linux/kernel/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Copyright notices from the original cpuset code:
   8 *  --------------------------------------------------
   9 *  Copyright (C) 2003 BULL SA.
  10 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  11 *
  12 *  Portions derived from Patrick Mochel's sysfs code.
  13 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  14 *
  15 *  2003-10-10 Written by Simon Derr.
  16 *  2003-10-22 Updates by Stephen Hemminger.
  17 *  2004 May-July Rework by Paul Jackson.
  18 *  ---------------------------------------------------
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cgroup.h>
  26#include <linux/ctype.h>
  27#include <linux/errno.h>
  28#include <linux/fs.h>
  29#include <linux/kernel.h>
  30#include <linux/list.h>
  31#include <linux/mm.h>
  32#include <linux/mutex.h>
  33#include <linux/mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/proc_fs.h>
  36#include <linux/rcupdate.h>
  37#include <linux/sched.h>
  38#include <linux/backing-dev.h>
  39#include <linux/seq_file.h>
  40#include <linux/slab.h>
  41#include <linux/magic.h>
  42#include <linux/spinlock.h>
  43#include <linux/string.h>
  44#include <linux/sort.h>
  45#include <linux/kmod.h>
  46#include <linux/delayacct.h>
  47#include <linux/cgroupstats.h>
  48#include <linux/hash.h>
  49#include <linux/namei.h>
  50#include <linux/smp_lock.h>
  51#include <linux/pid_namespace.h>
  52#include <linux/idr.h>
  53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  54
  55#include <asm/atomic.h>
  56
  57static DEFINE_MUTEX(cgroup_mutex);
  58
  59/* Generate an array of cgroup subsystem pointers */
  60#define SUBSYS(_x) &_x ## _subsys,
  61
  62static struct cgroup_subsys *subsys[] = {
  63#include <linux/cgroup_subsys.h>
  64};
  65
  66#define MAX_CGROUP_ROOT_NAMELEN 64
  67
  68/*
  69 * A cgroupfs_root represents the root of a cgroup hierarchy,
  70 * and may be associated with a superblock to form an active
  71 * hierarchy
  72 */
  73struct cgroupfs_root {
  74        struct super_block *sb;
  75
  76        /*
  77         * The bitmask of subsystems intended to be attached to this
  78         * hierarchy
  79         */
  80        unsigned long subsys_bits;
  81
  82        /* Unique id for this hierarchy. */
  83        int hierarchy_id;
  84
  85        /* The bitmask of subsystems currently attached to this hierarchy */
  86        unsigned long actual_subsys_bits;
  87
  88        /* A list running through the attached subsystems */
  89        struct list_head subsys_list;
  90
  91        /* The root cgroup for this hierarchy */
  92        struct cgroup top_cgroup;
  93
  94        /* Tracks how many cgroups are currently defined in hierarchy.*/
  95        int number_of_cgroups;
  96
  97        /* A list running through the active hierarchies */
  98        struct list_head root_list;
  99
 100        /* Hierarchy-specific flags */
 101        unsigned long flags;
 102
 103        /* The path to use for release notifications. */
 104        char release_agent_path[PATH_MAX];
 105
 106        /* The name for this hierarchy - may be empty */
 107        char name[MAX_CGROUP_ROOT_NAMELEN];
 108};
 109
 110/*
 111 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 112 * subsystems that are otherwise unattached - it never has more than a
 113 * single cgroup, and all tasks are part of that cgroup.
 114 */
 115static struct cgroupfs_root rootnode;
 116
 117/*
 118 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 119 * cgroup_subsys->use_id != 0.
 120 */
 121#define CSS_ID_MAX      (65535)
 122struct css_id {
 123        /*
 124         * The css to which this ID points. This pointer is set to valid value
 125         * after cgroup is populated. If cgroup is removed, this will be NULL.
 126         * This pointer is expected to be RCU-safe because destroy()
 127         * is called after synchronize_rcu(). But for safe use, css_is_removed()
 128         * css_tryget() should be used for avoiding race.
 129         */
 130        struct cgroup_subsys_state *css;
 131        /*
 132         * ID of this css.
 133         */
 134        unsigned short id;
 135        /*
 136         * Depth in hierarchy which this ID belongs to.
 137         */
 138        unsigned short depth;
 139        /*
 140         * ID is freed by RCU. (and lookup routine is RCU safe.)
 141         */
 142        struct rcu_head rcu_head;
 143        /*
 144         * Hierarchy of CSS ID belongs to.
 145         */
 146        unsigned short stack[0]; /* Array of Length (depth+1) */
 147};
 148
 149
 150/* The list of hierarchy roots */
 151
 152static LIST_HEAD(roots);
 153static int root_count;
 154
 155static DEFINE_IDA(hierarchy_ida);
 156static int next_hierarchy_id;
 157static DEFINE_SPINLOCK(hierarchy_id_lock);
 158
 159/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 160#define dummytop (&rootnode.top_cgroup)
 161
 162/* This flag indicates whether tasks in the fork and exit paths should
 163 * check for fork/exit handlers to call. This avoids us having to do
 164 * extra work in the fork/exit path if none of the subsystems need to
 165 * be called.
 166 */
 167static int need_forkexit_callback __read_mostly;
 168
 169/* convenient tests for these bits */
 170inline int cgroup_is_removed(const struct cgroup *cgrp)
 171{
 172        return test_bit(CGRP_REMOVED, &cgrp->flags);
 173}
 174
 175/* bits in struct cgroupfs_root flags field */
 176enum {
 177        ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 178};
 179
 180static int cgroup_is_releasable(const struct cgroup *cgrp)
 181{
 182        const int bits =
 183                (1 << CGRP_RELEASABLE) |
 184                (1 << CGRP_NOTIFY_ON_RELEASE);
 185        return (cgrp->flags & bits) == bits;
 186}
 187
 188static int notify_on_release(const struct cgroup *cgrp)
 189{
 190        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 191}
 192
 193/*
 194 * for_each_subsys() allows you to iterate on each subsystem attached to
 195 * an active hierarchy
 196 */
 197#define for_each_subsys(_root, _ss) \
 198list_for_each_entry(_ss, &_root->subsys_list, sibling)
 199
 200/* for_each_active_root() allows you to iterate across the active hierarchies */
 201#define for_each_active_root(_root) \
 202list_for_each_entry(_root, &roots, root_list)
 203
 204/* the list of cgroups eligible for automatic release. Protected by
 205 * release_list_lock */
 206static LIST_HEAD(release_list);
 207static DEFINE_SPINLOCK(release_list_lock);
 208static void cgroup_release_agent(struct work_struct *work);
 209static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 210static void check_for_release(struct cgroup *cgrp);
 211
 212/* Link structure for associating css_set objects with cgroups */
 213struct cg_cgroup_link {
 214        /*
 215         * List running through cg_cgroup_links associated with a
 216         * cgroup, anchored on cgroup->css_sets
 217         */
 218        struct list_head cgrp_link_list;
 219        struct cgroup *cgrp;
 220        /*
 221         * List running through cg_cgroup_links pointing at a
 222         * single css_set object, anchored on css_set->cg_links
 223         */
 224        struct list_head cg_link_list;
 225        struct css_set *cg;
 226};
 227
 228/* The default css_set - used by init and its children prior to any
 229 * hierarchies being mounted. It contains a pointer to the root state
 230 * for each subsystem. Also used to anchor the list of css_sets. Not
 231 * reference-counted, to improve performance when child cgroups
 232 * haven't been created.
 233 */
 234
 235static struct css_set init_css_set;
 236static struct cg_cgroup_link init_css_set_link;
 237
 238static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
 239
 240/* css_set_lock protects the list of css_set objects, and the
 241 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 242 * due to cgroup_iter_start() */
 243static DEFINE_RWLOCK(css_set_lock);
 244static int css_set_count;
 245
 246/*
 247 * hash table for cgroup groups. This improves the performance to find
 248 * an existing css_set. This hash doesn't (currently) take into
 249 * account cgroups in empty hierarchies.
 250 */
 251#define CSS_SET_HASH_BITS       7
 252#define CSS_SET_TABLE_SIZE      (1 << CSS_SET_HASH_BITS)
 253static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
 254
 255static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
 256{
 257        int i;
 258        int index;
 259        unsigned long tmp = 0UL;
 260
 261        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
 262                tmp += (unsigned long)css[i];
 263        tmp = (tmp >> 16) ^ tmp;
 264
 265        index = hash_long(tmp, CSS_SET_HASH_BITS);
 266
 267        return &css_set_table[index];
 268}
 269
 270static void free_css_set_rcu(struct rcu_head *obj)
 271{
 272        struct css_set *cg = container_of(obj, struct css_set, rcu_head);
 273        kfree(cg);
 274}
 275
 276/* We don't maintain the lists running through each css_set to its
 277 * task until after the first call to cgroup_iter_start(). This
 278 * reduces the fork()/exit() overhead for people who have cgroups
 279 * compiled into their kernel but not actually in use */
 280static int use_task_css_set_links __read_mostly;
 281
 282static void __put_css_set(struct css_set *cg, int taskexit)
 283{
 284        struct cg_cgroup_link *link;
 285        struct cg_cgroup_link *saved_link;
 286        /*
 287         * Ensure that the refcount doesn't hit zero while any readers
 288         * can see it. Similar to atomic_dec_and_lock(), but for an
 289         * rwlock
 290         */
 291        if (atomic_add_unless(&cg->refcount, -1, 1))
 292                return;
 293        write_lock(&css_set_lock);
 294        if (!atomic_dec_and_test(&cg->refcount)) {
 295                write_unlock(&css_set_lock);
 296                return;
 297        }
 298
 299        /* This css_set is dead. unlink it and release cgroup refcounts */
 300        hlist_del(&cg->hlist);
 301        css_set_count--;
 302
 303        list_for_each_entry_safe(link, saved_link, &cg->cg_links,
 304                                 cg_link_list) {
 305                struct cgroup *cgrp = link->cgrp;
 306                list_del(&link->cg_link_list);
 307                list_del(&link->cgrp_link_list);
 308                if (atomic_dec_and_test(&cgrp->count) &&
 309                    notify_on_release(cgrp)) {
 310                        if (taskexit)
 311                                set_bit(CGRP_RELEASABLE, &cgrp->flags);
 312                        check_for_release(cgrp);
 313                }
 314
 315                kfree(link);
 316        }
 317
 318        write_unlock(&css_set_lock);
 319        call_rcu(&cg->rcu_head, free_css_set_rcu);
 320}
 321
 322/*
 323 * refcounted get/put for css_set objects
 324 */
 325static inline void get_css_set(struct css_set *cg)
 326{
 327        atomic_inc(&cg->refcount);
 328}
 329
 330static inline void put_css_set(struct css_set *cg)
 331{
 332        __put_css_set(cg, 0);
 333}
 334
 335static inline void put_css_set_taskexit(struct css_set *cg)
 336{
 337        __put_css_set(cg, 1);
 338}
 339
 340/*
 341 * compare_css_sets - helper function for find_existing_css_set().
 342 * @cg: candidate css_set being tested
 343 * @old_cg: existing css_set for a task
 344 * @new_cgrp: cgroup that's being entered by the task
 345 * @template: desired set of css pointers in css_set (pre-calculated)
 346 *
 347 * Returns true if "cg" matches "old_cg" except for the hierarchy
 348 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 349 */
 350static bool compare_css_sets(struct css_set *cg,
 351                             struct css_set *old_cg,
 352                             struct cgroup *new_cgrp,
 353                             struct cgroup_subsys_state *template[])
 354{
 355        struct list_head *l1, *l2;
 356
 357        if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 358                /* Not all subsystems matched */
 359                return false;
 360        }
 361
 362        /*
 363         * Compare cgroup pointers in order to distinguish between
 364         * different cgroups in heirarchies with no subsystems. We
 365         * could get by with just this check alone (and skip the
 366         * memcmp above) but on most setups the memcmp check will
 367         * avoid the need for this more expensive check on almost all
 368         * candidates.
 369         */
 370
 371        l1 = &cg->cg_links;
 372        l2 = &old_cg->cg_links;
 373        while (1) {
 374                struct cg_cgroup_link *cgl1, *cgl2;
 375                struct cgroup *cg1, *cg2;
 376
 377                l1 = l1->next;
 378                l2 = l2->next;
 379                /* See if we reached the end - both lists are equal length. */
 380                if (l1 == &cg->cg_links) {
 381                        BUG_ON(l2 != &old_cg->cg_links);
 382                        break;
 383                } else {
 384                        BUG_ON(l2 == &old_cg->cg_links);
 385                }
 386                /* Locate the cgroups associated with these links. */
 387                cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
 388                cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
 389                cg1 = cgl1->cgrp;
 390                cg2 = cgl2->cgrp;
 391                /* Hierarchies should be linked in the same order. */
 392                BUG_ON(cg1->root != cg2->root);
 393
 394                /*
 395                 * If this hierarchy is the hierarchy of the cgroup
 396                 * that's changing, then we need to check that this
 397                 * css_set points to the new cgroup; if it's any other
 398                 * hierarchy, then this css_set should point to the
 399                 * same cgroup as the old css_set.
 400                 */
 401                if (cg1->root == new_cgrp->root) {
 402                        if (cg1 != new_cgrp)
 403                                return false;
 404                } else {
 405                        if (cg1 != cg2)
 406                                return false;
 407                }
 408        }
 409        return true;
 410}
 411
 412/*
 413 * find_existing_css_set() is a helper for
 414 * find_css_set(), and checks to see whether an existing
 415 * css_set is suitable.
 416 *
 417 * oldcg: the cgroup group that we're using before the cgroup
 418 * transition
 419 *
 420 * cgrp: the cgroup that we're moving into
 421 *
 422 * template: location in which to build the desired set of subsystem
 423 * state objects for the new cgroup group
 424 */
 425static struct css_set *find_existing_css_set(
 426        struct css_set *oldcg,
 427        struct cgroup *cgrp,
 428        struct cgroup_subsys_state *template[])
 429{
 430        int i;
 431        struct cgroupfs_root *root = cgrp->root;
 432        struct hlist_head *hhead;
 433        struct hlist_node *node;
 434        struct css_set *cg;
 435
 436        /* Built the set of subsystem state objects that we want to
 437         * see in the new css_set */
 438        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 439                if (root->subsys_bits & (1UL << i)) {
 440                        /* Subsystem is in this hierarchy. So we want
 441                         * the subsystem state from the new
 442                         * cgroup */
 443                        template[i] = cgrp->subsys[i];
 444                } else {
 445                        /* Subsystem is not in this hierarchy, so we
 446                         * don't want to change the subsystem state */
 447                        template[i] = oldcg->subsys[i];
 448                }
 449        }
 450
 451        hhead = css_set_hash(template);
 452        hlist_for_each_entry(cg, node, hhead, hlist) {
 453                if (!compare_css_sets(cg, oldcg, cgrp, template))
 454                        continue;
 455
 456                /* This css_set matches what we need */
 457                return cg;
 458        }
 459
 460        /* No existing cgroup group matched */
 461        return NULL;
 462}
 463
 464static void free_cg_links(struct list_head *tmp)
 465{
 466        struct cg_cgroup_link *link;
 467        struct cg_cgroup_link *saved_link;
 468
 469        list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
 470                list_del(&link->cgrp_link_list);
 471                kfree(link);
 472        }
 473}
 474
 475/*
 476 * allocate_cg_links() allocates "count" cg_cgroup_link structures
 477 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 478 * success or a negative error
 479 */
 480static int allocate_cg_links(int count, struct list_head *tmp)
 481{
 482        struct cg_cgroup_link *link;
 483        int i;
 484        INIT_LIST_HEAD(tmp);
 485        for (i = 0; i < count; i++) {
 486                link = kmalloc(sizeof(*link), GFP_KERNEL);
 487                if (!link) {
 488                        free_cg_links(tmp);
 489                        return -ENOMEM;
 490                }
 491                list_add(&link->cgrp_link_list, tmp);
 492        }
 493        return 0;
 494}
 495
 496/**
 497 * link_css_set - a helper function to link a css_set to a cgroup
 498 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 499 * @cg: the css_set to be linked
 500 * @cgrp: the destination cgroup
 501 */
 502static void link_css_set(struct list_head *tmp_cg_links,
 503                         struct css_set *cg, struct cgroup *cgrp)
 504{
 505        struct cg_cgroup_link *link;
 506
 507        BUG_ON(list_empty(tmp_cg_links));
 508        link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
 509                                cgrp_link_list);
 510        link->cg = cg;
 511        link->cgrp = cgrp;
 512        atomic_inc(&cgrp->count);
 513        list_move(&link->cgrp_link_list, &cgrp->css_sets);
 514        /*
 515         * Always add links to the tail of the list so that the list
 516         * is sorted by order of hierarchy creation
 517         */
 518        list_add_tail(&link->cg_link_list, &cg->cg_links);
 519}
 520
 521/*
 522 * find_css_set() takes an existing cgroup group and a
 523 * cgroup object, and returns a css_set object that's
 524 * equivalent to the old group, but with the given cgroup
 525 * substituted into the appropriate hierarchy. Must be called with
 526 * cgroup_mutex held
 527 */
 528static struct css_set *find_css_set(
 529        struct css_set *oldcg, struct cgroup *cgrp)
 530{
 531        struct css_set *res;
 532        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 533
 534        struct list_head tmp_cg_links;
 535
 536        struct hlist_head *hhead;
 537        struct cg_cgroup_link *link;
 538
 539        /* First see if we already have a cgroup group that matches
 540         * the desired set */
 541        read_lock(&css_set_lock);
 542        res = find_existing_css_set(oldcg, cgrp, template);
 543        if (res)
 544                get_css_set(res);
 545        read_unlock(&css_set_lock);
 546
 547        if (res)
 548                return res;
 549
 550        res = kmalloc(sizeof(*res), GFP_KERNEL);
 551        if (!res)
 552                return NULL;
 553
 554        /* Allocate all the cg_cgroup_link objects that we'll need */
 555        if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 556                kfree(res);
 557                return NULL;
 558        }
 559
 560        atomic_set(&res->refcount, 1);
 561        INIT_LIST_HEAD(&res->cg_links);
 562        INIT_LIST_HEAD(&res->tasks);
 563        INIT_HLIST_NODE(&res->hlist);
 564
 565        /* Copy the set of subsystem state objects generated in
 566         * find_existing_css_set() */
 567        memcpy(res->subsys, template, sizeof(res->subsys));
 568
 569        write_lock(&css_set_lock);
 570        /* Add reference counts and links from the new css_set. */
 571        list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
 572                struct cgroup *c = link->cgrp;
 573                if (c->root == cgrp->root)
 574                        c = cgrp;
 575                link_css_set(&tmp_cg_links, res, c);
 576        }
 577
 578        BUG_ON(!list_empty(&tmp_cg_links));
 579
 580        css_set_count++;
 581
 582        /* Add this cgroup group to the hash table */
 583        hhead = css_set_hash(res->subsys);
 584        hlist_add_head(&res->hlist, hhead);
 585
 586        write_unlock(&css_set_lock);
 587
 588        return res;
 589}
 590
 591/*
 592 * Return the cgroup for "task" from the given hierarchy. Must be
 593 * called with cgroup_mutex held.
