * otherwise. */
 444static int audit_filter_rules(struct task_struct *tsk,
 445                              struct audit_krule *rule,
 446                              struct audit_context *ctx,
 447                              struct audit_names *name,
 448                              enum audit_state *state)
 449{
 450        const struct cred *cred = get_task_cred(tsk);
 451        int i, j, need_sid = 1;
 452        u32 sid;
 453
 454        for (i = 0; i < rule->field_count; i++) {
 455                struct audit_field *f = &rule->fields[i];
 456                int result = 0;
 457
 458                switch (f->type) {
 459                case AUDIT_PID:
 460                        result = audit_comparator(tsk->pid, f->op, f->val);
 461                        break;
 462                case AUDIT_PPID:
 463                        if (ctx) {
 464                                if (!ctx->ppid)
 465                                        ctx->ppid = sys_getppid();
 466                                result = audit_comparator(ctx->ppid, f->op, f->val);
 467                        }
 468                        break;
 469                case AUDIT_UID:
 470                        result = audit_comparator(cred->uid, f->op, f->val);
 471                        break;
 472                case AUDIT_EUID:
 473                        result = audit_comparator(cred->euid, f->op, f->val);
 474                        break;
 475                case AUDIT_SUID:
 476                        result = audit_comparator(cred->suid, f->op, f->val);
 477                        break;
 478                case AUDIT_FSUID:
 479                        result = audit_comparator(cred->fsuid, f->op, f->val);
 480                        break;
 481                case AUDIT_GID:
 482                        result = audit_comparator(cred->gid, f->op, f->val);
 483                        break;
 484                case AUDIT_EGID:
 485                        result = audit_comparator(cred->egid, f->op, f->val);
 486                        break;
 487                case AUDIT_SGID:
 488                        result = audit_comparator(cred->sgid, f->op, f->val);
 489                        break;
 490                case AUDIT_FSGID:
 491                        result = audit_comparator(cred->fsgid, f->op, f->val);
 492                        break;
 493                case AUDIT_PERS:
 494                        result = audit_comparator(tsk->personality, f->op, f->val);
 495                        break;
 496                case AUDIT_ARCH:
 497                        if (ctx)
 498                                result = audit_comparator(ctx->arch, f->op, f->val);
 499                        break;
 500
 501                case AUDIT_EXIT:
 502                        if (ctx && ctx->return_valid)
 503                                result = audit_comparator(ctx->return_code, f->op, f->val);
 504                        break;
 505                case AUDIT_SUCCESS:
 506                        if (ctx && ctx->return_valid) {
 507                                if (f->val)
 508                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 509                                else
 510                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 511                        }
 512                        break;
 513                case AUDIT_DEVMAJOR:
 514                        if (name)
 515                                result = audit_comparator(MAJOR(name->dev),
 516                                                          f->op, f->val);
 517                        else if (ctx) {
 518                                for (j = 0; j < ctx->name_count; j++) {
 519                                        if (audit_comparator(MAJOR(ctx->names[j].dev),  f->op, f->val)) {
 520                                                ++result;
 521                                                break;
 522                                        }
 523                                }
 524                        }
 525                        break;
 526                case AUDIT_DEVMINOR:
 527                        if (name)
 528                                result = audit_comparator(MINOR(name->dev),
 529                                                          f->op, f->val);
 530                        else if (ctx) {
 531                                for (j = 0; j < ctx->name_count; j++) {
 532                                        if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 533                                                ++result;
 534                                                break;
 535                                        }
 536                                }
 537                        }
 538                        break;
 539                case AUDIT_INODE:
 540                        if (name)
 541                                result = (name->ino == f->val);
 542                        else if (ctx) {
 543                                for (j = 0; j < ctx->name_count; j++) {
 544                                        if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 545                                                ++result;
 546                                                break;
 547                                        }
 548                                }
 549                        }
 550                        break;
 551                case AUDIT_WATCH:
 552                        if (name && audit_watch_inode(rule->watch) != (unsigned long)-1)
 553                                result = (name->dev == audit_watch_dev(rule->watch) &&
 554                                          name->ino == audit_watch_inode(rule->watch));
 555                        break;
 556                case AUDIT_DIR:
 557                        if (ctx)
 558                                result = match_tree_refs(ctx, rule->tree);
 559                        break;
 560                case AUDIT_LOGINUID:
 561                        result = 0;
 562                        if (ctx)
 563                                result = audit_comparator(tsk->loginuid, f->op, f->val);
 564                        break;
 565                case AUDIT_SUBJ_USER:
 566                case AUDIT_SUBJ_ROLE:
 567                case AUDIT_SUBJ_TYPE:
 568                case AUDIT_SUBJ_SEN:
 569                case AUDIT_SUBJ_CLR:
 570                        /* NOTE: this may return negative values indicating
 571                           a temporary error.  We simply treat this as a
 572                           match for now to avoid losing information that
 573                           may be wanted.   An error message will also be
 574                           logged upon error */
 575                        if (f->lsm_rule) {
 576                                if (need_sid) {
 577                                        security_task_getsecid(tsk, &sid);
 578                                        need_sid = 0;
 579                                }
 580                                result = security_audit_rule_match(sid, f->type,
 581                                                                  f->op,
 582                                                                  f->lsm_rule,
 583                                                                  ctx);
 584                        }
 585                        break;
 586                case AUDIT_OBJ_USER:
 587                case AUDIT_OBJ_ROLE:
 588                case AUDIT_OBJ_TYPE:
 589                case AUDIT_OBJ_LEV_LOW:
 590                case AUDIT_OBJ_LEV_HIGH:
 591                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 592                           also applies here */
 593                        if (f->lsm_rule) {
 594                                /* Find files that match */
 595                                if (name) {
 596                                        result = security_audit_rule_match(
 597                                                   name->osid, f->type, f->op,
 598                                                   f->lsm_rule, ctx);
 599                                } else if (ctx) {
 600                                        for (j = 0; j < ctx->name_count; j++) {
 601                                                if (security_audit_rule_match(
 602                                                      ctx->names[j].osid,
 603                                                      f->type, f->op,
 604                                                      f->lsm_rule, ctx)) {
 605                                                        ++result;
 606                                                        break;
 607                                                }
 608                                        }
 609                                }
 610                                /* Find ipc objects that match */
 611                                if (!ctx || ctx->type != AUDIT_IPC)
 612                                        break;
 613                                if (security_audit_rule_match(ctx->ipc.osid,
 614                                                              f->type, f->op,
 615                                                              f->lsm_rule, ctx))
 616                                        ++result;
 617                        }
 618                        break;
 619                case AUDIT_ARG0:
 620                case AUDIT_ARG1:
 621                case AUDIT_ARG2:
 622                case AUDIT_ARG3:
 623                        if (ctx)
 624                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 625                        break;
 626                case AUDIT_FILTERKEY:
 627                        /* ignore this field for filtering */
 628                        result = 1;
 629                        break;
 630                case AUDIT_PERM:
 631                        result = audit_match_perm(ctx, f->val);
 632                        break;
 633                case AUDIT_FILETYPE:
 634                        result = audit_match_filetype(ctx, f->val);
 635                        break;
 636                }
 637
 638                if (!result) {
 639                        put_cred(cred);
 640                        return 0;
 641                }
 642        }
 643
 644        if (ctx) {
 645                if (rule->prio <= ctx->prio)
 646                        return 0;
 647                if (rule->filterkey) {
 648                        kfree(ctx->filterkey);
 649                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 650                }
 651                ctx->prio = rule->prio;
 652        }
 653        switch (rule->action) {
 654        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 655        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 656        }
 657        put_cred(cred);
 658        return 1;
 659}
 660
 661/* At process creation time, we can determine if system-call auditing is
 662 * completely disabled for this task.  Since we only have the task
 663 * structure at this point, we can only check uid and gid.
