linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/binfmts.h>
  24#include <linux/nsproxy.h>
  25#include <linux/pid_namespace.h>
  26#include <linux/ptrace.h>
  27#include <linux/profile.h>
  28#include <linux/mount.h>
  29#include <linux/proc_fs.h>
  30#include <linux/kthread.h>
  31#include <linux/mempolicy.h>
  32#include <linux/taskstats_kern.h>
  33#include <linux/delayacct.h>
  34#include <linux/freezer.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52
  53#include <asm/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/pgtable.h>
  56#include <asm/mmu_context.h>
  57#include "cred-internals.h"
  58
  59static void exit_mm(struct task_struct * tsk);
  60
  61static void __unhash_process(struct task_struct *p)
  62{
  63        nr_threads--;
  64        detach_pid(p, PIDTYPE_PID);
  65        if (thread_group_leader(p)) {
  66                detach_pid(p, PIDTYPE_PGID);
  67                detach_pid(p, PIDTYPE_SID);
  68
  69                list_del_rcu(&p->tasks);
  70                __get_cpu_var(process_counts)--;
  71        }
  72        list_del_rcu(&p->thread_group);
  73        list_del_init(&p->sibling);
  74}
  75
  76/*
  77 * This function expects the tasklist_lock write-locked.
  78 */
  79static void __exit_signal(struct task_struct *tsk)
  80{
  81        struct signal_struct *sig = tsk->signal;
  82        struct sighand_struct *sighand;
  83
  84        BUG_ON(!sig);
  85        BUG_ON(!atomic_read(&sig->count));
  86
  87        sighand = rcu_dereference(tsk->sighand);
  88        spin_lock(&sighand->siglock);
  89
  90        posix_cpu_timers_exit(tsk);
  91        if (atomic_dec_and_test(&sig->count))
  92                posix_cpu_timers_exit_group(tsk);
  93        else {
  94                /*
  95                 * If there is any task waiting for the group exit
  96                 * then notify it:
  97                 */
  98                if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  99                        wake_up_process(sig->group_exit_task);
 100
 101                if (tsk == sig->curr_target)
 102                        sig->curr_target = next_thread(tsk);
 103                /*
 104                 * Accumulate here the counters for all threads but the
 105                 * group leader as they die, so they can be added into
 106                 * the process-wide totals when those are taken.
 107                 * The group leader stays around as a zombie as long
 108                 * as there are other threads.  When it gets reaped,
 109                 * the exit.c code will add its counts into these totals.
 110                 * We won't ever get here for the group leader, since it
 111                 * will have been the last reference on the signal_struct.
 112                 */
 113                sig->utime = cputime_add(sig->utime, task_utime(tsk));
 114                sig->stime = cputime_add(sig->stime, task_stime(tsk));
 115                sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
 116                sig->min_flt += tsk->min_flt;
 117                sig->maj_flt += tsk->maj_flt;
 118                sig->nvcsw += tsk->nvcsw;
 119                sig->nivcsw += tsk->nivcsw;
 120                sig->inblock += task_io_get_inblock(tsk);
 121                sig->oublock += task_io_get_oublock(tsk);
 122                task_io_accounting_add(&sig->ioac, &tsk->ioac);
 123                sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 124                sig = NULL; /* Marker for below. */
 125        }
 126
 127        __unhash_process(tsk);
 128
 129        /*
 130         * Do this under ->siglock, we can race with another thread
 131         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 132         */
 133        flush_sigqueue(&tsk->pending);
 134
 135        tsk->signal = NULL;
 136        tsk->sighand = NULL;
 137        spin_unlock(&sighand->siglock);
 138
 139        __cleanup_sighand(sighand);
 140        clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
 141        if (sig) {
 142                flush_sigqueue(&sig->shared_pending);
 143                taskstats_tgid_free(sig);
 144                /*
 145                 * Make sure ->signal can't go away under rq->lock,
 146                 * see account_group_exec_runtime().
 147                 */
 148                task_rq_unlock_wait(tsk);
 149                __cleanup_signal(sig);
 150        }
 151}
 152
 153static void delayed_put_task_struct(struct rcu_head *rhp)
 154{
 155        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 156
 157#ifdef CONFIG_PERF_EVENTS
 158        WARN_ON_ONCE(tsk->perf_event_ctxp);
 159#endif
 160        trace_sched_process_free(tsk);
 161        put_task_struct(tsk);
 162}
 163
 164
 165void release_task(struct task_struct * p)
 166{
 167        struct task_struct *leader;
 168        int zap_leader;
 169repeat:
 170        tracehook_prepare_release_task(p);
 171        /* don't need to get the RCU readlock here - the process is dead and
 172         * can't be modifying its own credentials */
 173        atomic_dec(&__task_cred(p)->user->processes);
 174
 175        proc_flush_task(p);
 176
 177        write_lock_irq(&tasklist_lock);
 178        tracehook_finish_release_task(p);
 179        __exit_signal(p);
 180
 181        /*
 182         * If we are the last non-leader member of the thread
 183         * group, and the leader is zombie, then notify the
 184         * group leader's parent process. (if it wants notification.)
 185         */
 186        zap_leader = 0;
 187        leader = p->group_leader;
 188        if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
 189                BUG_ON(task_detached(leader));
 190                do_notify_parent(leader, leader->exit_signal);
 191                /*
 192                 * If we were the last child thread and the leader has
 193                 * exited already, and the leader's parent ignores SIGCHLD,
 194                 * then we are the one who should release the leader.
 195                 *
 196                 * do_notify_parent() will have marked it self-reaping in
 197                 * that case.
 198                 */
 199                zap_leader = task_detached(leader);
 200
 201                /*
 202                 * This maintains the invariant that release_task()
 203                 * only runs on a task in EXIT_DEAD, just for sanity.
 204                 */
 205                if (zap_leader)
 206                        leader->exit_state = EXIT_DEAD;
 207        }
 208
 209        write_unlock_irq(&tasklist_lock);
 210        release_thread(p);
 211        call_rcu(&p->rcu, delayed_put_task_struct);
 212
 213        p = leader;
 214        if (unlikely(zap_leader))
 215                goto repeat;
 216}
 217
 218/*
 219 * This checks not only the pgrp, but falls back on the pid if no
 220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 221 * without this...
 222 *
 223 * The caller must hold rcu lock or the tasklist lock.
 224 */
 225struct pid *session_of_pgrp(struct pid *pgrp)
 226{
 227        struct task_struct *p;
 228        struct pid *sid = NULL;
 229
 230        p = pid_task(pgrp, PIDTYPE_PGID);
 231        if (p == NULL)
 232                p = pid_task(pgrp, PIDTYPE_PID);
 233        if (p != NULL)
 234                sid = task_session(p);
 235
 236        return sid;
 237}
 238
 239/*
 240 * Determine if a process group is "orphaned", according to the POSIX
 241 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 242 * by terminal-generated stop signals.  Newly orphaned process groups are
 243 * to receive a SIGHUP and a SIGCONT.
