linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/nsproxy.h>
  32#include <linux/capability.h>
  33#include <linux/cpu.h>
  34#include <linux/cgroup.h>
  35#include <linux/security.h>
  36#include <linux/hugetlb.h>
  37#include <linux/swap.h>
  38#include <linux/syscalls.h>
  39#include <linux/jiffies.h>
  40#include <linux/tracehook.h>
  41#include <linux/futex.h>
  42#include <linux/compat.h>
  43#include <linux/task_io_accounting_ops.h>
  44#include <linux/rcupdate.h>
  45#include <linux/ptrace.h>
  46#include <linux/mount.h>
  47#include <linux/audit.h>
  48#include <linux/memcontrol.h>
  49#include <linux/ftrace.h>
  50#include <linux/profile.h>
  51#include <linux/rmap.h>
  52#include <linux/ksm.h>
  53#include <linux/acct.h>
  54#include <linux/tsacct_kern.h>
  55#include <linux/cn_proc.h>
  56#include <linux/freezer.h>
  57#include <linux/delayacct.h>
  58#include <linux/taskstats_kern.h>
  59#include <linux/random.h>
  60#include <linux/tty.h>
  61#include <linux/proc_fs.h>
  62#include <linux/blkdev.h>
  63#include <linux/fs_struct.h>
  64#include <linux/magic.h>
  65#include <linux/perf_event.h>
  66#include <linux/posix-timers.h>
  67
  68#include <asm/pgtable.h>
  69#include <asm/pgalloc.h>
  70#include <asm/uaccess.h>
  71#include <asm/mmu_context.h>
  72#include <asm/cacheflush.h>
  73#include <asm/tlbflush.h>
  74
  75#include <trace/events/sched.h>
  76
  77/*
  78 * Protected counters by write_lock_irq(&tasklist_lock)
  79 */
  80unsigned long total_forks;      /* Handle normal Linux uptimes. */
  81int nr_threads;                 /* The idle threads do not count.. */
  82
  83int max_threads;                /* tunable limit on nr_threads */
  84
  85DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  86
  87__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
  88
  89int nr_processes(void)
  90{
  91        int cpu;
  92        int total = 0;
  93
  94        for_each_possible_cpu(cpu)
  95                total += per_cpu(process_counts, cpu);
  96
  97        return total;
  98}
  99
 100#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 101# define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
 102# define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
 103static struct kmem_cache *task_struct_cachep;
 104#endif
 105
 106#ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
 107static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
 108{
 109#ifdef CONFIG_DEBUG_STACK_USAGE
 110        gfp_t mask = GFP_KERNEL | __GFP_ZERO;
 111#else
 112        gfp_t mask = GFP_KERNEL;
 113#endif
 114        return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
 115}
 116
 117static inline void free_thread_info(struct thread_info *ti)
 118{
 119        free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 120}
 121#endif
 122
 123/* SLAB cache for signal_struct structures (tsk->signal) */
 124static struct kmem_cache *signal_cachep;
 125
 126/* SLAB cache for sighand_struct structures (tsk->sighand) */
 127struct kmem_cache *sighand_cachep;
 128
 129/* SLAB cache for files_struct structures (tsk->files) */
 130struct kmem_cache *files_cachep;
 131
 132/* SLAB cache for fs_struct structures (tsk->fs) */
 133struct kmem_cache *fs_cachep;
 134
 135/* SLAB cache for vm_area_struct structures */
 136struct kmem_cache *vm_area_cachep;
 137
 138/* SLAB cache for mm_struct structures (tsk->mm) */
 139static struct kmem_cache *mm_cachep;
 140
 141static void account_kernel_stack(struct thread_info *ti, int account)
 142{
 143        struct zone *zone = page_zone(virt_to_page(ti));
 144
 145        mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 146}
 147
 148void free_task(struct task_struct *tsk)
 149{
 150        prop_local_destroy_single(&tsk->dirties);
 151        account_kernel_stack(tsk->stack, -1);
 152        free_thread_info(tsk->stack);
 153        rt_mutex_debug_task_free(tsk);
 154        ftrace_graph_exit_task(tsk);
 155        free_task_struct(tsk);
 156}
 157EXPORT_SYMBOL(free_task);
 158
 159void __put_task_struct(struct task_struct *tsk)
 160{
 161        WARN_ON(!tsk->exit_state);
 162        WARN_ON(atomic_read(&tsk->usage));
 163        WARN_ON(tsk == current);
 164
 165        exit_creds(tsk);
 166        delayacct_tsk_free(tsk);
 167
 168        if (!profile_handoff_task(tsk))
 169                free_task(tsk);
 170}
 171
 172/*
 173 * macro override instead of weak attribute alias, to workaround
 174 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
 175 */
 176#ifndef arch_task_cache_init
 177#define arch_task_cache_init()
 178#endif
 179
 180void __init fork_init(unsigned long mempages)
 181{
 182#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 183#ifndef ARCH_MIN_TASKALIGN
 184#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
 185#endif
 186        /* create a slab on which task_structs can be allocated */
 187        task_struct_cachep =
 188                kmem_cache_create("task_struct", sizeof(struct task_struct),
 189                        ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 190#endif
 191
 192        /* do the arch specific task caches init */
 193        arch_task_cache_init();
 194
 195        /*
 196         * The default maximum number of threads is set to a safe
 197         * value: the thread structures can take up at most half
 198         * of memory.
