linux/kernel/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/module.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/backing-dev.h>
  55#include <linux/sort.h>
  56
  57#include <asm/uaccess.h>
  58#include <asm/atomic.h>
  59#include <linux/mutex.h>
  60#include <linux/workqueue.h>
  61#include <linux/cgroup.h>
  62
  63/*
  64 * Workqueue for cpuset related tasks.
  65 *
  66 * Using kevent workqueue may cause deadlock when memory_migrate
  67 * is set. So we create a separate workqueue thread for cpuset.
  68 */
  69static struct workqueue_struct *cpuset_wq;
  70
  71/*
  72 * Tracks how many cpusets are currently defined in system.
  73 * When there is only one cpuset (the root cpuset) we can
  74 * short circuit some hooks.
  75 */
  76int number_of_cpusets __read_mostly;
  77
  78/* Forward declare cgroup structures */
  79struct cgroup_subsys cpuset_subsys;
  80struct cpuset;
  81
  82/* See "Frequency meter" comments, below. */
  83
  84struct fmeter {
  85        int cnt;                /* unprocessed events count */
  86        int val;                /* most recent output value */
  87        time_t time;            /* clock (secs) when val computed */
  88        spinlock_t lock;        /* guards read or write of above */
  89};
  90
  91struct cpuset {
  92        struct cgroup_subsys_state css;
  93
  94        unsigned long flags;            /* "unsigned long" so bitops work */
  95        cpumask_var_t cpus_allowed;     /* CPUs allowed to tasks in cpuset */
  96        nodemask_t mems_allowed;        /* Memory Nodes allowed to tasks */
  97
  98        struct cpuset *parent;          /* my parent */
  99
 100        struct fmeter fmeter;           /* memory_pressure filter */
 101
 102        /* partition number for rebuild_sched_domains() */
 103        int pn;
 104
 105        /* for custom sched domain */
 106        int relax_domain_level;
 107
 108        /* used for walking a cpuset heirarchy */
 109        struct list_head stack_list;
 110};
 111
 112/* Retrieve the cpuset for a cgroup */
 113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
 114{
 115        return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
 116                            struct cpuset, css);
 117}
 118
 119/* Retrieve the cpuset for a task */
 120static inline struct cpuset *task_cs(struct task_struct *task)
 121{
 122        return container_of(task_subsys_state(task, cpuset_subsys_id),
 123                            struct cpuset, css);
 124}
 125
 126/* bits in struct cpuset flags field */
 127typedef enum {
 128        CS_CPU_EXCLUSIVE,
 129        CS_MEM_EXCLUSIVE,
 130        CS_MEM_HARDWALL,
 131        CS_MEMORY_MIGRATE,
 132        CS_SCHED_LOAD_BALANCE,
 133        CS_SPREAD_PAGE,
 134        CS_SPREAD_SLAB,
 135} cpuset_flagbits_t;
 136
 137/* convenient tests for these bits */
 138static inline int is_cpu_exclusive(const struct cpuset *cs)
 139{
 140        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 141}
 142
 143static inline int is_mem_exclusive(const struct cpuset *cs)
 144{
 145        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 146}
 147
 148static inline int is_mem_hardwall(const struct cpuset *cs)
 149{
 150        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 151}
 152
 153static inline int is_sched_load_balance(const struct cpuset *cs)
 154{
 155        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 156}
 157
 158static inline int is_memory_migrate(const struct cpuset *cs)
 159{
 160        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 161}
 162
 163static inline int is_spread_page(const struct cpuset *cs)
 164{
 165        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 166}
 167
 168static inline int is_spread_slab(const struct cpuset *cs)
 169{
 170        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 171}
 172
 173static struct cpuset top_cpuset = {
 174        .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
 175};
 176
 177/*
 178 * There are two global mutexes guarding cpuset structures.  The first
 179 * is the main control groups cgroup_mutex, accessed via
 180 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 181 * callback_mutex, below. They can nest.  It is ok to first take
 182 * cgroup_mutex, then nest callback_mutex.  We also require taking
 183 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 184 * task_lock() exception", at the end of this comment.
 185 *
 186 * A task must hold both mutexes to modify cpusets.  If a task
 187 * holds cgroup_mutex, then it blocks others wanting that mutex,
 188 * ensuring that it is the only task able to also acquire callback_mutex
 189 * and be able to modify cpusets.  It can perform various checks on
 190 * the cpuset structure first, knowing nothing will change.  It can
 191 * also allocate memory while just holding cgroup_mutex.  While it is
 192 * performing these checks, various callback routines can briefly
 193 * acquire callback_mutex to query cpusets.  Once it is ready to make
 194 * the changes, it takes callback_mutex, blocking everyone else.
 195 *
 196 * Calls to the kernel memory allocator can not be made while holding
 197 * callback_mutex, as that would risk double tripping on callback_mutex
 198 * from one of the callbacks into the cpuset code from within
 199 * __alloc_pages().
 200 *
 201 * If a task is only holding callback_mutex, then it has read-only
 202 * access to cpusets.
 203 *
 204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 205 * by other task, we use alloc_lock in the task_struct fields to protect
 206 * them.
 207 *
 208 * The cpuset_common_file_read() handlers only hold callback_mutex across
 209 * small pieces of code, such as when reading out possibly multi-word
 210 * cpumasks and nodemasks.
 211 *
 212 * Accessing a task's cpuset should be done in accordance with the
 213 * guidelines for accessing subsystem state in kernel/cgroup.c
 214 */
 215
 216static DEFINE_MUTEX(callback_mutex);
 217
 218/*
 219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 220 * buffers.  They are statically allocated to prevent using excess stack
 221 * when calling cpuset_print_task_mems_allowed().
 222 */
 223#define CPUSET_NAME_LEN         (128)
 224#define CPUSET_NODELIST_LEN     (256)
 225static char cpuset_name[CPUSET_NAME_LEN];
 226static char cpuset_nodelist[CPUSET_NODELIST_LEN];
 227static DEFINE_SPINLOCK(cpuset_buffer_lock);
 228
 229/*
 230 * This is ugly, but preserves the userspace API for existing cpuset
 231 * users. If someone tries to mount the "cpuset" filesystem, we
 232 * silently switch it to mount "cgroup" instead
 233 */
 234static int cpuset_get_sb(struct file_system_type *fs_type,
 235                         int flags, const char *unused_dev_name,
 236                         void *data, struct vfsmount *mnt)
 237{
 238        struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 239        int ret = -ENODEV;
 240        if (cgroup_fs) {
 241                char mountopts[] =
 242                        "cpuset,noprefix,"
 243                        "release_agent=/sbin/cpuset_release_agent";
 244                ret = cgroup_fs->get_sb(cgroup_fs, flags,
 245                                           unused_dev_name, mountopts, mnt);
 246                put_filesystem(cgroup_fs);
 247        }
 248        return ret;
 249}
 250
 251static struct file_system_type cpuset_fs_type = {
 252        .name = "cpuset",
 253        .get_sb = cpuset_get_sb,
 254};
 255
 256/*
 257 * Return in pmask the portion of a cpusets's cpus_allowed that
 258 * are online.  If none are online, walk up the cpuset hierarchy
 259 * until we find one that does have some online cpus.  If we get
 260 * all the way to the top and still haven't found any online cpus,
 261 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 262 * task, return cpu_online_map.
 263 *
 264 * One way or another, we guarantee to return some non-empty subset
 265 * of cpu_online_map.
 266 *
 267 * Call with callback_mutex held.
 268 */
 269
 270static void guarantee_online_cpus(const struct cpuset *cs,
 271                                  struct cpumask *pmask)
 272{
 273        while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
 274                cs = cs->parent;
 275        if (cs)
 276                cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
 277        else
 278                cpumask_copy(pmask, cpu_online_mask);
 279        BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
 280}
 281
 282/*
 283 * Return in *pmask the portion of a cpusets's mems_allowed that
 284 * are online, with memory.  If none are online with memory, walk
 285 * up the cpuset hierarchy until we find one that does have some
 286 * online mems.  If we get all the way to the top and still haven't
 287 * found any online mems, return node_states[N_HIGH_MEMORY].
 288 *
 289 * One way or another, we guarantee to return some non-empty subset
 290 * of node_states[N_HIGH_MEMORY].
 291 *
 292 * Call with callback_mutex held.
 293 */
 294
 295static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
 296{
 297        while (cs && !nodes_intersects(cs->mems_allowed,
 298                                        node_states[N_HIGH_MEMORY]))
 299                cs = cs->parent;
 300        if (cs)
 301                nodes_and(*pmask, cs->mems_allowed,
 302                                        node_states[N_HIGH_MEMORY]);
 303        else
 304                *pmask = node_states[N_HIGH_MEMORY];
 305        BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
 306}
 307
 308/*
 309 * update task's spread flag if cpuset's page/slab spread flag is set
 310 *
 311 * Called with callback_mutex/cgroup_mutex held
 312 */
 313static void cpuset_update_task_spread_flag(struct cpuset *cs,
 314                                        struct task_struct *tsk)
 315{
 316        if (is_spread_page(cs))
 317                tsk->flags |= PF_SPREAD_PAGE;
 318        else
 319                tsk->flags &= ~PF_SPREAD_PAGE;
 320        if (is_spread_slab(cs))
 321                tsk->flags |= PF_SPREAD_SLAB;
 322        else
 323                tsk->flags &= ~PF_SPREAD_SLAB;
 324}
 325
 326/*
 327 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 328 *
 329 * One cpuset is a subset of another if all its allowed CPUs and
 330 * Memory Nodes are a subset of the other, and its exclusive flags
 331 * are only set if the other's are set.  Call holding cgroup_mutex.