 594 */
 595static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 596                                            struct cgroupfs_root *root)
 597{
 598        struct css_set *css;
 599        struct cgroup *res = NULL;
 600
 601        BUG_ON(!mutex_is_locked(&cgroup_mutex));
 602        read_lock(&css_set_lock);
 603        /*
 604         * No need to lock the task - since we hold cgroup_mutex the
 605         * task can't change groups, so the only thing that can happen
 606         * is that it exits and its css is set back to init_css_set.
 607         */
 608        css = task->cgroups;
 609        if (css == &init_css_set) {
 610                res = &root->top_cgroup;
 611        } else {
 612                struct cg_cgroup_link *link;
 613                list_for_each_entry(link, &css->cg_links, cg_link_list) {
 614                        struct cgroup *c = link->cgrp;
 615                        if (c->root == root) {
 616                                res = c;
 617                                break;
 618                        }
 619                }
 620        }
 621        read_unlock(&css_set_lock);
 622        BUG_ON(!res);
 623        return res;
 624}
 625
 626/*
 627 * There is one global cgroup mutex. We also require taking
 628 * task_lock() when dereferencing a task's cgroup subsys pointers.
 629 * See "The task_lock() exception", at the end of this comment.
 630 *
 631 * A task must hold cgroup_mutex to modify cgroups.
 632 *
 633 * Any task can increment and decrement the count field without lock.
 634 * So in general, code holding cgroup_mutex can't rely on the count
 635 * field not changing.  However, if the count goes to zero, then only
 636 * cgroup_attach_task() can increment it again.  Because a count of zero
 637 * means that no tasks are currently attached, therefore there is no
 638 * way a task attached to that cgroup can fork (the other way to
 639 * increment the count).  So code holding cgroup_mutex can safely
 640 * assume that if the count is zero, it will stay zero. Similarly, if
 641 * a task holds cgroup_mutex on a cgroup with zero count, it
 642 * knows that the cgroup won't be removed, as cgroup_rmdir()
 643 * needs that mutex.
 644 *
 645 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 646 * (usually) take cgroup_mutex.  These are the two most performance
 647 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 648 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 649 * is taken, and if the cgroup count is zero, a usermode call made
 650 * to the release agent with the name of the cgroup (path relative to
 651 * the root of cgroup file system) as the argument.
 652 *
 653 * A cgroup can only be deleted if both its 'count' of using tasks
 654 * is zero, and its list of 'children' cgroups is empty.  Since all
 655 * tasks in the system use _some_ cgroup, and since there is always at
 656 * least one task in the system (init, pid == 1), therefore, top_cgroup
 657 * always has either children cgroups and/or using tasks.  So we don't
 658 * need a special hack to ensure that top_cgroup cannot be deleted.
 659 *
 660 *      The task_lock() exception
 661 *
 662 * The need for this exception arises from the action of
 663 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 664 * another.  It does so using cgroup_mutex, however there are
 665 * several performance critical places that need to reference
 666 * task->cgroup without the expense of grabbing a system global
 667 * mutex.  Therefore except as noted below, when dereferencing or, as
 668 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
 669 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 670 * the task_struct routinely used for such matters.
 671 *
 672 * P.S.  One more locking exception.  RCU is used to guard the
 673 * update of a tasks cgroup pointer by cgroup_attach_task()
 674 */
 675
 676/**
 677 * cgroup_lock - lock out any changes to cgroup structures
 678 *
 679 */
 680void cgroup_lock(void)
 681{
 682        mutex_lock(&cgroup_mutex);
 683}
 684
 685/**
 686 * cgroup_unlock - release lock on cgroup changes
 687 *
 688 * Undo the lock taken in a previous cgroup_lock() call.
 689 */
 690void cgroup_unlock(void)
 691{
 692        mutex_unlock(&cgroup_mutex);
 693}
 694
 695/*
 696 * A couple of forward declarations required, due to cyclic reference loop:
 697 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 698 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 699 * -> cgroup_mkdir.
 700 */
 701
 702static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
 703static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 704static int cgroup_populate_dir(struct cgroup *cgrp);
 705static const struct inode_operations cgroup_dir_inode_operations;
 706static const struct file_operations proc_cgroupstats_operations;
 707
 708static struct backing_dev_info cgroup_backing_dev_info = {
 709        .name           = "cgroup",
 710        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
 711};
 712
 713static int alloc_css_id(struct cgroup_subsys *ss,
 714                        struct cgroup *parent, struct cgroup *child);
 715
 716static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
 717{
 718        struct inode *inode = new_inode(sb);
 719
 720        if (inode) {
 721                inode->i_mode = mode;
 722                inode->i_uid = current_fsuid();
 723                inode->i_gid = current_fsgid();
 724                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 725                inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 726        }
 727        return inode;
 728}
 729
 730/*
 731 * Call subsys's pre_destroy handler.
 732 * This is called before css refcnt check.
 733 */
 734static int cgroup_call_pre_destroy(struct cgroup *cgrp)
 735{
 736        struct cgroup_subsys *ss;
 737        int ret = 0;
 738
 739        for_each_subsys(cgrp->root, ss)
 740                if (ss->pre_destroy) {
 741                        ret = ss->pre_destroy(ss, cgrp);
 742                        if (ret)
 743                                break;
 744                }
 745        return ret;
 746}
 747
 748static void free_cgroup_rcu(struct rcu_head *obj)
 749{
 750        struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
 751
 752        kfree(cgrp);
 753}
 754
 755static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 756{
 757        /* is dentry a directory ? if so, kfree() associated cgroup */
 758        if (S_ISDIR(inode->i_mode)) {
 759                struct cgroup *cgrp = dentry->d_fsdata;
 760                struct cgroup_subsys *ss;
 761                BUG_ON(!(cgroup_is_removed(cgrp)));
 762                /* It's possible for external users to be holding css
 763                 * reference counts on a cgroup; css_put() needs to
 764                 * be able to access the cgroup after decrementing
 765                 * the reference count in order to know if it needs to
 766                 * queue the cgroup to be handled by the release
 767                 * agent */
 768                synchronize_rcu();
 769
 770                mutex_lock(&cgroup_mutex);
 771                /*
 772                 * Release the subsystem state objects.
 773                 */
 774                for_each_subsys(cgrp->root, ss)
 775                        ss->destroy(ss, cgrp);
 776
 777                cgrp->root->number_of_cgroups--;
 778                mutex_unlock(&cgroup_mutex);
 779
 780                /*
 781                 * Drop the active superblock reference that we took when we
 782                 * created the cgroup
 783                 */
 784                deactivate_super(cgrp->root->sb);
 785
 786                /*
 787                 * if we're getting rid of the cgroup, refcount should ensure
 788                 * that there are no pidlists left.
 789                 */
 790                BUG_ON(!list_empty(&cgrp->pidlists));
 791
 792                call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
 793        }
 794        iput(inode);
 795}
 796
 797static void remove_dir(struct dentry *d)
 798{
 799        struct dentry *parent = dget(d->d_parent);
 800
 801        d_delete(d);
 802        simple_rmdir(parent->d_inode, d);
 803        dput(parent);
 804}
 805
 806static void cgroup_clear_directory(struct dentry *dentry)
 807{
 808        struct list_head *node;
 809
 810        BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
 811        spin_lock(&dcache_lock);
 812        node = dentry->d_subdirs.next;
 813        while (node != &dentry->d_subdirs) {
 814                struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
 815                list_del_init(node);
 816                if (d->d_inode) {
 817                        /* This should never be called on a cgroup
 818                         * directory with child cgroups */
 819                        BUG_ON(d->d_inode->i_mode & S_IFDIR);
 820                        d = dget_locked(d);
 821                        spin_unlock(&dcache_lock);
 822                        d_delete(d);
 823                        simple_unlink(dentry->d_inode, d);
 824                        dput(d);
 825                        spin_lock(&dcache_lock);
 826                }
 827                node = dentry->d_subdirs.next;
 828        }
 829        spin_unlock(&dcache_lock);
 830}
 831
 832/*
 833 * NOTE : the dentry must have been dget()'ed
 834 */
 835static void cgroup_d_remove_dir(struct dentry *dentry)
 836{
 837        cgroup_clear_directory(dentry);
 838
 839        spin_lock(&dcache_lock);
 840        list_del_init(&dentry->d_u.d_child);
 841        spin_unlock(&dcache_lock);
 842        remove_dir(dentry);
 843}
 844
 845/*
 846 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 847 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 848 * reference to css->refcnt. In general, this refcnt is expected to goes down
 849 * to zero, soon.
 850 *
 851 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
 852 */
 853DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
 854
 855static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
 856{
 857        if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
 858                wake_up_all(&cgroup_rmdir_waitq);
 859}
 860
 861void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
 862{
 863        css_get(css);
 864}
 865
 866void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
 867{
 868        cgroup_wakeup_rmdir_waiter(css->cgroup);
 869        css_put(css);
 870}
 871
 872
 873static int rebind_subsystems(struct cgroupfs_root *root,
 874                              unsigned long final_bits)
 875{
 876        unsigned long added_bits, removed_bits;
 877        struct cgroup *cgrp = &root->top_cgroup;
 878        int i;
 879
 880        removed_bits = root->actual_subsys_bits & ~final_bits;
 881        added_bits = final_bits & ~root->actual_subsys_bits;
 882        /* Check that any added subsystems are currently free */
 883        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 884                unsigned long bit = 1UL << i;
 885                struct cgroup_subsys *ss = subsys[i];
 886                if (!(bit & added_bits))
 887                        continue;
 888                if (ss->root != &rootnode) {
 889                        /* Subsystem isn't free */
 890                        return -EBUSY;
 891                }
 892        }
 893
 894        /* Currently we don't handle adding/removing subsystems when
 895         * any child cgroups exist. This is theoretically supportable
 896         * but involves complex error handling, so it's being left until
 897         * later */
 898        if (root->number_of_cgroups > 1)
 899                return -EBUSY;
 900
 901        /* Process each subsystem */
 902        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 903                struct cgroup_subsys *ss = subsys[i];
 904                unsigned long bit = 1UL << i;
 905                if (bit & added_bits) {
 906                        /* We're binding this subsystem to this hierarchy */
 907                        BUG_ON(cgrp->subsys[i]);
 908                        BUG_ON(!dummytop->subsys[i]);
 909                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
 910                        mutex_lock(&ss->hierarchy_mutex);
 911                        cgrp->subsys[i] = dummytop->subsys[i];
 912                        cgrp->subsys[i]->cgroup = cgrp;
 913                        list_move(&ss->sibling, &root->subsys_list);
 914                        ss->root = root;
 915                        if (ss->bind)
 916                                ss->bind(ss, cgrp);
 917                        mutex_unlock(&ss->hierarchy_mutex);
 918                } else if (bit & removed_bits) {
 919                        /* We're removing this subsystem */
 920                        BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
 921                        BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
 922                        mutex_lock(&ss->hierarchy_mutex);
 923                        if (ss->bind)
 924                                ss->bind(ss, dummytop);
 925                        dummytop->subsys[i]->cgroup = dummytop;
 926                        cgrp->subsys[i] = NULL;
 927                        subsys[i]->root = &rootnode;
 928                        list_move(&ss->sibling, &rootnode.subsys_list);
 929                        mutex_unlock(&ss->hierarchy_mutex);
 930                } else if (bit & final_bits) {
 931                        /* Subsystem state should already exist */
 932                        BUG_ON(!cgrp->subsys[i]);
 933                } else {
 934                        /* Subsystem state shouldn't exist */
 935                        BUG_ON(cgrp->subsys[i]);
 936                }
 937        }
 938        root->subsys_bits = root->actual_subsys_bits = final_bits;
 939        synchronize_rcu();
 940
 941        return 0;
 942}
 943
 944static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
 945{
 946        struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
 947        struct cgroup_subsys *ss;
 948
 949        mutex_lock(&cgroup_mutex);
 950        for_each_subsys(root, ss)
 951                seq_printf(seq, ",%s", ss->name);
 952        if (test_bit(ROOT_NOPREFIX, &root->flags))
 953                seq_puts(seq, ",noprefix");
 954        if (strlen(root->release_agent_path))
 955                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
 956        if (strlen(root->name))
 957                seq_printf(seq, ",name=%s", root->name);
 958        mutex_unlock(&cgroup_mutex);
 959        return 0;
 960}
 961
 962struct cgroup_sb_opts {
 963        unsigned long subsys_bits;
 964        unsigned long flags;
 965        char *release_agent;
 966        char *name;
 967        /* User explicitly requested empty subsystem */
 968        bool none;
 969
 970        struct cgroupfs_root *new_root;
 971
 972};
 973
 974/* Convert a hierarchy specifier into a bitmask of subsystems and
 975 * flags. */
 976static int parse_cgroupfs_options(char *data,
 977                                     struct cgroup_sb_opts *opts)
 978{
 979        char *token, *o = data ?: "all";
 980        unsigned long mask = (unsigned long)-1;
 981
 982#ifdef CONFIG_CPUSETS
 983        mask = ~(1UL << cpuset_subsys_id);
 984#endif
 985
 986        memset(opts, 0, sizeof(*opts));
 987
 988        while ((token = strsep(&o, ",")) != NULL) {
 989                if (!*token)
 990                        return -EINVAL;
 991                if (!strcmp(token, "all")) {
 992                        /* Add all non-disabled subsystems */
 993                        int i;
 994                        opts->subsys_bits = 0;
 995                        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 996                                struct cgroup_subsys *ss = subsys[i];
 997                                if (!ss->disabled)
 998                                        opts->subsys_bits |= 1ul << i;
 999                        }
1000                } else if (!strcmp(token, "none")) {
1001                        /* Explicitly have no subsystems */
1002                        opts->none = true;
1003                } else if (!strcmp(token, "noprefix")) {
1004                        set_bit(ROOT_NOPREFIX, &opts->flags);
1005                } else if (!strncmp(token, "release_agent=", 14)) {
1006                        /* Specifying two release agents is forbidden */
1007                        if (opts->release_agent)
1008                                return -EINVAL;
1009                        opts->release_agent =
1010                                kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1011                        if (!opts->release_agent)
1012                                return -ENOMEM;
1013                } else if (!strncmp(token, "name=", 5)) {
1014                        int i;
1015                        const char *name = token + 5;
1016                        /* Can't specify an empty name */
1017                        if (!strlen(name))
1018                                return -EINVAL;
1019                        /* Must match [\w.-]+ */
1020                        for (i = 0; i < strlen(name); i++) {
1021                                char c = name[i];
1022                                if (isalnum(c))
1023                                        continue;
1024                                if ((c == '.') || (c == '-') || (c == '_'))
1025                                        continue;
1026                                return -EINVAL;
1027                        }
1028                        /* Specifying two names is forbidden */
1029                        if (opts->name)
1030                                return -EINVAL;
1031                        opts->name = kstrndup(name,
1032                                              MAX_CGROUP_ROOT_NAMELEN,
1033                                              GFP_KERNEL);
1034                        if (!opts->name)
1035                                return -ENOMEM;
1036                } else {
1037                        struct cgroup_subsys *ss;
1038                        int i;
1039                        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1040                                ss = subsys[i];
1041                                if (!strcmp(token, ss->name)) {
1042                                        if (!ss->disabled)
1043                                                set_bit(i, &opts->subsys_bits);
1044                                        break;
1045                                }
1046                        }
1047                        if (i == CGROUP_SUBSYS_COUNT)
1048                                return -ENOENT;
1049                }
1050        }
1051
1052        /* Consistency checks */
1053
1054        /*
1055         * Option noprefix was introduced just for backward compatibility
1056         * with the old cpuset, so we allow noprefix only if mounting just
1057         * the cpuset subsystem.