 199         */
 200        max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 201
 202        /*
 203         * we need to allow at least 20 threads to boot a system
 204         */
 205        if(max_threads < 20)
 206                max_threads = 20;
 207
 208        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 209        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 210        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 211                init_task.signal->rlim[RLIMIT_NPROC];
 212}
 213
 214int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
 215                                               struct task_struct *src)
 216{
 217        *dst = *src;
 218        return 0;
 219}
 220
 221static struct task_struct *dup_task_struct(struct task_struct *orig)
 222{
 223        struct task_struct *tsk;
 224        struct thread_info *ti;
 225        unsigned long *stackend;
 226
 227        int err;
 228
 229        prepare_to_copy(orig);
 230
 231        tsk = alloc_task_struct();
 232        if (!tsk)
 233                return NULL;
 234
 235        ti = alloc_thread_info(tsk);
 236        if (!ti) {
 237                free_task_struct(tsk);
 238                return NULL;
 239        }
 240
 241        err = arch_dup_task_struct(tsk, orig);
 242        if (err)
 243                goto out;
 244
 245        tsk->stack = ti;
 246
 247        err = prop_local_init_single(&tsk->dirties);
 248        if (err)
 249                goto out;
 250
 251        setup_thread_stack(tsk, orig);
 252        stackend = end_of_stack(tsk);
 253        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 254
 255#ifdef CONFIG_CC_STACKPROTECTOR
 256        tsk->stack_canary = get_random_int();
 257#endif
 258
 259        /* One for us, one for whoever does the "release_task()" (usually parent) */
 260        atomic_set(&tsk->usage,2);
 261        atomic_set(&tsk->fs_excl, 0);
 262#ifdef CONFIG_BLK_DEV_IO_TRACE
 263        tsk->btrace_seq = 0;
 264#endif
 265        tsk->splice_pipe = NULL;
 266
 267        account_kernel_stack(ti, 1);
 268
 269        return tsk;
 270
 271out:
 272        free_thread_info(ti);
 273        free_task_struct(tsk);
 274        return NULL;
 275}
 276
 277#ifdef CONFIG_MMU
 278static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 279{
 280        struct vm_area_struct *mpnt, *tmp, **pprev;
 281        struct rb_node **rb_link, *rb_parent;
 282        int retval;
 283        unsigned long charge;
 284        struct mempolicy *pol;
 285
 286        down_write(&oldmm->mmap_sem);
 287        flush_cache_dup_mm(oldmm);
 288        /*
 289         * Not linked in yet - no deadlock potential:
 290         */
 291        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 292
 293        mm->locked_vm = 0;
 294        mm->mmap = NULL;
 295        mm->mmap_cache = NULL;
 296        mm->free_area_cache = oldmm->mmap_base;
 297        mm->cached_hole_size = ~0UL;
 298        mm->map_count = 0;
 299        cpumask_clear(mm_cpumask(mm));
 300        mm->mm_rb = RB_ROOT;
 301        rb_link = &mm->mm_rb.rb_node;
 302        rb_parent = NULL;
 303        pprev = &mm->mmap;
 304        retval = ksm_fork(mm, oldmm);
 305        if (retval)
 306                goto out;
 307
 308        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 309                struct file *file;
 310
 311                if (mpnt->vm_flags & VM_DONTCOPY) {
 312                        long pages = vma_pages(mpnt);
 313                        mm->total_vm -= pages;
 314                        vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 315                                                                -pages);
 316                        continue;
 317                }
 318                charge = 0;
 319                if (mpnt->vm_flags & VM_ACCOUNT) {
 320                        unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
 321                        if (security_vm_enough_memory(len))
 322                                goto fail_nomem;
 323                        charge = len;
 324                }
 325                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 326                if (!tmp)
 327                        goto fail_nomem;
 328                *tmp = *mpnt;
 329                pol = mpol_dup(vma_policy(mpnt));
 330                retval = PTR_ERR(pol);