 244 *
 245 * "I ask you, have you ever known what it is to be an orphan?"
 246 */
 247static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
 248{
 249        struct task_struct *p;
 250
 251        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 252                if ((p == ignored_task) ||
 253                    (p->exit_state && thread_group_empty(p)) ||
 254                    is_global_init(p->real_parent))
 255                        continue;
 256
 257                if (task_pgrp(p->real_parent) != pgrp &&
 258                    task_session(p->real_parent) == task_session(p))
 259                        return 0;
 260        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 261
 262        return 1;
 263}
 264
 265int is_current_pgrp_orphaned(void)
 266{
 267        int retval;
 268
 269        read_lock(&tasklist_lock);
 270        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 271        read_unlock(&tasklist_lock);
 272
 273        return retval;
 274}
 275
 276static int has_stopped_jobs(struct pid *pgrp)
 277{
 278        int retval = 0;
 279        struct task_struct *p;
 280
 281        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 282                if (!task_is_stopped(p))
 283                        continue;
 284                retval = 1;
 285                break;
 286        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 287        return retval;
 288}
 289
 290/*
 291 * Check to see if any process groups have become orphaned as
 292 * a result of our exiting, and if they have any stopped jobs,
 293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 294 */
 295static void
 296kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 297{
 298        struct pid *pgrp = task_pgrp(tsk);
 299        struct task_struct *ignored_task = tsk;
 300
 301        if (!parent)
 302                 /* exit: our father is in a different pgrp than
 303                  * we are and we were the only connection outside.
 304                  */
 305                parent = tsk->real_parent;
 306        else
 307                /* reparent: our child is in a different pgrp than
 308                 * we are, and it was the only connection outside.
 309                 */
 310                ignored_task = NULL;
 311
 312        if (task_pgrp(parent) != pgrp &&
 313            task_session(parent) == task_session(tsk) &&
 314            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 315            has_stopped_jobs(pgrp)) {
 316                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 317                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 318        }
 319}
 320
 321/**
 322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 323 *
 324 * If a kernel thread is launched as a result of a system call, or if
 325 * it ever exits, it should generally reparent itself to kthreadd so it
 326 * isn't in the way of other processes and is correctly cleaned up on exit.
 327 *
 328 * The various task state such as scheduling policy and priority may have
 329 * been inherited from a user process, so we reset them to sane values here.
 330 *
 331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 332 */
 333static void reparent_to_kthreadd(void)
 334{
 335        write_lock_irq(&tasklist_lock);
 336
 337        ptrace_unlink(current);
 338        /* Reparent to init */
 339        current->real_parent = current->parent = kthreadd_task;
 340        list_move_tail(&current->sibling, &current->real_parent->children);
 341
 342        /* Set the exit signal to SIGCHLD so we signal init on exit */
 343        current->exit_signal = SIGCHLD;
 344
 345        if (task_nice(current) < 0)
 346                set_user_nice(current, 0);
 347        /* cpus_allowed? */
 348        /* rt_priority? */
 349        /* signals? */
 350        memcpy(current->signal->rlim, init_task.signal->rlim,
 351               sizeof(current->signal->rlim));
 352
 353        atomic_inc(&init_cred.usage);
 354        commit_creds(&init_cred);
 355        write_unlock_irq(&tasklist_lock);
 356}
 357
 358void __set_special_pids(struct pid *pid)
 359{
 360        struct task_struct *curr = current->group_leader;
 361
 362        if (task_session(curr) != pid)
 363                change_pid(curr, PIDTYPE_SID, pid);
 364
 365        if (task_pgrp(curr) != pid)
 366                change_pid(curr, PIDTYPE_PGID, pid);
 367}
 368
 369static void set_special_pids(struct pid *pid)
 370{
 371        write_lock_irq(&tasklist_lock);
 372        __set_special_pids(pid);
 373        write_unlock_irq(&tasklist_lock);
 374}
 375
 376/*
 377 * Let kernel threads use this to say that they allow a certain signal.
 378 * Must not be used if kthread was cloned with CLONE_SIGHAND.
 379 */
 380int allow_signal(int sig)
 381{
 382        if (!valid_signal(sig) || sig < 1)
 383                return -EINVAL;
 384
 385        spin_lock_irq(&current->sighand->siglock);
 386        /* This is only needed for daemonize()'ed kthreads */
 387        sigdelset(&current->blocked, sig);
 388        /*
 389         * Kernel threads handle their own signals. Let the signal code
 390         * know it'll be handled, so that they don't get converted to
 391         * SIGKILL or just silently dropped.
 392         */
 393        current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
 394        recalc_sigpending();
 395        spin_unlock_irq(&current->sighand->siglock);
 396        return 0;
 397}
 398
 399EXPORT_SYMBOL(allow_signal);
 400
 401int disallow_signal(int sig)
 402{
 403        if (!valid_signal(sig) || sig < 1)
 404                return -EINVAL;
 405
 406        spin_lock_irq(&current->sighand->siglock);
 407        current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
 408        recalc_sigpending();
 409        spin_unlock_irq(&current->sighand->siglock);
 410        return 0;
 411}
 412
 413EXPORT_SYMBOL(disallow_signal);
 414
 415/*
 416 *      Put all the gunge required to become a kernel thread without
 417 *      attached user resources in one place where it belongs.
 418 */
 419
 420void daemonize(const char *name, ...)
 421{
 422        va_list args;
 423        sigset_t blocked;
 424
 425        va_start(args, name);
 426        vsnprintf(current->comm, sizeof(current->comm), name, args);
 427        va_end(args);
 428
 429        /*
 430         * If we were started as result of loading a module, close all of the
 431         * user space pages.  We don't need them, and if we didn't close them
 432         * they would be locked into memory.
 433         */
 434        exit_mm(current);
 435        /*
 436         * We don't want to have TIF_FREEZE set if the system-wide hibernation
 437         * or suspend transition begins right now.
 438         */
 439        current->flags |= (PF_NOFREEZE | PF_KTHREAD);
 440
 441        if (current->nsproxy != &init_nsproxy) {
 442                get_nsproxy(&init_nsproxy);
 443                switch_task_namespaces(current, &init_nsproxy);
 444        }
 445        set_special_pids(&init_struct_pid);
 446        proc_clear_tty(current);
 447
 448        /* Block and flush all signals */
 449        sigfillset(&blocked);
 450        sigprocmask(SIG_BLOCK, &blocked, NULL);
 451        flush_signals(current);
 452
 453        /* Become as one with the init task */
 454
 455        daemonize_fs_struct();
 456        exit_files(current);
 457        current->files = init_task.files;
 458        atomic_inc(&current->files->count);
 459
 460        reparent_to_kthreadd();
 461}
 462
 463EXPORT_SYMBOL(daemonize);
 464
 465static void close_files(struct files_struct * files)
 466{
 467        int i, j;
 468        struct fdtable *fdt;
 469
 470        j = 0;
 471
 472        /*
 473         * It is safe to dereference the fd table without RCU or
 474         * ->file_lock because this is the last reference to the
 475         * files structure.