 332 */
 333
 334static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 335{
 336        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 337                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 338                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 339                is_mem_exclusive(p) <= is_mem_exclusive(q);
 340}
 341
 342/**
 343 * alloc_trial_cpuset - allocate a trial cpuset
 344 * @cs: the cpuset that the trial cpuset duplicates
 345 */
 346static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
 347{
 348        struct cpuset *trial;
 349
 350        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 351        if (!trial)
 352                return NULL;
 353
 354        if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
 355                kfree(trial);
 356                return NULL;
 357        }
 358        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 359
 360        return trial;
 361}
 362
 363/**
 364 * free_trial_cpuset - free the trial cpuset
 365 * @trial: the trial cpuset to be freed
 366 */
 367static void free_trial_cpuset(struct cpuset *trial)
 368{
 369        free_cpumask_var(trial->cpus_allowed);
 370        kfree(trial);
 371}
 372
 373/*
 374 * validate_change() - Used to validate that any proposed cpuset change
 375 *                     follows the structural rules for cpusets.
 376 *
 377 * If we replaced the flag and mask values of the current cpuset
 378 * (cur) with those values in the trial cpuset (trial), would
 379 * our various subset and exclusive rules still be valid?  Presumes
 380 * cgroup_mutex held.
 381 *
 382 * 'cur' is the address of an actual, in-use cpuset.  Operations
 383 * such as list traversal that depend on the actual address of the
 384 * cpuset in the list must use cur below, not trial.
 385 *
 386 * 'trial' is the address of bulk structure copy of cur, with
 387 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 388 * or flags changed to new, trial values.
 389 *
 390 * Return 0 if valid, -errno if not.
 391 */
 392
 393static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
 394{
 395        struct cgroup *cont;
 396        struct cpuset *c, *par;
 397
 398        /* Each of our child cpusets must be a subset of us */
 399        list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
 400                if (!is_cpuset_subset(cgroup_cs(cont), trial))
 401                        return -EBUSY;
 402        }
 403
 404        /* Remaining checks don't apply to root cpuset */
 405        if (cur == &top_cpuset)
 406                return 0;
 407
 408        par = cur->parent;
 409
 410        /* We must be a subset of our parent cpuset */
 411        if (!is_cpuset_subset(trial, par))
 412                return -EACCES;
 413
 414        /*
 415         * If either I or some sibling (!= me) is exclusive, we can't
 416         * overlap
 417         */
 418        list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
 419                c = cgroup_cs(cont);
 420                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 421                    c != cur &&
 422                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 423                        return -EINVAL;
 424                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 425                    c != cur &&
 426                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 427                        return -EINVAL;
 428        }
 429
 430        /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
 431        if (cgroup_task_count(cur->css.cgroup)) {
 432                if (cpumask_empty(trial->cpus_allowed) ||
 433                    nodes_empty(trial->mems_allowed)) {
 434                        return -ENOSPC;
 435                }
 436        }
 437
 438        return 0;
 439}
 440
 441#ifdef CONFIG_SMP
 442/*
 443 * Helper routine for generate_sched_domains().
 444 * Do cpusets a, b have overlapping cpus_allowed masks?
 445 */
 446static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 447{
 448        return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
 449}
 450
 451static void
 452update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 453{
 454        if (dattr->relax_domain_level < c->relax_domain_level)
 455                dattr->relax_domain_level = c->relax_domain_level;
 456        return;
 457}
 458
 459static void
 460update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
 461{
 462        LIST_HEAD(q);
 463
 464        list_add(&c->stack_list, &q);
 465        while (!list_empty(&q)) {
 466                struct cpuset *cp;
 467                struct cgroup *cont;
 468                struct cpuset *child;
 469
 470                cp = list_first_entry(&q, struct cpuset, stack_list);
 471                list_del(q.next);
 472
 473                if (cpumask_empty(cp->cpus_allowed))
 474                        continue;
 475
 476                if (is_sched_load_balance(cp))
 477                        update_domain_attr(dattr, cp);
 478
 479                list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
 480                        child = cgroup_cs(cont);
 481                        list_add_tail(&child->stack_list, &q);
 482                }
 483        }
 484}
 485
 486/*
 487 * generate_sched_domains()
 488 *
 489 * This function builds a partial partition of the systems CPUs
 490 * A 'partial partition' is a set of non-overlapping subsets whose
 491 * union is a subset of that set.
 492 * The output of this function needs to be passed to kernel/sched.c
 493 * partition_sched_domains() routine, which will rebuild the scheduler's
 494 * load balancing domains (sched domains) as specified by that partial
 495 * partition.
 496 *
 497 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 498 * for a background explanation of this.
 499 *
 500 * Does not return errors, on the theory that the callers of this
 501 * routine would rather not worry about failures to rebuild sched
 502 * domains when operating in the severe memory shortage situations
 503 * that could cause allocation failures below.
 504 *
 505 * Must be called with cgroup_lock held.
 506 *
 507 * The three key local variables below are:
 508 *    q  - a linked-list queue of cpuset pointers, used to implement a
 509 *         top-down scan of all cpusets.  This scan loads a pointer
 510 *         to each cpuset marked is_sched_load_balance into the
 511 *         array 'csa'.  For our purposes, rebuilding the schedulers
 512 *         sched domains, we can ignore !is_sched_load_balance cpusets.
 513 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 514 *         that need to be load balanced, for convenient iterative
 515 *         access by the subsequent code that finds the best partition,
 516 *         i.e the set of domains (subsets) of CPUs such that the
 517 *         cpus_allowed of every cpuset marked is_sched_load_balance
 518 *         is a subset of one of these domains, while there are as
 519 *         many such domains as possible, each as small as possible.
 520 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 521 *         the kernel/sched.c routine partition_sched_domains() in a
 522 *         convenient format, that can be easily compared to the prior
 523 *         value to determine what partition elements (sched domains)
 524 *         were changed (added or removed.)
 525 *
 526 * Finding the best partition (set of domains):
 527 *      The triple nested loops below over i, j, k scan over the
 528 *      load balanced cpusets (using the array of cpuset pointers in
 529 *      csa[]) looking for pairs of cpusets that have overlapping
 530 *      cpus_allowed, but which don't have the same 'pn' partition
 531 *      number and gives them in the same partition number.  It keeps
 532 *      looping on the 'restart' label until it can no longer find
 533 *      any such pairs.
 534 *
 535 *      The union of the cpus_allowed masks from the set of
 536 *      all cpusets having the same 'pn' value then form the one
 537 *      element of the partition (one sched domain) to be passed to
 538 *      partition_sched_domains().
 539 */
 540/* FIXME: see the FIXME in partition_sched_domains() */
 541static int generate_sched_domains(struct cpumask **domains,
 542                        struct sched_domain_attr **attributes)
 543{
 544        LIST_HEAD(q);           /* queue of cpusets to be scanned */
 545        struct cpuset *cp;      /* scans q */
 546        struct cpuset **csa;    /* array of all cpuset ptrs */
 547        int csn;                /* how many cpuset ptrs in csa so far */
 548        int i, j, k;            /* indices for partition finding loops */
 549        struct cpumask *doms;   /* resulting partition; i.e. sched domains */
 550        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 551        int ndoms = 0;          /* number of sched domains in result */
 552        int nslot;              /* next empty doms[] struct cpumask slot */
 553
 554        doms = NULL;
 555        dattr = NULL;
 556        csa = NULL;
 557
 558        /* Special case for the 99% of systems with one, full, sched domain */
 559        if (is_sched_load_balance(&top_cpuset)) {
 560                doms = kmalloc(cpumask_size(), GFP_KERNEL);
 561                if (!doms)
 562                        goto done;
 563
 564                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 565                if (dattr) {
 566                        *dattr = SD_ATTR_INIT;
 567                        update_domain_attr_tree(dattr, &top_cpuset);
 568                }
 569                cpumask_copy(doms, top_cpuset.cpus_allowed);
 570
 571                ndoms = 1;
 572                goto done;
 573        }
 574
 575        csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
 576        if (!csa)
 577                goto done;
 578        csn = 0;
 579
 580        list_add(&top_cpuset.stack_list, &q);
 581        while (!list_empty(&q)) {
 582                struct cgroup *cont;
 583                struct cpuset *child;   /* scans child cpusets of cp */
 584
 585                cp = list_first_entry(&q, struct cpuset, stack_list);
 586                list_del(q.next);
 587
 588                if (cpumask_empty(cp->cpus_allowed))
 589                        continue;
 590
 591                /*
 592                 * All child cpusets contain a subset of the parent's cpus, so
 593                 * just skip them, and then we call update_domain_attr_tree()
 594                 * to calc relax_domain_level of the corresponding sched
 595                 * domain.
 596                 */
 597                if (is_sched_load_balance(cp)) {
 598                        csa[csn++] = cp;
 599                        continue;
 600                }
 601
 602                list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
 603                        child = cgroup_cs(cont);
 604                        list_add_tail(&child->stack_list, &q);
 605                }
 606        }
 607
 608        for (i = 0; i < csn; i++)
 609                csa[i]->pn = i;
 610        ndoms = csn;
 611
 612restart:
 613        /* Find the best partition (set of sched domains) */
 614        for (i = 0; i < csn; i++) {
 615                struct cpuset *a = csa[i];
 616                int apn = a->pn;
 617
 618                for (j = 0; j < csn; j++) {
 619                        struct cpuset *b = csa[j];
 620                        int bpn = b->pn;
 621
 622                        if (apn != bpn && cpusets_overlap(a, b)) {
 623                                for (k = 0; k < csn; k++) {
 624                                        struct cpuset *c = csa[k];
 625
 626                                        if (c->pn == bpn)
 627                                                c->pn = apn;
 628                                }
 629                                ndoms--;        /* one less element */
 630                                goto restart;
 631                        }
 632                }
 633        }
 634
 635        /*
 636         * Now we know how many domains to create.
 637         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 638         */
 639        doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
 640        if (!doms)
 641                goto done;
 642
 643        /*
 644         * The rest of the code, including the scheduler, can deal with
 645         * dattr==NULL case. No need to abort if alloc fails.