 331                if (IS_ERR(pol))
 332                        goto fail_nomem_policy;
 333                vma_set_policy(tmp, pol);
 334                tmp->vm_flags &= ~VM_LOCKED;
 335                tmp->vm_mm = mm;
 336                tmp->vm_next = NULL;
 337                anon_vma_link(tmp);
 338                file = tmp->vm_file;
 339                if (file) {
 340                        struct inode *inode = file->f_path.dentry->d_inode;
 341                        struct address_space *mapping = file->f_mapping;
 342
 343                        get_file(file);
 344                        if (tmp->vm_flags & VM_DENYWRITE)
 345                                atomic_dec(&inode->i_writecount);
 346                        spin_lock(&mapping->i_mmap_lock);
 347                        if (tmp->vm_flags & VM_SHARED)
 348                                mapping->i_mmap_writable++;
 349                        tmp->vm_truncate_count = mpnt->vm_truncate_count;
 350                        flush_dcache_mmap_lock(mapping);
 351                        /* insert tmp into the share list, just after mpnt */
 352                        vma_prio_tree_add(tmp, mpnt);
 353                        flush_dcache_mmap_unlock(mapping);
 354                        spin_unlock(&mapping->i_mmap_lock);
 355                }
 356
 357                /*
 358                 * Clear hugetlb-related page reserves for children. This only
 359                 * affects MAP_PRIVATE mappings. Faults generated by the child
 360                 * are not guaranteed to succeed, even if read-only
 361                 */
 362                if (is_vm_hugetlb_page(tmp))
 363                        reset_vma_resv_huge_pages(tmp);
 364
 365                /*
 366                 * Link in the new vma and copy the page table entries.
 367                 */
 368                *pprev = tmp;
 369                pprev = &tmp->vm_next;
 370
 371                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 372                rb_link = &tmp->vm_rb.rb_right;
 373                rb_parent = &tmp->vm_rb;
 374
 375                mm->map_count++;
 376                retval = copy_page_range(mm, oldmm, mpnt);
 377
 378                if (tmp->vm_ops && tmp->vm_ops->open)
 379                        tmp->vm_ops->open(tmp);
 380
 381                if (retval)
 382                        goto out;
 383        }
 384        /* a new mm has just been created */
 385        arch_dup_mmap(oldmm, mm);
 386        retval = 0;
 387out:
 388        up_write(&mm->mmap_sem);
 389        flush_tlb_mm(oldmm);
 390        up_write(&oldmm->mmap_sem);
 391        return retval;
 392fail_nomem_policy:
 393        kmem_cache_free(vm_area_cachep, tmp);
 394fail_nomem:
 395        retval = -ENOMEM;
 396        vm_unacct_memory(charge);
 397        goto out;
 398}
 399
 400static inline int mm_alloc_pgd(struct mm_struct * mm)
 401{
 402        mm->pgd = pgd_alloc(mm);
 403        if (unlikely(!mm->pgd))
 404                return -ENOMEM;
 405        return 0;
 406}
 407
 408static inline void mm_free_pgd(struct mm_struct * mm)
 409{
 410        pgd_free(mm, mm->pgd);
 411}
 412#else
 413#define dup_mmap(mm, oldmm)     (0)
 414#define mm_alloc_pgd(mm)        (0)
 415#define mm_free_pgd(mm)
 416#endif /* CONFIG_MMU */
 417
 418__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 419
 420#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 421#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 422
 423static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 424
 425static int __init coredump_filter_setup(char *s)
 426{
 427        default_dump_filter =
 428                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 429                MMF_DUMP_FILTER_MASK;
 430        return 1;
 431}
 432
 433__setup("coredump_filter=", coredump_filter_setup);
 434
 435#include <linux/init_task.h>
 436
 437static void mm_init_aio(struct mm_struct *mm)
 438{
 439#ifdef CONFIG_AIO
 440        spin_lock_init(&mm->ioctx_lock);
 441        INIT_HLIST_HEAD(&mm->ioctx_list);
 442#endif
 443}
 444
 445static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
 446{
 447        atomic_set(&mm->mm_users, 1);
 448        atomic_set(&mm->mm_count, 1);
 449        init_rwsem(&mm->mmap_sem);
 450        INIT_LIST_HEAD(&mm->mmlist);
 451        mm->flags = (current->mm) ?