 476         */
 477        fdt = files_fdtable(files);
 478        for (;;) {
 479                unsigned long set;
 480                i = j * __NFDBITS;
 481                if (i >= fdt->max_fds)
 482                        break;
 483                set = fdt->open_fds->fds_bits[j++];
 484                while (set) {
 485                        if (set & 1) {
 486                                struct file * file = xchg(&fdt->fd[i], NULL);
 487                                if (file) {
 488                                        filp_close(file, files);
 489                                        cond_resched();
 490                                }
 491                        }
 492                        i++;
 493                        set >>= 1;
 494                }
 495        }
 496}
 497
 498struct files_struct *get_files_struct(struct task_struct *task)
 499{
 500        struct files_struct *files;
 501
 502        task_lock(task);
 503        files = task->files;
 504        if (files)
 505                atomic_inc(&files->count);
 506        task_unlock(task);
 507
 508        return files;
 509}
 510
 511void put_files_struct(struct files_struct *files)
 512{
 513        struct fdtable *fdt;
 514
 515        if (atomic_dec_and_test(&files->count)) {
 516                close_files(files);
 517                /*
 518                 * Free the fd and fdset arrays if we expanded them.
 519                 * If the fdtable was embedded, pass files for freeing
 520                 * at the end of the RCU grace period. Otherwise,
 521                 * you can free files immediately.
 522                 */
 523                fdt = files_fdtable(files);
 524                if (fdt != &files->fdtab)
 525                        kmem_cache_free(files_cachep, files);
 526                free_fdtable(fdt);
 527        }
 528}
 529
 530void reset_files_struct(struct files_struct *files)
 531{
 532        struct task_struct *tsk = current;
 533        struct files_struct *old;
 534
 535        old = tsk->files;
 536        task_lock(tsk);
 537        tsk->files = files;
 538        task_unlock(tsk);
 539        put_files_struct(old);
 540}
 541
 542void exit_files(struct task_struct *tsk)
 543{
 544        struct files_struct * files = tsk->files;
 545
 546        if (files) {
 547                task_lock(tsk);
 548                tsk->files = NULL;
 549                task_unlock(tsk);
 550                put_files_struct(files);
 551        }
 552}
 553
 554#ifdef CONFIG_MM_OWNER
 555/*
 556 * Task p is exiting and it owned mm, lets find a new owner for it
 557 */
 558static inline int
 559mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
 560{
 561        /*
 562         * If there are other users of the mm and the owner (us) is exiting
 563         * we need to find a new owner to take on the responsibility.
 564         */
 565        if (atomic_read(&mm->mm_users) <= 1)
 566                return 0;
 567        if (mm->owner != p)
 568                return 0;
 569        return 1;
 570}
 571
 572void mm_update_next_owner(struct mm_struct *mm)
 573{
 574        struct task_struct *c, *g, *p = current;
 575
 576retry:
 577        if (!mm_need_new_owner(mm, p))
 578                return;
 579
 580        read_lock(&tasklist_lock);
 581        /*
 582         * Search in the children
 583         */
 584        list_for_each_entry(c, &p->children, sibling) {
 585                if (c->mm == mm)
 586                        goto assign_new_owner;
 587        }
 588
 589        /*
 590         * Search in the siblings
 591         */
 592        list_for_each_entry(c, &p->real_parent->children, sibling) {
 593                if (c->mm == mm)
 594                        goto assign_new_owner;
 595        }
 596
 597        /*
 598         * Search through everything else. We should not get
 599         * here often
 600         */
 601        do_each_thread(g, c) {
 602                if (c->mm == mm)
 603                        goto assign_new_owner;
 604        } while_each_thread(g, c);
 605
 606        read_unlock(&tasklist_lock);
 607        /*
 608         * We found no owner yet mm_users > 1: this implies that we are
 609         * most likely racing with swapoff (try_to_unuse()) or /proc or
 610         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 611         */
 612        mm->owner = NULL;
 613        return;
 614
 615assign_new_owner:
 616        BUG_ON(c == p);
 617        get_task_struct(c);
 618        /*
 619         * The task_lock protects c->mm from changing.
 620         * We always want mm->owner->mm == mm
 621         */
 622        task_lock(c);
 623        /*
 624         * Delay read_unlock() till we have the task_lock()
 625         * to ensure that c does not slip away underneath us
 626         */
 627        read_unlock(&tasklist_lock);
 628        if (c->mm != mm) {
 629                task_unlock(c);
 630                put_task_struct(c);
 631                goto retry;
 632        }
 633        mm->owner = c;
 634        task_unlock(c);
 635        put_task_struct(c);
 636}
 637#endif /* CONFIG_MM_OWNER */
 638
 639/*
 640 * Turn us into a lazy TLB process if we
 641 * aren't already..
 642 */
 643static void exit_mm(struct task_struct * tsk)
 644{
 645        struct mm_struct *mm = tsk->mm;
 646        struct core_state *core_state;
 647
 648        mm_release(tsk, mm);
 649        if (!mm)
 650                return;
 651        /*
 652         * Serialize with any possible pending coredump.
 653         * We must hold mmap_sem around checking core_state
 654         * and clearing tsk->mm.  The core-inducing thread
 655         * will increment ->nr_threads for each thread in the
 656         * group with ->mm != NULL.
 657         */
 658        down_read(&mm->mmap_sem);
 659        core_state = mm->core_state;
 660        if (core_state) {
 661                struct core_thread self;
 662                up_read(&mm->mmap_sem);
 663
 664                self.task = tsk;
 665                self.next = xchg(&core_state->dumper.next, &self);
 666                /*
 667                 * Implies mb(), the result of xchg() must be visible
 668                 * to core_state->dumper.
 669                 */
 670                if (atomic_dec_and_test(&core_state->nr_threads))
 671                        complete(&core_state->startup);
 672
 673                for (;;) {
 674                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 675                        if (!self.task) /* see coredump_finish() */
 676                                break;
 677                        schedule();
 678                }
 679                __set_task_state(tsk, TASK_RUNNING);
 680                down_read(&mm->mmap_sem);
 681        }
 682        atomic_inc(&mm->mm_count);
 683        BUG_ON(mm != tsk->active_mm);
 684        /* more a memory barrier than a real lock */
 685        task_lock(tsk);
 686        tsk->mm = NULL;
 687        up_read(&mm->mmap_sem);
 688        enter_lazy_tlb(mm, current);
 689        /* We don't want this task to be frozen prematurely */
 690        clear_freeze_flag(tsk);
 691        task_unlock(tsk);
 692        mm_update_next_owner(mm);
 693        mmput(mm);
 694}
 695
 696/*
 697 * When we die, we re-parent all our children.