 664 */
 665static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 666{
 667        struct audit_entry *e;
 668        enum audit_state   state;
 669
 670        rcu_read_lock();
 671        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 672                if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
 673                        if (state == AUDIT_RECORD_CONTEXT)
 674                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 675                        rcu_read_unlock();
 676                        return state;
 677                }
 678        }
 679        rcu_read_unlock();
 680        return AUDIT_BUILD_CONTEXT;
 681}
 682
 683/* At syscall entry and exit time, this filter is called if the
 684 * audit_state is not low enough that auditing cannot take place, but is
 685 * also not high enough that we already know we have to write an audit
 686 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 687 */
 688static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 689                                             struct audit_context *ctx,
 690                                             struct list_head *list)
 691{
 692        struct audit_entry *e;
 693        enum audit_state state;
 694
 695        if (audit_pid && tsk->tgid == audit_pid)
 696                return AUDIT_DISABLED;
 697
 698        rcu_read_lock();
 699        if (!list_empty(list)) {
 700                int word = AUDIT_WORD(ctx->major);
 701                int bit  = AUDIT_BIT(ctx->major);
 702
 703                list_for_each_entry_rcu(e, list, list) {
 704                        if ((e->rule.mask[word] & bit) == bit &&
 705                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 706                                               &state)) {
 707                                rcu_read_unlock();
 708                                ctx->current_state = state;
 709                                return state;
 710                        }
 711                }
 712        }
 713        rcu_read_unlock();
 714        return AUDIT_BUILD_CONTEXT;
 715}
 716
 717/* At syscall exit time, this filter is called if any audit_names[] have been
 718 * collected during syscall processing.  We only check rules in sublists at hash
 719 * buckets applicable to the inode numbers in audit_names[].
 720 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 721 */
 722void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 723{
 724        int i;
 725        struct audit_entry *e;
 726        enum audit_state state;
 727
 728        if (audit_pid && tsk->tgid == audit_pid)
 729                return;
 730
 731        rcu_read_lock();
 732        for (i = 0; i < ctx->name_count; i++) {
 733                int word = AUDIT_WORD(ctx->major);
 734                int bit  = AUDIT_BIT(ctx->major);
 735                struct audit_names *n = &ctx->names[i];
 736                int h = audit_hash_ino((u32)n->ino);
 737                struct list_head *list = &audit_inode_hash[h];
 738
 739                if (list_empty(list))
 740                        continue;
 741
 742                list_for_each_entry_rcu(e, list, list) {
 743                        if ((e->rule.mask[word] & bit) == bit &&
 744                            audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
 745                                rcu_read_unlock();
 746                                ctx->current_state = state;
 747                                return;
 748                        }
 749                }
 750        }
 751        rcu_read_unlock();
 752}
 753
 754static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 755                                                      int return_valid,
 756                                                      long return_code)
 757{
 758        struct audit_context *context = tsk->audit_context;
 759
 760        if (likely(!context))
 761                return NULL;
 762        context->return_valid = return_valid;
 763
 764        /*
 765         * we need to fix up the return code in the audit logs if the actual
 766         * return codes are later going to be fixed up by the arch specific
 767         * signal handlers
 768         *
 769         * This is actually a test for:
 770         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 771         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 772         *
 773         * but is faster than a bunch of ||
 774         */
 775        if (unlikely(return_code <= -ERESTARTSYS) &&
 776            (return_code >= -ERESTART_RESTARTBLOCK) &&
 777            (return_code != -ENOIOCTLCMD))
 778                context->return_code = -EINTR;
 779        else
 780                context->return_code  = return_code;
 781
 782        if (context->in_syscall && !context->dummy) {
 783                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 784                audit_filter_inodes(tsk, context);
 785        }
 786
 787        tsk->audit_context = NULL;
 788        return context;
 789}
 790
 791static inline void audit_free_names(struct audit_context *context)
 792{
 793        int i;
 794
 795#if AUDIT_DEBUG == 2
 796        if (context->put_count + context->ino_count != context->name_count) {
 797                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 798                       " name_count=%d put_count=%d"
 799                       " ino_count=%d [NOT freeing]\n",
 800                       __FILE__, __LINE__,
 801                       context->serial, context->major, context->in_syscall,
 802                       context->name_count, context->put_count,
 803                       context->ino_count);
 804                for (i = 0; i < context->name_count; i++) {
 805                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
 806                               context->names[i].name,
 807                               context->names[i].name ?: "(null)");
 808                }
 809                dump_stack();
 810                return;
 811        }
 812#endif
 813#if AUDIT_DEBUG
 814        context->put_count  = 0;
 815        context->ino_count  = 0;
 816#endif
 817
 818        for (i = 0; i < context->name_count; i++) {
 819                if (context->names[i].name && context->names[i].name_put)
 820                        __putname(context->names[i].name);
 821        }
 822        context->name_count = 0;
 823        path_put(&context->pwd);
 824        context->pwd.dentry = NULL;
 825        context->pwd.mnt = NULL;
 826}
 827
 828static inline void audit_free_aux(struct audit_context *context)
 829{
 830        struct audit_aux_data *aux;
 831
 832        while ((aux = context->aux)) {
 833                context->aux = aux->next;
 834                kfree(aux);
 835        }
 836        while ((aux = context->aux_pids)) {
 837                context->aux_pids = aux->next;
 838                kfree(aux);
 839        }
 840}
 841
 842static inline void audit_zero_context(struct audit_context *context,
 843                                      enum audit_state state)
 844{
 845        memset(context, 0, sizeof(*context));
 846        context->state      = state;
 847        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 848}
 849
 850static inline struct audit_context *audit_alloc_context(enum audit_state state)
 851{
 852        struct audit_context *context;
 853
 854        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 855                return NULL;
 856        audit_zero_context(context, state);
 857        INIT_LIST_HEAD(&context->killed_trees);
 858        return context;
 859}
 860
 861/**
 862 * audit_alloc - allocate an audit context block for a task
 863 * @tsk: task
 864 *
 865 * Filter on the task information and allocate a per-task audit context
 866 * if necessary.  Doing so turns on system call auditing for the
 867 * specified task.  This is called from copy_process, so no lock is
 868 * needed.
 869 */
 870int audit_alloc(struct task_struct *tsk)
 871{
 872        struct audit_context *context;
 873        enum audit_state     state;
 874        char *key = NULL;
 875
 876        if (likely(!audit_ever_enabled))
 877                return 0; /* Return if not auditing. */
 878
 879        state = audit_filter_task(tsk, &key);
 880        if (likely(state == AUDIT_DISABLED))
 881                return 0;
 882
 883        if (!(context = audit_alloc_context(state))) {
 884                kfree(key);
 885                audit_log_lost("out of memory in audit_alloc");
 886                return -ENOMEM;
 887        }
 888        context->filterkey = key;
 889
 890        tsk->audit_context  = context;
 891        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 892        return 0;
 893}
 894
 895static inline void audit_free_context(struct audit_context *context)
 896{
 897        struct audit_context *previous;
 898        int                  count = 0;
 899
 900        do {
 901                previous = context->previous;
 902                if (previous || (count &&  count < 10)) {
 903                        ++count;
 904                        printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 905                               " freeing multiple contexts (%d)\n",
 906                               context->serial, context->major,
 907                               context->name_count, count);
 908                }
 909                audit_free_names(context);
 910                unroll_tree_refs(context, NULL, 0);
 911                free_tree_refs(context);
 912                audit_free_aux(context);
 913                kfree(context->filterkey);
 914                kfree(context->sockaddr);
 915                kfree(context);
 916                context  = previous;
 917        } while (context);
 918        if (count >= 10)
 919                printk(KERN_ERR "audit: freed %d contexts\n", count);
 920}
 921
 922void audit_log_task_context(struct audit_buffer *ab)
 923{
 924        char *ctx = NULL;
 925        unsigned len;
 926        int error;
 927        u32 sid;
 928
 929        security_task_getsecid(current, &sid);
 930        if (!sid)
 931                return;
 932
 933        error = security_secid_to_secctx(sid, &ctx, &len);
 934        if (error) {
 935                if (error != -EINVAL)
 936                        goto error_path;
 937                return;
 938        }
 939
 940        audit_log_format(ab, " subj=%s", ctx);
 941        security_release_secctx(ctx, len);
 942        return;
 943
 944error_path:
 945        audit_panic("error in audit_log_task_context");
 946        return;
 947}
 948
 949EXPORT_SYMBOL(audit_log_task_context);
 950
 951static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 952{
 953        char name[sizeof(tsk->comm)];
 954        struct mm_struct *mm = tsk->mm;
 955        struct vm_area_struct *vma;
 956
 957        /* tsk == current */
 958
 959        get_task_comm(name, tsk);
 960        audit_log_format(ab, " comm=");
 961        audit_log_untrustedstring(ab, name);
 962
 963        if (mm) {
 964                down_read(&mm->mmap_sem);
 965                vma = mm->mmap;
 966                while (vma) {
 967                        if ((vma->vm_flags & VM_EXECUTABLE) &&
 968                            vma->vm_file) {
 969                                audit_log_d_path(ab, "exe=",
 970                                                 &vma->vm_file->f_path);
 971                                break;
 972                        }
 973                        vma = vma->vm_next;
 974                }
 975                up_read(&mm->mmap_sem);
 976        }
 977        audit_log_task_context(ab);
 978}
 979
 980static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 981                                 uid_t auid, uid_t uid, unsigned int sessionid,
 982                                 u32 sid, char *comm)
 983{
 984        struct audit_buffer *ab;
 985        char *ctx = NULL;
 986        u32 len;
 987        int rc = 0;
 988
 989        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 990        if (!ab)
 991                return rc;
 992
 993        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
 994                         uid, sessionid);
 995        if (security_secid_to_secctx(sid, &ctx, &len)) {
 996                audit_log_format(ab, " obj=(none)");
 997                rc = 1;
 998        } else {
 999                audit_log_format(ab, " obj=%s", ctx);
1000                security_release_secctx(ctx, len);
1001        }
1002        audit_log_format(ab, " ocomm=");
1003        audit_log_untrustedstring(ab, comm);
1004        audit_log_end(ab);
1005
1006        return rc;
1007}
1008
1009/*
1010 * to_send and len_sent accounting are very loose estimates.  We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundry)
1013 *
1014 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message.  In one 7500 byte message we can log up to
1017 * about 1000 min size arguments.  That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 */
1020static int audit_log_single_execve_arg(struct audit_context *context,
1021                                        struct audit_buffer **ab,
1022                                        int arg_num,
1023                                        size_t *len_sent,
1024                                        const char __user *p,
1025                                        char *buf)
1026{
1027        char arg_num_len_buf[12];
1028        const char __user *tmp_p = p;
1029        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1030        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1031        size_t len, len_left, to_send;
1032        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1033        unsigned int i, has_cntl = 0, too_long = 0;
1034        int ret;
1035
1036        /* strnlen_user includes the null we don't want to send */
1037        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1038
1039        /*
1040         * We just created this mm, if we can't find the strings
1041         * we just copied into it something is _very_ wrong. Similar
1042         * for strings that are too long, we should not have created
1043         * any.