1058         */
1059        if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1060            (opts->subsys_bits & mask))
1061                return -EINVAL;
1062
1063
1064        /* Can't specify "none" and some subsystems */
1065        if (opts->subsys_bits && opts->none)
1066                return -EINVAL;
1067
1068        /*
1069         * We either have to specify by name or by subsystems. (So all
1070         * empty hierarchies must have a name).
1071         */
1072        if (!opts->subsys_bits && !opts->name)
1073                return -EINVAL;
1074
1075        return 0;
1076}
1077
1078static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1079{
1080        int ret = 0;
1081        struct cgroupfs_root *root = sb->s_fs_info;
1082        struct cgroup *cgrp = &root->top_cgroup;
1083        struct cgroup_sb_opts opts;
1084
1085        lock_kernel();
1086        mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1087        mutex_lock(&cgroup_mutex);
1088
1089        /* See what subsystems are wanted */
1090        ret = parse_cgroupfs_options(data, &opts);
1091        if (ret)
1092                goto out_unlock;
1093
1094        /* Don't allow flags to change at remount */
1095        if (opts.flags != root->flags) {
1096                ret = -EINVAL;
1097                goto out_unlock;
1098        }
1099
1100        /* Don't allow name to change at remount */
1101        if (opts.name && strcmp(opts.name, root->name)) {
1102                ret = -EINVAL;
1103                goto out_unlock;
1104        }
1105
1106        ret = rebind_subsystems(root, opts.subsys_bits);
1107        if (ret)
1108                goto out_unlock;
1109
1110        /* (re)populate subsystem files */
1111        cgroup_populate_dir(cgrp);
1112
1113        if (opts.release_agent)
1114                strcpy(root->release_agent_path, opts.release_agent);
1115 out_unlock:
1116        kfree(opts.release_agent);
1117        kfree(opts.name);
1118        mutex_unlock(&cgroup_mutex);
1119        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1120        unlock_kernel();
1121        return ret;
1122}
1123
1124static const struct super_operations cgroup_ops = {
1125        .statfs = simple_statfs,
1126        .drop_inode = generic_delete_inode,
1127        .show_options = cgroup_show_options,
1128        .remount_fs = cgroup_remount,
1129};
1130
1131static void init_cgroup_housekeeping(struct cgroup *cgrp)
1132{
1133        INIT_LIST_HEAD(&cgrp->sibling);
1134        INIT_LIST_HEAD(&cgrp->children);
1135        INIT_LIST_HEAD(&cgrp->css_sets);
1136        INIT_LIST_HEAD(&cgrp->release_list);
1137        INIT_LIST_HEAD(&cgrp->pidlists);
1138        mutex_init(&cgrp->pidlist_mutex);
1139}
1140
1141static void init_cgroup_root(struct cgroupfs_root *root)
1142{
1143        struct cgroup *cgrp = &root->top_cgroup;
1144        INIT_LIST_HEAD(&root->subsys_list);
1145        INIT_LIST_HEAD(&root->root_list);
1146        root->number_of_cgroups = 1;
1147        cgrp->root = root;
1148        cgrp->top_cgroup = cgrp;
1149        init_cgroup_housekeeping(cgrp);
1150}
1151
1152static bool init_root_id(struct cgroupfs_root *root)
1153{
1154        int ret = 0;
1155
1156        do {
1157                if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1158                        return false;
1159                spin_lock(&hierarchy_id_lock);
1160                /* Try to allocate the next unused ID */
1161                ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1162                                        &root->hierarchy_id);
1163                if (ret == -ENOSPC)
1164                        /* Try again starting from 0 */
1165                        ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1166                if (!ret) {
1167                        next_hierarchy_id = root->hierarchy_id + 1;
1168                } else if (ret != -EAGAIN) {
1169                        /* Can only get here if the 31-bit IDR is full ... */
1170                        BUG_ON(ret);
1171                }
1172                spin_unlock(&hierarchy_id_lock);
1173        } while (ret);
1174        return true;
1175}
1176
1177static int cgroup_test_super(struct super_block *sb, void *data)
1178{
1179        struct cgroup_sb_opts *opts = data;
1180        struct cgroupfs_root *root = sb->s_fs_info;
1181
1182        /* If we asked for a name then it must match */
1183        if (opts->name && strcmp(opts->name, root->name))
1184                return 0;
1185
1186        /*
1187         * If we asked for subsystems (or explicitly for no
1188         * subsystems) then they must match
1189         */
1190        if ((opts->subsys_bits || opts->none)
1191            && (opts->subsys_bits != root->subsys_bits))
1192                return 0;
1193
1194        return 1;
1195}
1196
1197static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1198{
1199        struct cgroupfs_root *root;
1200
1201        if (!opts->subsys_bits && !opts->none)
1202                return NULL;
1203
1204        root = kzalloc(sizeof(*root), GFP_KERNEL);
1205        if (!root)
1206                return ERR_PTR(-ENOMEM);
1207
1208        if (!init_root_id(root)) {
1209                kfree(root);
1210                return ERR_PTR(-ENOMEM);
1211        }
1212        init_cgroup_root(root);
1213
1214        root->subsys_bits = opts->subsys_bits;
1215        root->flags = opts->flags;
1216        if (opts->release_agent)
1217                strcpy(root->release_agent_path, opts->release_agent);
1218        if (opts->name)
1219                strcpy(root->name, opts->name);
1220        return root;
1221}
1222
1223static void cgroup_drop_root(struct cgroupfs_root *root)
1224{
1225        if (!root)
1226                return;
1227
1228        BUG_ON(!root->hierarchy_id);
1229        spin_lock(&hierarchy_id_lock);
1230        ida_remove(&hierarchy_ida, root->hierarchy_id);
1231        spin_unlock(&hierarchy_id_lock);
1232        kfree(root);
1233}
1234
1235static int cgroup_set_super(struct super_block *sb, void *data)
1236{
1237        int ret;
1238        struct cgroup_sb_opts *opts = data;
1239
1240        /* If we don't have a new root, we can't set up a new sb */
1241        if (!opts->new_root)
1242                return -EINVAL;
1243
1244        BUG_ON(!opts->subsys_bits && !opts->none);
1245
1246        ret = set_anon_super(sb, NULL);
1247        if (ret)
1248                return ret;
1249
1250        sb->s_fs_info = opts->new_root;
1251        opts->new_root->sb = sb;
1252
1253        sb->s_blocksize = PAGE_CACHE_SIZE;
1254        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1255        sb->s_magic = CGROUP_SUPER_MAGIC;
1256        sb->s_op = &cgroup_ops;
1257
1258        return 0;
1259}
1260
1261static int cgroup_get_rootdir(struct super_block *sb)
1262{
1263        struct inode *inode =
1264                cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1265        struct dentry *dentry;
1266
1267        if (!inode)
1268                return -ENOMEM;
1269
1270        inode->i_fop = &simple_dir_operations;
1271        inode->i_op = &cgroup_dir_inode_operations;
1272        /* directories start off with i_nlink == 2 (for "." entry) */
1273        inc_nlink(inode);
1274        dentry = d_alloc_root(inode);
1275        if (!dentry) {
1276                iput(inode);
1277                return -ENOMEM;
1278        }
1279        sb->s_root = dentry;
1280        return 0;
1281}
1282
1283static int cgroup_get_sb(struct file_system_type *fs_type,
1284                         int flags, const char *unused_dev_name,
1285                         void *data, struct vfsmount *mnt)
1286{
1287        struct cgroup_sb_opts opts;
1288        struct cgroupfs_root *root;
1289        int ret = 0;
1290        struct super_block *sb;
1291        struct cgroupfs_root *new_root;
1292
1293        /* First find the desired set of subsystems */
1294        ret = parse_cgroupfs_options(data, &opts);
1295        if (ret)
1296                goto out_err;
1297
1298        /*
1299         * Allocate a new cgroup root. We may not need it if we're
1300         * reusing an existing hierarchy.
1301         */
1302        new_root = cgroup_root_from_opts(&opts);
1303        if (IS_ERR(new_root)) {
1304                ret = PTR_ERR(new_root);
1305                goto out_err;
1306        }
1307        opts.new_root = new_root;
1308
1309        /* Locate an existing or new sb for this hierarchy */
1310        sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1311        if (IS_ERR(sb)) {
1312                ret = PTR_ERR(sb);
1313                cgroup_drop_root(opts.new_root);
1314                goto out_err;
1315        }
1316
1317        root = sb->s_fs_info;
1318        BUG_ON(!root);
1319        if (root == opts.new_root) {
1320                /* We used the new root structure, so this is a new hierarchy */
1321                struct list_head tmp_cg_links;
1322                struct cgroup *root_cgrp = &root->top_cgroup;
1323                struct inode *inode;
1324                struct cgroupfs_root *existing_root;
1325                int i;
1326
1327                BUG_ON(sb->s_root != NULL);
1328
1329                ret = cgroup_get_rootdir(sb);
1330                if (ret)
1331                        goto drop_new_super;
1332                inode = sb->s_root->d_inode;
1333
1334                mutex_lock(&inode->i_mutex);
1335                mutex_lock(&cgroup_mutex);
1336
1337                if (strlen(root->name)) {
1338                        /* Check for name clashes with existing mounts */
1339                        for_each_active_root(existing_root) {
1340                                if (!strcmp(existing_root->name, root->name)) {
1341                                        ret = -EBUSY;
1342                                        mutex_unlock(&cgroup_mutex);
1343                                        mutex_unlock(&inode->i_mutex);
1344                                        goto drop_new_super;
1345                                }
1346                        }
1347                }
1348
1349                /*
1350                 * We're accessing css_set_count without locking
1351                 * css_set_lock here, but that's OK - it can only be
1352                 * increased by someone holding cgroup_lock, and
1353                 * that's us. The worst that can happen is that we
1354                 * have some link structures left over
1355                 */
1356                ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1357                if (ret) {
1358                        mutex_unlock(&cgroup_mutex);
1359                        mutex_unlock(&inode->i_mutex);
1360                        goto drop_new_super;
1361                }
1362
1363                ret = rebind_subsystems(root, root->subsys_bits);
1364                if (ret == -EBUSY) {
1365                        mutex_unlock(&cgroup_mutex);
1366                        mutex_unlock(&inode->i_mutex);
1367                        free_cg_links(&tmp_cg_links);
1368                        goto drop_new_super;
1369                }
1370
1371                /* EBUSY should be the only error here */
1372                BUG_ON(ret);
1373
1374                list_add(&root->root_list, &roots);
1375                root_count++;
1376
1377                sb->s_root->d_fsdata = root_cgrp;
1378                root->top_cgroup.dentry = sb->s_root;
1379
1380                /* Link the top cgroup in this hierarchy into all
1381                 * the css_set objects */
1382                write_lock(&css_set_lock);
1383                for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1384                        struct hlist_head *hhead = &css_set_table[i];
1385                        struct hlist_node *node;
1386                        struct css_set *cg;
1387
1388                        hlist_for_each_entry(cg, node, hhead, hlist)
1389                                link_css_set(&tmp_cg_links, cg, root_cgrp);
1390                }
1391                write_unlock(&css_set_lock);
1392
1393                free_cg_links(&tmp_cg_links);
1394
1395                BUG_ON(!list_empty(&root_cgrp->sibling));
1396                BUG_ON(!list_empty(&root_cgrp->children));
1397                BUG_ON(root->number_of_cgroups != 1);
1398
1399                cgroup_populate_dir(root_cgrp);
1400                mutex_unlock(&cgroup_mutex);
1401                mutex_unlock(&inode->i_mutex);
1402        } else {
1403                /*
1404                 * We re-used an existing hierarchy - the new root (if
1405                 * any) is not needed
1406                 */
1407                cgroup_drop_root(opts.new_root);
1408        }
1409
1410        simple_set_mnt(mnt, sb);
1411        kfree(opts.release_agent);
1412        kfree(opts.name);
1413        return 0;
1414
1415 drop_new_super:
1416        deactivate_locked_super(sb);
1417 out_err:
1418        kfree(opts.release_agent);
1419        kfree(opts.name);
1420
1421        return ret;
1422}
1423
1424static void cgroup_kill_sb(struct super_block *sb) {
1425        struct cgroupfs_root *root = sb->s_fs_info;
1426        struct cgroup *cgrp = &root->top_cgroup;
1427        int ret;
1428        struct cg_cgroup_link *link;
1429        struct cg_cgroup_link *saved_link;
1430
1431        BUG_ON(!root);
1432
1433        BUG_ON(root->number_of_cgroups != 1);
1434        BUG_ON(!list_empty(&cgrp->children));
1435        BUG_ON(!list_empty(&cgrp->sibling));
1436
1437        mutex_lock(&cgroup_mutex);
1438
1439        /* Rebind all subsystems back to the default hierarchy */
1440        ret = rebind_subsystems(root, 0);
1441        /* Shouldn't be able to fail ... */
1442        BUG_ON(ret);
1443
1444        /*
1445         * Release all the links from css_sets to this hierarchy's
1446         * root cgroup
1447         */
1448        write_lock(&css_set_lock);
1449
1450        list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1451                                 cgrp_link_list) {
1452                list_del(&link->cg_link_list);
1453                list_del(&link->cgrp_link_list);
1454                kfree(link);
1455        }
1456        write_unlock(&css_set_lock);
1457
1458        if (!list_empty(&root->root_list)) {
1459                list_del(&root->root_list);
1460                root_count--;
1461        }
1462
1463        mutex_unlock(&cgroup_mutex);
1464
1465        kill_litter_super(sb);
1466        cgroup_drop_root(root);
1467}
1468
1469static struct file_system_type cgroup_fs_type = {
1470        .name = "cgroup",
1471        .get_sb = cgroup_get_sb,
1472        .kill_sb = cgroup_kill_sb,
1473};
1474
1475static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1476{
1477        return dentry->d_fsdata;
1478}
1479
1480static inline struct cftype *__d_cft(struct dentry *dentry)
1481{
1482        return dentry->d_fsdata;
1483}
1484
1485/**
1486 * cgroup_path - generate the path of a cgroup
1487 * @cgrp: the cgroup in question
1488 * @buf: the buffer to write the path into
1489 * @buflen: the length of the buffer
1490 *
1491 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1492 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1493 * -errno on error.
1494 */
1495int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1496{
1497        char *start;
1498        struct dentry *dentry = rcu_dereference(cgrp->dentry);
1499
1500        if (!dentry || cgrp == dummytop) {
1501                /*
1502                 * Inactive subsystems have no dentry for their root
1503                 * cgroup
1504                 */
1505                strcpy(buf, "/");
1506                return 0;
1507        }
1508
1509        start = buf + buflen;
1510
1511        *--start = '\0';
1512        for (;;) {
1513                int len = dentry->d_name.len;
1514                if ((start -= len) < buf)
1515                        return -ENAMETOOLONG;
1516                memcpy(start, cgrp->dentry->d_name.name, len);
1517                cgrp = cgrp->parent;
1518                if (!cgrp)
1519                        break;
1520                dentry = rcu_dereference(cgrp->dentry);
1521                if (!cgrp->parent)
1522                        continue;
1523                if (--start < buf)
1524                        return -ENAMETOOLONG;
1525                *start = '/';
1526        }
1527        memmove(buf, start, buf + buflen - start);
1528        return 0;
1529}
1530
1531/**
1532 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1533 * @cgrp: the cgroup the task is attaching to
1534 * @tsk: the task to be attached
1535 *
1536 * Call holding cgroup_mutex. May take task_lock of
1537 * the task 'tsk' during call.