 698 * Try to give them to another thread in our thread
 699 * group, and if no such member exists, give it to
 700 * the child reaper process (ie "init") in our pid
 701 * space.
 702 */
 703static struct task_struct *find_new_reaper(struct task_struct *father)
 704{
 705        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 706        struct task_struct *thread;
 707
 708        thread = father;
 709        while_each_thread(father, thread) {
 710                if (thread->flags & PF_EXITING)
 711                        continue;
 712                if (unlikely(pid_ns->child_reaper == father))
 713                        pid_ns->child_reaper = thread;
 714                return thread;
 715        }
 716
 717        if (unlikely(pid_ns->child_reaper == father)) {
 718                write_unlock_irq(&tasklist_lock);
 719                if (unlikely(pid_ns == &init_pid_ns))
 720                        panic("Attempted to kill init!");
 721
 722                zap_pid_ns_processes(pid_ns);
 723                write_lock_irq(&tasklist_lock);
 724                /*
 725                 * We can not clear ->child_reaper or leave it alone.
 726                 * There may by stealth EXIT_DEAD tasks on ->children,
 727                 * forget_original_parent() must move them somewhere.
 728                 */
 729                pid_ns->child_reaper = init_pid_ns.child_reaper;
 730        }
 731
 732        return pid_ns->child_reaper;
 733}
 734
 735/*
 736* Any that need to be release_task'd are put on the @dead list.
 737 */
 738static void reparent_thread(struct task_struct *father, struct task_struct *p,
 739                                struct list_head *dead)
 740{
 741        if (p->pdeath_signal)
 742                group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
 743
 744        list_move_tail(&p->sibling, &p->real_parent->children);
 745
 746        if (task_detached(p))
 747                return;
 748        /*
 749         * If this is a threaded reparent there is no need to
 750         * notify anyone anything has happened.
 751         */
 752        if (same_thread_group(p->real_parent, father))
 753                return;
 754
 755        /* We don't want people slaying init.  */
 756        p->exit_signal = SIGCHLD;
 757
 758        /* If it has exited notify the new parent about this child's death. */
 759        if (!task_ptrace(p) &&
 760            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 761                do_notify_parent(p, p->exit_signal);
 762                if (task_detached(p)) {
 763                        p->exit_state = EXIT_DEAD;
 764                        list_move_tail(&p->sibling, dead);
 765                }
 766        }
 767
 768        kill_orphaned_pgrp(p, father);
 769}
 770
 771static void forget_original_parent(struct task_struct *father)
 772{
 773        struct task_struct *p, *n, *reaper;
 774        LIST_HEAD(dead_children);
 775
 776        exit_ptrace(father);
 777
 778        write_lock_irq(&tasklist_lock);
 779        reaper = find_new_reaper(father);
 780
 781        list_for_each_entry_safe(p, n, &father->children, sibling) {
 782                p->real_parent = reaper;
 783                if (p->parent == father) {
 784                        BUG_ON(task_ptrace(p));
 785                        p->parent = p->real_parent;
 786                }
 787                reparent_thread(father, p, &dead_children);
 788        }
 789        write_unlock_irq(&tasklist_lock);
 790
 791        BUG_ON(!list_empty(&father->children));
 792
 793        list_for_each_entry_safe(p, n, &dead_children, sibling) {
 794                list_del_init(&p->sibling);
 795                release_task(p);
 796        }
 797}
 798
 799/*
 800 * Send signals to all our closest relatives so that they know
 801 * to properly mourn us..
 802 */
 803static void exit_notify(struct task_struct *tsk, int group_dead)
 804{
 805        int signal;
 806        void *cookie;
 807
 808        /*
 809         * This does two things:
 810         *
 811         * A.  Make init inherit all the child processes
 812         * B.  Check to see if any process groups have become orphaned
 813         *      as a result of our exiting, and if they have any stopped
 814         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 815         */
 816        forget_original_parent(tsk);
 817        exit_task_namespaces(tsk);
 818
 819        write_lock_irq(&tasklist_lock);
 820        if (group_dead)
 821                kill_orphaned_pgrp(tsk->group_leader, NULL);
 822
 823        /* Let father know we died
 824         *
 825         * Thread signals are configurable, but you aren't going to use
 826         * that to send signals to arbitary processes.
 827         * That stops right now.
 828         *
 829         * If the parent exec id doesn't match the exec id we saved
 830         * when we started then we know the parent has changed security
 831         * domain.
 832         *
 833         * If our self_exec id doesn't match our parent_exec_id then
 834         * we have changed execution domain as these two values started
 835         * the same after a fork.
 836         */
 837        if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
 838            (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
 839             tsk->self_exec_id != tsk->parent_exec_id))
 840                tsk->exit_signal = SIGCHLD;
 841
 842        signal = tracehook_notify_death(tsk, &cookie, group_dead);
 843        if (signal >= 0)
 844                signal = do_notify_parent(tsk, signal);
 845
 846        tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
 847
 848        /* mt-exec, de_thread() is waiting for us */
 849        if (thread_group_leader(tsk) &&
 850            tsk->signal->group_exit_task &&
 851            tsk->signal->notify_count < 0)
 852                wake_up_process(tsk->signal->group_exit_task);
 853
 854        write_unlock_irq(&tasklist_lock);
 855
 856        tracehook_report_death(tsk, signal, cookie, group_dead);
 857
 858        /* If the process is dead, release it - nobody will wait for it */
 859        if (signal == DEATH_REAP)
 860                release_task(tsk);
 861}
 862
 863#ifdef CONFIG_DEBUG_STACK_USAGE
 864static void check_stack_usage(void)
 865{
 866        static DEFINE_SPINLOCK(low_water_lock);
 867        static int lowest_to_date = THREAD_SIZE;
 868        unsigned long free;
 869
 870        free = stack_not_used(current);
 871
 872        if (free >= lowest_to_date)
 873                return;
 874
 875        spin_lock(&low_water_lock);
 876        if (free < lowest_to_date) {
 877                printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
 878                                "left\n",
 879                                current->comm, free);
 880                lowest_to_date = free;
 881        }
 882        spin_unlock(&low_water_lock);
 883}
 884#else
 885static inline void check_stack_usage(void) {}
 886#endif
 887
 888NORET_TYPE void do_exit(long code)
 889{
 890        struct task_struct *tsk = current;
 891        int group_dead;
 892
 893        profile_task_exit(tsk);
 894
 895        WARN_ON(atomic_read(&tsk->fs_excl));
 896
 897        if (unlikely(in_interrupt()))
 898                panic("Aiee, killing interrupt handler!");
 899        if (unlikely(!tsk->pid))
 900                panic("Attempted to kill the idle task!");
 901
 902        tracehook_report_exit(&code);
 903
 904        validate_creds_for_do_exit(tsk);
 905
 906        /*
 907         * We're taking recursive faults here in do_exit. Safest is to just
 908         * leave this task alone and wait for reboot.