 452                (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
 453        mm->core_state = NULL;
 454        mm->nr_ptes = 0;
 455        set_mm_counter(mm, file_rss, 0);
 456        set_mm_counter(mm, anon_rss, 0);
 457        spin_lock_init(&mm->page_table_lock);
 458        mm->free_area_cache = TASK_UNMAPPED_BASE;
 459        mm->cached_hole_size = ~0UL;
 460        mm_init_aio(mm);
 461        mm_init_owner(mm, p);
 462
 463        if (likely(!mm_alloc_pgd(mm))) {
 464                mm->def_flags = 0;
 465                mmu_notifier_mm_init(mm);
 466                return mm;
 467        }
 468
 469        free_mm(mm);
 470        return NULL;
 471}
 472
 473/*
 474 * Allocate and initialize an mm_struct.
 475 */
 476struct mm_struct * mm_alloc(void)
 477{
 478        struct mm_struct * mm;
 479
 480        mm = allocate_mm();
 481        if (mm) {
 482                memset(mm, 0, sizeof(*mm));
 483                mm = mm_init(mm, current);
 484        }
 485        return mm;
 486}
 487
 488/*
 489 * Called when the last reference to the mm
 490 * is dropped: either by a lazy thread or by
 491 * mmput. Free the page directory and the mm.
 492 */
 493void __mmdrop(struct mm_struct *mm)
 494{
 495        BUG_ON(mm == &init_mm);
 496        mm_free_pgd(mm);
 497        destroy_context(mm);
 498        mmu_notifier_mm_destroy(mm);
 499        free_mm(mm);
 500}
 501EXPORT_SYMBOL_GPL(__mmdrop);
 502
 503/*
 504 * Decrement the use count and release all resources for an mm.
 505 */
 506void mmput(struct mm_struct *mm)
 507{
 508        might_sleep();
 509
 510        if (atomic_dec_and_test(&mm->mm_users)) {
 511                exit_aio(mm);
 512                ksm_exit(mm);
 513                exit_mmap(mm);
 514                set_mm_exe_file(mm, NULL);
 515                if (!list_empty(&mm->mmlist)) {
 516                        spin_lock(&mmlist_lock);
 517                        list_del(&mm->mmlist);
 518                        spin_unlock(&mmlist_lock);
 519                }
 520                put_swap_token(mm);
 521                if (mm->binfmt)
 522                        module_put(mm->binfmt->module);
 523                mmdrop(mm);
 524        }
 525}
 526EXPORT_SYMBOL_GPL(mmput);
 527
 528/**
 529 * get_task_mm - acquire a reference to the task's mm
 530 *
 531 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 532 * this kernel workthread has transiently adopted a user mm with use_mm,
 533 * to do its AIO) is not set and if so returns a reference to it, after
 534 * bumping up the use count.  User must release the mm via mmput()
 535 * after use.  Typically used by /proc and ptrace.
 536 */
 537struct mm_struct *get_task_mm(struct task_struct *task)
 538{
 539        struct mm_struct *mm;
 540
 541        task_lock(task);
 542        mm = task->mm;
 543        if (mm) {
 544                if (task->flags & PF_KTHREAD)
 545                        mm = NULL;
 546                else
 547                        atomic_inc(&mm->mm_users);
 548        }
 549        task_unlock(task);
 550        return mm;
 551}
 552EXPORT_SYMBOL_GPL(get_task_mm);
 553
 554/* Please note the differences between mmput and mm_release.
 555 * mmput is called whenever we stop holding onto a mm_struct,
 556 * error success whatever.
 557 *
 558 * mm_release is called after a mm_struct has been removed
 559 * from the current process.
 560 *
 561 * This difference is important for error handling, when we
 562 * only half set up a mm_struct for a new process and need to restore
 563 * the old one.  Because we mmput the new mm_struct before
 564 * restoring the old one. . .