1538 */
1539int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1540{
1541        int retval = 0;
1542        struct cgroup_subsys *ss;
1543        struct cgroup *oldcgrp;
1544        struct css_set *cg;
1545        struct css_set *newcg;
1546        struct cgroupfs_root *root = cgrp->root;
1547
1548        /* Nothing to do if the task is already in that cgroup */
1549        oldcgrp = task_cgroup_from_root(tsk, root);
1550        if (cgrp == oldcgrp)
1551                return 0;
1552
1553        for_each_subsys(root, ss) {
1554                if (ss->can_attach) {
1555                        retval = ss->can_attach(ss, cgrp, tsk, false);
1556                        if (retval)
1557                                return retval;
1558                }
1559        }
1560
1561        task_lock(tsk);
1562        cg = tsk->cgroups;
1563        get_css_set(cg);
1564        task_unlock(tsk);
1565        /*
1566         * Locate or allocate a new css_set for this task,
1567         * based on its final set of cgroups
1568         */
1569        newcg = find_css_set(cg, cgrp);
1570        put_css_set(cg);
1571        if (!newcg)
1572                return -ENOMEM;
1573
1574        task_lock(tsk);
1575        if (tsk->flags & PF_EXITING) {
1576                task_unlock(tsk);
1577                put_css_set(newcg);
1578                return -ESRCH;
1579        }
1580        rcu_assign_pointer(tsk->cgroups, newcg);
1581        task_unlock(tsk);
1582
1583        /* Update the css_set linked lists if we're using them */
1584        write_lock(&css_set_lock);
1585        if (!list_empty(&tsk->cg_list)) {
1586                list_del(&tsk->cg_list);
1587                list_add(&tsk->cg_list, &newcg->tasks);
1588        }
1589        write_unlock(&css_set_lock);
1590
1591        for_each_subsys(root, ss) {
1592                if (ss->attach)
1593                        ss->attach(ss, cgrp, oldcgrp, tsk, false);
1594        }
1595        set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1596        synchronize_rcu();
1597        put_css_set(cg);
1598
1599        /*
1600         * wake up rmdir() waiter. the rmdir should fail since the cgroup
1601         * is no longer empty.
1602         */
1603        cgroup_wakeup_rmdir_waiter(cgrp);
1604        return 0;
1605}
1606
1607/*
1608 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1609 * held. May take task_lock of task
1610 */
1611static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1612{
1613        struct task_struct *tsk;
1614        const struct cred *cred = current_cred(), *tcred;
1615        int ret;
1616
1617        if (pid) {
1618                rcu_read_lock();
1619                tsk = find_task_by_vpid(pid);
1620                if (!tsk || tsk->flags & PF_EXITING) {
1621                        rcu_read_unlock();
1622                        return -ESRCH;
1623                }
1624
1625                tcred = __task_cred(tsk);
1626                if (cred->euid &&
1627                    cred->euid != tcred->uid &&
1628                    cred->euid != tcred->suid) {
1629                        rcu_read_unlock();
1630                        return -EACCES;
1631                }
1632                get_task_struct(tsk);
1633                rcu_read_unlock();
1634        } else {
1635                tsk = current;
1636                get_task_struct(tsk);
1637        }
1638
1639        ret = cgroup_attach_task(cgrp, tsk);
1640        put_task_struct(tsk);
1641        return ret;
1642}
1643
1644static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1645{
1646        int ret;
1647        if (!cgroup_lock_live_group(cgrp))
1648                return -ENODEV;
1649        ret = attach_task_by_pid(cgrp, pid);
1650        cgroup_unlock();
1651        return ret;
1652}
1653
1654/**
1655 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1656 * @cgrp: the cgroup to be checked for liveness
1657 *
1658 * On success, returns true; the lock should be later released with
1659 * cgroup_unlock(). On failure returns false with no lock held.
1660 */
1661bool cgroup_lock_live_group(struct cgroup *cgrp)
1662{
1663        mutex_lock(&cgroup_mutex);
1664        if (cgroup_is_removed(cgrp)) {
1665                mutex_unlock(&cgroup_mutex);
1666                return false;
1667        }
1668        return true;
1669}
1670
1671static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1672                                      const char *buffer)
1673{
1674        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1675        if (!cgroup_lock_live_group(cgrp))
1676                return -ENODEV;
1677        strcpy(cgrp->root->release_agent_path, buffer);
1678        cgroup_unlock();
1679        return 0;
1680}
1681
1682static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1683                                     struct seq_file *seq)
1684{
1685        if (!cgroup_lock_live_group(cgrp))
1686                return -ENODEV;
1687        seq_puts(seq, cgrp->root->release_agent_path);
1688        seq_putc(seq, '\n');
1689        cgroup_unlock();
1690        return 0;
1691}
1692
1693/* A buffer size big enough for numbers or short strings */
1694#define CGROUP_LOCAL_BUFFER_SIZE 64
1695
1696static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1697                                struct file *file,
1698                                const char __user *userbuf,
1699                                size_t nbytes, loff_t *unused_ppos)
1700{
1701        char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1702        int retval = 0;
1703        char *end;
1704
1705        if (!nbytes)
1706                return -EINVAL;
1707        if (nbytes >= sizeof(buffer))
1708                return -E2BIG;
1709        if (copy_from_user(buffer, userbuf, nbytes))
1710                return -EFAULT;
1711
1712        buffer[nbytes] = 0;     /* nul-terminate */
1713        if (cft->write_u64) {
1714                u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1715                if (*end)
1716                        return -EINVAL;
1717                retval = cft->write_u64(cgrp, cft, val);
1718        } else {
1719                s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1720                if (*end)
1721                        return -EINVAL;
1722                retval = cft->write_s64(cgrp, cft, val);
1723        }
1724        if (!retval)
1725                retval = nbytes;
1726        return retval;
1727}
1728
1729static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1730                                   struct file *file,
1731                                   const char __user *userbuf,
1732                                   size_t nbytes, loff_t *unused_ppos)
1733{
1734        char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1735        int retval = 0;
1736        size_t max_bytes = cft->max_write_len;
1737        char *buffer = local_buffer;
1738
1739        if (!max_bytes)
1740                max_bytes = sizeof(local_buffer) - 1;
1741        if (nbytes >= max_bytes)
1742                return -E2BIG;
1743        /* Allocate a dynamic buffer if we need one */
1744        if (nbytes >= sizeof(local_buffer)) {
1745                buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1746                if (buffer == NULL)
1747                        return -ENOMEM;
1748        }
1749        if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1750                retval = -EFAULT;
1751                goto out;
1752        }
1753
1754        buffer[nbytes] = 0;     /* nul-terminate */
1755        retval = cft->write_string(cgrp, cft, strstrip(buffer));
1756        if (!retval)
1757                retval = nbytes;
1758out:
1759        if (buffer != local_buffer)
1760                kfree(buffer);
1761        return retval;
1762}
1763
1764static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1765                                                size_t nbytes, loff_t *ppos)
1766{
1767        struct cftype *cft = __d_cft(file->f_dentry);
1768        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1769
1770        if (cgroup_is_removed(cgrp))
1771                return -ENODEV;
1772        if (cft->write)
1773                return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1774        if (cft->write_u64 || cft->write_s64)
1775                return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1776        if (cft->write_string)
1777                return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1778        if (cft->trigger) {
1779                int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1780                return ret ? ret : nbytes;
1781        }
1782        return -EINVAL;
1783}
1784
1785static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1786                               struct file *file,
1787                               char __user *buf, size_t nbytes,
1788                               loff_t *ppos)
1789{
1790        char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1791        u64 val = cft->read_u64(cgrp, cft);
1792        int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1793
1794        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1795}
1796
1797static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1798                               struct file *file,
1799                               char __user *buf, size_t nbytes,
1800                               loff_t *ppos)
1801{
1802        char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1803        s64 val = cft->read_s64(cgrp, cft);
1804        int len = sprintf(tmp, "%lld\n", (long long) val);
1805
1806        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1807}
1808
1809static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1810                                   size_t nbytes, loff_t *ppos)
1811{
1812        struct cftype *cft = __d_cft(file->f_dentry);
1813        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1814
1815        if (cgroup_is_removed(cgrp))
1816                return -ENODEV;
1817
1818        if (cft->read)
1819                return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1820        if (cft->read_u64)
1821                return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1822        if (cft->read_s64)
1823                return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1824        return -EINVAL;
1825}
1826
1827/*
1828 * seqfile ops/methods for returning structured data. Currently just
1829 * supports string->u64 maps, but can be extended in future.
1830 */
1831
1832struct cgroup_seqfile_state {
1833        struct cftype *cft;
1834        struct cgroup *cgroup;
1835};
1836
1837static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1838{
1839        struct seq_file *sf = cb->state;
1840        return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1841}
1842
1843static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1844{
1845        struct cgroup_seqfile_state *state = m->private;
1846        struct cftype *cft = state->cft;
1847        if (cft->read_map) {
1848                struct cgroup_map_cb cb = {
1849                        .fill = cgroup_map_add,
1850                        .state = m,
1851                };
1852                return cft->read_map(state->cgroup, cft, &cb);
1853        }
1854        return cft->read_seq_string(state->cgroup, cft, m);
1855}
1856
1857static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1858{
1859        struct seq_file *seq = file->private_data;
1860        kfree(seq->private);
1861        return single_release(inode, file);
1862}
1863
1864static const struct file_operations cgroup_seqfile_operations = {
1865        .read = seq_read,
1866        .write = cgroup_file_write,
1867        .llseek = seq_lseek,
1868        .release = cgroup_seqfile_release,
1869};
1870
1871static int cgroup_file_open(struct inode *inode, struct file *file)
1872{
1873        int err;
1874        struct cftype *cft;
1875
1876        err = generic_file_open(inode, file);
1877        if (err)
1878                return err;
1879        cft = __d_cft(file->f_dentry);
1880
1881        if (cft->read_map || cft->read_seq_string) {
1882                struct cgroup_seqfile_state *state =
1883                        kzalloc(sizeof(*state), GFP_USER);
1884                if (!state)
1885                        return -ENOMEM;
1886                state->cft = cft;
1887                state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1888                file->f_op = &cgroup_seqfile_operations;
1889                err = single_open(file, cgroup_seqfile_show, state);
1890                if (err < 0)
1891                        kfree(state);
1892        } else if (cft->open)
1893                err = cft->open(inode, file);
1894        else
1895                err = 0;
1896
1897        return err;
1898}
1899
1900static int cgroup_file_release(struct inode *inode, struct file *file)
1901{
1902        struct cftype *cft = __d_cft(file->f_dentry);
1903        if (cft->release)
1904                return cft->release(inode, file);
1905        return 0;
1906}
1907
1908/*
1909 * cgroup_rename - Only allow simple rename of directories in place.
1910 */
1911static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1912                            struct inode *new_dir, struct dentry *new_dentry)
1913{
1914        if (!S_ISDIR(old_dentry->d_inode->i_mode))
1915                return -ENOTDIR;
1916        if (new_dentry->d_inode)
1917                return -EEXIST;
1918        if (old_dir != new_dir)
1919                return -EIO;
1920        return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1921}
1922
1923static const struct file_operations cgroup_file_operations = {
1924        .read = cgroup_file_read,
1925        .write = cgroup_file_write,
1926        .llseek = generic_file_llseek,
1927        .open = cgroup_file_open,
1928        .release = cgroup_file_release,
1929};
1930
1931static const struct inode_operations cgroup_dir_inode_operations = {
1932        .lookup = simple_lookup,
1933        .mkdir = cgroup_mkdir,
1934        .rmdir = cgroup_rmdir,
1935        .rename = cgroup_rename,
1936};
1937
1938static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1939                                struct super_block *sb)
1940{
1941        static const struct dentry_operations cgroup_dops = {
1942                .d_iput = cgroup_diput,
1943        };
1944
1945        struct inode *inode;
1946
1947        if (!dentry)
1948                return -ENOENT;
1949        if (dentry->d_inode)
1950                return -EEXIST;
1951
1952        inode = cgroup_new_inode(mode, sb);
1953        if (!inode)
1954                return -ENOMEM;
1955
1956        if (S_ISDIR(mode)) {
1957                inode->i_op = &cgroup_dir_inode_operations;
1958                inode->i_fop = &simple_dir_operations;
1959
1960                /* start off with i_nlink == 2 (for "." entry) */
1961                inc_nlink(inode);
1962
1963                /* start with the directory inode held, so that we can
1964                 * populate it without racing with another mkdir */
1965                mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1966        } else if (S_ISREG(mode)) {
1967                inode->i_size = 0;
1968                inode->i_fop = &cgroup_file_operations;
1969        }
1970        dentry->d_op = &cgroup_dops;
1971        d_instantiate(dentry, inode);
1972        dget(dentry);   /* Extra count - pin the dentry in core */
1973        return 0;
1974}
1975
1976/*
1977 * cgroup_create_dir - create a directory for an object.
1978 * @cgrp: the cgroup we create the directory for. It must have a valid
1979 *        ->parent field. And we are going to fill its ->dentry field.
1980 * @dentry: dentry of the new cgroup
1981 * @mode: mode to set on new directory.
1982 */
1983static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1984                                mode_t mode)
1985{
1986        struct dentry *parent;
1987        int error = 0;
1988
1989        parent = cgrp->parent->dentry;
1990        error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1991        if (!error) {
1992                dentry->d_fsdata = cgrp;
1993                inc_nlink(parent->d_inode);
1994                rcu_assign_pointer(cgrp->dentry, dentry);
1995                dget(dentry);
1996        }
1997        dput(dentry);
1998
1999        return error;
2000}
2001
2002/**
2003 * cgroup_file_mode - deduce file mode of a control file
2004 * @cft: the control file in question
2005 *
2006 * returns cft->mode if ->mode is not 0
2007 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2008 * returns S_IRUGO if it has only a read handler
2009 * returns S_IWUSR if it has only a write hander
2010 */
2011static mode_t cgroup_file_mode(const struct cftype *cft)
2012{
2013        mode_t mode = 0;
2014
2015        if (cft->mode)
2016                return cft->mode;
2017
2018        if (cft->read || cft->read_u64 || cft->read_s64 ||
2019            cft->read_map || cft->read_seq_string)
2020                mode |= S_IRUGO;
2021
2022        if (cft->write || cft->write_u64 || cft->write_s64 ||
2023            cft->write_string || cft->trigger)
2024                mode |= S_IWUSR;
2025
2026        return mode;
2027}
2028
2029int cgroup_add_file(struct cgroup *cgrp,
2030                       struct cgroup_subsys *subsys,
2031                       const struct cftype *cft)
2032{
2033        struct dentry *dir = cgrp->dentry;
2034        struct dentry *dentry;
2035        int error;
2036        mode_t mode;
2037
2038        char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2039        if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2040                strcpy(name, subsys->name);
2041                strcat(name, ".");
2042        }
2043        strcat(name, cft->name);
2044        BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2045        dentry = lookup_one_len(name, dir, strlen(name));
2046        if (!IS_ERR(dentry)) {
2047                mode = cgroup_file_mode(cft);
2048                error = cgroup_create_file(dentry, mode | S_IFREG,
2049                                                cgrp->root->sb);
2050                if (!error)
2051                        dentry->d_fsdata = (void *)cft;
2052                dput(dentry);
2053        } else
2054                error = PTR_ERR(dentry);
2055        return error;
2056}
2057
2058int cgroup_add_files(struct cgroup *cgrp,
2059                        struct cgroup_subsys *subsys,
2060                        const struct cftype cft[],
2061                        int count)
2062{
2063        int i, err;
2064        for (i = 0; i < count; i++) {
2065                err = cgroup_add_file(cgrp, subsys, &cft[i]);
2066                if (err)
2067                        return err;
2068        }
2069        return 0;
2070}
2071
2072/**
2073 * cgroup_task_count - count the number of tasks in a cgroup.
2074 * @cgrp: the cgroup in question
2075 *
2076 * Return the number of tasks in the cgroup.