 909         */
 910        if (unlikely(tsk->flags & PF_EXITING)) {
 911                printk(KERN_ALERT
 912                        "Fixing recursive fault but reboot is needed!\n");
 913                /*
 914                 * We can do this unlocked here. The futex code uses
 915                 * this flag just to verify whether the pi state
 916                 * cleanup has been done or not. In the worst case it
 917                 * loops once more. We pretend that the cleanup was
 918                 * done as there is no way to return. Either the
 919                 * OWNER_DIED bit is set by now or we push the blocked
 920                 * task into the wait for ever nirwana as well.
 921                 */
 922                tsk->flags |= PF_EXITPIDONE;
 923                set_current_state(TASK_UNINTERRUPTIBLE);
 924                schedule();
 925        }
 926
 927        exit_irq_thread();
 928
 929        exit_signals(tsk);  /* sets PF_EXITING */
 930        /*
 931         * tsk->flags are checked in the futex code to protect against
 932         * an exiting task cleaning up the robust pi futexes.
 933         */
 934        smp_mb();
 935        spin_unlock_wait(&tsk->pi_lock);
 936
 937        if (unlikely(in_atomic()))
 938                printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
 939                                current->comm, task_pid_nr(current),
 940                                preempt_count());
 941
 942        acct_update_integrals(tsk);
 943
 944        group_dead = atomic_dec_and_test(&tsk->signal->live);
 945        if (group_dead) {
 946                hrtimer_cancel(&tsk->signal->real_timer);
 947                exit_itimers(tsk->signal);
 948                if (tsk->mm)
 949                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 950        }
 951        acct_collect(code, group_dead);
 952        if (group_dead)
 953                tty_audit_exit();
 954        if (unlikely(tsk->audit_context))
 955                audit_free(tsk);
 956
 957        tsk->exit_code = code;
 958        taskstats_exit(tsk, group_dead);
 959
 960        exit_mm(tsk);
 961
 962        if (group_dead)
 963                acct_process();
 964        trace_sched_process_exit(tsk);
 965
 966        exit_sem(tsk);
 967        exit_files(tsk);
 968        exit_fs(tsk);
 969        check_stack_usage();
 970        exit_thread();
 971        cgroup_exit(tsk, 1);
 972
 973        if (group_dead && tsk->signal->leader)
 974                disassociate_ctty(1);
 975
 976        module_put(task_thread_info(tsk)->exec_domain->module);
 977
 978        proc_exit_connector(tsk);
 979
 980        /*
 981         * Flush inherited counters to the parent - before the parent
 982         * gets woken up by child-exit notifications.
 983         */
 984        perf_event_exit_task(tsk);
 985
 986        exit_notify(tsk, group_dead);
 987#ifdef CONFIG_NUMA
 988        mpol_put(tsk->mempolicy);
 989        tsk->mempolicy = NULL;
 990#endif
 991#ifdef CONFIG_FUTEX
 992        if (unlikely(current->pi_state_cache))
 993                kfree(current->pi_state_cache);
 994#endif
 995        /*
 996         * Make sure we are holding no locks:
 997         */
 998        debug_check_no_locks_held(tsk);
 999        /*
1000         * We can do this unlocked here. The futex code uses this flag
1001         * just to verify whether the pi state cleanup has been done
1002         * or not. In the worst case it loops once more.
1003         */
1004        tsk->flags |= PF_EXITPIDONE;
1005
1006        if (tsk->io_context)
1007                exit_io_context();
1008
1009        if (tsk->splice_pipe)
1010                __free_pipe_info(tsk->splice_pipe);
1011
1012        validate_creds_for_do_exit(tsk);
1013
1014        preempt_disable();
1015        exit_rcu();
1016        /* causes final put_task_struct in finish_task_switch(). */
1017        tsk->state = TASK_DEAD;
1018        schedule();
1019        BUG();
1020        /* Avoid "noreturn function does return".  */
1021        for (;;)
1022                cpu_relax();    /* For when BUG is null */
1023}
1024
1025EXPORT_SYMBOL_GPL(do_exit);
1026
1027NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1028{
1029        if (comp)
1030                complete(comp);
1031
1032        do_exit(code);
1033}
1034
1035EXPORT_SYMBOL(complete_and_exit);
1036
1037SYSCALL_DEFINE1(exit, int, error_code)
1038{
1039        do_exit((error_code&0xff)<<8);
1040}
1041
1042/*
1043 * Take down every thread in the group.  This is called by fatal signals
1044 * as well as by sys_exit_group (below).
1045 */
1046NORET_TYPE void
1047do_group_exit(int exit_code)
1048{
1049        struct signal_struct *sig = current->signal;
1050
1051        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1052
1053        if (signal_group_exit(sig))
1054                exit_code = sig->group_exit_code;
1055        else if (!thread_group_empty(current)) {
1056                struct sighand_struct *const sighand = current->sighand;
1057                spin_lock_irq(&sighand->siglock);
1058                if (signal_group_exit(sig))
1059                        /* Another thread got here before we took the lock.  */
1060                        exit_code = sig->group_exit_code;
1061                else {
1062                        sig->group_exit_code = exit_code;
1063                        sig->flags = SIGNAL_GROUP_EXIT;
1064                        zap_other_threads(current);
1065                }
1066                spin_unlock_irq(&sighand->siglock);
1067        }
1068
1069        do_exit(exit_code);
1070        /* NOTREACHED */
1071}
1072
1073/*
1074 * this kills every thread in the thread group. Note that any externally
1075 * wait4()-ing process will get the correct exit code - even if this
1076 * thread is not the thread group leader.