 646         */
 647        dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 648
 649        for (nslot = 0, i = 0; i < csn; i++) {
 650                struct cpuset *a = csa[i];
 651                struct cpumask *dp;
 652                int apn = a->pn;
 653
 654                if (apn < 0) {
 655                        /* Skip completed partitions */
 656                        continue;
 657                }
 658
 659                dp = doms + nslot;
 660
 661                if (nslot == ndoms) {
 662                        static int warnings = 10;
 663                        if (warnings) {
 664                                printk(KERN_WARNING
 665                                 "rebuild_sched_domains confused:"
 666                                  " nslot %d, ndoms %d, csn %d, i %d,"
 667                                  " apn %d\n",
 668                                  nslot, ndoms, csn, i, apn);
 669                                warnings--;
 670                        }
 671                        continue;
 672                }
 673
 674                cpumask_clear(dp);
 675                if (dattr)
 676                        *(dattr + nslot) = SD_ATTR_INIT;
 677                for (j = i; j < csn; j++) {
 678                        struct cpuset *b = csa[j];
 679
 680                        if (apn == b->pn) {
 681                                cpumask_or(dp, dp, b->cpus_allowed);
 682                                if (dattr)
 683                                        update_domain_attr_tree(dattr + nslot, b);
 684
 685                                /* Done with this partition */
 686                                b->pn = -1;
 687                        }
 688                }
 689                nslot++;
 690        }
 691        BUG_ON(nslot != ndoms);
 692
 693done:
 694        kfree(csa);
 695
 696        /*
 697         * Fallback to the default domain if kmalloc() failed.
 698         * See comments in partition_sched_domains().
 699         */
 700        if (doms == NULL)
 701                ndoms = 1;
 702
 703        *domains    = doms;
 704        *attributes = dattr;
 705        return ndoms;
 706}
 707
 708/*
 709 * Rebuild scheduler domains.
 710 *
 711 * Call with neither cgroup_mutex held nor within get_online_cpus().
 712 * Takes both cgroup_mutex and get_online_cpus().
 713 *
 714 * Cannot be directly called from cpuset code handling changes
 715 * to the cpuset pseudo-filesystem, because it cannot be called
 716 * from code that already holds cgroup_mutex.
 717 */
 718static void do_rebuild_sched_domains(struct work_struct *unused)
 719{
 720        struct sched_domain_attr *attr;
 721        struct cpumask *doms;
 722        int ndoms;
 723
 724        get_online_cpus();
 725
 726        /* Generate domain masks and attrs */
 727        cgroup_lock();
 728        ndoms = generate_sched_domains(&doms, &attr);
 729        cgroup_unlock();
 730
 731        /* Have scheduler rebuild the domains */
 732        partition_sched_domains(ndoms, doms, attr);
 733
 734        put_online_cpus();
 735}
 736#else /* !CONFIG_SMP */
 737static void do_rebuild_sched_domains(struct work_struct *unused)
 738{
 739}
 740
 741static int generate_sched_domains(struct cpumask **domains,
 742                        struct sched_domain_attr **attributes)
 743{
 744        *domains = NULL;
 745        return 1;
 746}
 747#endif /* CONFIG_SMP */
 748
 749static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
 750
 751/*
 752 * Rebuild scheduler domains, asynchronously via workqueue.
 753 *
 754 * If the flag 'sched_load_balance' of any cpuset with non-empty
 755 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 756 * which has that flag enabled, or if any cpuset with a non-empty
 757 * 'cpus' is removed, then call this routine to rebuild the
 758 * scheduler's dynamic sched domains.
 759 *
 760 * The rebuild_sched_domains() and partition_sched_domains()
 761 * routines must nest cgroup_lock() inside get_online_cpus(),
 762 * but such cpuset changes as these must nest that locking the
 763 * other way, holding cgroup_lock() for much of the code.
 764 *
 765 * So in order to avoid an ABBA deadlock, the cpuset code handling
 766 * these user changes delegates the actual sched domain rebuilding
 767 * to a separate workqueue thread, which ends up processing the
 768 * above do_rebuild_sched_domains() function.
 769 */
 770static void async_rebuild_sched_domains(void)
 771{
 772        queue_work(cpuset_wq, &rebuild_sched_domains_work);
 773}
 774
 775/*
 776 * Accomplishes the same scheduler domain rebuild as the above
 777 * async_rebuild_sched_domains(), however it directly calls the
 778 * rebuild routine synchronously rather than calling it via an
 779 * asynchronous work thread.
 780 *
 781 * This can only be called from code that is not holding
 782 * cgroup_mutex (not nested in a cgroup_lock() call.)
 783 */
 784void rebuild_sched_domains(void)
 785{
 786        do_rebuild_sched_domains(NULL);
 787}
 788
 789/**
 790 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 791 * @tsk: task to test
 792 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 793 *
 794 * Call with cgroup_mutex held.  May take callback_mutex during call.
 795 * Called for each task in a cgroup by cgroup_scan_tasks().
 796 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 797 * words, if its mask is not equal to its cpuset's mask).
 798 */
 799static int cpuset_test_cpumask(struct task_struct *tsk,
 800                               struct cgroup_scanner *scan)
 801{
 802        return !cpumask_equal(&tsk->cpus_allowed,
 803                        (cgroup_cs(scan->cg))->cpus_allowed);
 804}
 805
 806/**
 807 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 808 * @tsk: task to test
 809 * @scan: struct cgroup_scanner containing the cgroup of the task
 810 *
 811 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 812 * cpus_allowed mask needs to be changed.
 813 *
 814 * We don't need to re-check for the cgroup/cpuset membership, since we're
 815 * holding cgroup_lock() at this point.
 816 */
 817static void cpuset_change_cpumask(struct task_struct *tsk,
 818                                  struct cgroup_scanner *scan)
 819{
 820        set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
 821}
 822
 823/**
 824 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 825 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 826 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 827 *
 828 * Called with cgroup_mutex held
 829 *
 830 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 831 * calling callback functions for each.
 832 *
 833 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 834 * if @heap != NULL.
 835 */
 836static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
 837{
 838        struct cgroup_scanner scan;
 839
 840        scan.cg = cs->css.cgroup;
 841        scan.test_task = cpuset_test_cpumask;
 842        scan.process_task = cpuset_change_cpumask;
 843        scan.heap = heap;
 844        cgroup_scan_tasks(&scan);
 845}
 846
 847/**
 848 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 849 * @cs: the cpuset to consider
 850 * @buf: buffer of cpu numbers written to this cpuset
 851 */
 852static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 853                          const char *buf)
 854{
 855        struct ptr_heap heap;
 856        int retval;
 857        int is_load_balanced;
 858
 859        /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
 860        if (cs == &top_cpuset)
 861                return -EACCES;
 862
 863        /*
 864         * An empty cpus_allowed is ok only if the cpuset has no tasks.
 865         * Since cpulist_parse() fails on an empty mask, we special case
 866         * that parsing.  The validate_change() call ensures that cpusets
 867         * with tasks have cpus.
 868         */
 869        if (!*buf) {
 870                cpumask_clear(trialcs->cpus_allowed);
 871        } else {
 872                retval = cpulist_parse(buf, trialcs->cpus_allowed);
 873                if (retval < 0)
 874                        return retval;
 875
 876                if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
 877                        return -EINVAL;
 878        }
 879        retval = validate_change(cs, trialcs);
 880        if (retval < 0)
 881                return retval;
 882
 883        /* Nothing to do if the cpus didn't change */
 884        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 885                return 0;
 886
 887        retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 888        if (retval)
 889                return retval;
 890
 891        is_load_balanced = is_sched_load_balance(trialcs);
 892
 893        mutex_lock(&callback_mutex);
 894        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 895        mutex_unlock(&callback_mutex);
 896
 897        /*
 898         * Scan tasks in the cpuset, and update the cpumasks of any
 899         * that need an update.
 900         */
 901        update_tasks_cpumask(cs, &heap);
 902
 903        heap_free(&heap);
 904
 905        if (is_load_balanced)
 906                async_rebuild_sched_domains();
 907        return 0;
 908}
 909
 910/*
 911 * cpuset_migrate_mm
 912 *
 913 *    Migrate memory region from one set of nodes to another.
 914 *
 915 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 916 *    so that the migration code can allocate pages on these nodes.
 917 *
 918 *    Call holding cgroup_mutex, so current's cpuset won't change
 919 *    during this call, as manage_mutex holds off any cpuset_attach()
 920 *    calls.  Therefore we don't need to take task_lock around the
 921 *    call to guarantee_online_mems(), as we know no one is changing
 922 *    our task's cpuset.
 923 *
 924 *    Hold callback_mutex around the two modifications of our tasks
 925 *    mems_allowed to synchronize with cpuset_mems_allowed().
 926 *
 927 *    While the mm_struct we are migrating is typically from some
 928 *    other task, the task_struct mems_allowed that we are hacking
 929 *    is for our current task, which must allocate new pages for that
 930 *    migrating memory region.
 931 */
 932
 933static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 934                                                        const nodemask_t *to)
 935{
 936        struct task_struct *tsk = current;
 937
 938        tsk->mems_allowed = *to;
 939
 940        do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 941
 942        guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
 943}
 944
 945/*
 946 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 947 * @tsk: the task to change
 948 * @newmems: new nodes that the task will be set
 949 *
 950 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 951 * we structure updates as setting all new allowed nodes, then clearing newly
 952 * disallowed ones.
 953 *
 954 * Called with task's alloc_lock held
 955 */
 956static void cpuset_change_task_nodemask(struct task_struct *tsk,
 957                                        nodemask_t *newmems)
 958{
 959        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
 960        mpol_rebind_task(tsk, &tsk->mems_allowed);
 961        mpol_rebind_task(tsk, newmems);
 962        tsk->mems_allowed = *newmems;
 963}
 964
 965/*
 966 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 967 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 968 * memory_migrate flag is set. Called with cgroup_mutex held.