2077 */
2078int cgroup_task_count(const struct cgroup *cgrp)
2079{
2080        int count = 0;
2081        struct cg_cgroup_link *link;
2082
2083        read_lock(&css_set_lock);
2084        list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2085                count += atomic_read(&link->cg->refcount);
2086        }
2087        read_unlock(&css_set_lock);
2088        return count;
2089}
2090
2091/*
2092 * Advance a list_head iterator.  The iterator should be positioned at
2093 * the start of a css_set
2094 */
2095static void cgroup_advance_iter(struct cgroup *cgrp,
2096                                struct cgroup_iter *it)
2097{
2098        struct list_head *l = it->cg_link;
2099        struct cg_cgroup_link *link;
2100        struct css_set *cg;
2101
2102        /* Advance to the next non-empty css_set */
2103        do {
2104                l = l->next;
2105                if (l == &cgrp->css_sets) {
2106                        it->cg_link = NULL;
2107                        return;
2108                }
2109                link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2110                cg = link->cg;
2111        } while (list_empty(&cg->tasks));
2112        it->cg_link = l;
2113        it->task = cg->tasks.next;
2114}
2115
2116/*
2117 * To reduce the fork() overhead for systems that are not actually
2118 * using their cgroups capability, we don't maintain the lists running
2119 * through each css_set to its tasks until we see the list actually
2120 * used - in other words after the first call to cgroup_iter_start().
2121 *
2122 * The tasklist_lock is not held here, as do_each_thread() and
2123 * while_each_thread() are protected by RCU.
2124 */
2125static void cgroup_enable_task_cg_lists(void)
2126{
2127        struct task_struct *p, *g;
2128        write_lock(&css_set_lock);
2129        use_task_css_set_links = 1;
2130        do_each_thread(g, p) {
2131                task_lock(p);
2132                /*
2133                 * We should check if the process is exiting, otherwise
2134                 * it will race with cgroup_exit() in that the list
2135                 * entry won't be deleted though the process has exited.
2136                 */
2137                if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2138                        list_add(&p->cg_list, &p->cgroups->tasks);
2139                task_unlock(p);
2140        } while_each_thread(g, p);
2141        write_unlock(&css_set_lock);
2142}
2143
2144void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2145{
2146        /*
2147         * The first time anyone tries to iterate across a cgroup,
2148         * we need to enable the list linking each css_set to its
2149         * tasks, and fix up all existing tasks.
2150         */
2151        if (!use_task_css_set_links)
2152                cgroup_enable_task_cg_lists();
2153
2154        read_lock(&css_set_lock);
2155        it->cg_link = &cgrp->css_sets;
2156        cgroup_advance_iter(cgrp, it);
2157}
2158
2159struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2160                                        struct cgroup_iter *it)
2161{
2162        struct task_struct *res;
2163        struct list_head *l = it->task;
2164        struct cg_cgroup_link *link;
2165
2166        /* If the iterator cg is NULL, we have no tasks */
2167        if (!it->cg_link)
2168                return NULL;
2169        res = list_entry(l, struct task_struct, cg_list);
2170        /* Advance iterator to find next entry */
2171        l = l->next;
2172        link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2173        if (l == &link->cg->tasks) {
2174                /* We reached the end of this task list - move on to
2175                 * the next cg_cgroup_link */
2176                cgroup_advance_iter(cgrp, it);
2177        } else {
2178                it->task = l;
2179        }
2180        return res;
2181}
2182
2183void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2184{
2185        read_unlock(&css_set_lock);
2186}
2187
2188static inline int started_after_time(struct task_struct *t1,
2189                                     struct timespec *time,
2190                                     struct task_struct *t2)
2191{
2192        int start_diff = timespec_compare(&t1->start_time, time);
2193        if (start_diff > 0) {
2194                return 1;
2195        } else if (start_diff < 0) {
2196                return 0;
2197        } else {
2198                /*
2199                 * Arbitrarily, if two processes started at the same
2200                 * time, we'll say that the lower pointer value
2201                 * started first. Note that t2 may have exited by now
2202                 * so this may not be a valid pointer any longer, but
2203                 * that's fine - it still serves to distinguish
2204                 * between two tasks started (effectively) simultaneously.
2205                 */
2206                return t1 > t2;
2207        }
2208}
2209
2210/*
2211 * This function is a callback from heap_insert() and is used to order
2212 * the heap.
2213 * In this case we order the heap in descending task start time.
2214 */
2215static inline int started_after(void *p1, void *p2)
2216{
2217        struct task_struct *t1 = p1;
2218        struct task_struct *t2 = p2;
2219        return started_after_time(t1, &t2->start_time, t2);
2220}
2221
2222/**
2223 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2224 * @scan: struct cgroup_scanner containing arguments for the scan
2225 *
2226 * Arguments include pointers to callback functions test_task() and
2227 * process_task().
2228 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2229 * and if it returns true, call process_task() for it also.
2230 * The test_task pointer may be NULL, meaning always true (select all tasks).
2231 * Effectively duplicates cgroup_iter_{start,next,end}()
2232 * but does not lock css_set_lock for the call to process_task().
2233 * The struct cgroup_scanner may be embedded in any structure of the caller's
2234 * creation.
2235 * It is guaranteed that process_task() will act on every task that
2236 * is a member of the cgroup for the duration of this call. This
2237 * function may or may not call process_task() for tasks that exit
2238 * or move to a different cgroup during the call, or are forked or
2239 * move into the cgroup during the call.
2240 *
2241 * Note that test_task() may be called with locks held, and may in some
2242 * situations be called multiple times for the same task, so it should
2243 * be cheap.
2244 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2245 * pre-allocated and will be used for heap operations (and its "gt" member will
2246 * be overwritten), else a temporary heap will be used (allocation of which
2247 * may cause this function to fail).
2248 */
2249int cgroup_scan_tasks(struct cgroup_scanner *scan)
2250{
2251        int retval, i;
2252        struct cgroup_iter it;
2253        struct task_struct *p, *dropped;
2254        /* Never dereference latest_task, since it's not refcounted */
2255        struct task_struct *latest_task = NULL;
2256        struct ptr_heap tmp_heap;
2257        struct ptr_heap *heap;
2258        struct timespec latest_time = { 0, 0 };
2259
2260        if (scan->heap) {
2261                /* The caller supplied our heap and pre-allocated its memory */
2262                heap = scan->heap;
2263                heap->gt = &started_after;
2264        } else {
2265                /* We need to allocate our own heap memory */
2266                heap = &tmp_heap;
2267                retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2268                if (retval)
2269                        /* cannot allocate the heap */
2270                        return retval;
2271        }
2272
2273 again:
2274        /*
2275         * Scan tasks in the cgroup, using the scanner's "test_task" callback
2276         * to determine which are of interest, and using the scanner's
2277         * "process_task" callback to process any of them that need an update.
2278         * Since we don't want to hold any locks during the task updates,
2279         * gather tasks to be processed in a heap structure.
2280         * The heap is sorted by descending task start time.
2281         * If the statically-sized heap fills up, we overflow tasks that
2282         * started later, and in future iterations only consider tasks that
2283         * started after the latest task in the previous pass. This
2284         * guarantees forward progress and that we don't miss any tasks.
2285         */
2286        heap->size = 0;
2287        cgroup_iter_start(scan->cg, &it);
2288        while ((p = cgroup_iter_next(scan->cg, &it))) {
2289                /*
2290                 * Only affect tasks that qualify per the caller's callback,
2291                 * if he provided one
2292                 */
2293                if (scan->test_task && !scan->test_task(p, scan))
2294                        continue;
2295                /*
2296                 * Only process tasks that started after the last task
2297                 * we processed
2298                 */
2299                if (!started_after_time(p, &latest_time, latest_task))
2300                        continue;
2301                dropped = heap_insert(heap, p);
2302                if (dropped == NULL) {
2303                        /*
2304                         * The new task was inserted; the heap wasn't
2305                         * previously full
2306                         */
2307                        get_task_struct(p);
2308                } else if (dropped != p) {
2309                        /*
2310                         * The new task was inserted, and pushed out a
2311                         * different task
2312                         */
2313                        get_task_struct(p);
2314                        put_task_struct(dropped);
2315                }
2316                /*
2317                 * Else the new task was newer than anything already in
2318                 * the heap and wasn't inserted
2319                 */
2320        }
2321        cgroup_iter_end(scan->cg, &it);
2322
2323        if (heap->size) {
2324                for (i = 0; i < heap->size; i++) {
2325                        struct task_struct *q = heap->ptrs[i];
2326                        if (i == 0) {
2327                                latest_time = q->start_time;
2328                                latest_task = q;
2329                        }
2330                        /* Process the task per the caller's callback */
2331                        scan->process_task(q, scan);
2332                        put_task_struct(q);
2333                }
2334                /*
2335                 * If we had to process any tasks at all, scan again
2336                 * in case some of them were in the middle of forking
2337                 * children that didn't get processed.
2338                 * Not the most efficient way to do it, but it avoids
2339                 * having to take callback_mutex in the fork path
2340                 */
2341                goto again;
2342        }
2343        if (heap == &tmp_heap)
2344                heap_free(&tmp_heap);
2345        return 0;
2346}
2347
2348/*
2349 * Stuff for reading the 'tasks'/'procs' files.
2350 *
2351 * Reading this file can return large amounts of data if a cgroup has
2352 * *lots* of attached tasks. So it may need several calls to read(),
2353 * but we cannot guarantee that the information we produce is correct
2354 * unless we produce it entirely atomically.
2355 *
2356 */
2357
2358/*
2359 * The following two functions "fix" the issue where there are more pids
2360 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2361 * TODO: replace with a kernel-wide solution to this problem
2362 */
2363#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2364static void *pidlist_allocate(int count)
2365{
2366        if (PIDLIST_TOO_LARGE(count))
2367                return vmalloc(count * sizeof(pid_t));
2368        else
2369                return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2370}
2371static void pidlist_free(void *p)
2372{
2373        if (is_vmalloc_addr(p))
2374                vfree(p);
2375        else
2376                kfree(p);
2377}
2378static void *pidlist_resize(void *p, int newcount)
2379{
2380        void *newlist;
2381        /* note: if new alloc fails, old p will still be valid either way */
2382        if (is_vmalloc_addr(p)) {
2383                newlist = vmalloc(newcount * sizeof(pid_t));
2384                if (!newlist)
2385                        return NULL;
2386                memcpy(newlist, p, newcount * sizeof(pid_t));
2387                vfree(p);
2388        } else {
2389                newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2390        }
2391        return newlist;
2392}
2393
2394/*
2395 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2396 * If the new stripped list is sufficiently smaller and there's enough memory
2397 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2398 * number of unique elements.
2399 */
2400/* is the size difference enough that we should re-allocate the array? */
2401#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2402static int pidlist_uniq(pid_t **p, int length)
2403{
2404        int src, dest = 1;
2405        pid_t *list = *p;
2406        pid_t *newlist;
2407
2408        /*
2409         * we presume the 0th element is unique, so i starts at 1. trivial
2410         * edge cases first; no work needs to be done for either
2411         */
2412        if (length == 0 || length == 1)
2413                return length;
2414        /* src and dest walk down the list; dest counts unique elements */
2415        for (src = 1; src < length; src++) {
2416                /* find next unique element */
2417                while (list[src] == list[src-1]) {
2418                        src++;
2419                        if (src == length)
2420                                goto after;
2421                }
2422                /* dest always points to where the next unique element goes */
2423                list[dest] = list[src];
2424                dest++;
2425        }
2426after:
2427        /*
2428         * if the length difference is large enough, we want to allocate a
2429         * smaller buffer to save memory. if this fails due to out of memory,
2430         * we'll just stay with what we've got.
2431         */
2432        if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2433                newlist = pidlist_resize(list, dest);
2434                if (newlist)
2435                        *p = newlist;
2436        }
2437        return dest;
2438}
2439
2440static int cmppid(const void *a, const void *b)
2441{
2442        return *(pid_t *)a - *(pid_t *)b;
2443}
2444
2445/*
2446 * find the appropriate pidlist for our purpose (given procs vs tasks)
2447 * returns with the lock on that pidlist already held, and takes care
2448 * of the use count, or returns NULL with no locks held if we're out of
2449 * memory.
2450 */
2451static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2452                                                  enum cgroup_filetype type)
2453{
2454        struct cgroup_pidlist *l;
2455        /* don't need task_nsproxy() if we're looking at ourself */
2456        struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns);
2457        /*
2458         * We can't drop the pidlist_mutex before taking the l->mutex in case
2459         * the last ref-holder is trying to remove l from the list at the same
2460         * time. Holding the pidlist_mutex precludes somebody taking whichever
2461         * list we find out from under us - compare release_pid_array().
2462         */
2463        mutex_lock(&cgrp->pidlist_mutex);
2464        list_for_each_entry(l, &cgrp->pidlists, links) {
2465                if (l->key.type == type && l->key.ns == ns) {
2466                        /* found a matching list - drop the extra refcount */
2467                        put_pid_ns(ns);
2468                        /* make sure l doesn't vanish out from under us */
2469                        down_write(&l->mutex);
2470                        mutex_unlock(&cgrp->pidlist_mutex);
2471                        l->use_count++;
2472                        return l;
2473                }
2474        }
2475        /* entry not found; create a new one */
2476        l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2477        if (!l) {
2478                mutex_unlock(&cgrp->pidlist_mutex);
2479                put_pid_ns(ns);
2480                return l;
2481        }
2482        init_rwsem(&l->mutex);
2483        down_write(&l->mutex);
2484        l->key.type = type;
2485        l->key.ns = ns;
2486        l->use_count = 0; /* don't increment here */
2487        l->list = NULL;
2488        l->owner = cgrp;
2489        list_add(&l->links, &cgrp->pidlists);
2490        mutex_unlock(&cgrp->pidlist_mutex);
2491        return l;
2492}
2493
2494/*
2495 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2496 */
2497static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2498                              struct cgroup_pidlist **lp)
2499{
2500        pid_t *array;
2501        int length;
2502        int pid, n = 0; /* used for populating the array */
2503        struct cgroup_iter it;
2504        struct task_struct *tsk;
2505        struct cgroup_pidlist *l;
2506
2507        /*
2508         * If cgroup gets more users after we read count, we won't have
2509         * enough space - tough.  This race is indistinguishable to the
2510         * caller from the case that the additional cgroup users didn't
2511         * show up until sometime later on.
2512         */
2513        length = cgroup_task_count(cgrp);
2514        array = pidlist_allocate(length);
2515        if (!array)
2516                return -ENOMEM;
2517        /* now, populate the array */
2518        cgroup_iter_start(cgrp, &it);
2519        while ((tsk = cgroup_iter_next(cgrp, &it))) {
2520                if (unlikely(n == length))
2521                        break;
2522                /* get tgid or pid for procs or tasks file respectively */
2523                if (type == CGROUP_FILE_PROCS)
2524                        pid = task_tgid_vnr(tsk);
2525                else
2526                        pid = task_pid_vnr(tsk);
2527                if (pid > 0) /* make sure to only use valid results */
2528                        array[n++] = pid;
2529        }
2530        cgroup_iter_end(cgrp, &it);
2531        length = n;
2532        /* now sort & (if procs) strip out duplicates */
2533        sort(array, length, sizeof(pid_t), cmppid, NULL);
2534        if (type == CGROUP_FILE_PROCS)
2535                length = pidlist_uniq(&array, length);
2536        l = cgroup_pidlist_find(cgrp, type);
2537        if (!l) {
2538                pidlist_free(array);
2539                return -ENOMEM;
2540        }
2541        /* store array, freeing old if necessary - lock already held */
2542        pidlist_free(l->list);
2543        l->list = array;
2544        l->length = length;
2545        l->use_count++;
2546        up_write(&l->mutex);
2547        *lp = l;
2548        return 0;
2549}
2550
2551/**
2552 * cgroupstats_build - build and fill cgroupstats
2553 * @stats: cgroupstats to fill information into
2554 * @dentry: A dentry entry belonging to the cgroup for which stats have
2555 * been requested.
2556 *
2557 * Build and fill cgroupstats so that taskstats can export it to user
2558 * space.
2559 */
2560int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2561{
2562        int ret = -EINVAL;
2563        struct cgroup *cgrp;
2564        struct cgroup_iter it;
2565        struct task_struct *tsk;
2566
2567        /*
2568         * Validate dentry by checking the superblock operations,
2569         * and make sure it's a directory.
2570         */
2571        if (dentry->d_sb->s_op != &cgroup_ops ||
2572            !S_ISDIR(dentry->d_inode->i_mode))
2573                 goto err;
2574
2575        ret = 0;
2576        cgrp = dentry->d_fsdata;
2577
2578        cgroup_iter_start(cgrp, &it);
2579        while ((tsk = cgroup_iter_next(cgrp, &it))) {
2580                switch (tsk->state) {
2581                case TASK_RUNNING:
2582                        stats->nr_running++;
2583                        break;
2584                case TASK_INTERRUPTIBLE:
2585                        stats->nr_sleeping++;
2586                        break;
2587                case TASK_UNINTERRUPTIBLE:
2588                        stats->nr_uninterruptible++;
2589                        break;
2590                case TASK_STOPPED:
2591                        stats->nr_stopped++;
2592                        break;
2593                default:
2594                        if (delayacct_is_task_waiting_on_io(tsk))
2595                                stats->nr_io_wait++;
2596                        break;
2597                }
2598        }
2599        cgroup_iter_end(cgrp, &it);
2600
2601err:
2602        return ret;
2603}
2604
2605
2606/*
2607 * seq_file methods for the tasks/procs files. The seq_file position is the
2608 * next pid to display; the seq_file iterator is a pointer to the pid
2609 * in the cgroup->l->list array.