 565 * Eric Biederman 10 January 1998
 566 */
 567void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 568{
 569        struct completion *vfork_done = tsk->vfork_done;
 570
 571        /* Get rid of any futexes when releasing the mm */
 572#ifdef CONFIG_FUTEX
 573        if (unlikely(tsk->robust_list)) {
 574                exit_robust_list(tsk);
 575                tsk->robust_list = NULL;
 576        }
 577#ifdef CONFIG_COMPAT
 578        if (unlikely(tsk->compat_robust_list)) {
 579                compat_exit_robust_list(tsk);
 580                tsk->compat_robust_list = NULL;
 581        }
 582#endif
 583        if (unlikely(!list_empty(&tsk->pi_state_list)))
 584                exit_pi_state_list(tsk);
 585#endif
 586
 587        /* Get rid of any cached register state */
 588        deactivate_mm(tsk, mm);
 589
 590        /* notify parent sleeping on vfork() */
 591        if (vfork_done) {
 592                tsk->vfork_done = NULL;
 593                complete(vfork_done);
 594        }
 595
 596        /*
 597         * If we're exiting normally, clear a user-space tid field if
 598         * requested.  We leave this alone when dying by signal, to leave
 599         * the value intact in a core dump, and to save the unnecessary
 600         * trouble otherwise.  Userland only wants this done for a sys_exit.
 601         */
 602        if (tsk->clear_child_tid) {
 603                if (!(tsk->flags & PF_SIGNALED) &&
 604                    atomic_read(&mm->mm_users) > 1) {
 605                        /*
 606                         * We don't check the error code - if userspace has
 607                         * not set up a proper pointer then tough luck.
 608                         */
 609                        put_user(0, tsk->clear_child_tid);
 610                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 611                                        1, NULL, NULL, 0);
 612                }
 613                tsk->clear_child_tid = NULL;
 614        }
 615}
 616
 617/*
 618 * Allocate a new mm structure and copy contents from the
 619 * mm structure of the passed in task structure.
 620 */
 621struct mm_struct *dup_mm(struct task_struct *tsk)
 622{
 623        struct mm_struct *mm, *oldmm = current->mm;
 624        int err;
 625
 626        if (!oldmm)
 627                return NULL;
 628
 629        mm = allocate_mm();
 630        if (!mm)
 631                goto fail_nomem;
 632
 633        memcpy(mm, oldmm, sizeof(*mm));
 634
 635        /* Initializing for Swap token stuff */
 636        mm->token_priority = 0;
 637        mm->last_interval = 0;
 638
 639        if (!mm_init(mm, tsk))
 640                goto fail_nomem;
 641
 642        if (init_new_context(tsk, mm))
 643                goto fail_nocontext;
 644
 645        dup_mm_exe_file(oldmm, mm);
 646
 647        err = dup_mmap(mm, oldmm);
 648        if (err)
 649                goto free_pt;
 650
 651        mm->hiwater_rss = get_mm_rss(mm);
 652        mm->hiwater_vm = mm->total_vm;
 653
 654        if (mm->binfmt && !try_module_get(mm->binfmt->module))
 655                goto free_pt;
 656
 657        return mm;
 658
 659free_pt:
 660        /* don't put binfmt in mmput, we haven't got module yet */
 661        mm->binfmt = NULL;
 662        mmput(mm);
 663
 664fail_nomem:
 665        return NULL;
 666
 667fail_nocontext:
 668        /*
 669         * If init_new_context() failed, we cannot use mmput() to free the mm
 670         * because it calls destroy_context()
 671         */
 672        mm_free_pgd(mm);
 673        free_mm(mm);
 674        return NULL;
 675}
 676
 677static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
 678{
 679        struct mm_struct * mm, *oldmm;
 680        int retval;
 681
 682        tsk->min_flt = tsk->maj_flt = 0;
 683        tsk->nvcsw = tsk->nivcsw = 0;
 684#ifdef CONFIG_DETECT_HUNG_TASK
 685        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 686#endif
 687
 688        tsk->mm = NULL;
 689        tsk->active_mm = NULL;
 690
 691        /*
 692         * Are we cloning a kernel thread?
 693         *
 694         * We need to steal a active VM for that..