1077 */
1078SYSCALL_DEFINE1(exit_group, int, error_code)
1079{
1080        do_group_exit((error_code & 0xff) << 8);
1081        /* NOTREACHED */
1082        return 0;
1083}
1084
1085struct wait_opts {
1086        enum pid_type           wo_type;
1087        int                     wo_flags;
1088        struct pid              *wo_pid;
1089
1090        struct siginfo __user   *wo_info;
1091        int __user              *wo_stat;
1092        struct rusage __user    *wo_rusage;
1093
1094        wait_queue_t            child_wait;
1095        int                     notask_error;
1096};
1097
1098static inline
1099struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1100{
1101        if (type != PIDTYPE_PID)
1102                task = task->group_leader;
1103        return task->pids[type].pid;
1104}
1105
1106static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1107{
1108        return  wo->wo_type == PIDTYPE_MAX ||
1109                task_pid_type(p, wo->wo_type) == wo->wo_pid;
1110}
1111
1112static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1113{
1114        if (!eligible_pid(wo, p))
1115                return 0;
1116        /* Wait for all children (clone and not) if __WALL is set;
1117         * otherwise, wait for clone children *only* if __WCLONE is
1118         * set; otherwise, wait for non-clone children *only*.  (Note:
1119         * A "clone" child here is one that reports to its parent
1120         * using a signal other than SIGCHLD.) */
1121        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1122            && !(wo->wo_flags & __WALL))
1123                return 0;
1124
1125        return 1;
1126}
1127
1128static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1129                                pid_t pid, uid_t uid, int why, int status)
1130{
1131        struct siginfo __user *infop;
1132        int retval = wo->wo_rusage
1133                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1134
1135        put_task_struct(p);
1136        infop = wo->wo_info;
1137        if (infop) {
1138                if (!retval)
1139                        retval = put_user(SIGCHLD, &infop->si_signo);
1140                if (!retval)
1141                        retval = put_user(0, &infop->si_errno);
1142                if (!retval)
1143                        retval = put_user((short)why, &infop->si_code);
1144                if (!retval)
1145                        retval = put_user(pid, &infop->si_pid);
1146                if (!retval)
1147                        retval = put_user(uid, &infop->si_uid);
1148                if (!retval)
1149                        retval = put_user(status, &infop->si_status);
1150        }
1151        if (!retval)
1152                retval = pid;
1153        return retval;
1154}
1155
1156/*
1157 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1158 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1159 * the lock and this task is uninteresting.  If we return nonzero, we have
1160 * released the lock and the system call should return.
1161 */
1162static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1163{
1164        unsigned long state;
1165        int retval, status, traced;
1166        pid_t pid = task_pid_vnr(p);
1167        uid_t uid = __task_cred(p)->uid;
1168        struct siginfo __user *infop;
1169
1170        if (!likely(wo->wo_flags & WEXITED))
1171                return 0;
1172
1173        if (unlikely(wo->wo_flags & WNOWAIT)) {
1174                int exit_code = p->exit_code;
1175                int why, status;
1176
1177                get_task_struct(p);
1178                read_unlock(&tasklist_lock);
1179                if ((exit_code & 0x7f) == 0) {
1180                        why = CLD_EXITED;
1181                        status = exit_code >> 8;
1182                } else {
1183                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1184                        status = exit_code & 0x7f;
1185                }
1186                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1187        }
1188
1189        /*
1190         * Try to move the task's state to DEAD
1191         * only one thread is allowed to do this:
1192         */
1193        state = xchg(&p->exit_state, EXIT_DEAD);
1194        if (state != EXIT_ZOMBIE) {
1195                BUG_ON(state != EXIT_DEAD);
1196                return 0;
1197        }
1198
1199        traced = ptrace_reparented(p);
1200        /*
1201         * It can be ptraced but not reparented, check
1202         * !task_detached() to filter out sub-threads.
1203         */
1204        if (likely(!traced) && likely(!task_detached(p))) {
1205                struct signal_struct *psig;
1206                struct signal_struct *sig;
1207                unsigned long maxrss;
1208
1209                /*
1210                 * The resource counters for the group leader are in its
1211                 * own task_struct.  Those for dead threads in the group
1212                 * are in its signal_struct, as are those for the child
1213                 * processes it has previously reaped.  All these
1214                 * accumulate in the parent's signal_struct c* fields.
1215                 *
1216                 * We don't bother to take a lock here to protect these
1217                 * p->signal fields, because they are only touched by
1218                 * __exit_signal, which runs with tasklist_lock
1219                 * write-locked anyway, and so is excluded here.  We do
1220                 * need to protect the access to parent->signal fields,
1221                 * as other threads in the parent group can be right
1222                 * here reaping other children at the same time.
1223                 */
1224                spin_lock_irq(&p->real_parent->sighand->siglock);
1225                psig = p->real_parent->signal;
1226                sig = p->signal;
1227                psig->cutime =
1228                        cputime_add(psig->cutime,
1229                        cputime_add(p->utime,
1230                        cputime_add(sig->utime,
1231                                    sig->cutime)));
1232                psig->cstime =
1233                        cputime_add(psig->cstime,
1234                        cputime_add(p->stime,
1235                        cputime_add(sig->stime,
1236                                    sig->cstime)));
1237                psig->cgtime =
1238                        cputime_add(psig->cgtime,
1239                        cputime_add(p->gtime,
1240                        cputime_add(sig->gtime,
1241                                    sig->cgtime)));
1242                psig->cmin_flt +=
1243                        p->min_flt + sig->min_flt + sig->cmin_flt;
1244                psig->cmaj_flt +=
1245                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1246                psig->cnvcsw +=
1247                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1248                psig->cnivcsw +=
1249                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1250                psig->cinblock +=
1251                        task_io_get_inblock(p) +
1252                        sig->inblock + sig->cinblock;
1253                psig->coublock +=
1254                        task_io_get_oublock(p) +
1255                        sig->oublock + sig->coublock;
1256                maxrss = max(sig->maxrss, sig->cmaxrss);
1257                if (psig->cmaxrss < maxrss)
1258                        psig->cmaxrss = maxrss;
1259                task_io_accounting_add(&psig->ioac, &p->ioac);
1260                task_io_accounting_add(&psig->ioac, &sig->ioac);
1261                spin_unlock_irq(&p->real_parent->sighand->siglock);
1262        }
1263
1264        /*
1265         * Now we are sure this task is interesting, and no other
1266         * thread can reap it because we set its state to EXIT_DEAD.
1267         */
1268        read_unlock(&tasklist_lock);
1269
1270        retval = wo->wo_rusage
1271                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1272        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1273                ? p->signal->group_exit_code : p->exit_code;
1274        if (!retval && wo->wo_stat)
1275                retval = put_user(status, wo->wo_stat);
1276
1277        infop = wo->wo_info;
1278        if (!retval && infop)
1279                retval = put_user(SIGCHLD, &infop->si_signo);
1280        if (!retval && infop)
1281                retval = put_user(0, &infop->si_errno);
1282        if (!retval && infop) {
1283                int why;
1284
1285                if ((status & 0x7f) == 0) {
1286                        why = CLD_EXITED;
1287                        status >>= 8;
1288                } else {
1289                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1290                        status &= 0x7f;
1291                }
1292                retval = put_user((short)why, &infop->si_code);
1293                if (!retval)
1294                        retval = put_user(status, &infop->si_status);
1295        }
1296        if (!retval && infop)
1297                retval = put_user(pid, &infop->si_pid);
1298        if (!retval && infop)
1299                retval = put_user(uid, &infop->si_uid);
1300        if (!retval)
1301                retval = pid;
1302
1303        if (traced) {
1304                write_lock_irq(&tasklist_lock);
1305                /* We dropped tasklist, ptracer could die and untrace */
1306                ptrace_unlink(p);
1307                /*
1308                 * If this is not a detached task, notify the parent.
1309                 * If it's still not detached after that, don't release
1310                 * it now.