2610 */
2611
2612static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2613{
2614        /*
2615         * Initially we receive a position value that corresponds to
2616         * one more than the last pid shown (or 0 on the first call or
2617         * after a seek to the start). Use a binary-search to find the
2618         * next pid to display, if any
2619         */
2620        struct cgroup_pidlist *l = s->private;
2621        int index = 0, pid = *pos;
2622        int *iter;
2623
2624        down_read(&l->mutex);
2625        if (pid) {
2626                int end = l->length;
2627
2628                while (index < end) {
2629                        int mid = (index + end) / 2;
2630                        if (l->list[mid] == pid) {
2631                                index = mid;
2632                                break;
2633                        } else if (l->list[mid] <= pid)
2634                                index = mid + 1;
2635                        else
2636                                end = mid;
2637                }
2638        }
2639        /* If we're off the end of the array, we're done */
2640        if (index >= l->length)
2641                return NULL;
2642        /* Update the abstract position to be the actual pid that we found */
2643        iter = l->list + index;
2644        *pos = *iter;
2645        return iter;
2646}
2647
2648static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2649{
2650        struct cgroup_pidlist *l = s->private;
2651        up_read(&l->mutex);
2652}
2653
2654static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2655{
2656        struct cgroup_pidlist *l = s->private;
2657        pid_t *p = v;
2658        pid_t *end = l->list + l->length;
2659        /*
2660         * Advance to the next pid in the array. If this goes off the
2661         * end, we're done
2662         */
2663        p++;
2664        if (p >= end) {
2665                return NULL;
2666        } else {
2667                *pos = *p;
2668                return p;
2669        }
2670}
2671
2672static int cgroup_pidlist_show(struct seq_file *s, void *v)
2673{
2674        return seq_printf(s, "%d\n", *(int *)v);
2675}
2676
2677/*
2678 * seq_operations functions for iterating on pidlists through seq_file -
2679 * independent of whether it's tasks or procs
2680 */
2681static const struct seq_operations cgroup_pidlist_seq_operations = {
2682        .start = cgroup_pidlist_start,
2683        .stop = cgroup_pidlist_stop,
2684        .next = cgroup_pidlist_next,
2685        .show = cgroup_pidlist_show,
2686};
2687
2688static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2689{
2690        /*
2691         * the case where we're the last user of this particular pidlist will
2692         * have us remove it from the cgroup's list, which entails taking the
2693         * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2694         * pidlist_mutex, we have to take pidlist_mutex first.
2695         */
2696        mutex_lock(&l->owner->pidlist_mutex);
2697        down_write(&l->mutex);
2698        BUG_ON(!l->use_count);
2699        if (!--l->use_count) {
2700                /* we're the last user if refcount is 0; remove and free */
2701                list_del(&l->links);
2702                mutex_unlock(&l->owner->pidlist_mutex);
2703                pidlist_free(l->list);
2704                put_pid_ns(l->key.ns);
2705                up_write(&l->mutex);
2706                kfree(l);
2707                return;
2708        }
2709        mutex_unlock(&l->owner->pidlist_mutex);
2710        up_write(&l->mutex);
2711}
2712
2713static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2714{
2715        struct cgroup_pidlist *l;
2716        if (!(file->f_mode & FMODE_READ))
2717                return 0;
2718        /*
2719         * the seq_file will only be initialized if the file was opened for
2720         * reading; hence we check if it's not null only in that case.
2721         */
2722        l = ((struct seq_file *)file->private_data)->private;
2723        cgroup_release_pid_array(l);
2724        return seq_release(inode, file);
2725}
2726
2727static const struct file_operations cgroup_pidlist_operations = {
2728        .read = seq_read,
2729        .llseek = seq_lseek,
2730        .write = cgroup_file_write,
2731        .release = cgroup_pidlist_release,
2732};
2733
2734/*
2735 * The following functions handle opens on a file that displays a pidlist
2736 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2737 * in the cgroup.
2738 */
2739/* helper function for the two below it */
2740static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2741{
2742        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2743        struct cgroup_pidlist *l;
2744        int retval;
2745
2746        /* Nothing to do for write-only files */
2747        if (!(file->f_mode & FMODE_READ))
2748                return 0;
2749
2750        /* have the array populated */
2751        retval = pidlist_array_load(cgrp, type, &l);
2752        if (retval)
2753                return retval;
2754        /* configure file information */
2755        file->f_op = &cgroup_pidlist_operations;
2756
2757        retval = seq_open(file, &cgroup_pidlist_seq_operations);
2758        if (retval) {
2759                cgroup_release_pid_array(l);
2760                return retval;
2761        }
2762        ((struct seq_file *)file->private_data)->private = l;
2763        return 0;
2764}
2765static int cgroup_tasks_open(struct inode *unused, struct file *file)
2766{
2767        return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2768}
2769static int cgroup_procs_open(struct inode *unused, struct file *file)
2770{
2771        return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2772}
2773
2774static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2775                                            struct cftype *cft)
2776{
2777        return notify_on_release(cgrp);
2778}
2779
2780static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2781                                          struct cftype *cft,
2782                                          u64 val)
2783{
2784        clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2785        if (val)
2786                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2787        else
2788                clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2789        return 0;
2790}
2791
2792/*
2793 * for the common functions, 'private' gives the type of file
2794 */
2795/* for hysterical raisins, we can't put this on the older files */
2796#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
2797static struct cftype files[] = {
2798        {
2799                .name = "tasks",
2800                .open = cgroup_tasks_open,
2801                .write_u64 = cgroup_tasks_write,
2802                .release = cgroup_pidlist_release,
2803                .mode = S_IRUGO | S_IWUSR,
2804        },
2805        {
2806                .name = CGROUP_FILE_GENERIC_PREFIX "procs",
2807                .open = cgroup_procs_open,
2808                /* .write_u64 = cgroup_procs_write, TODO */
2809                .release = cgroup_pidlist_release,
2810                .mode = S_IRUGO,
2811        },
2812        {
2813                .name = "notify_on_release",
2814                .read_u64 = cgroup_read_notify_on_release,
2815                .write_u64 = cgroup_write_notify_on_release,
2816        },
2817};
2818
2819static struct cftype cft_release_agent = {
2820        .name = "release_agent",
2821        .read_seq_string = cgroup_release_agent_show,
2822        .write_string = cgroup_release_agent_write,
2823        .max_write_len = PATH_MAX,
2824};
2825
2826static int cgroup_populate_dir(struct cgroup *cgrp)
2827{
2828        int err;
2829        struct cgroup_subsys *ss;
2830
2831        /* First clear out any existing files */
2832        cgroup_clear_directory(cgrp->dentry);
2833
2834        err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2835        if (err < 0)
2836                return err;
2837
2838        if (cgrp == cgrp->top_cgroup) {
2839                if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2840                        return err;
2841        }
2842
2843        for_each_subsys(cgrp->root, ss) {
2844                if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2845                        return err;
2846        }
2847        /* This cgroup is ready now */
2848        for_each_subsys(cgrp->root, ss) {
2849                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2850                /*
2851                 * Update id->css pointer and make this css visible from
2852                 * CSS ID functions. This pointer will be dereferened
2853                 * from RCU-read-side without locks.
2854                 */
2855                if (css->id)
2856                        rcu_assign_pointer(css->id->css, css);
2857        }
2858
2859        return 0;
2860}
2861
2862static void init_cgroup_css(struct cgroup_subsys_state *css,
2863                               struct cgroup_subsys *ss,
2864                               struct cgroup *cgrp)
2865{
2866        css->cgroup = cgrp;
2867        atomic_set(&css->refcnt, 1);
2868        css->flags = 0;
2869        css->id = NULL;
2870        if (cgrp == dummytop)
2871                set_bit(CSS_ROOT, &css->flags);
2872        BUG_ON(cgrp->subsys[ss->subsys_id]);
2873        cgrp->subsys[ss->subsys_id] = css;
2874}
2875
2876static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2877{
2878        /* We need to take each hierarchy_mutex in a consistent order */
2879        int i;
2880
2881        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2882                struct cgroup_subsys *ss = subsys[i];
2883                if (ss->root == root)
2884                        mutex_lock(&ss->hierarchy_mutex);
2885        }
2886}
2887
2888static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2889{
2890        int i;
2891
2892        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2893                struct cgroup_subsys *ss = subsys[i];
2894                if (ss->root == root)
2895                        mutex_unlock(&ss->hierarchy_mutex);
2896        }
2897}
2898
2899/*
2900 * cgroup_create - create a cgroup
2901 * @parent: cgroup that will be parent of the new cgroup
2902 * @dentry: dentry of the new cgroup
2903 * @mode: mode to set on new inode
2904 *
2905 * Must be called with the mutex on the parent inode held
2906 */
2907static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2908                             mode_t mode)
2909{
2910        struct cgroup *cgrp;
2911        struct cgroupfs_root *root = parent->root;
2912        int err = 0;
2913        struct cgroup_subsys *ss;
2914        struct super_block *sb = root->sb;
2915
2916        cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2917        if (!cgrp)
2918                return -ENOMEM;
2919
2920        /* Grab a reference on the superblock so the hierarchy doesn't
2921         * get deleted on unmount if there are child cgroups.  This
2922         * can be done outside cgroup_mutex, since the sb can't
2923         * disappear while someone has an open control file on the
2924         * fs */
2925        atomic_inc(&sb->s_active);
2926
2927        mutex_lock(&cgroup_mutex);
2928
2929        init_cgroup_housekeeping(cgrp);
2930
2931        cgrp->parent = parent;
2932        cgrp->root = parent->root;
2933        cgrp->top_cgroup = parent->top_cgroup;
2934
2935        if (notify_on_release(parent))
2936                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2937
2938        for_each_subsys(root, ss) {
2939                struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2940                if (IS_ERR(css)) {
2941                        err = PTR_ERR(css);
2942                        goto err_destroy;
2943                }
2944                init_cgroup_css(css, ss, cgrp);
2945                if (ss->use_id)
2946                        if (alloc_css_id(ss, parent, cgrp))
2947                                goto err_destroy;
2948                /* At error, ->destroy() callback has to free assigned ID. */
2949        }
2950
2951        cgroup_lock_hierarchy(root);
2952        list_add(&cgrp->sibling, &cgrp->parent->children);
2953        cgroup_unlock_hierarchy(root);
2954        root->number_of_cgroups++;
2955
2956        err = cgroup_create_dir(cgrp, dentry, mode);
2957        if (err < 0)
2958                goto err_remove;
2959
2960        /* The cgroup directory was pre-locked for us */
2961        BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2962
2963        err = cgroup_populate_dir(cgrp);
2964        /* If err < 0, we have a half-filled directory - oh well ;) */
2965
2966        mutex_unlock(&cgroup_mutex);
2967        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2968
2969        return 0;
2970
2971 err_remove:
2972
2973        cgroup_lock_hierarchy(root);
2974        list_del(&cgrp->sibling);
2975        cgroup_unlock_hierarchy(root);
2976        root->number_of_cgroups--;
2977
2978 err_destroy:
2979
2980        for_each_subsys(root, ss) {
2981                if (cgrp->subsys[ss->subsys_id])
2982                        ss->destroy(ss, cgrp);
2983        }
2984
2985        mutex_unlock(&cgroup_mutex);
2986
2987        /* Release the reference count that we took on the superblock */
2988        deactivate_super(sb);
2989
2990        kfree(cgrp);
2991        return err;
2992}
2993
2994static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2995{
2996        struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2997
2998        /* the vfs holds inode->i_mutex already */
2999        return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3000}
3001
3002static int cgroup_has_css_refs(struct cgroup *cgrp)
3003{
3004        /* Check the reference count on each subsystem. Since we
3005         * already established that there are no tasks in the
3006         * cgroup, if the css refcount is also 1, then there should
3007         * be no outstanding references, so the subsystem is safe to
3008         * destroy. We scan across all subsystems rather than using
3009         * the per-hierarchy linked list of mounted subsystems since
3010         * we can be called via check_for_release() with no
3011         * synchronization other than RCU, and the subsystem linked
3012         * list isn't RCU-safe */
3013        int i;
3014        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3015                struct cgroup_subsys *ss = subsys[i];
3016                struct cgroup_subsys_state *css;
3017                /* Skip subsystems not in this hierarchy */
3018                if (ss->root != cgrp->root)
3019                        continue;
3020                css = cgrp->subsys[ss->subsys_id];
3021                /* When called from check_for_release() it's possible
3022                 * that by this point the cgroup has been removed
3023                 * and the css deleted. But a false-positive doesn't
3024                 * matter, since it can only happen if the cgroup
3025                 * has been deleted and hence no longer needs the
3026                 * release agent to be called anyway. */
3027                if (css && (atomic_read(&css->refcnt) > 1))
3028                        return 1;
3029        }
3030        return 0;
3031}
3032
3033/*
3034 * Atomically mark all (or else none) of the cgroup's CSS objects as
3035 * CSS_REMOVED. Return true on success, or false if the cgroup has
3036 * busy subsystems. Call with cgroup_mutex held
3037 */
3038
3039static int cgroup_clear_css_refs(struct cgroup *cgrp)
3040{
3041        struct cgroup_subsys *ss;
3042        unsigned long flags;
3043        bool failed = false;
3044        local_irq_save(flags);
3045        for_each_subsys(cgrp->root, ss) {
3046                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3047                int refcnt;
3048                while (1) {
3049                        /* We can only remove a CSS with a refcnt==1 */
3050                        refcnt = atomic_read(&css->refcnt);
3051                        if (refcnt > 1) {
3052                                failed = true;
3053                                goto done;
3054                        }
3055                        BUG_ON(!refcnt);
3056                        /*
3057                         * Drop the refcnt to 0 while we check other
3058                         * subsystems. This will cause any racing
3059                         * css_tryget() to spin until we set the
3060                         * CSS_REMOVED bits or abort
3061                         */
3062                        if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3063                                break;
3064                        cpu_relax();
3065                }
3066        }
3067 done:
3068        for_each_subsys(cgrp->root, ss) {
3069                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3070                if (failed) {
3071                        /*
3072                         * Restore old refcnt if we previously managed
3073                         * to clear it from 1 to 0
3074                         */
3075                        if (!atomic_read(&css->refcnt))
3076                                atomic_set(&css->refcnt, 1);
3077                } else {
3078                        /* Commit the fact that the CSS is removed */
3079                        set_bit(CSS_REMOVED, &css->flags);
3080                }
3081        }
3082        local_irq_restore(flags);
3083        return !failed;
3084}
3085
3086static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3087{
3088        struct cgroup *cgrp = dentry->d_fsdata;
3089        struct dentry *d;
3090        struct cgroup *parent;
3091        DEFINE_WAIT(wait);
3092        int ret;
3093
3094        /* the vfs holds both inode->i_mutex already */
3095again:
3096        mutex_lock(&cgroup_mutex);
3097        if (atomic_read(&cgrp->count) != 0) {
3098                mutex_unlock(&cgroup_mutex);
3099                return -EBUSY;
3100        }
3101        if (!list_empty(&cgrp->children)) {
3102                mutex_unlock(&cgroup_mutex);
3103                return -EBUSY;
3104        }
3105        mutex_unlock(&cgroup_mutex);
3106
3107        /*
3108         * In general, subsystem has no css->refcnt after pre_destroy(). But
3109         * in racy cases, subsystem may have to get css->refcnt after
3110         * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3111         * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3112         * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3113         * and subsystem's reference count handling. Please see css_get/put
3114         * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3115         */
3116        set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3117
3118        /*
3119         * Call pre_destroy handlers of subsys. Notify subsystems
3120         * that rmdir() request comes.
3121         */
3122        ret = cgroup_call_pre_destroy(cgrp);
3123        if (ret) {
3124                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3125                return ret;
3126        }
3127
3128        mutex_lock(&cgroup_mutex);
3129        parent = cgrp->parent;
3130        if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3131                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3132                mutex_unlock(&cgroup_mutex);
3133                return -EBUSY;
3134        }
3135        prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3136        if (!cgroup_clear_css_refs(cgrp)) {
3137                mutex_unlock(&cgroup_mutex);
3138                /*
3139                 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3140                 * prepare_to_wait(), we need to check this flag.