 695         */
 696        oldmm = current->mm;
 697        if (!oldmm)
 698                return 0;
 699
 700        if (clone_flags & CLONE_VM) {
 701                atomic_inc(&oldmm->mm_users);
 702                mm = oldmm;
 703                goto good_mm;
 704        }
 705
 706        retval = -ENOMEM;
 707        mm = dup_mm(tsk);
 708        if (!mm)
 709                goto fail_nomem;
 710
 711good_mm:
 712        /* Initializing for Swap token stuff */
 713        mm->token_priority = 0;
 714        mm->last_interval = 0;
 715
 716        tsk->mm = mm;
 717        tsk->active_mm = mm;
 718        return 0;
 719
 720fail_nomem:
 721        return retval;
 722}
 723
 724static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 725{
 726        struct fs_struct *fs = current->fs;
 727        if (clone_flags & CLONE_FS) {
 728                /* tsk->fs is already what we want */
 729                write_lock(&fs->lock);
 730                if (fs->in_exec) {
 731                        write_unlock(&fs->lock);
 732                        return -EAGAIN;
 733                }
 734                fs->users++;
 735                write_unlock(&fs->lock);
 736                return 0;
 737        }
 738        tsk->fs = copy_fs_struct(fs);
 739        if (!tsk->fs)
 740                return -ENOMEM;
 741        return 0;
 742}
 743
 744static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
 745{
 746        struct files_struct *oldf, *newf;
 747        int error = 0;
 748
 749        /*
 750         * A background process may not have any files ...
 751         */
 752        oldf = current->files;
 753        if (!oldf)
 754                goto out;
 755
 756        if (clone_flags & CLONE_FILES) {
 757                atomic_inc(&oldf->count);
 758                goto out;
 759        }
 760
 761        newf = dup_fd(oldf, &error);
 762        if (!newf)
 763                goto out;
 764
 765        tsk->files = newf;
 766        error = 0;
 767out:
 768        return error;
 769}
 770
 771static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
 772{
 773#ifdef CONFIG_BLOCK
 774        struct io_context *ioc = current->io_context;
 775
 776        if (!ioc)
 777                return 0;
 778        /*
 779         * Share io context with parent, if CLONE_IO is set
 780         */
 781        if (clone_flags & CLONE_IO) {
 782                tsk->io_context = ioc_task_link(ioc);
 783                if (unlikely(!tsk->io_context))
 784                        return -ENOMEM;
 785        } else if (ioprio_valid(ioc->ioprio)) {
 786                tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
 787                if (unlikely(!tsk->io_context))
 788                        return -ENOMEM;
 789
 790                tsk->io_context->ioprio = ioc->ioprio;
 791        }
 792#endif
 793        return 0;
 794}
 795
 796static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 797{
 798        struct sighand_struct *sig;
 799
 800        if (clone_flags & CLONE_SIGHAND) {
 801                atomic_inc(&current->sighand->count);
 802                return 0;
 803        }
 804        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 805        rcu_assign_pointer(tsk->sighand, sig);
 806        if (!sig)
 807                return -ENOMEM;
 808        atomic_set(&sig->count, 1);
 809        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 810        return 0;
 811}
 812
 813void __cleanup_sighand(struct sighand_struct *sighand)
 814{
 815        if (atomic_dec_and_test(&sighand->count))
 816                kmem_cache_free(sighand_cachep, sighand);
 817}
 818
 819
 820/*
 821 * Initialize POSIX timer handling for a thread group.
 822 */
 823static void posix_cpu_timers_init_group(struct signal_struct *sig)
 824{
 825        /* Thread group counters. */
 826        thread_group_cputime_init(sig);
 827
 828        /* Expiration times and increments. */
 829        sig->it[CPUCLOCK_PROF].expires = cputime_zero;
 830        sig->it[CPUCLOCK_PROF].incr = cputime_zero;
 831        sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
 832        sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
 833
 834        /* Cached expiration times. */
 835        sig->cputime_expires.prof_exp = cputime_zero;
 836        sig->cputime_expires.virt_exp = cputime_zero;
 837        sig->cputime_expires.sched_exp = 0;
 838
 839        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
 840                sig->cputime_expires.prof_exp =
 841                        secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
 842                sig->cputimer.running = 1;
 843        }
 844
 845        /* The timer lists. */
 846        INIT_LIST_HEAD(&sig->cpu_timers[0]);
 847        INIT_LIST_HEAD(&sig->cpu_timers[1]);
 848        INIT_LIST_HEAD(&sig->cpu_timers[2]);
 849}
 850
 851static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 852{
 853        struct signal_struct *sig;
 854
 855        if (clone_flags & CLONE_THREAD)
 856                return 0;