1311                 */
1312                if (!task_detached(p)) {
1313                        do_notify_parent(p, p->exit_signal);
1314                        if (!task_detached(p)) {
1315                                p->exit_state = EXIT_ZOMBIE;
1316                                p = NULL;
1317                        }
1318                }
1319                write_unlock_irq(&tasklist_lock);
1320        }
1321        if (p != NULL)
1322                release_task(p);
1323
1324        return retval;
1325}
1326
1327static int *task_stopped_code(struct task_struct *p, bool ptrace)
1328{
1329        if (ptrace) {
1330                if (task_is_stopped_or_traced(p))
1331                        return &p->exit_code;
1332        } else {
1333                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1334                        return &p->signal->group_exit_code;
1335        }
1336        return NULL;
1337}
1338
1339/*
1340 * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1341 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1342 * the lock and this task is uninteresting.  If we return nonzero, we have
1343 * released the lock and the system call should return.
1344 */
1345static int wait_task_stopped(struct wait_opts *wo,
1346                                int ptrace, struct task_struct *p)
1347{
1348        struct siginfo __user *infop;
1349        int retval, exit_code, *p_code, why;
1350        uid_t uid = 0; /* unneeded, required by compiler */
1351        pid_t pid;
1352
1353        /*
1354         * Traditionally we see ptrace'd stopped tasks regardless of options.
1355         */
1356        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1357                return 0;
1358
1359        exit_code = 0;
1360        spin_lock_irq(&p->sighand->siglock);
1361
1362        p_code = task_stopped_code(p, ptrace);
1363        if (unlikely(!p_code))
1364                goto unlock_sig;
1365
1366        exit_code = *p_code;
1367        if (!exit_code)
1368                goto unlock_sig;
1369
1370        if (!unlikely(wo->wo_flags & WNOWAIT))
1371                *p_code = 0;
1372
1373        /* don't need the RCU readlock here as we're holding a spinlock */
1374        uid = __task_cred(p)->uid;
1375unlock_sig:
1376        spin_unlock_irq(&p->sighand->siglock);
1377        if (!exit_code)
1378                return 0;
1379
1380        /*
1381         * Now we are pretty sure this task is interesting.
1382         * Make sure it doesn't get reaped out from under us while we
1383         * give up the lock and then examine it below.  We don't want to
1384         * keep holding onto the tasklist_lock while we call getrusage and
1385         * possibly take page faults for user memory.
1386         */
1387        get_task_struct(p);
1388        pid = task_pid_vnr(p);
1389        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1390        read_unlock(&tasklist_lock);
1391
1392        if (unlikely(wo->wo_flags & WNOWAIT))
1393                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1394
1395        retval = wo->wo_rusage
1396                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1397        if (!retval && wo->wo_stat)
1398                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1399
1400        infop = wo->wo_info;
1401        if (!retval && infop)
1402                retval = put_user(SIGCHLD, &infop->si_signo);
1403        if (!retval && infop)
1404                retval = put_user(0, &infop->si_errno);
1405        if (!retval && infop)
1406                retval = put_user((short)why, &infop->si_code);
1407        if (!retval && infop)
1408                retval = put_user(exit_code, &infop->si_status);
1409        if (!retval && infop)
1410                retval = put_user(pid, &infop->si_pid);
1411        if (!retval && infop)
1412                retval = put_user(uid, &infop->si_uid);
1413        if (!retval)
1414                retval = pid;
1415        put_task_struct(p);
1416
1417        BUG_ON(!retval);
1418        return retval;
1419}
1420
1421/*
1422 * Handle do_wait work for one task in a live, non-stopped state.
1423 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1424 * the lock and this task is uninteresting.  If we return nonzero, we have
1425 * released the lock and the system call should return.
1426 */
1427static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1428{
1429        int retval;
1430        pid_t pid;
1431        uid_t uid;
1432
1433        if (!unlikely(wo->wo_flags & WCONTINUED))
1434                return 0;
1435
1436        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1437                return 0;
1438
1439        spin_lock_irq(&p->sighand->siglock);
1440        /* Re-check with the lock held.  */
1441        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1442                spin_unlock_irq(&p->sighand->siglock);
1443                return 0;
1444        }
1445        if (!unlikely(wo->wo_flags & WNOWAIT))
1446                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1447        uid = __task_cred(p)->uid;
1448        spin_unlock_irq(&p->sighand->siglock);
1449
1450        pid = task_pid_vnr(p);
1451        get_task_struct(p);
1452        read_unlock(&tasklist_lock);
1453
1454        if (!wo->wo_info) {
1455                retval = wo->wo_rusage
1456                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1457                put_task_struct(p);
1458                if (!retval && wo->wo_stat)
1459                        retval = put_user(0xffff, wo->wo_stat);
1460                if (!retval)
1461                        retval = pid;
1462        } else {
1463                retval = wait_noreap_copyout(wo, p, pid, uid,
1464                                             CLD_CONTINUED, SIGCONT);
1465                BUG_ON(retval == 0);
1466        }
1467
1468        return retval;
1469}
1470
1471/*
1472 * Consider @p for a wait by @parent.
1473 *
1474 * -ECHILD should be in ->notask_error before the first call.
1475 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1476 * Returns zero if the search for a child should continue;
1477 * then ->notask_error is 0 if @p is an eligible child,
1478 * or another error from security_task_wait(), or still -ECHILD.
1479 */
1480static int wait_consider_task(struct wait_opts *wo, int ptrace,
1481                                struct task_struct *p)
1482{
1483        int ret = eligible_child(wo, p);
1484        if (!ret)
1485                return ret;
1486
1487        ret = security_task_wait(p);
1488        if (unlikely(ret < 0)) {
1489                /*
1490                 * If we have not yet seen any eligible child,
1491                 * then let this error code replace -ECHILD.
1492                 * A permission error will give the user a clue
1493                 * to look for security policy problems, rather
1494                 * than for mysterious wait bugs.
1495                 */
1496                if (wo->notask_error)
1497                        wo->notask_error = ret;
1498                return 0;
1499        }
1500
1501        if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1502                /*
1503                 * This child is hidden by ptrace.
1504                 * We aren't allowed to see it now, but eventually we will.
1505                 */
1506                wo->notask_error = 0;
1507                return 0;
1508        }
1509
1510        if (p->exit_state == EXIT_DEAD)
1511                return 0;
1512
1513        /*
1514         * We don't reap group leaders with subthreads.
1515         */
1516        if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1517                return wait_task_zombie(wo, p);
1518
1519        /*
1520         * It's stopped or running now, so it might
1521         * later continue, exit, or stop again.
1522         */
1523        wo->notask_error = 0;
1524
1525        if (task_stopped_code(p, ptrace))
1526                return wait_task_stopped(wo, ptrace, p);
1527
1528        return wait_task_continued(wo, p);
1529}
1530
1531/*
1532 * Do the work of do_wait() for one thread in the group, @tsk.