 969 */
 970static void cpuset_change_nodemask(struct task_struct *p,
 971                                   struct cgroup_scanner *scan)
 972{
 973        struct mm_struct *mm;
 974        struct cpuset *cs;
 975        int migrate;
 976        const nodemask_t *oldmem = scan->data;
 977        nodemask_t newmems;
 978
 979        cs = cgroup_cs(scan->cg);
 980        guarantee_online_mems(cs, &newmems);
 981
 982        task_lock(p);
 983        cpuset_change_task_nodemask(p, &newmems);
 984        task_unlock(p);
 985
 986        mm = get_task_mm(p);
 987        if (!mm)
 988                return;
 989
 990        migrate = is_memory_migrate(cs);
 991
 992        mpol_rebind_mm(mm, &cs->mems_allowed);
 993        if (migrate)
 994                cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
 995        mmput(mm);
 996}
 997
 998static void *cpuset_being_rebound;
 999
1000/**
1001 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1002 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1003 * @oldmem: old mems_allowed of cpuset cs
1004 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1005 *
1006 * Called with cgroup_mutex held
1007 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1008 * if @heap != NULL.
1009 */
1010static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1011                                 struct ptr_heap *heap)
1012{
1013        struct cgroup_scanner scan;
1014
1015        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1016
1017        scan.cg = cs->css.cgroup;
1018        scan.test_task = NULL;
1019        scan.process_task = cpuset_change_nodemask;
1020        scan.heap = heap;
1021        scan.data = (nodemask_t *)oldmem;
1022
1023        /*
1024         * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1025         * take while holding tasklist_lock.  Forks can happen - the
1026         * mpol_dup() cpuset_being_rebound check will catch such forks,
1027         * and rebind their vma mempolicies too.  Because we still hold
1028         * the global cgroup_mutex, we know that no other rebind effort
1029         * will be contending for the global variable cpuset_being_rebound.
1030         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1031         * is idempotent.  Also migrate pages in each mm to new nodes.
1032         */
1033        cgroup_scan_tasks(&scan);
1034
1035        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1036        cpuset_being_rebound = NULL;
1037}
1038
1039/*
1040 * Handle user request to change the 'mems' memory placement
1041 * of a cpuset.  Needs to validate the request, update the
1042 * cpusets mems_allowed, and for each task in the cpuset,
1043 * update mems_allowed and rebind task's mempolicy and any vma
1044 * mempolicies and if the cpuset is marked 'memory_migrate',
1045 * migrate the tasks pages to the new memory.
1046 *
1047 * Call with cgroup_mutex held.  May take callback_mutex during call.
1048 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1049 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1050 * their mempolicies to the cpusets new mems_allowed.
1051 */
1052static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1053                           const char *buf)
1054{
1055        nodemask_t oldmem;
1056        int retval;
1057        struct ptr_heap heap;
1058
1059        /*
1060         * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1061         * it's read-only
1062         */
1063        if (cs == &top_cpuset)
1064                return -EACCES;
1065
1066        /*
1067         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1068         * Since nodelist_parse() fails on an empty mask, we special case
1069         * that parsing.  The validate_change() call ensures that cpusets
1070         * with tasks have memory.
1071         */
1072        if (!*buf) {
1073                nodes_clear(trialcs->mems_allowed);
1074        } else {
1075                retval = nodelist_parse(buf, trialcs->mems_allowed);
1076                if (retval < 0)
1077                        goto done;
1078
1079                if (!nodes_subset(trialcs->mems_allowed,
1080                                node_states[N_HIGH_MEMORY]))
1081                        return -EINVAL;
1082        }
1083        oldmem = cs->mems_allowed;
1084        if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1085                retval = 0;             /* Too easy - nothing to do */
1086                goto done;
1087        }
1088        retval = validate_change(cs, trialcs);
1089        if (retval < 0)
1090                goto done;
1091
1092        retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1093        if (retval < 0)
1094                goto done;
1095
1096        mutex_lock(&callback_mutex);
1097        cs->mems_allowed = trialcs->mems_allowed;
1098        mutex_unlock(&callback_mutex);
1099
1100        update_tasks_nodemask(cs, &oldmem, &heap);
1101
1102        heap_free(&heap);
1103done:
1104        return retval;
1105}
1106
1107int current_cpuset_is_being_rebound(void)
1108{
1109        return task_cs(current) == cpuset_being_rebound;
1110}
1111
1112static int update_relax_domain_level(struct cpuset *cs, s64 val)
1113{
1114#ifdef CONFIG_SMP
1115        if (val < -1 || val >= SD_LV_MAX)
1116                return -EINVAL;
1117#endif
1118
1119        if (val != cs->relax_domain_level) {
1120                cs->relax_domain_level = val;
1121                if (!cpumask_empty(cs->cpus_allowed) &&
1122                    is_sched_load_balance(cs))
1123                        async_rebuild_sched_domains();
1124        }
1125
1126        return 0;
1127}
1128
1129/*
1130 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1131 * @tsk: task to be updated
1132 * @scan: struct cgroup_scanner containing the cgroup of the task
1133 *
1134 * Called by cgroup_scan_tasks() for each task in a cgroup.
1135 *
1136 * We don't need to re-check for the cgroup/cpuset membership, since we're
1137 * holding cgroup_lock() at this point.
1138 */
1139static void cpuset_change_flag(struct task_struct *tsk,
1140                                struct cgroup_scanner *scan)
1141{
1142        cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1143}
1144
1145/*
1146 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1147 * @cs: the cpuset in which each task's spread flags needs to be changed
1148 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1149 *
1150 * Called with cgroup_mutex held
1151 *
1152 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1153 * calling callback functions for each.
1154 *
1155 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1156 * if @heap != NULL.
1157 */
1158static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1159{
1160        struct cgroup_scanner scan;
1161
1162        scan.cg = cs->css.cgroup;
1163        scan.test_task = NULL;
1164        scan.process_task = cpuset_change_flag;
1165        scan.heap = heap;
1166        cgroup_scan_tasks(&scan);
1167}
1168
1169/*
1170 * update_flag - read a 0 or a 1 in a file and update associated flag
1171 * bit:         the bit to update (see cpuset_flagbits_t)
1172 * cs:          the cpuset to update
1173 * turning_on:  whether the flag is being set or cleared
1174 *
1175 * Call with cgroup_mutex held.
1176 */
1177
1178static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1179                       int turning_on)
1180{
1181        struct cpuset *trialcs;
1182        int balance_flag_changed;
1183        int spread_flag_changed;
1184        struct ptr_heap heap;
1185        int err;
1186
1187        trialcs = alloc_trial_cpuset(cs);
1188        if (!trialcs)
1189                return -ENOMEM;
1190
1191        if (turning_on)
1192                set_bit(bit, &trialcs->flags);
1193        else
1194                clear_bit(bit, &trialcs->flags);
1195
1196        err = validate_change(cs, trialcs);
1197        if (err < 0)
1198                goto out;
1199
1200        err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1201        if (err < 0)
1202                goto out;
1203
1204        balance_flag_changed = (is_sched_load_balance(cs) !=
1205                                is_sched_load_balance(trialcs));
1206
1207        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1208                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1209
1210        mutex_lock(&callback_mutex);
1211        cs->flags = trialcs->flags;
1212        mutex_unlock(&callback_mutex);
1213
1214        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1215                async_rebuild_sched_domains();
1216
1217        if (spread_flag_changed)
1218                update_tasks_flags(cs, &heap);
1219        heap_free(&heap);
1220out:
1221        free_trial_cpuset(trialcs);
1222        return err;
1223}
1224
1225/*
1226 * Frequency meter - How fast is some event occurring?
1227 *
1228 * These routines manage a digitally filtered, constant time based,
1229 * event frequency meter.  There are four routines:
1230 *   fmeter_init() - initialize a frequency meter.
1231 *   fmeter_markevent() - called each time the event happens.
1232 *   fmeter_getrate() - returns the recent rate of such events.
1233 *   fmeter_update() - internal routine used to update fmeter.
1234 *
1235 * A common data structure is passed to each of these routines,
1236 * which is used to keep track of the state required to manage the
1237 * frequency meter and its digital filter.
1238 *
1239 * The filter works on the number of events marked per unit time.
1240 * The filter is single-pole low-pass recursive (IIR).  The time unit
1241 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1242 * simulate 3 decimal digits of precision (multiplied by 1000).
1243 *
1244 * With an FM_COEF of 933, and a time base of 1 second, the filter
1245 * has a half-life of 10 seconds, meaning that if the events quit
1246 * happening, then the rate returned from the fmeter_getrate()
1247 * will be cut in half each 10 seconds, until it converges to zero.
1248 *
1249 * It is not worth doing a real infinitely recursive filter.  If more
1250 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1251 * just compute FM_MAXTICKS ticks worth, by which point the level
1252 * will be stable.
1253 *
1254 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1255 * arithmetic overflow in the fmeter_update() routine.
1256 *
1257 * Given the simple 32 bit integer arithmetic used, this meter works
1258 * best for reporting rates between one per millisecond (msec) and
1259 * one per 32 (approx) seconds.  At constant rates faster than one
1260 * per msec it maxes out at values just under 1,000,000.  At constant
1261 * rates between one per msec, and one per second it will stabilize
1262 * to a value N*1000, where N is the rate of events per second.
1263 * At constant rates between one per second and one per 32 seconds,
1264 * it will be choppy, moving up on the seconds that have an event,
1265 * and then decaying until the next event.  At rates slower than
1266 * about one in 32 seconds, it decays all the way back to zero between
1267 * each event.