 857
 858        sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
 859        tsk->signal = sig;
 860        if (!sig)
 861                return -ENOMEM;
 862
 863        atomic_set(&sig->count, 1);
 864        atomic_set(&sig->live, 1);
 865        init_waitqueue_head(&sig->wait_chldexit);
 866        sig->flags = 0;
 867        if (clone_flags & CLONE_NEWPID)
 868                sig->flags |= SIGNAL_UNKILLABLE;
 869        sig->group_exit_code = 0;
 870        sig->group_exit_task = NULL;
 871        sig->group_stop_count = 0;
 872        sig->curr_target = tsk;
 873        init_sigpending(&sig->shared_pending);
 874        INIT_LIST_HEAD(&sig->posix_timers);
 875
 876        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 877        sig->it_real_incr.tv64 = 0;
 878        sig->real_timer.function = it_real_fn;
 879
 880        sig->leader = 0;        /* session leadership doesn't inherit */
 881        sig->tty_old_pgrp = NULL;
 882        sig->tty = NULL;
 883
 884        sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
 885        sig->gtime = cputime_zero;
 886        sig->cgtime = cputime_zero;
 887        sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
 888        sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
 889        sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
 890        sig->maxrss = sig->cmaxrss = 0;
 891        task_io_accounting_init(&sig->ioac);
 892        sig->sum_sched_runtime = 0;
 893        taskstats_tgid_init(sig);
 894
 895        task_lock(current->group_leader);
 896        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 897        task_unlock(current->group_leader);
 898
 899        posix_cpu_timers_init_group(sig);
 900
 901        acct_init_pacct(&sig->pacct);
 902
 903        tty_audit_fork(sig);
 904
 905        sig->oom_adj = current->signal->oom_adj;
 906
 907        return 0;
 908}
 909
 910void __cleanup_signal(struct signal_struct *sig)
 911{
 912        thread_group_cputime_free(sig);
 913        tty_kref_put(sig->tty);
 914        kmem_cache_free(signal_cachep, sig);
 915}
 916
 917static void copy_flags(unsigned long clone_flags, struct task_struct *p)
 918{
 919        unsigned long new_flags = p->flags;
 920
 921        new_flags &= ~PF_SUPERPRIV;
 922        new_flags |= PF_FORKNOEXEC;
 923        new_flags |= PF_STARTING;
 924        p->flags = new_flags;
 925        clear_freeze_flag(p);
 926}
 927
 928SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
 929{
 930        current->clear_child_tid = tidptr;
 931
 932        return task_pid_vnr(current);
 933}
 934
 935static void rt_mutex_init_task(struct task_struct *p)
 936{
 937        spin_lock_init(&p->pi_lock);
 938#ifdef CONFIG_RT_MUTEXES
 939        plist_head_init(&p->pi_waiters, &p->pi_lock);
 940        p->pi_blocked_on = NULL;
 941#endif
 942}
 943
 944#ifdef CONFIG_MM_OWNER
 945void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 946{
 947        mm->owner = p;
 948}
 949#endif /* CONFIG_MM_OWNER */
 950
 951/*
 952 * Initialize POSIX timer handling for a single task.
 953 */
 954static void posix_cpu_timers_init(struct task_struct *tsk)
 955{
 956        tsk->cputime_expires.prof_exp = cputime_zero;
 957        tsk->cputime_expires.virt_exp = cputime_zero;
 958        tsk->cputime_expires.sched_exp = 0;
 959        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
 960        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
 961        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
 962}
 963
 964/*
 965 * This creates a new process as a copy of the old one,
 966 * but does not actually start it yet.
 967 *
 968 * It copies the registers, and all the appropriate
 969 * parts of the process environment (as per the clone
 970 * flags). The actual kick-off is left to the caller.
 971 */
 972static struct task_struct *copy_process(unsigned long clone_flags,
 973                                        unsigned long stack_start,
 974                                        struct pt_regs *regs,
 975                                        unsigned long stack_size,
 976                                        int __user *child_tidptr,
 977                                        struct pid *pid,
 978                                        int trace)
 979{
 980        int retval;
 981        struct task_struct *p;
 982        int cgroup_callbacks_done = 0;
 983
 984        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
 985                return ERR_PTR(-EINVAL);
 986
 987        /*
 988         * Thread groups must share signals as well, and detached threads
 989         * can only be started up within the thread group.
 990         */
 991        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
 992                return ERR_PTR(-EINVAL);
 993
 994        /*
 995         * Shared signal handlers imply shared VM. By way of the above,
 996         * thread groups also imply shared VM. Blocking this case allows
 997         * for various simplifications in other code.