1044         */
1045        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1046                WARN_ON(1);
1047                send_sig(SIGKILL, current, 0);
1048                return -1;
1049        }
1050
1051        /* walk the whole argument looking for non-ascii chars */
1052        do {
1053                if (len_left > MAX_EXECVE_AUDIT_LEN)
1054                        to_send = MAX_EXECVE_AUDIT_LEN;
1055                else
1056                        to_send = len_left;
1057                ret = copy_from_user(buf, tmp_p, to_send);
1058                /*
1059                 * There is no reason for this copy to be short. We just
1060                 * copied them here, and the mm hasn't been exposed to user-
1061                 * space yet.
1062                 */
1063                if (ret) {
1064                        WARN_ON(1);
1065                        send_sig(SIGKILL, current, 0);
1066                        return -1;
1067                }
1068                buf[to_send] = '\0';
1069                has_cntl = audit_string_contains_control(buf, to_send);
1070                if (has_cntl) {
1071                        /*
1072                         * hex messages get logged as 2 bytes, so we can only
1073                         * send half as much in each message
1074                         */
1075                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1076                        break;
1077                }
1078                len_left -= to_send;
1079                tmp_p += to_send;
1080        } while (len_left > 0);
1081
1082        len_left = len;
1083
1084        if (len > max_execve_audit_len)
1085                too_long = 1;
1086
1087        /* rewalk the argument actually logging the message */
1088        for (i = 0; len_left > 0; i++) {
1089                int room_left;
1090
1091                if (len_left > max_execve_audit_len)
1092                        to_send = max_execve_audit_len;
1093                else
1094                        to_send = len_left;
1095
1096                /* do we have space left to send this argument in this ab? */
1097                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1098                if (has_cntl)
1099                        room_left -= (to_send * 2);
1100                else
1101                        room_left -= to_send;
1102                if (room_left < 0) {
1103                        *len_sent = 0;
1104                        audit_log_end(*ab);
1105                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1106                        if (!*ab)
1107                                return 0;
1108                }
1109
1110                /*
1111                 * first record needs to say how long the original string was
1112                 * so we can be sure nothing was lost.
1113                 */
1114                if ((i == 0) && (too_long))
1115                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1116                                         has_cntl ? 2*len : len);
1117
1118                /*
1119                 * normally arguments are small enough to fit and we already
1120                 * filled buf above when we checked for control characters
1121                 * so don't bother with another copy_from_user
1122                 */
1123                if (len >= max_execve_audit_len)
1124                        ret = copy_from_user(buf, p, to_send);
1125                else
1126                        ret = 0;
1127                if (ret) {
1128                        WARN_ON(1);
1129                        send_sig(SIGKILL, current, 0);
1130                        return -1;
1131                }
1132                buf[to_send] = '\0';
1133
1134                /* actually log it */
1135                audit_log_format(*ab, " a%d", arg_num);
1136                if (too_long)
1137                        audit_log_format(*ab, "[%d]", i);
1138                audit_log_format(*ab, "=");
1139                if (has_cntl)
1140                        audit_log_n_hex(*ab, buf, to_send);
1141                else
1142                        audit_log_string(*ab, buf);
1143
1144                p += to_send;
1145                len_left -= to_send;
1146                *len_sent += arg_num_len;
1147                if (has_cntl)
1148                        *len_sent += to_send * 2;
1149                else
1150                        *len_sent += to_send;
1151        }
1152        /* include the null we didn't log */
1153        return len + 1;
1154}
1155
1156static void audit_log_execve_info(struct audit_context *context,
1157                                  struct audit_buffer **ab,
1158                                  struct audit_aux_data_execve *axi)
1159{
1160        int i;
1161        size_t len, len_sent = 0;
1162        const char __user *p;
1163        char *buf;
1164
1165        if (axi->mm != current->mm)
1166                return; /* execve failed, no additional info */
1167
1168        p = (const char __user *)axi->mm->arg_start;
1169
1170        audit_log_format(*ab, "argc=%d", axi->argc);
1171
1172        /*
1173         * we need some kernel buffer to hold the userspace args.  Just
1174         * allocate one big one rather than allocating one of the right size
1175         * for every single argument inside audit_log_single_execve_arg()
1176         * should be <8k allocation so should be pretty safe.