1268 */
1269
1270#define FM_COEF 933             /* coefficient for half-life of 10 secs */
1271#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1272#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
1273#define FM_SCALE 1000           /* faux fixed point scale */
1274
1275/* Initialize a frequency meter */
1276static void fmeter_init(struct fmeter *fmp)
1277{
1278        fmp->cnt = 0;
1279        fmp->val = 0;
1280        fmp->time = 0;
1281        spin_lock_init(&fmp->lock);
1282}
1283
1284/* Internal meter update - process cnt events and update value */
1285static void fmeter_update(struct fmeter *fmp)
1286{
1287        time_t now = get_seconds();
1288        time_t ticks = now - fmp->time;
1289
1290        if (ticks == 0)
1291                return;
1292
1293        ticks = min(FM_MAXTICKS, ticks);
1294        while (ticks-- > 0)
1295                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1296        fmp->time = now;
1297
1298        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1299        fmp->cnt = 0;
1300}
1301
1302/* Process any previous ticks, then bump cnt by one (times scale). */
1303static void fmeter_markevent(struct fmeter *fmp)
1304{
1305        spin_lock(&fmp->lock);
1306        fmeter_update(fmp);
1307        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1308        spin_unlock(&fmp->lock);
1309}
1310
1311/* Process any previous ticks, then return current value. */
1312static int fmeter_getrate(struct fmeter *fmp)
1313{
1314        int val;
1315
1316        spin_lock(&fmp->lock);
1317        fmeter_update(fmp);
1318        val = fmp->val;
1319        spin_unlock(&fmp->lock);
1320        return val;
1321}
1322
1323/* Protected by cgroup_lock */
1324static cpumask_var_t cpus_attach;
1325
1326/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1327static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1328                             struct task_struct *tsk, bool threadgroup)
1329{
1330        int ret;
1331        struct cpuset *cs = cgroup_cs(cont);
1332
1333        if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1334                return -ENOSPC;
1335
1336        /*
1337         * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1338         * cannot change their cpu affinity and isolating such threads by their
1339         * set of allowed nodes is unnecessary.  Thus, cpusets are not
1340         * applicable for such threads.  This prevents checking for success of
1341         * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1342         * be changed.
1343         */
1344        if (tsk->flags & PF_THREAD_BOUND)
1345                return -EINVAL;
1346
1347        ret = security_task_setscheduler(tsk, 0, NULL);
1348        if (ret)
1349                return ret;
1350        if (threadgroup) {
1351                struct task_struct *c;
1352
1353                rcu_read_lock();
1354                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1355                        ret = security_task_setscheduler(c, 0, NULL);
1356                        if (ret) {
1357                                rcu_read_unlock();
1358                                return ret;
1359                        }
1360                }
1361                rcu_read_unlock();
1362        }
1363        return 0;
1364}
1365
1366static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1367                               struct cpuset *cs)
1368{
1369        int err;
1370        /*
1371         * can_attach beforehand should guarantee that this doesn't fail.
1372         * TODO: have a better way to handle failure here
1373         */
1374        err = set_cpus_allowed_ptr(tsk, cpus_attach);
1375        WARN_ON_ONCE(err);
1376
1377        task_lock(tsk);
1378        cpuset_change_task_nodemask(tsk, to);
1379        task_unlock(tsk);
1380        cpuset_update_task_spread_flag(cs, tsk);
1381
1382}
1383
1384static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1385                          struct cgroup *oldcont, struct task_struct *tsk,
1386                          bool threadgroup)
1387{
1388        nodemask_t from, to;
1389        struct mm_struct *mm;
1390        struct cpuset *cs = cgroup_cs(cont);
1391        struct cpuset *oldcs = cgroup_cs(oldcont);
1392
1393        if (cs == &top_cpuset) {
1394                cpumask_copy(cpus_attach, cpu_possible_mask);
1395                to = node_possible_map;
1396        } else {
1397                guarantee_online_cpus(cs, cpus_attach);
1398                guarantee_online_mems(cs, &to);
1399        }
1400
1401        /* do per-task migration stuff possibly for each in the threadgroup */
1402        cpuset_attach_task(tsk, &to, cs);
1403        if (threadgroup) {
1404                struct task_struct *c;
1405                rcu_read_lock();
1406                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1407                        cpuset_attach_task(c, &to, cs);
1408                }
1409                rcu_read_unlock();
1410        }
1411
1412        /* change mm; only needs to be done once even if threadgroup */
1413        from = oldcs->mems_allowed;
1414        to = cs->mems_allowed;
1415        mm = get_task_mm(tsk);
1416        if (mm) {
1417                mpol_rebind_mm(mm, &to);
1418                if (is_memory_migrate(cs))
1419                        cpuset_migrate_mm(mm, &from, &to);
1420                mmput(mm);
1421        }
1422}
1423
1424/* The various types of files and directories in a cpuset file system */
1425
1426typedef enum {
1427        FILE_MEMORY_MIGRATE,
1428        FILE_CPULIST,
1429        FILE_MEMLIST,
1430        FILE_CPU_EXCLUSIVE,
1431        FILE_MEM_EXCLUSIVE,
1432        FILE_MEM_HARDWALL,
1433        FILE_SCHED_LOAD_BALANCE,
1434        FILE_SCHED_RELAX_DOMAIN_LEVEL,
1435        FILE_MEMORY_PRESSURE_ENABLED,
1436        FILE_MEMORY_PRESSURE,
1437        FILE_SPREAD_PAGE,
1438        FILE_SPREAD_SLAB,
1439} cpuset_filetype_t;
1440
1441static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1442{
1443        int retval = 0;
1444        struct cpuset *cs = cgroup_cs(cgrp);
1445        cpuset_filetype_t type = cft->private;
1446
1447        if (!cgroup_lock_live_group(cgrp))
1448                return -ENODEV;
1449
1450        switch (type) {
1451        case FILE_CPU_EXCLUSIVE:
1452                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1453                break;
1454        case FILE_MEM_EXCLUSIVE:
1455                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1456                break;
1457        case FILE_MEM_HARDWALL:
1458                retval = update_flag(CS_MEM_HARDWALL, cs, val);
1459                break;
1460        case FILE_SCHED_LOAD_BALANCE:
1461                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1462                break;
1463        case FILE_MEMORY_MIGRATE:
1464                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1465                break;
1466        case FILE_MEMORY_PRESSURE_ENABLED:
1467                cpuset_memory_pressure_enabled = !!val;
1468                break;
1469        case FILE_MEMORY_PRESSURE:
1470                retval = -EACCES;
1471                break;
1472        case FILE_SPREAD_PAGE:
1473                retval = update_flag(CS_SPREAD_PAGE, cs, val);
1474                break;
1475        case FILE_SPREAD_SLAB:
1476                retval = update_flag(CS_SPREAD_SLAB, cs, val);
1477                break;
1478        default:
1479                retval = -EINVAL;
1480                break;
1481        }
1482        cgroup_unlock();
1483        return retval;
1484}
1485
1486static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1487{
1488        int retval = 0;
1489        struct cpuset *cs = cgroup_cs(cgrp);
1490        cpuset_filetype_t type = cft->private;
1491
1492        if (!cgroup_lock_live_group(cgrp))
1493                return -ENODEV;
1494
1495        switch (type) {
1496        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1497                retval = update_relax_domain_level(cs, val);
1498                break;
1499        default:
1500                retval = -EINVAL;
1501                break;
1502        }
1503        cgroup_unlock();
1504        return retval;
1505}
1506
1507/*
1508 * Common handling for a write to a "cpus" or "mems" file.
1509 */
1510static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1511                                const char *buf)
1512{
1513        int retval = 0;
1514        struct cpuset *cs = cgroup_cs(cgrp);
1515        struct cpuset *trialcs;
1516
1517        if (!cgroup_lock_live_group(cgrp))
1518                return -ENODEV;
1519
1520        trialcs = alloc_trial_cpuset(cs);
1521        if (!trialcs)
1522                return -ENOMEM;
1523
1524        switch (cft->private) {
1525        case FILE_CPULIST:
1526                retval = update_cpumask(cs, trialcs, buf);
1527                break;
1528        case FILE_MEMLIST:
1529                retval = update_nodemask(cs, trialcs, buf);
1530                break;
1531        default:
1532                retval = -EINVAL;
1533                break;
1534        }
1535
1536        free_trial_cpuset(trialcs);
1537        cgroup_unlock();
1538        return retval;
1539}
1540
1541/*
1542 * These ascii lists should be read in a single call, by using a user
1543 * buffer large enough to hold the entire map.  If read in smaller
1544 * chunks, there is no guarantee of atomicity.  Since the display format
1545 * used, list of ranges of sequential numbers, is variable length,
1546 * and since these maps can change value dynamically, one could read
1547 * gibberish by doing partial reads while a list was changing.
1548 * A single large read to a buffer that crosses a page boundary is
1549 * ok, because the result being copied to user land is not recomputed
1550 * across a page fault.