3141                 */
3142                if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3143                        schedule();
3144                finish_wait(&cgroup_rmdir_waitq, &wait);
3145                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3146                if (signal_pending(current))
3147                        return -EINTR;
3148                goto again;
3149        }
3150        /* NO css_tryget() can success after here. */
3151        finish_wait(&cgroup_rmdir_waitq, &wait);
3152        clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3153
3154        spin_lock(&release_list_lock);
3155        set_bit(CGRP_REMOVED, &cgrp->flags);
3156        if (!list_empty(&cgrp->release_list))
3157                list_del(&cgrp->release_list);
3158        spin_unlock(&release_list_lock);
3159
3160        cgroup_lock_hierarchy(cgrp->root);
3161        /* delete this cgroup from parent->children */
3162        list_del(&cgrp->sibling);
3163        cgroup_unlock_hierarchy(cgrp->root);
3164
3165        spin_lock(&cgrp->dentry->d_lock);
3166        d = dget(cgrp->dentry);
3167        spin_unlock(&d->d_lock);
3168
3169        cgroup_d_remove_dir(d);
3170        dput(d);
3171
3172        set_bit(CGRP_RELEASABLE, &parent->flags);
3173        check_for_release(parent);
3174
3175        mutex_unlock(&cgroup_mutex);
3176        return 0;
3177}
3178
3179static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3180{
3181        struct cgroup_subsys_state *css;
3182
3183        printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3184
3185        /* Create the top cgroup state for this subsystem */
3186        list_add(&ss->sibling, &rootnode.subsys_list);
3187        ss->root = &rootnode;
3188        css = ss->create(ss, dummytop);
3189        /* We don't handle early failures gracefully */
3190        BUG_ON(IS_ERR(css));
3191        init_cgroup_css(css, ss, dummytop);
3192
3193        /* Update the init_css_set to contain a subsys
3194         * pointer to this state - since the subsystem is
3195         * newly registered, all tasks and hence the
3196         * init_css_set is in the subsystem's top cgroup. */
3197        init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3198
3199        need_forkexit_callback |= ss->fork || ss->exit;
3200
3201        /* At system boot, before all subsystems have been
3202         * registered, no tasks have been forked, so we don't
3203         * need to invoke fork callbacks here. */
3204        BUG_ON(!list_empty(&init_task.tasks));
3205
3206        mutex_init(&ss->hierarchy_mutex);
3207        lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3208        ss->active = 1;
3209}
3210
3211/**
3212 * cgroup_init_early - cgroup initialization at system boot
3213 *
3214 * Initialize cgroups at system boot, and initialize any
3215 * subsystems that request early init.
3216 */
3217int __init cgroup_init_early(void)
3218{
3219        int i;
3220        atomic_set(&init_css_set.refcount, 1);
3221        INIT_LIST_HEAD(&init_css_set.cg_links);
3222        INIT_LIST_HEAD(&init_css_set.tasks);
3223        INIT_HLIST_NODE(&init_css_set.hlist);
3224        css_set_count = 1;
3225        init_cgroup_root(&rootnode);
3226        root_count = 1;
3227        init_task.cgroups = &init_css_set;
3228
3229        init_css_set_link.cg = &init_css_set;
3230        init_css_set_link.cgrp = dummytop;
3231        list_add(&init_css_set_link.cgrp_link_list,
3232                 &rootnode.top_cgroup.css_sets);
3233        list_add(&init_css_set_link.cg_link_list,
3234                 &init_css_set.cg_links);
3235
3236        for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3237                INIT_HLIST_HEAD(&css_set_table[i]);
3238
3239        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3240                struct cgroup_subsys *ss = subsys[i];
3241
3242                BUG_ON(!ss->name);
3243                BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3244                BUG_ON(!ss->create);
3245                BUG_ON(!ss->destroy);
3246                if (ss->subsys_id != i) {
3247                        printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3248                               ss->name, ss->subsys_id);
3249                        BUG();
3250                }
3251
3252                if (ss->early_init)
3253                        cgroup_init_subsys(ss);
3254        }
3255        return 0;
3256}
3257
3258/**
3259 * cgroup_init - cgroup initialization
3260 *
3261 * Register cgroup filesystem and /proc file, and initialize
3262 * any subsystems that didn't request early init.
3263 */
3264int __init cgroup_init(void)
3265{
3266        int err;
3267        int i;
3268        struct hlist_head *hhead;
3269
3270        err = bdi_init(&cgroup_backing_dev_info);
3271        if (err)
3272                return err;
3273
3274        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3275                struct cgroup_subsys *ss = subsys[i];
3276                if (!ss->early_init)
3277                        cgroup_init_subsys(ss);
3278                if (ss->use_id)
3279                        cgroup_subsys_init_idr(ss);
3280        }
3281
3282        /* Add init_css_set to the hash table */
3283        hhead = css_set_hash(init_css_set.subsys);
3284        hlist_add_head(&init_css_set.hlist, hhead);
3285        BUG_ON(!init_root_id(&rootnode));
3286        err = register_filesystem(&cgroup_fs_type);
3287        if (err < 0)
3288                goto out;
3289
3290        proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3291
3292out:
3293        if (err)
3294                bdi_destroy(&cgroup_backing_dev_info);
3295
3296        return err;
3297}
3298
3299/*
3300 * proc_cgroup_show()
3301 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
3302 *  - Used for /proc/<pid>/cgroup.
3303 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3304 *    doesn't really matter if tsk->cgroup changes after we read it,
3305 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3306 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
3307 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3308 *    cgroup to top_cgroup.
3309 */
3310
3311/* TODO: Use a proper seq_file iterator */
3312static int proc_cgroup_show(struct seq_file *m, void *v)
3313{
3314        struct pid *pid;
3315        struct task_struct *tsk;
3316        char *buf;
3317        int retval;
3318        struct cgroupfs_root *root;
3319
3320        retval = -ENOMEM;
3321        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3322        if (!buf)
3323                goto out;
3324
3325        retval = -ESRCH;
3326        pid = m->private;
3327        tsk = get_pid_task(pid, PIDTYPE_PID);
3328        if (!tsk)
3329                goto out_free;
3330
3331        retval = 0;
3332
3333        mutex_lock(&cgroup_mutex);
3334
3335        for_each_active_root(root) {
3336                struct cgroup_subsys *ss;
3337                struct cgroup *cgrp;
3338                int count = 0;
3339
3340                seq_printf(m, "%d:", root->hierarchy_id);
3341                for_each_subsys(root, ss)
3342                        seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3343                if (strlen(root->name))
3344                        seq_printf(m, "%sname=%s", count ? "," : "",
3345                                   root->name);
3346                seq_putc(m, ':');
3347                cgrp = task_cgroup_from_root(tsk, root);
3348                retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3349                if (retval < 0)
3350                        goto out_unlock;
3351                seq_puts(m, buf);
3352                seq_putc(m, '\n');
3353        }
3354
3355out_unlock:
3356        mutex_unlock(&cgroup_mutex);
3357        put_task_struct(tsk);
3358out_free:
3359        kfree(buf);
3360out:
3361        return retval;
3362}
3363
3364static int cgroup_open(struct inode *inode, struct file *file)
3365{
3366        struct pid *pid = PROC_I(inode)->pid;
3367        return single_open(file, proc_cgroup_show, pid);
3368}
3369
3370const struct file_operations proc_cgroup_operations = {
3371        .open           = cgroup_open,
3372        .read           = seq_read,
3373        .llseek         = seq_lseek,
3374        .release        = single_release,
3375};
3376
3377/* Display information about each subsystem and each hierarchy */
3378static int proc_cgroupstats_show(struct seq_file *m, void *v)
3379{
3380        int i;
3381
3382        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3383        mutex_lock(&cgroup_mutex);
3384        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3385                struct cgroup_subsys *ss = subsys[i];
3386                seq_printf(m, "%s\t%d\t%d\t%d\n",
3387                           ss->name, ss->root->hierarchy_id,
3388                           ss->root->number_of_cgroups, !ss->disabled);
3389        }
3390        mutex_unlock(&cgroup_mutex);
3391        return 0;
3392}
3393
3394static int cgroupstats_open(struct inode *inode, struct file *file)
3395{
3396        return single_open(file, proc_cgroupstats_show, NULL);
3397}
3398
3399static const struct file_operations proc_cgroupstats_operations = {
3400        .open = cgroupstats_open,
3401        .read = seq_read,
3402        .llseek = seq_lseek,
3403        .release = single_release,
3404};
3405
3406/**
3407 * cgroup_fork - attach newly forked task to its parents cgroup.
3408 * @child: pointer to task_struct of forking parent process.
3409 *
3410 * Description: A task inherits its parent's cgroup at fork().
3411 *
3412 * A pointer to the shared css_set was automatically copied in
3413 * fork.c by dup_task_struct().  However, we ignore that copy, since
3414 * it was not made under the protection of RCU or cgroup_mutex, so
3415 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3416 * have already changed current->cgroups, allowing the previously
3417 * referenced cgroup group to be removed and freed.
3418 *
3419 * At the point that cgroup_fork() is called, 'current' is the parent
3420 * task, and the passed argument 'child' points to the child task.
3421 */
3422void cgroup_fork(struct task_struct *child)
3423{
3424        task_lock(current);
3425        child->cgroups = current->cgroups;
3426        get_css_set(child->cgroups);
3427        task_unlock(current);
3428        INIT_LIST_HEAD(&child->cg_list);
3429}
3430
3431/**
3432 * cgroup_fork_callbacks - run fork callbacks
3433 * @child: the new task
3434 *
3435 * Called on a new task very soon before adding it to the
3436 * tasklist. No need to take any locks since no-one can
3437 * be operating on this task.
3438 */
3439void cgroup_fork_callbacks(struct task_struct *child)
3440{
3441        if (need_forkexit_callback) {
3442                int i;
3443                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3444                        struct cgroup_subsys *ss = subsys[i];
3445                        if (ss->fork)
3446                                ss->fork(ss, child);
3447                }
3448        }
3449}
3450
3451/**
3452 * cgroup_post_fork - called on a new task after adding it to the task list
3453 * @child: the task in question
3454 *
3455 * Adds the task to the list running through its css_set if necessary.
3456 * Has to be after the task is visible on the task list in case we race
3457 * with the first call to cgroup_iter_start() - to guarantee that the
3458 * new task ends up on its list.
3459 */
3460void cgroup_post_fork(struct task_struct *child)
3461{
3462        if (use_task_css_set_links) {
3463                write_lock(&css_set_lock);
3464                task_lock(child);
3465                if (list_empty(&child->cg_list))
3466                        list_add(&child->cg_list, &child->cgroups->tasks);
3467                task_unlock(child);
3468                write_unlock(&css_set_lock);
3469        }
3470}
3471/**
3472 * cgroup_exit - detach cgroup from exiting task
3473 * @tsk: pointer to task_struct of exiting process
3474 * @run_callback: run exit callbacks?
3475 *
3476 * Description: Detach cgroup from @tsk and release it.
3477 *
3478 * Note that cgroups marked notify_on_release force every task in
3479 * them to take the global cgroup_mutex mutex when exiting.
3480 * This could impact scaling on very large systems.  Be reluctant to
3481 * use notify_on_release cgroups where very high task exit scaling
3482 * is required on large systems.
3483 *
3484 * the_top_cgroup_hack:
3485 *
3486 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3487 *
3488 *    We call cgroup_exit() while the task is still competent to
3489 *    handle notify_on_release(), then leave the task attached to the
3490 *    root cgroup in each hierarchy for the remainder of its exit.
3491 *
3492 *    To do this properly, we would increment the reference count on
3493 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
3494 *    code we would add a second cgroup function call, to drop that
3495 *    reference.  This would just create an unnecessary hot spot on
3496 *    the top_cgroup reference count, to no avail.
3497 *
3498 *    Normally, holding a reference to a cgroup without bumping its
3499 *    count is unsafe.   The cgroup could go away, or someone could
3500 *    attach us to a different cgroup, decrementing the count on
3501 *    the first cgroup that we never incremented.  But in this case,
3502 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3503 *    which wards off any cgroup_attach_task() attempts, or task is a failed
3504 *    fork, never visible to cgroup_attach_task.
3505 */
3506void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3507{
3508        int i;
3509        struct css_set *cg;
3510
3511        if (run_callbacks && need_forkexit_callback) {
3512                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3513                        struct cgroup_subsys *ss = subsys[i];
3514                        if (ss->exit)
3515                                ss->exit(ss, tsk);
3516                }
3517        }
3518
3519        /*
3520         * Unlink from the css_set task list if necessary.
3521         * Optimistically check cg_list before taking
3522         * css_set_lock
3523         */
3524        if (!list_empty(&tsk->cg_list)) {
3525                write_lock(&css_set_lock);
3526                if (!list_empty(&tsk->cg_list))
3527                        list_del(&tsk->cg_list);
3528                write_unlock(&css_set_lock);
3529        }
3530
3531        /* Reassign the task to the init_css_set. */
3532        task_lock(tsk);
3533        cg = tsk->cgroups;
3534        tsk->cgroups = &init_css_set;
3535        task_unlock(tsk);
3536        if (cg)
3537                put_css_set_taskexit(cg);
3538}
3539
3540/**
3541 * cgroup_clone - clone the cgroup the given subsystem is attached to
3542 * @tsk: the task to be moved
3543 * @subsys: the given subsystem
3544 * @nodename: the name for the new cgroup
3545 *
3546 * Duplicate the current cgroup in the hierarchy that the given
3547 * subsystem is attached to, and move this task into the new
3548 * child.
3549 */
3550int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3551                                                        char *nodename)
3552{
3553        struct dentry *dentry;
3554        int ret = 0;
3555        struct cgroup *parent, *child;
3556        struct inode *inode;
3557        struct css_set *cg;
3558        struct cgroupfs_root *root;
3559        struct cgroup_subsys *ss;
3560
3561        /* We shouldn't be called by an unregistered subsystem */
3562        BUG_ON(!subsys->active);
3563
3564        /* First figure out what hierarchy and cgroup we're dealing
3565         * with, and pin them so we can drop cgroup_mutex */
3566        mutex_lock(&cgroup_mutex);
3567 again:
3568        root = subsys->root;
3569        if (root == &rootnode) {
3570                mutex_unlock(&cgroup_mutex);
3571                return 0;
3572        }
3573
3574        /* Pin the hierarchy */
3575        if (!atomic_inc_not_zero(&root->sb->s_active)) {
3576                /* We race with the final deactivate_super() */
3577                mutex_unlock(&cgroup_mutex);
3578                return 0;
3579        }
3580
3581        /* Keep the cgroup alive */
3582        task_lock(tsk);
3583        parent = task_cgroup(tsk, subsys->subsys_id);
3584        cg = tsk->cgroups;
3585        get_css_set(cg);
3586        task_unlock(tsk);
3587
3588        mutex_unlock(&cgroup_mutex);
3589
3590        /* Now do the VFS work to create a cgroup */
3591        inode = parent->dentry->d_inode;
3592
3593        /* Hold the parent directory mutex across this operation to
3594         * stop anyone else deleting the new cgroup */
3595        mutex_lock(&inode->i_mutex);
3596        dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3597        if (IS_ERR(dentry)) {
3598                printk(KERN_INFO
3599                       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3600                       PTR_ERR(dentry));
3601                ret = PTR_ERR(dentry);
3602                goto out_release;
3603        }
3604
3605        /* Create the cgroup directory, which also creates the cgroup */
3606        ret = vfs_mkdir(inode, dentry, 0755);
3607        child = __d_cgrp(dentry);
3608        dput(dentry);
3609        if (ret) {
3610                printk(KERN_INFO
3611                       "Failed to create cgroup %s: %d\n", nodename,
3612                       ret);
3613                goto out_release;
3614        }
3615
3616        /* The cgroup now exists. Retake cgroup_mutex and check
3617         * that we're still in the same state that we thought we
3618         * were. */
3619        mutex_lock(&cgroup_mutex);
3620        if ((root != subsys->root) ||
3621            (parent != task_cgroup(tsk, subsys->subsys_id))) {
3622                /* Aargh, we raced ... */
3623                mutex_unlock(&inode->i_mutex);
3624                put_css_set(cg);
3625
3626                deactivate_super(root->sb);
3627                /* The cgroup is still accessible in the VFS, but
3628                 * we're not going to try to rmdir() it at this
3629                 * point. */
3630                printk(KERN_INFO
3631                       "Race in cgroup_clone() - leaking cgroup %s\n",
3632                       nodename);
3633                goto again;
3634        }
3635
3636        /* do any required auto-setup */
3637        for_each_subsys(root, ss) {
3638                if (ss->post_clone)
3639                        ss->post_clone(ss, child);
3640        }
3641
3642        /* All seems fine. Finish by moving the task into the new cgroup */
3643        ret = cgroup_attach_task(child, tsk);
3644        mutex_unlock(&cgroup_mutex);
3645
3646 out_release:
3647        mutex_unlock(&inode->i_mutex);
3648
3649        mutex_lock(&cgroup_mutex);
3650        put_css_set(cg);
3651        mutex_unlock(&cgroup_mutex);
3652        deactivate_super(root->sb);
3653        return ret;
3654}
3655
3656/**
3657 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3658 * @cgrp: the cgroup in question
3659 * @task: the task in question
3660 *
3661 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3662 * hierarchy.