1177         */
1178        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179        if (!buf) {
1180                audit_panic("out of memory for argv string\n");
1181                return;
1182        }
1183
1184        for (i = 0; i < axi->argc; i++) {
1185                len = audit_log_single_execve_arg(context, ab, i,
1186                                                  &len_sent, p, buf);
1187                if (len <= 0)
1188                        break;
1189                p += len;
1190        }
1191        kfree(buf);
1192}
1193
1194static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1195{
1196        int i;
1197
1198        audit_log_format(ab, " %s=", prefix);
1199        CAP_FOR_EACH_U32(i) {
1200                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1201        }
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206        kernel_cap_t *perm = &name->fcap.permitted;
1207        kernel_cap_t *inh = &name->fcap.inheritable;
1208        int log = 0;
1209
1210        if (!cap_isclear(*perm)) {
1211                audit_log_cap(ab, "cap_fp", perm);
1212                log = 1;
1213        }
1214        if (!cap_isclear(*inh)) {
1215                audit_log_cap(ab, "cap_fi", inh);
1216                log = 1;
1217        }
1218
1219        if (log)
1220                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1221}
1222
1223static void show_special(struct audit_context *context, int *call_panic)
1224{
1225        struct audit_buffer *ab;
1226        int i;
1227
1228        ab = audit_log_start(context, GFP_KERNEL, context->type);
1229        if (!ab)
1230                return;
1231
1232        switch (context->type) {
1233        case AUDIT_SOCKETCALL: {
1234                int nargs = context->socketcall.nargs;
1235                audit_log_format(ab, "nargs=%d", nargs);
1236                for (i = 0; i < nargs; i++)
1237                        audit_log_format(ab, " a%d=%lx", i,
1238                                context->socketcall.args[i]);
1239                break; }
1240        case AUDIT_IPC: {
1241                u32 osid = context->ipc.osid;
1242
1243                audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1244                         context->ipc.uid, context->ipc.gid, context->ipc.mode);
1245                if (osid) {
1246                        char *ctx = NULL;
1247                        u32 len;
1248                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1249                                audit_log_format(ab, " osid=%u", osid);
1250                                *call_panic = 1;
1251                        } else {
1252                                audit_log_format(ab, " obj=%s", ctx);
1253                                security_release_secctx(ctx, len);
1254                        }
1255                }
1256                if (context->ipc.has_perm) {
1257                        audit_log_end(ab);
1258                        ab = audit_log_start(context, GFP_KERNEL,
1259                                             AUDIT_IPC_SET_PERM);
1260                        audit_log_format(ab,
1261                                "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1262                                context->ipc.qbytes,
1263                                context->ipc.perm_uid,
1264                                context->ipc.perm_gid,
1265                                context->ipc.perm_mode);
1266                        if (!ab)
1267                                return;
1268                }
1269                break; }
1270        case AUDIT_MQ_OPEN: {
1271                audit_log_format(ab,
1272                        "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1273                        "mq_msgsize=%ld mq_curmsgs=%ld",
1274                        context->mq_open.oflag, context->mq_open.mode,
1275                        context->mq_open.attr.mq_flags,
1276                        context->mq_open.attr.mq_maxmsg,
1277                        context->mq_open.attr.mq_msgsize,
1278                        context->mq_open.attr.mq_curmsgs);
1279                break; }
1280        case AUDIT_MQ_SENDRECV: {
1281                audit_log_format(ab,
1282                        "mqdes=%d msg_len=%zd msg_prio=%u "
1283                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1284                        context->mq_sendrecv.mqdes,
1285                        context->mq_sendrecv.msg_len,
1286                        context->mq_sendrecv.msg_prio,
1287                        context->mq_sendrecv.abs_timeout.tv_sec,
1288                        context->mq_sendrecv.abs_timeout.tv_nsec);
1289                break; }
1290        case AUDIT_MQ_NOTIFY: {
1291                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1292                                context->mq_notify.mqdes,
1293                                context->mq_notify.sigev_signo);
1294                break; }
1295        case AUDIT_MQ_GETSETATTR: {
1296                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1297                audit_log_format(ab,
1298                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1299                        "mq_curmsgs=%ld ",
1300                        context->mq_getsetattr.mqdes,
1301                        attr->mq_flags, attr->mq_maxmsg,
1302                        attr->mq_msgsize, attr->mq_curmsgs);
1303                break; }
1304        case AUDIT_CAPSET: {
1305                audit_log_format(ab, "pid=%d", context->capset.pid);
1306                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1307                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1308                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1309                break; }
1310        }
1311        audit_log_end(ab);
1312}
1313
1314static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1315{
1316        const struct cred *cred;
1317        int i, call_panic = 0;
1318        struct audit_buffer *ab;
1319        struct audit_aux_data *aux;
1320        const char *tty;
1321
1322        /* tsk == current */
1323        context->pid = tsk->pid;
1324        if (!context->ppid)
1325                context->ppid = sys_getppid();
1326        cred = current_cred();
1327        context->uid   = cred->uid;
1328        context->gid   = cred->gid;
1329        context->euid  = cred->euid;
1330        context->suid  = cred->suid;
1331        context->fsuid = cred->fsuid;
1332        context->egid  = cred->egid;
1333        context->sgid  = cred->sgid;
1334        context->fsgid = cred->fsgid;
1335        context->personality = tsk->personality;
1336
1337        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1338        if (!ab)
1339                return;         /* audit_panic has been called */
1340        audit_log_format(ab, "arch=%x syscall=%d",
1341                         context->arch, context->major);
1342        if (context->personality != PER_LINUX)
1343                audit_log_format(ab, " per=%lx", context->personality);
1344        if (context->return_valid)
1345                audit_log_format(ab, " success=%s exit=%ld",
1346                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1347                                 context->return_code);
1348
1349        spin_lock_irq(&tsk->sighand->siglock);
1350        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1351                tty = tsk->signal->tty->name;
1352        else
1353                tty = "(none)";
1354        spin_unlock_irq(&tsk->sighand->siglock);
1355
1356        audit_log_format(ab,
1357                  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1358                  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1359                  " euid=%u suid=%u fsuid=%u"
1360                  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1361                  context->argv[0],
1362                  context->argv[1],
1363                  context->argv[2],
1364                  context->argv[3],
1365                  context->name_count,
1366                  context->ppid,
1367                  context->pid,
1368                  tsk->loginuid,
1369                  context->uid,
1370                  context->gid,
1371                  context->euid, context->suid, context->fsuid,
1372                  context->egid, context->sgid, context->fsgid, tty,
1373                  tsk->sessionid);
1374
1375
1376        audit_log_task_info(ab, tsk);
1377        audit_log_key(ab, context->filterkey);
1378        audit_log_end(ab);
1379
1380        for (aux = context->aux; aux; aux = aux->next) {
1381
1382                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1383                if (!ab)
1384                        continue; /* audit_panic has been called */
1385
1386                switch (aux->type) {
1387
1388                case AUDIT_EXECVE: {
1389                        struct audit_aux_data_execve *axi = (void *)aux;
1390                        audit_log_execve_info(context, &ab, axi);
1391                        break; }
1392
1393                case AUDIT_BPRM_FCAPS: {
1394                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1395                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1396                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1397                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1398                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1399                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1400                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1401                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1402                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1403                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1404                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1405                        break; }
1406
1407                }
1408                audit_log_end(ab);
1409        }
1410
1411        if (context->type)
1412                show_special(context, &call_panic);
1413
1414        if (context->fds[0] >= 0) {
1415                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1416                if (ab) {
1417                        audit_log_format(ab, "fd0=%d fd1=%d",
1418                                        context->fds[0], context->fds[1]);
1419                        audit_log_end(ab);
1420                }
1421        }
1422
1423        if (context->sockaddr_len) {
1424                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1425                if (ab) {
1426                        audit_log_format(ab, "saddr=");
1427                        audit_log_n_hex(ab, (void *)context->sockaddr,
1428                                        context->sockaddr_len);
1429                        audit_log_end(ab);
1430                }
1431        }
1432
1433        for (aux = context->aux_pids; aux; aux = aux->next) {
1434                struct audit_aux_data_pids *axs = (void *)aux;
1435
1436                for (i = 0; i < axs->pid_count; i++)
1437                        if (audit_log_pid_context(context, axs->target_pid[i],
1438                                                  axs->target_auid[i],
1439                                                  axs->target_uid[i],
1440                                                  axs->target_sessionid[i],
1441                                                  axs->target_sid[i],
1442                                                  axs->target_comm[i]))
1443                                call_panic = 1;
1444        }
1445
1446        if (context->target_pid &&
1447            audit_log_pid_context(context, context->target_pid,
1448                                  context->target_auid, context->target_uid,
1449                                  context->target_sessionid,
1450                                  context->target_sid, context->target_comm))
1451                        call_panic = 1;
1452
1453        if (context->pwd.dentry && context->pwd.mnt) {
1454                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1455                if (ab) {
1456                        audit_log_d_path(ab, "cwd=", &context->pwd);
1457                        audit_log_end(ab);
1458                }
1459        }
1460        for (i = 0; i < context->name_count; i++) {
1461                struct audit_names *n = &context->names[i];
1462
1463                ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1464                if (!ab)
1465                        continue; /* audit_panic has been called */
1466
1467                audit_log_format(ab, "item=%d", i);
1468
1469                if (n->name) {
1470                        switch(n->name_len) {
1471                        case AUDIT_NAME_FULL:
1472                                /* log the full path */
1473                                audit_log_format(ab, " name=");
1474                                audit_log_untrustedstring(ab, n->name);
1475                                break;
1476                        case 0:
1477                                /* name was specified as a relative path and the
1478                                 * directory component is the cwd */
1479                                audit_log_d_path(ab, "name=", &context->pwd);
1480                                break;
1481                        default:
1482                                /* log the name's directory component */
1483                                audit_log_format(ab, " name=");
1484                                audit_log_n_untrustedstring(ab, n->name,
1485                                                            n->name_len);
1486                        }
1487                } else
1488                        audit_log_format(ab, " name=(null)");
1489
1490                if (n->ino != (unsigned long)-1) {
1491                        audit_log_format(ab, " inode=%lu"
1492                                         " dev=%02x:%02x mode=%#o"
1493                                         " ouid=%u ogid=%u rdev=%02x:%02x",
1494                                         n->ino,
1495                                         MAJOR(n->dev),
1496                                         MINOR(n->dev),
1497                                         n->mode,
1498                                         n->uid,
1499                                         n->gid,
1500                                         MAJOR(n->rdev),
1501                                         MINOR(n->rdev));
1502                }
1503                if (n->osid != 0) {
1504                        char *ctx = NULL;
1505                        u32 len;
1506                        if (security_secid_to_secctx(
1507                                n->osid, &ctx, &len)) {
1508                                audit_log_format(ab, " osid=%u", n->osid);
1509                                call_panic = 2;
1510                        } else {
1511                                audit_log_format(ab, " obj=%s", ctx);
1512                                security_release_secctx(ctx, len);
1513                        }
1514                }
1515
1516                audit_log_fcaps(ab, n);
1517
1518                audit_log_end(ab);
1519        }
1520
1521        /* Send end of event record to help user space know we are finished */
1522        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1523        if (ab)
1524                audit_log_end(ab);
1525        if (call_panic)
1526                audit_panic("error converting sid to string");
1527}
1528
1529/**
1530 * audit_free - free a per-task audit context
1531 * @tsk: task whose audit context block to free
1532 *
1533 * Called from copy_process and do_exit
1534 */
1535void audit_free(struct task_struct *tsk)
1536{
1537        struct audit_context *context;
1538
1539        context = audit_get_context(tsk, 0, 0);
1540        if (likely(!context))
1541                return;
1542
1543        /* Check for system calls that do not go through the exit
1544         * function (e.g., exit_group), then free context block.