1551 */
1552
1553static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1554{
1555        int ret;
1556
1557        mutex_lock(&callback_mutex);
1558        ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1559        mutex_unlock(&callback_mutex);
1560
1561        return ret;
1562}
1563
1564static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1565{
1566        nodemask_t mask;
1567
1568        mutex_lock(&callback_mutex);
1569        mask = cs->mems_allowed;
1570        mutex_unlock(&callback_mutex);
1571
1572        return nodelist_scnprintf(page, PAGE_SIZE, mask);
1573}
1574
1575static ssize_t cpuset_common_file_read(struct cgroup *cont,
1576                                       struct cftype *cft,
1577                                       struct file *file,
1578                                       char __user *buf,
1579                                       size_t nbytes, loff_t *ppos)
1580{
1581        struct cpuset *cs = cgroup_cs(cont);
1582        cpuset_filetype_t type = cft->private;
1583        char *page;
1584        ssize_t retval = 0;
1585        char *s;
1586
1587        if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1588                return -ENOMEM;
1589
1590        s = page;
1591
1592        switch (type) {
1593        case FILE_CPULIST:
1594                s += cpuset_sprintf_cpulist(s, cs);
1595                break;
1596        case FILE_MEMLIST:
1597                s += cpuset_sprintf_memlist(s, cs);
1598                break;
1599        default:
1600                retval = -EINVAL;
1601                goto out;
1602        }
1603        *s++ = '\n';
1604
1605        retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1606out:
1607        free_page((unsigned long)page);
1608        return retval;
1609}
1610
1611static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1612{
1613        struct cpuset *cs = cgroup_cs(cont);
1614        cpuset_filetype_t type = cft->private;
1615        switch (type) {
1616        case FILE_CPU_EXCLUSIVE:
1617                return is_cpu_exclusive(cs);
1618        case FILE_MEM_EXCLUSIVE:
1619                return is_mem_exclusive(cs);
1620        case FILE_MEM_HARDWALL:
1621                return is_mem_hardwall(cs);
1622        case FILE_SCHED_LOAD_BALANCE:
1623                return is_sched_load_balance(cs);
1624        case FILE_MEMORY_MIGRATE:
1625                return is_memory_migrate(cs);
1626        case FILE_MEMORY_PRESSURE_ENABLED:
1627                return cpuset_memory_pressure_enabled;
1628        case FILE_MEMORY_PRESSURE:
1629                return fmeter_getrate(&cs->fmeter);
1630        case FILE_SPREAD_PAGE:
1631                return is_spread_page(cs);
1632        case FILE_SPREAD_SLAB:
1633                return is_spread_slab(cs);
1634        default:
1635                BUG();
1636        }
1637
1638        /* Unreachable but makes gcc happy */
1639        return 0;
1640}
1641
1642static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1643{
1644        struct cpuset *cs = cgroup_cs(cont);
1645        cpuset_filetype_t type = cft->private;
1646        switch (type) {
1647        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1648                return cs->relax_domain_level;
1649        default:
1650                BUG();
1651        }
1652
1653        /* Unrechable but makes gcc happy */
1654        return 0;
1655}
1656
1657
1658/*
1659 * for the common functions, 'private' gives the type of file
1660 */
1661
1662static struct cftype files[] = {
1663        {
1664                .name = "cpus",
1665                .read = cpuset_common_file_read,
1666                .write_string = cpuset_write_resmask,
1667                .max_write_len = (100U + 6 * NR_CPUS),
1668                .private = FILE_CPULIST,
1669        },
1670
1671        {
1672                .name = "mems",
1673                .read = cpuset_common_file_read,
1674                .write_string = cpuset_write_resmask,
1675                .max_write_len = (100U + 6 * MAX_NUMNODES),
1676                .private = FILE_MEMLIST,
1677        },
1678
1679        {
1680                .name = "cpu_exclusive",
1681                .read_u64 = cpuset_read_u64,
1682                .write_u64 = cpuset_write_u64,
1683                .private = FILE_CPU_EXCLUSIVE,
1684        },
1685
1686        {
1687                .name = "mem_exclusive",
1688                .read_u64 = cpuset_read_u64,
1689                .write_u64 = cpuset_write_u64,
1690                .private = FILE_MEM_EXCLUSIVE,
1691        },
1692
1693        {
1694                .name = "mem_hardwall",
1695                .read_u64 = cpuset_read_u64,
1696                .write_u64 = cpuset_write_u64,
1697                .private = FILE_MEM_HARDWALL,
1698        },
1699
1700        {
1701                .name = "sched_load_balance",
1702                .read_u64 = cpuset_read_u64,
1703                .write_u64 = cpuset_write_u64,
1704                .private = FILE_SCHED_LOAD_BALANCE,
1705        },
1706
1707        {
1708                .name = "sched_relax_domain_level",
1709                .read_s64 = cpuset_read_s64,
1710                .write_s64 = cpuset_write_s64,
1711                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1712        },
1713
1714        {
1715                .name = "memory_migrate",
1716                .read_u64 = cpuset_read_u64,
1717                .write_u64 = cpuset_write_u64,
1718                .private = FILE_MEMORY_MIGRATE,
1719        },
1720
1721        {
1722                .name = "memory_pressure",
1723                .read_u64 = cpuset_read_u64,
1724                .write_u64 = cpuset_write_u64,
1725                .private = FILE_MEMORY_PRESSURE,
1726                .mode = S_IRUGO,
1727        },
1728
1729        {
1730                .name = "memory_spread_page",
1731                .read_u64 = cpuset_read_u64,
1732                .write_u64 = cpuset_write_u64,
1733                .private = FILE_SPREAD_PAGE,
1734        },
1735
1736        {
1737                .name = "memory_spread_slab",
1738                .read_u64 = cpuset_read_u64,
1739                .write_u64 = cpuset_write_u64,
1740                .private = FILE_SPREAD_SLAB,
1741        },
1742};
1743
1744static struct cftype cft_memory_pressure_enabled = {
1745        .name = "memory_pressure_enabled",
1746        .read_u64 = cpuset_read_u64,
1747        .write_u64 = cpuset_write_u64,
1748        .private = FILE_MEMORY_PRESSURE_ENABLED,
1749};
1750
1751static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1752{
1753        int err;
1754
1755        err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1756        if (err)
1757                return err;
1758        /* memory_pressure_enabled is in root cpuset only */
1759        if (!cont->parent)
1760                err = cgroup_add_file(cont, ss,
1761                                      &cft_memory_pressure_enabled);
1762        return err;
1763}
1764
1765/*
1766 * post_clone() is called at the end of cgroup_clone().
1767 * 'cgroup' was just created automatically as a result of
1768 * a cgroup_clone(), and the current task is about to
1769 * be moved into 'cgroup'.
1770 *
1771 * Currently we refuse to set up the cgroup - thereby
1772 * refusing the task to be entered, and as a result refusing
1773 * the sys_unshare() or clone() which initiated it - if any
1774 * sibling cpusets have exclusive cpus or mem.
1775 *
1776 * If this becomes a problem for some users who wish to
1777 * allow that scenario, then cpuset_post_clone() could be
1778 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1779 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1780 * held.
1781 */
1782static void cpuset_post_clone(struct cgroup_subsys *ss,
1783                              struct cgroup *cgroup)
1784{
1785        struct cgroup *parent, *child;
1786        struct cpuset *cs, *parent_cs;
1787
1788        parent = cgroup->parent;
1789        list_for_each_entry(child, &parent->children, sibling) {
1790                cs = cgroup_cs(child);
1791                if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1792                        return;
1793        }
1794        cs = cgroup_cs(cgroup);
1795        parent_cs = cgroup_cs(parent);
1796
1797        cs->mems_allowed = parent_cs->mems_allowed;
1798        cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1799        return;
1800}
1801
1802/*
1803 *      cpuset_create - create a cpuset
1804 *      ss:     cpuset cgroup subsystem
1805 *      cont:   control group that the new cpuset will be part of
1806 */
1807
1808static struct cgroup_subsys_state *cpuset_create(
1809        struct cgroup_subsys *ss,
1810        struct cgroup *cont)
1811{
1812        struct cpuset *cs;
1813        struct cpuset *parent;
1814
1815        if (!cont->parent) {
1816                return &top_cpuset.css;
1817        }
1818        parent = cgroup_cs(cont->parent);
1819        cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1820        if (!cs)
1821                return ERR_PTR(-ENOMEM);
1822        if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1823                kfree(cs);
1824                return ERR_PTR(-ENOMEM);
1825        }
1826
1827        cs->flags = 0;
1828        if (is_spread_page(parent))
1829                set_bit(CS_SPREAD_PAGE, &cs->flags);
1830        if (is_spread_slab(parent))
1831                set_bit(CS_SPREAD_SLAB, &cs->flags);
1832        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1833        cpumask_clear(cs->cpus_allowed);
1834        nodes_clear(cs->mems_allowed);
1835        fmeter_init(&cs->fmeter);
1836        cs->relax_domain_level = -1;
1837
1838        cs->parent = parent;
1839        number_of_cpusets++;
1840        return &cs->css ;
1841}
1842
1843/*
1844 * If the cpuset being removed has its flag 'sched_load_balance'
1845 * enabled, then simulate turning sched_load_balance off, which
1846 * will call async_rebuild_sched_domains().
1847 */
1848
1849static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1850{
1851        struct cpuset *cs = cgroup_cs(cont);
1852
1853        if (is_sched_load_balance(cs))
1854                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1855
1856        number_of_cpusets--;
1857        free_cpumask_var(cs->cpus_allowed);
1858        kfree(cs);
1859}
1860
1861struct cgroup_subsys cpuset_subsys = {
1862        .name = "cpuset",
1863        .create = cpuset_create,
1864        .destroy = cpuset_destroy,
1865        .can_attach = cpuset_can_attach,
1866        .attach = cpuset_attach,
1867        .populate = cpuset_populate,
1868        .post_clone = cpuset_post_clone,
1869        .subsys_id = cpuset_subsys_id,
1870        .early_init = 1,
1871};
1872
1873/**
1874 * cpuset_init - initialize cpusets at system boot
1875 *
1876 * Description: Initialize top_cpuset and the cpuset internal file system,
1877 **/
1878
1879int __init cpuset_init(void)
1880{
1881        int err = 0;
1882
1883        if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1884                BUG();
1885
1886        cpumask_setall(top_cpuset.cpus_allowed);
1887        nodes_setall(top_cpuset.mems_allowed);
1888
1889        fmeter_init(&top_cpuset.fmeter);
1890        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1891        top_cpuset.relax_domain_level = -1;
1892
1893        err = register_filesystem(&cpuset_fs_type);
1894        if (err < 0)
1895                return err;
1896
1897        if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1898                BUG();
1899
1900        number_of_cpusets = 1;
1901        return 0;
1902}
1903
1904/**
1905 * cpuset_do_move_task - move a given task to another cpuset
1906 * @tsk: pointer to task_struct the task to move
1907 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1908 *
1909 * Called by cgroup_scan_tasks() for each task in a cgroup.
1910 * Return nonzero to stop the walk through the tasks.
1911 */
1912static void cpuset_do_move_task(struct task_struct *tsk,
1913                                struct cgroup_scanner *scan)
1914{
1915        struct cgroup *new_cgroup = scan->data;
1916
1917        cgroup_attach_task(new_cgroup, tsk);
1918}
1919
1920/**
1921 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1922 * @from: cpuset in which the tasks currently reside
1923 * @to: cpuset to which the tasks will be moved
1924 *
1925 * Called with cgroup_mutex held
1926 * callback_mutex must not be held, as cpuset_attach() will take it.
1927 *
1928 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1929 * calling callback functions for each.