3663 *
3664 * If we are sending in dummytop, then presumably we are creating
3665 * the top cgroup in the subsystem.
3666 *
3667 * Called only by the ns (nsproxy) cgroup.
3668 */
3669int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3670{
3671        int ret;
3672        struct cgroup *target;
3673
3674        if (cgrp == dummytop)
3675                return 1;
3676
3677        target = task_cgroup_from_root(task, cgrp->root);
3678        while (cgrp != target && cgrp!= cgrp->top_cgroup)
3679                cgrp = cgrp->parent;
3680        ret = (cgrp == target);
3681        return ret;
3682}
3683
3684static void check_for_release(struct cgroup *cgrp)
3685{
3686        /* All of these checks rely on RCU to keep the cgroup
3687         * structure alive */
3688        if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3689            && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3690                /* Control Group is currently removeable. If it's not
3691                 * already queued for a userspace notification, queue
3692                 * it now */
3693                int need_schedule_work = 0;
3694                spin_lock(&release_list_lock);
3695                if (!cgroup_is_removed(cgrp) &&
3696                    list_empty(&cgrp->release_list)) {
3697                        list_add(&cgrp->release_list, &release_list);
3698                        need_schedule_work = 1;
3699                }
3700                spin_unlock(&release_list_lock);
3701                if (need_schedule_work)
3702                        schedule_work(&release_agent_work);
3703        }
3704}
3705
3706void __css_put(struct cgroup_subsys_state *css)
3707{
3708        struct cgroup *cgrp = css->cgroup;
3709        int val;
3710        rcu_read_lock();
3711        val = atomic_dec_return(&css->refcnt);
3712        if (val == 1) {
3713                if (notify_on_release(cgrp)) {
3714                        set_bit(CGRP_RELEASABLE, &cgrp->flags);
3715                        check_for_release(cgrp);
3716                }
3717                cgroup_wakeup_rmdir_waiter(cgrp);
3718        }
3719        rcu_read_unlock();
3720        WARN_ON_ONCE(val < 1);
3721}
3722
3723/*
3724 * Notify userspace when a cgroup is released, by running the
3725 * configured release agent with the name of the cgroup (path
3726 * relative to the root of cgroup file system) as the argument.
3727 *
3728 * Most likely, this user command will try to rmdir this cgroup.
3729 *
3730 * This races with the possibility that some other task will be
3731 * attached to this cgroup before it is removed, or that some other
3732 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
3733 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3734 * unused, and this cgroup will be reprieved from its death sentence,
3735 * to continue to serve a useful existence.  Next time it's released,
3736 * we will get notified again, if it still has 'notify_on_release' set.
3737 *
3738 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3739 * means only wait until the task is successfully execve()'d.  The
3740 * separate release agent task is forked by call_usermodehelper(),
3741 * then control in this thread returns here, without waiting for the
3742 * release agent task.  We don't bother to wait because the caller of
3743 * this routine has no use for the exit status of the release agent
3744 * task, so no sense holding our caller up for that.
3745 */
3746static void cgroup_release_agent(struct work_struct *work)
3747{
3748        BUG_ON(work != &release_agent_work);
3749        mutex_lock(&cgroup_mutex);
3750        spin_lock(&release_list_lock);
3751        while (!list_empty(&release_list)) {
3752                char *argv[3], *envp[3];
3753                int i;
3754                char *pathbuf = NULL, *agentbuf = NULL;
3755                struct cgroup *cgrp = list_entry(release_list.next,
3756                                                    struct cgroup,
3757                                                    release_list);
3758                list_del_init(&cgrp->release_list);
3759                spin_unlock(&release_list_lock);
3760                pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3761                if (!pathbuf)
3762                        goto continue_free;
3763                if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3764                        goto continue_free;
3765                agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3766                if (!agentbuf)
3767                        goto continue_free;
3768
3769                i = 0;
3770                argv[i++] = agentbuf;
3771                argv[i++] = pathbuf;
3772                argv[i] = NULL;
3773
3774                i = 0;
3775                /* minimal command environment */
3776                envp[i++] = "HOME=/";
3777                envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3778                envp[i] = NULL;
3779
3780                /* Drop the lock while we invoke the usermode helper,
3781                 * since the exec could involve hitting disk and hence
3782                 * be a slow process */
3783                mutex_unlock(&cgroup_mutex);
3784                call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3785                mutex_lock(&cgroup_mutex);
3786 continue_free:
3787                kfree(pathbuf);
3788                kfree(agentbuf);
3789                spin_lock(&release_list_lock);
3790        }
3791        spin_unlock(&release_list_lock);
3792        mutex_unlock(&cgroup_mutex);
3793}
3794
3795static int __init cgroup_disable(char *str)
3796{
3797        int i;
3798        char *token;
3799
3800        while ((token = strsep(&str, ",")) != NULL) {
3801                if (!*token)
3802                        continue;
3803
3804                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3805                        struct cgroup_subsys *ss = subsys[i];
3806
3807                        if (!strcmp(token, ss->name)) {
3808                                ss->disabled = 1;
3809                                printk(KERN_INFO "Disabling %s control group"
3810                                        " subsystem\n", ss->name);
3811                                break;
3812                        }
3813                }
3814        }
3815        return 1;
3816}
3817__setup("cgroup_disable=", cgroup_disable);
3818
3819/*
3820 * Functons for CSS ID.
3821 */
3822
3823/*
3824 *To get ID other than 0, this should be called when !cgroup_is_removed().
3825 */
3826unsigned short css_id(struct cgroup_subsys_state *css)
3827{
3828        struct css_id *cssid = rcu_dereference(css->id);
3829
3830        if (cssid)
3831                return cssid->id;
3832        return 0;
3833}
3834
3835unsigned short css_depth(struct cgroup_subsys_state *css)
3836{
3837        struct css_id *cssid = rcu_dereference(css->id);
3838
3839        if (cssid)
3840                return cssid->depth;
3841        return 0;
3842}
3843
3844bool css_is_ancestor(struct cgroup_subsys_state *child,
3845                    const struct cgroup_subsys_state *root)
3846{
3847        struct css_id *child_id = rcu_dereference(child->id);
3848        struct css_id *root_id = rcu_dereference(root->id);
3849
3850        if (!child_id || !root_id || (child_id->depth < root_id->depth))
3851                return false;
3852        return child_id->stack[root_id->depth] == root_id->id;
3853}
3854
3855static void __free_css_id_cb(struct rcu_head *head)
3856{
3857        struct css_id *id;
3858
3859        id = container_of(head, struct css_id, rcu_head);
3860        kfree(id);
3861}
3862
3863void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3864{
3865        struct css_id *id = css->id;
3866        /* When this is called before css_id initialization, id can be NULL */
3867        if (!id)
3868                return;
3869
3870        BUG_ON(!ss->use_id);
3871
3872        rcu_assign_pointer(id->css, NULL);
3873        rcu_assign_pointer(css->id, NULL);
3874        spin_lock(&ss->id_lock);
3875        idr_remove(&ss->idr, id->id);
3876        spin_unlock(&ss->id_lock);
3877        call_rcu(&id->rcu_head, __free_css_id_cb);
3878}
3879
3880/*
3881 * This is called by init or create(). Then, calls to this function are
3882 * always serialized (By cgroup_mutex() at create()).
3883 */
3884
3885static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3886{
3887        struct css_id *newid;
3888        int myid, error, size;
3889
3890        BUG_ON(!ss->use_id);
3891
3892        size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3893        newid = kzalloc(size, GFP_KERNEL);
3894        if (!newid)
3895                return ERR_PTR(-ENOMEM);
3896        /* get id */
3897        if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3898                error = -ENOMEM;
3899                goto err_out;
3900        }
3901        spin_lock(&ss->id_lock);
3902        /* Don't use 0. allocates an ID of 1-65535 */
3903        error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3904        spin_unlock(&ss->id_lock);
3905
3906        /* Returns error when there are no free spaces for new ID.*/
3907        if (error) {
3908                error = -ENOSPC;
3909                goto err_out;
3910        }
3911        if (myid > CSS_ID_MAX)
3912                goto remove_idr;
3913
3914        newid->id = myid;
3915        newid->depth = depth;
3916        return newid;
3917remove_idr:
3918        error = -ENOSPC;
3919        spin_lock(&ss->id_lock);
3920        idr_remove(&ss->idr, myid);
3921        spin_unlock(&ss->id_lock);
3922err_out:
3923        kfree(newid);
3924        return ERR_PTR(error);
3925
3926}
3927
3928static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3929{
3930        struct css_id *newid;
3931        struct cgroup_subsys_state *rootcss;
3932
3933        spin_lock_init(&ss->id_lock);
3934        idr_init(&ss->idr);
3935
3936        rootcss = init_css_set.subsys[ss->subsys_id];
3937        newid = get_new_cssid(ss, 0);
3938        if (IS_ERR(newid))
3939                return PTR_ERR(newid);
3940
3941        newid->stack[0] = newid->id;
3942        newid->css = rootcss;
3943        rootcss->id = newid;
3944        return 0;
3945}
3946
3947static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3948                        struct cgroup *child)
3949{
3950        int subsys_id, i, depth = 0;
3951        struct cgroup_subsys_state *parent_css, *child_css;
3952        struct css_id *child_id, *parent_id = NULL;
3953
3954        subsys_id = ss->subsys_id;
3955        parent_css = parent->subsys[subsys_id];
3956        child_css = child->subsys[subsys_id];
3957        depth = css_depth(parent_css) + 1;
3958        parent_id = parent_css->id;
3959
3960        child_id = get_new_cssid(ss, depth);
3961        if (IS_ERR(child_id))
3962                return PTR_ERR(child_id);
3963
3964        for (i = 0; i < depth; i++)
3965                child_id->stack[i] = parent_id->stack[i];
3966        child_id->stack[depth] = child_id->id;
3967        /*
3968         * child_id->css pointer will be set after this cgroup is available
3969         * see cgroup_populate_dir()
3970         */
3971        rcu_assign_pointer(child_css->id, child_id);
3972
3973        return 0;
3974}
3975
3976/**
3977 * css_lookup - lookup css by id
3978 * @ss: cgroup subsys to be looked into.
3979 * @id: the id
3980 *
3981 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3982 * NULL if not. Should be called under rcu_read_lock()
3983 */
3984struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3985{
3986        struct css_id *cssid = NULL;
3987
3988        BUG_ON(!ss->use_id);
3989        cssid = idr_find(&ss->idr, id);
3990
3991        if (unlikely(!cssid))
3992                return NULL;
3993
3994        return rcu_dereference(cssid->css);
3995}
3996
3997/**
3998 * css_get_next - lookup next cgroup under specified hierarchy.
3999 * @ss: pointer to subsystem
4000 * @id: current position of iteration.
4001 * @root: pointer to css. search tree under this.
4002 * @foundid: position of found object.
4003 *
4004 * Search next css under the specified hierarchy of rootid. Calling under
4005 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4006 */
4007struct cgroup_subsys_state *
4008css_get_next(struct cgroup_subsys *ss, int id,
4009             struct cgroup_subsys_state *root, int *foundid)
4010{
4011        struct cgroup_subsys_state *ret = NULL;
4012        struct css_id *tmp;
4013        int tmpid;
4014        int rootid = css_id(root);
4015        int depth = css_depth(root);
4016
4017        if (!rootid)
4018                return NULL;
4019
4020        BUG_ON(!ss->use_id);
4021        /* fill start point for scan */
4022        tmpid = id;
4023        while (1) {
4024                /*
4025                 * scan next entry from bitmap(tree), tmpid is updated after
4026                 * idr_get_next().
4027                 */
4028                spin_lock(&ss->id_lock);
4029                tmp = idr_get_next(&ss->idr, &tmpid);
4030                spin_unlock(&ss->id_lock);
4031
4032                if (!tmp)
4033                        break;
4034                if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4035                        ret = rcu_dereference(tmp->css);
4036                        if (ret) {
4037                                *foundid = tmpid;
4038                                break;
4039                        }
4040                }
4041                /* continue to scan from next id */
4042                tmpid = tmpid + 1;
4043        }
4044        return ret;
4045}
4046
4047#ifdef CONFIG_CGROUP_DEBUG
4048static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4049                                                   struct cgroup *cont)
4050{
4051        struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4052
4053        if (!css)
4054                return ERR_PTR(-ENOMEM);
4055
4056        return css;
4057}
4058
4059static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4060{
4061        kfree(cont->subsys[debug_subsys_id]);
4062}
4063
4064static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4065{
4066        return atomic_read(&cont->count);
4067}
4068
4069static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4070{
4071        return cgroup_task_count(cont);
4072}
4073
4074static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4075{
4076        return (u64)(unsigned long)current->cgroups;
4077}
4078
4079static u64 current_css_set_refcount_read(struct cgroup *cont,
4080                                           struct cftype *cft)
4081{
4082        u64 count;
4083
4084        rcu_read_lock();
4085        count = atomic_read(&current->cgroups->refcount);
4086        rcu_read_unlock();
4087        return count;
4088}
4089
4090static int current_css_set_cg_links_read(struct cgroup *cont,
4091                                         struct cftype *cft,
4092                                         struct seq_file *seq)
4093{
4094        struct cg_cgroup_link *link;
4095        struct css_set *cg;
4096
4097        read_lock(&css_set_lock);
4098        rcu_read_lock();
4099        cg = rcu_dereference(current->cgroups);
4100        list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4101                struct cgroup *c = link->cgrp;
4102                const char *name;
4103
4104                if (c->dentry)
4105                        name = c->dentry->d_name.name;
4106                else
4107                        name = "?";
4108                seq_printf(seq, "Root %d group %s\n",
4109                           c->root->hierarchy_id, name);
4110        }
4111        rcu_read_unlock();
4112        read_unlock(&css_set_lock);
4113        return 0;
4114}
4115
4116#define MAX_TASKS_SHOWN_PER_CSS 25
4117static int cgroup_css_links_read(struct cgroup *cont,
4118                                 struct cftype *cft,
4119                                 struct seq_file *seq)
4120{
4121        struct cg_cgroup_link *link;
4122
4123        read_lock(&css_set_lock);
4124        list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4125                struct css_set *cg = link->cg;
4126                struct task_struct *task;
4127                int count = 0;
4128                seq_printf(seq, "css_set %p\n", cg);
4129                list_for_each_entry(task, &cg->tasks, cg_list) {
4130                        if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4131                                seq_puts(seq, "  ...\n");
4132                                break;
4133                        } else {
4134                                seq_printf(seq, "  task %d\n",
4135                                           task_pid_vnr(task));
4136                        }
4137                }
4138        }
4139        read_unlock(&css_set_lock);
4140        return 0;
4141}
4142
4143static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4144{
4145        return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4146}
4147
4148static struct cftype debug_files[] =  {
4149        {
4150                .name = "cgroup_refcount",
4151                .read_u64 = cgroup_refcount_read,
4152        },
4153        {
4154                .name = "taskcount",
4155                .read_u64 = debug_taskcount_read,
4156        },
4157
4158        {
4159                .name = "current_css_set",
4160                .read_u64 = current_css_set_read,
4161        },
4162
4163        {
4164                .name = "current_css_set_refcount",
4165                .read_u64 = current_css_set_refcount_read,
4166        },
4167
4168        {
4169                .name = "current_css_set_cg_links",
4170                .read_seq_string = current_css_set_cg_links_read,
4171        },
4172
4173        {
4174                .name = "cgroup_css_links",
4175                .read_seq_string = cgroup_css_links_read,
4176        },
4177
4178        {
4179                .name = "releasable",
4180                .read_u64 = releasable_read,
4181        },
4182};
4183
4184static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4185{
4186        return cgroup_add_files(cont, ss, debug_files,
4187                                ARRAY_SIZE(debug_files));
4188}
4189
4190struct cgroup_subsys debug_subsys = {
4191        .name = "debug",
4192        .create = debug_create,
4193        .destroy = debug_destroy,
4194        .populate = debug_populate,
4195        .subsys_id = debug_subsys_id,
4196};
4197#endif /* CONFIG_CGROUP_DEBUG */
4198