1545         * We use GFP_ATOMIC here because we might be doing this
1546         * in the context of the idle thread */
1547        /* that can happen only if we are called from do_exit() */
1548        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1549                audit_log_exit(context, tsk);
1550        if (!list_empty(&context->killed_trees))
1551                audit_kill_trees(&context->killed_trees);
1552
1553        audit_free_context(context);
1554}
1555
1556/**
1557 * audit_syscall_entry - fill in an audit record at syscall entry
1558 * @arch: architecture type
1559 * @major: major syscall type (function)
1560 * @a1: additional syscall register 1
1561 * @a2: additional syscall register 2
1562 * @a3: additional syscall register 3
1563 * @a4: additional syscall register 4
1564 *
1565 * Fill in audit context at syscall entry.  This only happens if the
1566 * audit context was created when the task was created and the state or
1567 * filters demand the audit context be built.  If the state from the
1568 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1569 * then the record will be written at syscall exit time (otherwise, it
1570 * will only be written if another part of the kernel requests that it
1571 * be written).
1572 */
1573void audit_syscall_entry(int arch, int major,
1574                         unsigned long a1, unsigned long a2,
1575                         unsigned long a3, unsigned long a4)
1576{
1577        struct task_struct *tsk = current;
1578        struct audit_context *context = tsk->audit_context;
1579        enum audit_state     state;
1580
1581        if (unlikely(!context))
1582                return;
1583
1584        /*
1585         * This happens only on certain architectures that make system
1586         * calls in kernel_thread via the entry.S interface, instead of
1587         * with direct calls.  (If you are porting to a new
1588         * architecture, hitting this condition can indicate that you
1589         * got the _exit/_leave calls backward in entry.S.)
1590         *
1591         * i386     no
1592         * x86_64   no
1593         * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1594         *
1595         * This also happens with vm86 emulation in a non-nested manner
1596         * (entries without exits), so this case must be caught.
1597         */
1598        if (context->in_syscall) {
1599                struct audit_context *newctx;
1600
1601#if AUDIT_DEBUG
1602                printk(KERN_ERR
1603                       "audit(:%d) pid=%d in syscall=%d;"
1604                       " entering syscall=%d\n",
1605                       context->serial, tsk->pid, context->major, major);
1606#endif
1607                newctx = audit_alloc_context(context->state);
1608                if (newctx) {
1609                        newctx->previous   = context;
1610                        context            = newctx;
1611                        tsk->audit_context = newctx;
1612                } else  {
1613                        /* If we can't alloc a new context, the best we
1614                         * can do is to leak memory (any pending putname
1615                         * will be lost).  The only other alternative is
1616                         * to abandon auditing. */
1617                        audit_zero_context(context, context->state);
1618                }
1619        }
1620        BUG_ON(context->in_syscall || context->name_count);
1621
1622        if (!audit_enabled)
1623                return;
1624
1625        context->arch       = arch;
1626        context->major      = major;
1627        context->argv[0]    = a1;
1628        context->argv[1]    = a2;
1629        context->argv[2]    = a3;
1630        context->argv[3]    = a4;
1631
1632        state = context->state;
1633        context->dummy = !audit_n_rules;
1634        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1635                context->prio = 0;
1636                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1637        }
1638        if (likely(state == AUDIT_DISABLED))
1639                return;
1640
1641        context->serial     = 0;
1642        context->ctime      = CURRENT_TIME;
1643        context->in_syscall = 1;
1644        context->current_state  = state;
1645        context->ppid       = 0;
1646}
1647
1648void audit_finish_fork(struct task_struct *child)
1649{
1650        struct audit_context *ctx = current->audit_context;
1651        struct audit_context *p = child->audit_context;
1652        if (!p || !ctx)
1653                return;
1654        if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1655                return;
1656        p->arch = ctx->arch;
1657        p->major = ctx->major;
1658        memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1659        p->ctime = ctx->ctime;
1660        p->dummy = ctx->dummy;
1661        p->in_syscall = ctx->in_syscall;
1662        p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1663        p->ppid = current->pid;
1664        p->prio = ctx->prio;
1665        p->current_state = ctx->current_state;
1666}
1667
1668/**
1669 * audit_syscall_exit - deallocate audit context after a system call
1670 * @valid: success/failure flag
1671 * @return_code: syscall return value
1672 *
1673 * Tear down after system call.  If the audit context has been marked as
1674 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1675 * filtering, or because some other part of the kernel write an audit
1676 * message), then write out the syscall information.  In call cases,
1677 * free the names stored from getname().
1678 */
1679void audit_syscall_exit(int valid, long return_code)
1680{
1681        struct task_struct *tsk = current;
1682        struct audit_context *context;
1683
1684        context = audit_get_context(tsk, valid, return_code);
1685
1686        if (likely(!context))
1687                return;
1688
1689        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1690                audit_log_exit(context, tsk);
1691
1692        context->in_syscall = 0;
1693        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1694
1695        if (!list_empty(&context->killed_trees))
1696                audit_kill_trees(&context->killed_trees);
1697
1698        if (context->previous) {
1699                struct audit_context *new_context = context->previous;
1700                context->previous  = NULL;
1701                audit_free_context(context);
1702                tsk->audit_context = new_context;
1703        } else {
1704                audit_free_names(context);
1705                unroll_tree_refs(context, NULL, 0);
1706                audit_free_aux(context);
1707                context->aux = NULL;
1708                context->aux_pids = NULL;
1709                context->target_pid = 0;
1710                context->target_sid = 0;
1711                context->sockaddr_len = 0;
1712                context->type = 0;
1713                context->fds[0] = -1;
1714                if (context->state != AUDIT_RECORD_CONTEXT) {
1715                        kfree(context->filterkey);
1716                        context->filterkey = NULL;
1717                }
1718                tsk->audit_context = context;
1719        }
1720}
1721
1722static inline void handle_one(const struct inode *inode)
1723{
1724#ifdef CONFIG_AUDIT_TREE
1725        struct audit_context *context;
1726        struct audit_tree_refs *p;
1727        struct audit_chunk *chunk;
1728        int count;
1729        if (likely(list_empty(&inode->inotify_watches)))
1730                return;
1731        context = current->audit_context;
1732        p = context->trees;
1733        count = context->tree_count;
1734        rcu_read_lock();
1735        chunk = audit_tree_lookup(inode);
1736        rcu_read_unlock();
1737        if (!chunk)
1738                return;
1739        if (likely(put_tree_ref(context, chunk)))
1740                return;
1741        if (unlikely(!grow_tree_refs(context))) {
1742                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1743                audit_set_auditable(context);
1744                audit_put_chunk(chunk);
1745                unroll_tree_refs(context, p, count);
1746                return;
1747        }
1748        put_tree_ref(context, chunk);
1749#endif
1750}
1751
1752static void handle_path(const struct dentry *dentry)
1753{
1754#ifdef CONFIG_AUDIT_TREE
1755        struct audit_context *context;
1756        struct audit_tree_refs *p;
1757        const struct dentry *d, *parent;
1758        struct audit_chunk *drop;
1759        unsigned long seq;
1760        int count;
1761
1762        context = current->audit_context;
1763        p = context->trees;
1764        count = context->tree_count;
1765retry:
1766        drop = NULL;
1767        d = dentry;
1768        rcu_read_lock();
1769        seq = read_seqbegin(&rename_lock);
1770        for(;;) {
1771                struct inode *inode = d->d_inode;
1772                if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1773                        struct audit_chunk *chunk;
1774                        chunk = audit_tree_lookup(inode);
1775                        if (chunk) {
1776                                if (unlikely(!put_tree_ref(context, chunk))) {
1777                                        drop = chunk;
1778                                        break;
1779                                }
1780                        }
1781                }
1782                parent = d->d_parent;
1783                if (parent == d)
1784                        break;
1785                d = parent;
1786        }
1787        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1788                rcu_read_unlock();
1789                if (!drop) {
1790                        /* just a race with rename */
1791                        unroll_tree_refs(context, p, count);
1792                        goto retry;
1793                }
1794                audit_put_chunk(drop);
1795                if (grow_tree_refs(context)) {
1796                        /* OK, got more space */
1797                        unroll_tree_refs(context, p, count);
1798                        goto retry;
1799                }
1800                /* too bad */
1801                printk(KERN_WARNING
1802                        "out of memory, audit has lost a tree reference\n");
1803                unroll_tree_refs(context, p, count);
1804                audit_set_auditable(context);
1805                return;
1806        }
1807        rcu_read_unlock();
1808#endif
1809}
1810
1811/**
1812 * audit_getname - add a name to the list
1813 * @name: name to add
1814 *
1815 * Add a name to the list of audit names for this context.