1930 */
1931static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1932{
1933        struct cgroup_scanner scan;
1934
1935        scan.cg = from->css.cgroup;
1936        scan.test_task = NULL; /* select all tasks in cgroup */
1937        scan.process_task = cpuset_do_move_task;
1938        scan.heap = NULL;
1939        scan.data = to->css.cgroup;
1940
1941        if (cgroup_scan_tasks(&scan))
1942                printk(KERN_ERR "move_member_tasks_to_cpuset: "
1943                                "cgroup_scan_tasks failed\n");
1944}
1945
1946/*
1947 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1948 * or memory nodes, we need to walk over the cpuset hierarchy,
1949 * removing that CPU or node from all cpusets.  If this removes the
1950 * last CPU or node from a cpuset, then move the tasks in the empty
1951 * cpuset to its next-highest non-empty parent.
1952 *
1953 * Called with cgroup_mutex held
1954 * callback_mutex must not be held, as cpuset_attach() will take it.
1955 */
1956static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1957{
1958        struct cpuset *parent;
1959
1960        /*
1961         * The cgroup's css_sets list is in use if there are tasks
1962         * in the cpuset; the list is empty if there are none;
1963         * the cs->css.refcnt seems always 0.
1964         */
1965        if (list_empty(&cs->css.cgroup->css_sets))
1966                return;
1967
1968        /*
1969         * Find its next-highest non-empty parent, (top cpuset
1970         * has online cpus, so can't be empty).
1971         */
1972        parent = cs->parent;
1973        while (cpumask_empty(parent->cpus_allowed) ||
1974                        nodes_empty(parent->mems_allowed))
1975                parent = parent->parent;
1976
1977        move_member_tasks_to_cpuset(cs, parent);
1978}
1979
1980/*
1981 * Walk the specified cpuset subtree and look for empty cpusets.
1982 * The tasks of such cpuset must be moved to a parent cpuset.
1983 *
1984 * Called with cgroup_mutex held.  We take callback_mutex to modify
1985 * cpus_allowed and mems_allowed.
1986 *
1987 * This walk processes the tree from top to bottom, completing one layer
1988 * before dropping down to the next.  It always processes a node before
1989 * any of its children.
1990 *
1991 * For now, since we lack memory hot unplug, we'll never see a cpuset
1992 * that has tasks along with an empty 'mems'.  But if we did see such
1993 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1994 */
1995static void scan_for_empty_cpusets(struct cpuset *root)
1996{
1997        LIST_HEAD(queue);
1998        struct cpuset *cp;      /* scans cpusets being updated */
1999        struct cpuset *child;   /* scans child cpusets of cp */
2000        struct cgroup *cont;
2001        nodemask_t oldmems;
2002
2003        list_add_tail((struct list_head *)&root->stack_list, &queue);
2004
2005        while (!list_empty(&queue)) {
2006                cp = list_first_entry(&queue, struct cpuset, stack_list);
2007                list_del(queue.next);
2008                list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2009                        child = cgroup_cs(cont);
2010                        list_add_tail(&child->stack_list, &queue);
2011                }
2012
2013                /* Continue past cpusets with all cpus, mems online */
2014                if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
2015                    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2016                        continue;
2017
2018                oldmems = cp->mems_allowed;
2019
2020                /* Remove offline cpus and mems from this cpuset. */
2021                mutex_lock(&callback_mutex);
2022                cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2023                            cpu_online_mask);
2024                nodes_and(cp->mems_allowed, cp->mems_allowed,
2025                                                node_states[N_HIGH_MEMORY]);
2026                mutex_unlock(&callback_mutex);
2027
2028                /* Move tasks from the empty cpuset to a parent */
2029                if (cpumask_empty(cp->cpus_allowed) ||
2030                     nodes_empty(cp->mems_allowed))
2031                        remove_tasks_in_empty_cpuset(cp);
2032                else {
2033                        update_tasks_cpumask(cp, NULL);
2034                        update_tasks_nodemask(cp, &oldmems, NULL);
2035                }
2036        }
2037}
2038
2039/*
2040 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2041 * period.  This is necessary in order to make cpusets transparent
2042 * (of no affect) on systems that are actively using CPU hotplug
2043 * but making no active use of cpusets.
2044 *
2045 * This routine ensures that top_cpuset.cpus_allowed tracks
2046 * cpu_online_map on each CPU hotplug (cpuhp) event.
2047 *
2048 * Called within get_online_cpus().  Needs to call cgroup_lock()
2049 * before calling generate_sched_domains().
2050 */
2051static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
2052                                unsigned long phase, void *unused_cpu)
2053{
2054        struct sched_domain_attr *attr;
2055        struct cpumask *doms;
2056        int ndoms;
2057
2058        switch (phase) {
2059        case CPU_ONLINE:
2060        case CPU_ONLINE_FROZEN:
2061        case CPU_DEAD:
2062        case CPU_DEAD_FROZEN:
2063                break;
2064
2065        default:
2066                return NOTIFY_DONE;
2067        }
2068
2069        cgroup_lock();
2070        mutex_lock(&callback_mutex);
2071        cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2072        mutex_unlock(&callback_mutex);
2073        scan_for_empty_cpusets(&top_cpuset);
2074        ndoms = generate_sched_domains(&doms, &attr);
2075        cgroup_unlock();
2076
2077        /* Have scheduler rebuild the domains */
2078        partition_sched_domains(ndoms, doms, attr);
2079
2080        return NOTIFY_OK;
2081}
2082
2083#ifdef CONFIG_MEMORY_HOTPLUG
2084/*
2085 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2086 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2087 * See also the previous routine cpuset_track_online_cpus().
2088 */
2089static int cpuset_track_online_nodes(struct notifier_block *self,
2090                                unsigned long action, void *arg)
2091{
2092        cgroup_lock();
2093        switch (action) {
2094        case MEM_ONLINE:
2095        case MEM_OFFLINE:
2096                mutex_lock(&callback_mutex);
2097                top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2098                mutex_unlock(&callback_mutex);
2099                if (action == MEM_OFFLINE)
2100                        scan_for_empty_cpusets(&top_cpuset);
2101                break;
2102        default:
2103                break;
2104        }
2105        cgroup_unlock();
2106        return NOTIFY_OK;
2107}
2108#endif
2109
2110/**
2111 * cpuset_init_smp - initialize cpus_allowed
2112 *
2113 * Description: Finish top cpuset after cpu, node maps are initialized
2114 **/
2115
2116void __init cpuset_init_smp(void)
2117{
2118        cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2119        top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2120
2121        hotcpu_notifier(cpuset_track_online_cpus, 0);
2122        hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2123
2124        cpuset_wq = create_singlethread_workqueue("cpuset");
2125        BUG_ON(!cpuset_wq);
2126}
2127
2128/**
2129 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2130 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2131 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2132 *
2133 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2134 * attached to the specified @tsk.  Guaranteed to return some non-empty
2135 * subset of cpu_online_map, even if this means going outside the
2136 * tasks cpuset.
2137 **/
2138
2139void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2140{
2141        mutex_lock(&callback_mutex);
2142        cpuset_cpus_allowed_locked(tsk, pmask);
2143        mutex_unlock(&callback_mutex);
2144}
2145
2146/**
2147 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2148 * Must be called with callback_mutex held.
2149 **/
2150void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2151{
2152        task_lock(tsk);
2153        guarantee_online_cpus(task_cs(tsk), pmask);
2154        task_unlock(tsk);
2155}
2156
2157void cpuset_init_current_mems_allowed(void)
2158{
2159        nodes_setall(current->mems_allowed);
2160}
2161
2162/**
2163 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2164 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2165 *
2166 * Description: Returns the nodemask_t mems_allowed of the cpuset
2167 * attached to the specified @tsk.  Guaranteed to return some non-empty
2168 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2169 * tasks cpuset.
2170 **/
2171
2172nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2173{
2174        nodemask_t mask;
2175
2176        mutex_lock(&callback_mutex);
2177        task_lock(tsk);
2178        guarantee_online_mems(task_cs(tsk), &mask);
2179        task_unlock(tsk);
2180        mutex_unlock(&callback_mutex);
2181
2182        return mask;
2183}
2184
2185/**
2186 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2187 * @nodemask: the nodemask to be checked
2188 *
2189 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2190 */
2191int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2192{
2193        return nodes_intersects(*nodemask, current->mems_allowed);
2194}
2195
2196/*
2197 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2198 * mem_hardwall ancestor to the specified cpuset.  Call holding
2199 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2200 * (an unusual configuration), then returns the root cpuset.
2201 */
2202static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2203{
2204        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2205                cs = cs->parent;
2206        return cs;
2207}
2208
2209/**
2210 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2211 * @node: is this an allowed node?
2212 * @gfp_mask: memory allocation flags
2213 *
2214 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2215 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2216 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2217 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2218 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2219 * flag, yes.
2220 * Otherwise, no.
2221 *
2222 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2223 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2224 * might sleep, and might allow a node from an enclosing cpuset.
2225 *
2226 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2227 * cpusets, and never sleeps.
2228 *
2229 * The __GFP_THISNODE placement logic is really handled elsewhere,
2230 * by forcibly using a zonelist starting at a specified node, and by
2231 * (in get_page_from_freelist()) refusing to consider the zones for
2232 * any node on the zonelist except the first.  By the time any such
2233 * calls get to this routine, we should just shut up and say 'yes'.
2234 *
2235 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2236 * and do not allow allocations outside the current tasks cpuset
2237 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2238 * GFP_KERNEL allocations are not so marked, so can escape to the
2239 * nearest enclosing hardwalled ancestor cpuset.
2240 *
2241 * Scanning up parent cpusets requires callback_mutex.  The
2242 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2243 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2244 * current tasks mems_allowed came up empty on the first pass over
2245 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2246 * cpuset are short of memory, might require taking the callback_mutex
2247 * mutex.
2248 *
2249 * The first call here from mm/page_alloc:get_page_from_freelist()
2250 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2251 * so no allocation on a node outside the cpuset is allowed (unless
2252 * in interrupt, of course).