1533 *
1534 * -ECHILD should be in ->notask_error before the first call.
1535 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1536 * Returns zero if the search for a child should continue; then
1537 * ->notask_error is 0 if there were any eligible children,
1538 * or another error from security_task_wait(), or still -ECHILD.
1539 */
1540static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1541{
1542        struct task_struct *p;
1543
1544        list_for_each_entry(p, &tsk->children, sibling) {
1545                /*
1546                 * Do not consider detached threads.
1547                 */
1548                if (!task_detached(p)) {
1549                        int ret = wait_consider_task(wo, 0, p);
1550                        if (ret)
1551                                return ret;
1552                }
1553        }
1554
1555        return 0;
1556}
1557
1558static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1559{
1560        struct task_struct *p;
1561
1562        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1563                int ret = wait_consider_task(wo, 1, p);
1564                if (ret)
1565                        return ret;
1566        }
1567
1568        return 0;
1569}
1570
1571static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1572                                int sync, void *key)
1573{
1574        struct wait_opts *wo = container_of(wait, struct wait_opts,
1575                                                child_wait);
1576        struct task_struct *p = key;
1577
1578        if (!eligible_pid(wo, p))
1579                return 0;
1580
1581        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1582                return 0;
1583
1584        return default_wake_function(wait, mode, sync, key);
1585}
1586
1587void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1588{
1589        __wake_up_sync_key(&parent->signal->wait_chldexit,
1590                                TASK_INTERRUPTIBLE, 1, p);
1591}
1592
1593static long do_wait(struct wait_opts *wo)
1594{
1595        struct task_struct *tsk;
1596        int retval;
1597
1598        trace_sched_process_wait(wo->wo_pid);
1599
1600        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1601        wo->child_wait.private = current;
1602        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1603repeat:
1604        /*
1605         * If there is nothing that can match our critiera just get out.
1606         * We will clear ->notask_error to zero if we see any child that
1607         * might later match our criteria, even if we are not able to reap
1608         * it yet.
1609         */
1610        wo->notask_error = -ECHILD;
1611        if ((wo->wo_type < PIDTYPE_MAX) &&
1612           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1613                goto notask;
1614
1615        set_current_state(TASK_INTERRUPTIBLE);
1616        read_lock(&tasklist_lock);
1617        tsk = current;
1618        do {
1619                retval = do_wait_thread(wo, tsk);
1620                if (retval)
1621                        goto end;
1622
1623                retval = ptrace_do_wait(wo, tsk);
1624                if (retval)
1625                        goto end;
1626
1627                if (wo->wo_flags & __WNOTHREAD)
1628                        break;
1629        } while_each_thread(current, tsk);
1630        read_unlock(&tasklist_lock);
1631
1632notask:
1633        retval = wo->notask_error;
1634        if (!retval && !(wo->wo_flags & WNOHANG)) {
1635                retval = -ERESTARTSYS;
1636                if (!signal_pending(current)) {
1637                        schedule();
1638                        goto repeat;
1639                }
1640        }
1641end:
1642        __set_current_state(TASK_RUNNING);
1643        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1644        return retval;
1645}
1646
1647SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1648                infop, int, options, struct rusage __user *, ru)
1649{
1650        struct wait_opts wo;
1651        struct pid *pid = NULL;
1652        enum pid_type type;
1653        long ret;
1654
1655        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1656                return -EINVAL;
1657        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1658                return -EINVAL;
1659
1660        switch (which) {
1661        case P_ALL:
1662                type = PIDTYPE_MAX;
1663                break;
1664        case P_PID:
1665                type = PIDTYPE_PID;
1666                if (upid <= 0)
1667                        return -EINVAL;
1668                break;
1669        case P_PGID:
1670                type = PIDTYPE_PGID;
1671                if (upid <= 0)
1672                        return -EINVAL;
1673                break;
1674        default:
1675                return -EINVAL;
1676        }
1677
1678        if (type < PIDTYPE_MAX)
1679                pid = find_get_pid(upid);
1680
1681        wo.wo_type      = type;
1682        wo.wo_pid       = pid;
1683        wo.wo_flags     = options;
1684        wo.wo_info      = infop;
1685        wo.wo_stat      = NULL;
1686        wo.wo_rusage    = ru;
1687        ret = do_wait(&wo);
1688
1689        if (ret > 0) {
1690                ret = 0;
1691        } else if (infop) {
1692                /*
1693                 * For a WNOHANG return, clear out all the fields
1694                 * we would set so the user can easily tell the
1695                 * difference.
1696                 */
1697                if (!ret)
1698                        ret = put_user(0, &infop->si_signo);
1699                if (!ret)
1700                        ret = put_user(0, &infop->si_errno);
1701                if (!ret)
1702                        ret = put_user(0, &infop->si_code);
1703                if (!ret)
1704                        ret = put_user(0, &infop->si_pid);
1705                if (!ret)
1706                        ret = put_user(0, &infop->si_uid);
1707                if (!ret)
1708                        ret = put_user(0, &infop->si_status);
1709        }
1710
1711        put_pid(pid);
1712
1713        /* avoid REGPARM breakage on x86: */
1714        asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1715        return ret;
1716}
1717
1718SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1719                int, options, struct rusage __user *, ru)
1720{
1721        struct wait_opts wo;
1722        struct pid *pid = NULL;
1723        enum pid_type type;
1724        long ret;
1725
1726        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1727                        __WNOTHREAD|__WCLONE|__WALL))
1728                return -EINVAL;
1729
1730        if (upid == -1)
1731                type = PIDTYPE_MAX;
1732        else if (upid < 0) {
1733                type = PIDTYPE_PGID;
1734                pid = find_get_pid(-upid);
1735        } else if (upid == 0) {
1736                type = PIDTYPE_PGID;
1737                pid = get_task_pid(current, PIDTYPE_PGID);
1738        } else /* upid > 0 */ {
1739                type = PIDTYPE_PID;
1740                pid = find_get_pid(upid);
1741        }
1742
1743        wo.wo_type      = type;
1744        wo.wo_pid       = pid;
1745        wo.wo_flags     = options | WEXITED;
1746        wo.wo_info      = NULL;
1747        wo.wo_stat      = stat_addr;
1748        wo.wo_rusage    = ru;
1749        ret = do_wait(&wo);
1750        put_pid(pid);
1751
1752        /* avoid REGPARM breakage on x86: */
1753        asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1754        return ret;
1755}
1756
1757#ifdef __ARCH_WANT_SYS_WAITPID
1758
1759/*
1760 * sys_waitpid() remains for compatibility. waitpid() should be
1761 * implemented by calling sys_wait4() from libc.a.
1762 */
1763SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1764{
1765        return sys_wait4(pid, stat_addr, options, NULL);
1766}
1767
1768#endif
1769