1816 * Called from fs/namei.c:getname().
1817 */
1818void __audit_getname(const char *name)
1819{
1820        struct audit_context *context = current->audit_context;
1821
1822        if (IS_ERR(name) || !name)
1823                return;
1824
1825        if (!context->in_syscall) {
1826#if AUDIT_DEBUG == 2
1827                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1828                       __FILE__, __LINE__, context->serial, name);
1829                dump_stack();
1830#endif
1831                return;
1832        }
1833        BUG_ON(context->name_count >= AUDIT_NAMES);
1834        context->names[context->name_count].name = name;
1835        context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1836        context->names[context->name_count].name_put = 1;
1837        context->names[context->name_count].ino  = (unsigned long)-1;
1838        context->names[context->name_count].osid = 0;
1839        ++context->name_count;
1840        if (!context->pwd.dentry) {
1841                read_lock(&current->fs->lock);
1842                context->pwd = current->fs->pwd;
1843                path_get(&current->fs->pwd);
1844                read_unlock(&current->fs->lock);
1845        }
1846
1847}
1848
1849/* audit_putname - intercept a putname request
1850 * @name: name to intercept and delay for putname
1851 *
1852 * If we have stored the name from getname in the audit context,
1853 * then we delay the putname until syscall exit.
1854 * Called from include/linux/fs.h:putname().
1855 */
1856void audit_putname(const char *name)
1857{
1858        struct audit_context *context = current->audit_context;
1859
1860        BUG_ON(!context);
1861        if (!context->in_syscall) {
1862#if AUDIT_DEBUG == 2
1863                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1864                       __FILE__, __LINE__, context->serial, name);
1865                if (context->name_count) {
1866                        int i;
1867                        for (i = 0; i < context->name_count; i++)
1868                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
1869                                       context->names[i].name,
1870                                       context->names[i].name ?: "(null)");
1871                }
1872#endif
1873                __putname(name);
1874        }
1875#if AUDIT_DEBUG
1876        else {
1877                ++context->put_count;
1878                if (context->put_count > context->name_count) {
1879                        printk(KERN_ERR "%s:%d(:%d): major=%d"
1880                               " in_syscall=%d putname(%p) name_count=%d"
1881                               " put_count=%d\n",
1882                               __FILE__, __LINE__,
1883                               context->serial, context->major,
1884                               context->in_syscall, name, context->name_count,
1885                               context->put_count);
1886                        dump_stack();
1887                }
1888        }
1889#endif
1890}
1891
1892static int audit_inc_name_count(struct audit_context *context,
1893                                const struct inode *inode)
1894{
1895        if (context->name_count >= AUDIT_NAMES) {
1896                if (inode)
1897                        printk(KERN_DEBUG "name_count maxed, losing inode data: "
1898                               "dev=%02x:%02x, inode=%lu\n",
1899                               MAJOR(inode->i_sb->s_dev),
1900                               MINOR(inode->i_sb->s_dev),
1901                               inode->i_ino);
1902
1903                else
1904                        printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1905                return 1;
1906        }
1907        context->name_count++;
1908#if AUDIT_DEBUG
1909        context->ino_count++;
1910#endif
1911        return 0;
1912}
1913
1914
1915static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1916{
1917        struct cpu_vfs_cap_data caps;
1918        int rc;
1919
1920        memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1921        memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1922        name->fcap.fE = 0;
1923        name->fcap_ver = 0;
1924
1925        if (!dentry)
1926                return 0;
1927
1928        rc = get_vfs_caps_from_disk(dentry, &caps);
1929        if (rc)
1930                return rc;
1931
1932        name->fcap.permitted = caps.permitted;
1933        name->fcap.inheritable = caps.inheritable;
1934        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1935        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1936
1937        return 0;
1938}
1939
1940
1941/* Copy inode data into an audit_names. */
1942static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1943                             const struct inode *inode)
1944{
1945        name->ino   = inode->i_ino;
1946        name->dev   = inode->i_sb->s_dev;
1947        name->mode  = inode->i_mode;
1948        name->uid   = inode->i_uid;
1949        name->gid   = inode->i_gid;
1950        name->rdev  = inode->i_rdev;
1951        security_inode_getsecid(inode, &name->osid);
1952        audit_copy_fcaps(name, dentry);
1953}
1954
1955/**
1956 * audit_inode - store the inode and device from a lookup
1957 * @name: name being audited
1958 * @dentry: dentry being audited
1959 *
1960 * Called from fs/namei.c:path_lookup().
1961 */
1962void __audit_inode(const char *name, const struct dentry *dentry)
1963{
1964        int idx;
1965        struct audit_context *context = current->audit_context;
1966        const struct inode *inode = dentry->d_inode;
1967
1968        if (!context->in_syscall)
1969                return;
1970        if (context->name_count
1971            && context->names[context->name_count-1].name
1972            && context->names[context->name_count-1].name == name)
1973                idx = context->name_count - 1;
1974        else if (context->name_count > 1
1975                 && context->names[context->name_count-2].name
1976                 && context->names[context->name_count-2].name == name)
1977                idx = context->name_count - 2;
1978        else {
1979                /* FIXME: how much do we care about inodes that have no
1980                 * associated name? */
1981                if (audit_inc_name_count(context, inode))
1982                        return;
1983                idx = context->name_count - 1;
1984                context->names[idx].name = NULL;
1985        }
1986        handle_path(dentry);
1987        audit_copy_inode(&context->names[idx], dentry, inode);
1988}
1989
1990/**
1991 * audit_inode_child - collect inode info for created/removed objects
1992 * @dname: inode's dentry name
1993 * @dentry: dentry being audited
1994 * @parent: inode of dentry parent
1995 *
1996 * For syscalls that create or remove filesystem objects, audit_inode
1997 * can only collect information for the filesystem object's parent.
1998 * This call updates the audit context with the child's information.
1999 * Syscalls that create a new filesystem object must be hooked after
2000 * the object is created.  Syscalls that remove a filesystem object
2001 * must be hooked prior, in order to capture the target inode during
2002 * unsuccessful attempts.