2253 *
2254 * The second pass through get_page_from_freelist() doesn't even call
2255 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2256 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2257 * in alloc_flags.  That logic and the checks below have the combined
2258 * affect that:
2259 *      in_interrupt - any node ok (current task context irrelevant)
2260 *      GFP_ATOMIC   - any node ok
2261 *      TIF_MEMDIE   - any node ok
2262 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2263 *      GFP_USER     - only nodes in current tasks mems allowed ok.
2264 *
2265 * Rule:
2266 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2267 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2268 *    the code that might scan up ancestor cpusets and sleep.
2269 */
2270int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2271{
2272        const struct cpuset *cs;        /* current cpuset ancestors */
2273        int allowed;                    /* is allocation in zone z allowed? */
2274
2275        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2276                return 1;
2277        might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2278        if (node_isset(node, current->mems_allowed))
2279                return 1;
2280        /*
2281         * Allow tasks that have access to memory reserves because they have
2282         * been OOM killed to get memory anywhere.
2283         */
2284        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2285                return 1;
2286        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
2287                return 0;
2288
2289        if (current->flags & PF_EXITING) /* Let dying task have memory */
2290                return 1;
2291
2292        /* Not hardwall and node outside mems_allowed: scan up cpusets */
2293        mutex_lock(&callback_mutex);
2294
2295        task_lock(current);
2296        cs = nearest_hardwall_ancestor(task_cs(current));
2297        task_unlock(current);
2298
2299        allowed = node_isset(node, cs->mems_allowed);
2300        mutex_unlock(&callback_mutex);
2301        return allowed;
2302}
2303
2304/*
2305 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2306 * @node: is this an allowed node?
2307 * @gfp_mask: memory allocation flags
2308 *
2309 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2310 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2311 * yes.  If the task has been OOM killed and has access to memory reserves as
2312 * specified by the TIF_MEMDIE flag, yes.
2313 * Otherwise, no.
2314 *
2315 * The __GFP_THISNODE placement logic is really handled elsewhere,
2316 * by forcibly using a zonelist starting at a specified node, and by
2317 * (in get_page_from_freelist()) refusing to consider the zones for
2318 * any node on the zonelist except the first.  By the time any such
2319 * calls get to this routine, we should just shut up and say 'yes'.
2320 *
2321 * Unlike the cpuset_node_allowed_softwall() variant, above,
2322 * this variant requires that the node be in the current task's
2323 * mems_allowed or that we're in interrupt.  It does not scan up the
2324 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2325 * It never sleeps.
2326 */
2327int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2328{
2329        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2330                return 1;
2331        if (node_isset(node, current->mems_allowed))
2332                return 1;
2333        /*
2334         * Allow tasks that have access to memory reserves because they have
2335         * been OOM killed to get memory anywhere.
2336         */
2337        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2338                return 1;
2339        return 0;
2340}
2341
2342/**
2343 * cpuset_lock - lock out any changes to cpuset structures
2344 *
2345 * The out of memory (oom) code needs to mutex_lock cpusets
2346 * from being changed while it scans the tasklist looking for a
2347 * task in an overlapping cpuset.  Expose callback_mutex via this
2348 * cpuset_lock() routine, so the oom code can lock it, before
2349 * locking the task list.  The tasklist_lock is a spinlock, so
2350 * must be taken inside callback_mutex.
2351 */
2352
2353void cpuset_lock(void)
2354{
2355        mutex_lock(&callback_mutex);
2356}
2357
2358/**
2359 * cpuset_unlock - release lock on cpuset changes
2360 *
2361 * Undo the lock taken in a previous cpuset_lock() call.
2362 */
2363
2364void cpuset_unlock(void)
2365{
2366        mutex_unlock(&callback_mutex);
2367}
2368
2369/**
2370 * cpuset_mem_spread_node() - On which node to begin search for a page
2371 *
2372 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2373 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2374 * and if the memory allocation used cpuset_mem_spread_node()
2375 * to determine on which node to start looking, as it will for
2376 * certain page cache or slab cache pages such as used for file
2377 * system buffers and inode caches, then instead of starting on the
2378 * local node to look for a free page, rather spread the starting
2379 * node around the tasks mems_allowed nodes.
2380 *
2381 * We don't have to worry about the returned node being offline
2382 * because "it can't happen", and even if it did, it would be ok.
2383 *
2384 * The routines calling guarantee_online_mems() are careful to
2385 * only set nodes in task->mems_allowed that are online.  So it
2386 * should not be possible for the following code to return an
2387 * offline node.  But if it did, that would be ok, as this routine
2388 * is not returning the node where the allocation must be, only
2389 * the node where the search should start.  The zonelist passed to
2390 * __alloc_pages() will include all nodes.  If the slab allocator
2391 * is passed an offline node, it will fall back to the local node.
2392 * See kmem_cache_alloc_node().
2393 */
2394
2395int cpuset_mem_spread_node(void)
2396{
2397        int node;
2398
2399        node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2400        if (node == MAX_NUMNODES)
2401                node = first_node(current->mems_allowed);
2402        current->cpuset_mem_spread_rotor = node;
2403        return node;
2404}
2405EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2406
2407/**
2408 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2409 * @tsk1: pointer to task_struct of some task.
2410 * @tsk2: pointer to task_struct of some other task.
2411 *
2412 * Description: Return true if @tsk1's mems_allowed intersects the
2413 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2414 * one of the task's memory usage might impact the memory available
2415 * to the other.
2416 **/
2417
2418int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2419                                   const struct task_struct *tsk2)
2420{
2421        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2422}
2423
2424/**
2425 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2426 * @task: pointer to task_struct of some task.
2427 *
2428 * Description: Prints @task's name, cpuset name, and cached copy of its
2429 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2430 * dereferencing task_cs(task).
2431 */
2432void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2433{
2434        struct dentry *dentry;
2435
2436        dentry = task_cs(tsk)->css.cgroup->dentry;
2437        spin_lock(&cpuset_buffer_lock);
2438        snprintf(cpuset_name, CPUSET_NAME_LEN,
2439                 dentry ? (const char *)dentry->d_name.name : "/");
2440        nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2441                           tsk->mems_allowed);
2442        printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2443               tsk->comm, cpuset_name, cpuset_nodelist);
2444        spin_unlock(&cpuset_buffer_lock);
2445}
2446
2447/*
2448 * Collection of memory_pressure is suppressed unless
2449 * this flag is enabled by writing "1" to the special
2450 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2451 */
2452
2453int cpuset_memory_pressure_enabled __read_mostly;
2454
2455/**
2456 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2457 *
2458 * Keep a running average of the rate of synchronous (direct)
2459 * page reclaim efforts initiated by tasks in each cpuset.
2460 *
2461 * This represents the rate at which some task in the cpuset
2462 * ran low on memory on all nodes it was allowed to use, and
2463 * had to enter the kernels page reclaim code in an effort to
2464 * create more free memory by tossing clean pages or swapping
2465 * or writing dirty pages.
2466 *
2467 * Display to user space in the per-cpuset read-only file
2468 * "memory_pressure".  Value displayed is an integer
2469 * representing the recent rate of entry into the synchronous
2470 * (direct) page reclaim by any task attached to the cpuset.
2471 **/
2472
2473void __cpuset_memory_pressure_bump(void)
2474{
2475        task_lock(current);
2476        fmeter_markevent(&task_cs(current)->fmeter);
2477        task_unlock(current);
2478}
2479
2480#ifdef CONFIG_PROC_PID_CPUSET
2481/*
2482 * proc_cpuset_show()
2483 *  - Print tasks cpuset path into seq_file.
2484 *  - Used for /proc/<pid>/cpuset.
2485 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2486 *    doesn't really matter if tsk->cpuset changes after we read it,
2487 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2488 *    anyway.
2489 */
2490static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2491{
2492        struct pid *pid;
2493        struct task_struct *tsk;
2494        char *buf;
2495        struct cgroup_subsys_state *css;
2496        int retval;
2497
2498        retval = -ENOMEM;
2499        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2500        if (!buf)
2501                goto out;
2502
2503        retval = -ESRCH;
2504        pid = m->private;
2505        tsk = get_pid_task(pid, PIDTYPE_PID);
2506        if (!tsk)
2507                goto out_free;
2508
2509        retval = -EINVAL;
2510        cgroup_lock();
2511        css = task_subsys_state(tsk, cpuset_subsys_id);
2512        retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2513        if (retval < 0)
2514                goto out_unlock;
2515        seq_puts(m, buf);
2516        seq_putc(m, '\n');
2517out_unlock:
2518        cgroup_unlock();
2519        put_task_struct(tsk);
2520out_free:
2521        kfree(buf);
2522out:
2523        return retval;
2524}
2525
2526static int cpuset_open(struct inode *inode, struct file *file)
2527{
2528        struct pid *pid = PROC_I(inode)->pid;
2529        return single_open(file, proc_cpuset_show, pid);
2530}
2531
2532const struct file_operations proc_cpuset_operations = {
2533        .open           = cpuset_open,
2534        .read           = seq_read,
2535        .llseek         = seq_lseek,
2536        .release        = single_release,
2537};
2538#endif /* CONFIG_PROC_PID_CPUSET */
2539
2540/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2541void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2542{
2543        seq_printf(m, "Cpus_allowed:\t");
2544        seq_cpumask(m, &task->cpus_allowed);
2545        seq_printf(m, "\n");
2546        seq_printf(m, "Cpus_allowed_list:\t");
2547        seq_cpumask_list(m, &task->cpus_allowed);
2548        seq_printf(m, "\n");
2549        seq_printf(m, "Mems_allowed:\t");
2550        seq_nodemask(m, &task->mems_allowed);
2551        seq_printf(m, "\n");
2552        seq_printf(m, "Mems_allowed_list:\t");
2553        seq_nodemask_list(m, &task->mems_allowed);
2554        seq_printf(m, "\n");
2555}
2556