2003 */
2004void __audit_inode_child(const char *dname, const struct dentry *dentry,
2005                         const struct inode *parent)
2006{
2007        int idx;
2008        struct audit_context *context = current->audit_context;
2009        const char *found_parent = NULL, *found_child = NULL;
2010        const struct inode *inode = dentry->d_inode;
2011        int dirlen = 0;
2012
2013        if (!context->in_syscall)
2014                return;
2015
2016        if (inode)
2017                handle_one(inode);
2018        /* determine matching parent */
2019        if (!dname)
2020                goto add_names;
2021
2022        /* parent is more likely, look for it first */
2023        for (idx = 0; idx < context->name_count; idx++) {
2024                struct audit_names *n = &context->names[idx];
2025
2026                if (!n->name)
2027                        continue;
2028
2029                if (n->ino == parent->i_ino &&
2030                    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2031                        n->name_len = dirlen; /* update parent data in place */
2032                        found_parent = n->name;
2033                        goto add_names;
2034                }
2035        }
2036
2037        /* no matching parent, look for matching child */
2038        for (idx = 0; idx < context->name_count; idx++) {
2039                struct audit_names *n = &context->names[idx];
2040
2041                if (!n->name)
2042                        continue;
2043
2044                /* strcmp() is the more likely scenario */
2045                if (!strcmp(dname, n->name) ||
2046                     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2047                        if (inode)
2048                                audit_copy_inode(n, NULL, inode);
2049                        else
2050                                n->ino = (unsigned long)-1;
2051                        found_child = n->name;
2052                        goto add_names;
2053                }
2054        }
2055
2056add_names:
2057        if (!found_parent) {
2058                if (audit_inc_name_count(context, parent))
2059                        return;
2060                idx = context->name_count - 1;
2061                context->names[idx].name = NULL;
2062                audit_copy_inode(&context->names[idx], NULL, parent);
2063        }
2064
2065        if (!found_child) {
2066                if (audit_inc_name_count(context, inode))
2067                        return;
2068                idx = context->name_count - 1;
2069
2070                /* Re-use the name belonging to the slot for a matching parent
2071                 * directory. All names for this context are relinquished in
2072                 * audit_free_names() */
2073                if (found_parent) {
2074                        context->names[idx].name = found_parent;
2075                        context->names[idx].name_len = AUDIT_NAME_FULL;
2076                        /* don't call __putname() */
2077                        context->names[idx].name_put = 0;
2078                } else {
2079                        context->names[idx].name = NULL;
2080                }
2081
2082                if (inode)
2083                        audit_copy_inode(&context->names[idx], NULL, inode);
2084                else
2085                        context->names[idx].ino = (unsigned long)-1;
2086        }
2087}
2088EXPORT_SYMBOL_GPL(__audit_inode_child);
2089
2090/**
2091 * auditsc_get_stamp - get local copies of audit_context values
2092 * @ctx: audit_context for the task
2093 * @t: timespec to store time recorded in the audit_context
2094 * @serial: serial value that is recorded in the audit_context
2095 *
2096 * Also sets the context as auditable.
2097 */
2098int auditsc_get_stamp(struct audit_context *ctx,
2099                       struct timespec *t, unsigned int *serial)
2100{
2101        if (!ctx->in_syscall)
2102                return 0;
2103        if (!ctx->serial)
2104                ctx->serial = audit_serial();
2105        t->tv_sec  = ctx->ctime.tv_sec;
2106        t->tv_nsec = ctx->ctime.tv_nsec;
2107        *serial    = ctx->serial;
2108        if (!ctx->prio) {
2109                ctx->prio = 1;
2110                ctx->current_state = AUDIT_RECORD_CONTEXT;
2111        }
2112        return 1;
2113}
2114
2115/* global counter which is incremented every time something logs in */
2116static atomic_t session_id = ATOMIC_INIT(0);
2117
2118/**
2119 * audit_set_loginuid - set a task's audit_context loginuid
2120 * @task: task whose audit context is being modified
2121 * @loginuid: loginuid value
2122 *
2123 * Returns 0.
2124 *
2125 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2126 */
2127int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2128{
2129        unsigned int sessionid = atomic_inc_return(&session_id);
2130        struct audit_context *context = task->audit_context;
2131
2132        if (context && context->in_syscall) {
2133                struct audit_buffer *ab;
2134
2135                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2136                if (ab) {
2137                        audit_log_format(ab, "login pid=%d uid=%u "
2138                                "old auid=%u new auid=%u"
2139                                " old ses=%u new ses=%u",
2140                                task->pid, task_uid(task),
2141                                task->loginuid, loginuid,
2142                                task->sessionid, sessionid);
2143                        audit_log_end(ab);
2144                }
2145        }
2146        task->sessionid = sessionid;
2147        task->loginuid = loginuid;
2148        return 0;
2149}
2150
2151/**
2152 * __audit_mq_open - record audit data for a POSIX MQ open
2153 * @oflag: open flag
2154 * @mode: mode bits
2155 * @attr: queue attributes
2156 *
2157 */
2158void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2159{
2160        struct audit_context *context = current->audit_context;
2161
2162        if (attr)
2163                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2164        else
2165                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2166
2167        context->mq_open.oflag = oflag;
2168        context->mq_open.mode = mode;
2169
2170        context->type = AUDIT_MQ_OPEN;
2171}
2172
2173/**
2174 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2175 * @mqdes: MQ descriptor
2176 * @msg_len: Message length
2177 * @msg_prio: Message priority
2178 * @abs_timeout: Message timeout in absolute time
2179 *
2180 */
2181void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2182                        const struct timespec *abs_timeout)
2183{
2184        struct audit_context *context = current->audit_context;
2185        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2186
2187        if (abs_timeout)
2188                memcpy(p, abs_timeout, sizeof(struct timespec));
2189        else
2190                memset(p, 0, sizeof(struct timespec));
2191
2192        context->mq_sendrecv.mqdes = mqdes;
2193        context->mq_sendrecv.msg_len = msg_len;
2194        context->mq_sendrecv.msg_prio = msg_prio;
2195
2196        context->type = AUDIT_MQ_SENDRECV;
2197}
2198
2199/**
2200 * __audit_mq_notify - record audit data for a POSIX MQ notify
2201 * @mqdes: MQ descriptor
2202 * @notification: Notification event
2203 *
2204 */
2205
2206void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2207{
2208        struct audit_context *context = current->audit_context;
2209
2210        if (notification)
2211                context->mq_notify.sigev_signo = notification->sigev_signo;
2212        else
2213                context->mq_notify.sigev_signo = 0;
2214
2215        context->mq_notify.mqdes = mqdes;
2216        context->type = AUDIT_MQ_NOTIFY;
2217}
2218
2219/**
2220 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2221 * @mqdes: MQ descriptor
2222 * @mqstat: MQ flags
2223 *
2224 */
2225void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2226{
2227        struct audit_context *context = current->audit_context;
2228        context->mq_getsetattr.mqdes = mqdes;
2229        context->mq_getsetattr.mqstat = *mqstat;
2230        context->type = AUDIT_MQ_GETSETATTR;
2231}
2232
2233/**
2234 * audit_ipc_obj - record audit data for ipc object
2235 * @ipcp: ipc permissions
2236 *
2237 */
2238void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2239{
2240        struct audit_context *context = current->audit_context;
2241        context->ipc.uid = ipcp->uid;
2242        context->ipc.gid = ipcp->gid;
2243        context->ipc.mode = ipcp->mode;
2244        context->ipc.has_perm = 0;
2245        security_ipc_getsecid(ipcp, &context->ipc.osid);
2246        context->type = AUDIT_IPC;
2247}
2248
2249/**
2250 * audit_ipc_set_perm - record audit data for new ipc permissions
2251 * @qbytes: msgq bytes
2252 * @uid: msgq user id
2253 * @gid: msgq group id
2254 * @mode: msgq mode (permissions)
2255 *
2256 * Called only after audit_ipc_obj().
2257 */
2258void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2259{
2260        struct audit_context *context = current->audit_context;
2261
2262        context->ipc.qbytes = qbytes;
2263        context->ipc.perm_uid = uid;
2264        context->ipc.perm_gid = gid;
2265        context->ipc.perm_mode = mode;
2266        context->ipc.has_perm = 1;
2267}
2268
2269int audit_bprm(struct linux_binprm *bprm)
2270{
2271        struct audit_aux_data_execve *ax;
2272        struct audit_context *context = current->audit_context;
2273
2274        if (likely(!audit_enabled || !context || context->dummy))
2275                return 0;
2276
2277        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2278        if (!ax)
2279                return -ENOMEM;
2280
2281        ax->argc = bprm->argc;
2282        ax->envc = bprm->envc;
2283        ax->mm = bprm->mm;
2284        ax->d.type = AUDIT_EXECVE;
2285        ax->d.next = context->aux;
2286        context->aux = (void *)ax;
2287        return 0;
2288}
2289
2290
2291/**
2292 * audit_socketcall - record audit data for sys_socketcall
2293 * @nargs: number of args
2294 * @args: args array
2295 *
2296 */
2297void audit_socketcall(int nargs, unsigned long *args)
2298{
2299        struct audit_context *context = current->audit_context;
2300
2301        if (likely(!context || context->dummy))
2302                return;
2303
2304        context->type = AUDIT_SOCKETCALL;
2305        context->socketcall.nargs = nargs;
2306        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2307}
2308
2309/**
2310 * __audit_fd_pair - record audit data for pipe and socketpair
2311 * @fd1: the first file descriptor
2312 * @fd2: the second file descriptor
2313 *
2314 */
2315void __audit_fd_pair(int fd1, int fd2)
2316{
2317        struct audit_context *context = current->audit_context;
2318        context->fds[0] = fd1;
2319        context->fds[1] = fd2;
2320}
2321
2322/**
2323 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2324 * @len: data length in user space
2325 * @a: data address in kernel space
2326 *
2327 * Returns 0 for success or NULL context or < 0 on error.
2328 */
2329int audit_sockaddr(int len, void *a)
2330{
2331        struct audit_context *context = current->audit_context;
2332
2333        if (likely(!context || context->dummy))
2334                return 0;
2335
2336        if (!context->sockaddr) {
2337                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2338                if (!p)
2339                        return -ENOMEM;
2340                context->sockaddr = p;
2341        }
2342
2343        context->sockaddr_len = len;
2344        memcpy(context->sockaddr, a, len);
2345        return 0;
2346}
2347
2348void __audit_ptrace(struct task_struct *t)
2349{
2350        struct audit_context *context = current->audit_context;
2351
2352        context->target_pid = t->pid;
2353        context->target_auid = audit_get_loginuid(t);
2354        context->target_uid = task_uid(t);
2355        context->target_sessionid = audit_get_sessionid(t);
2356        security_task_getsecid(t, &context->target_sid);
2357        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2358}
2359
2360/**
2361 * audit_signal_info - record signal info for shutting down audit subsystem
2362 * @sig: signal value
2363 * @t: task being signaled
2364 *
2365 * If the audit subsystem is being terminated, record the task (pid)
2366 * and uid that is doing that.
2367 */
2368int __audit_signal_info(int sig, struct task_struct *t)
2369{
2370        struct audit_aux_data_pids *axp;
2371        struct task_struct *tsk = current;
2372        struct audit_context *ctx = tsk->audit_context;
2373        uid_t uid = current_uid(), t_uid = task_uid(t);
2374
2375        if (audit_pid && t->tgid == audit_pid) {
2376                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2377                        audit_sig_pid = tsk->pid;
2378                        if (tsk->loginuid != -1)
2379                                audit_sig_uid = tsk->loginuid;
2380                        else
2381                                audit_sig_uid = uid;
2382                        security_task_getsecid(tsk, &audit_sig_sid);
2383                }
2384                if (!audit_signals || audit_dummy_context())
2385                        return 0;
2386        }
2387
2388        /* optimize the common case by putting first signal recipient directly
2389         * in audit_context */
2390        if (!ctx->target_pid) {
2391                ctx->target_pid = t->tgid;
2392                ctx->target_auid = audit_get_loginuid(t);
2393                ctx->target_uid = t_uid;
2394                ctx->target_sessionid = audit_get_sessionid(t);
2395                security_task_getsecid(t, &ctx->target_sid);
2396                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2397                return 0;
2398        }
2399
2400        axp = (void *)ctx->aux_pids;
2401        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2402                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2403                if (!axp)
2404                        return -ENOMEM;
2405
2406                axp->d.type = AUDIT_OBJ_PID;
2407                axp->d.next = ctx->aux_pids;
2408                ctx->aux_pids = (void *)axp;
2409        }
2410        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2411
2412        axp->target_pid[axp->pid_count] = t->tgid;
2413        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2414        axp->target_uid[axp->pid_count] = t_uid;
2415        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2416        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2417        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2418        axp->pid_count++;
2419
2420        return 0;
2421}
2422
2423/**
2424 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2425 * @bprm: pointer to the bprm being processed
2426 * @new: the proposed new credentials
2427 * @old: the old credentials
2428 *
2429 * Simply check if the proc already has the caps given by the file and if not
2430 * store the priv escalation info for later auditing at the end of the syscall
2431 *
2432 * -Eric
2433 */
2434int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2435                           const struct cred *new, const struct cred *old)
2436{
2437        struct audit_aux_data_bprm_fcaps *ax;
2438        struct audit_context *context = current->audit_context;
2439        struct cpu_vfs_cap_data vcaps;
2440        struct dentry *dentry;
2441
2442        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2443        if (!ax)
2444                return -ENOMEM;
2445
2446        ax->d.type = AUDIT_BPRM_FCAPS;
2447        ax->d.next = context->aux;
2448        context->aux = (void *)ax;
2449
2450        dentry = dget(bprm->file->f_dentry);
2451        get_vfs_caps_from_disk(dentry, &vcaps);
2452        dput(dentry);
2453
2454        ax->fcap.permitted = vcaps.permitted;
2455        ax->fcap.inheritable = vcaps.inheritable;
2456        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2457        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2458
2459        ax->old_pcap.permitted   = old->cap_permitted;
2460        ax->old_pcap.inheritable = old->cap_inheritable;
2461        ax->old_pcap.effective   = old->cap_effective;
2462
2463        ax->new_pcap.permitted   = new->cap_permitted;
2464        ax->new_pcap.inheritable = new->cap_inheritable;
2465        ax->new_pcap.effective   = new->cap_effective;
2466        return 0;
2467}
2468
2469/**
2470 * __audit_log_capset - store information about the arguments to the capset syscall
2471 * @pid: target pid of the capset call
2472 * @new: the new credentials
2473 * @old: the old (current) credentials
2474 *
2475 * Record the aguments userspace sent to sys_capset for later printing by the
2476 * audit system if applicable
2477 */
2478void __audit_log_capset(pid_t pid,
2479                       const struct cred *new, const struct cred *old)
2480{
2481        struct audit_context *context = current->audit_context;
2482        context->capset.pid = pid;
2483        context->capset.cap.effective   = new->cap_effective;
2484        context->capset.cap.inheritable = new->cap_effective;
2485        context->capset.cap.permitted   = new->cap_permitted;
2486        context->type = AUDIT_CAPSET;
2487}
2488
2489/**
2490 * audit_core_dumps - record information about processes that end abnormally
2491 * @signr: signal value
2492 *
2493 * If a process ends with a core dump, something fishy is going on and we
2494 * should record the event for investigation.
2495 */
2496void audit_core_dumps(long signr)
2497{
2498        struct audit_buffer *ab;
2499        u32 sid;
2500        uid_t auid = audit_get_loginuid(current), uid;
2501        gid_t gid;
2502        unsigned int sessionid = audit_get_sessionid(current);
2503
2504        if (!audit_enabled)
2505                return;
2506
2507        if (signr == SIGQUIT)   /* don't care for those */
2508                return;
2509
2510        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2511        current_uid_gid(&uid, &gid);
2512        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2513                         auid, uid, gid, sessionid);
2514        security_task_getsecid(current, &sid);
2515        if (sid) {
2516                char *ctx = NULL;
2517                u32 len;
2518
2519                if (security_secid_to_secctx(sid, &ctx, &len))
2520                        audit_log_format(ab, " ssid=%u", sid);
2521                else {
2522                        audit_log_format(ab, " subj=%s", ctx);
2523                        security_release_secctx(ctx, len);
2524                }
2525        }
2526        audit_log_format(ab, " pid=%d comm=", current->pid);
2527        audit_log_untrustedstring(ab, current->comm);
2528        audit_log_format(ab, " sig=%ld", signr);
2529        audit_log_end(ab);
2530}
2531
2532struct list_head *audit_killed_trees(void)
2533{
2534        struct audit_context *ctx = current->audit_context;
2535        if (likely(!ctx || !ctx->in_syscall))
2536                return NULL;
2537        return &ctx->killed_trees;
2538}
2539