 998         */
 999        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000                return ERR_PTR(-EINVAL);
1001
1002        /*
1003         * Siblings of global init remain as zombies on exit since they are
1004         * not reaped by their parent (swapper). To solve this and to avoid
1005         * multi-rooted process trees, prevent global and container-inits
1006         * from creating siblings.
1007         */
1008        if ((clone_flags & CLONE_PARENT) &&
1009                                current->signal->flags & SIGNAL_UNKILLABLE)
1010                return ERR_PTR(-EINVAL);
1011
1012        retval = security_task_create(clone_flags);
1013        if (retval)
1014                goto fork_out;
1015
1016        retval = -ENOMEM;
1017        p = dup_task_struct(current);
1018        if (!p)
1019                goto fork_out;
1020
1021        ftrace_graph_init_task(p);
1022
1023        rt_mutex_init_task(p);
1024
1025#ifdef CONFIG_PROVE_LOCKING
1026        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1027        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1028#endif
1029        retval = -EAGAIN;
1030        if (atomic_read(&p->real_cred->user->processes) >=
1031                        p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1032                if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1033                    p->real_cred->user != INIT_USER)
1034                        goto bad_fork_free;
1035        }
1036
1037        retval = copy_creds(p, clone_flags);
1038        if (retval < 0)
1039                goto bad_fork_free;
1040
1041        /*
1042         * If multiple threads are within copy_process(), then this check
1043         * triggers too late. This doesn't hurt, the check is only there
1044         * to stop root fork bombs.
1045         */
1046        retval = -EAGAIN;
1047        if (nr_threads >= max_threads)
1048                goto bad_fork_cleanup_count;
1049
1050        if (!try_module_get(task_thread_info(p)->exec_domain->module))
1051                goto bad_fork_cleanup_count;
1052
1053        p->did_exec = 0;
1054        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1055        copy_flags(clone_flags, p);
1056        INIT_LIST_HEAD(&p->children);
1057        INIT_LIST_HEAD(&p->sibling);
1058        rcu_copy_process(p);
1059        p->vfork_done = NULL;
1060        spin_lock_init(&p->alloc_lock);
1061
1062        init_sigpending(&p->pending);
1063
1064        p->utime = cputime_zero;
1065        p->stime = cputime_zero;
1066        p->gtime = cputime_zero;
1067        p->utimescaled = cputime_zero;
1068        p->stimescaled = cputime_zero;
1069        p->prev_utime = cputime_zero;
1070        p->prev_stime = cputime_zero;
1071
1072        p->default_timer_slack_ns = current->timer_slack_ns;
1073
1074        task_io_accounting_init(&p->ioac);
1075        acct_clear_integrals(p);
1076
1077        posix_cpu_timers_init(p);
1078
1079        p->lock_depth = -1;             /* -1 = no lock */
1080        do_posix_clock_monotonic_gettime(&p->start_time);
1081        p->real_start_time = p->start_time;
1082        monotonic_to_bootbased(&p->real_start_time);
1083        p->io_context = NULL;
1084        p->audit_context = NULL;
1085        cgroup_fork(p);
1086#ifdef CONFIG_NUMA
1087        p->mempolicy = mpol_dup(p->mempolicy);
1088        if (IS_ERR(p->mempolicy)) {
1089                retval = PTR_ERR(p->mempolicy);
1090                p->mempolicy = NULL;
1091                goto bad_fork_cleanup_cgroup;
1092        }
1093        mpol_fix_fork_child_flag(p);
1094#endif
1095#ifdef CONFIG_TRACE_IRQFLAGS
1096        p->irq_events = 0;
1097#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1098        p->hardirqs_enabled = 1;
1099#else
1100        p->hardirqs_enabled = 0;
1101#endif
1102        p->hardirq_enable_ip = 0;
1103        p->hardirq_enable_event = 0;
1104        p->hardirq_disable_ip = _THIS_IP_;
1105        p->hardirq_disable_event = 0;
1106        p->softirqs_enabled = 1;
1107        p->softirq_enable_ip = _THIS_IP_;
1108        p->softirq_enable_event = 0;
1109        p->softirq_disable_ip = 0;
1110        p->softirq_disable_event = 0;
1111        p->hardirq_context = 0;
1112        p->softirq_context = 0;
1113#endif
1114#ifdef CONFIG_LOCKDEP
1115        p->lockdep_depth = 0; /* no locks held yet */
1116        p->curr_chain_key = 0;
1117        p->lockdep_recursion = 0;
1118#endif
1119
1120#ifdef CONFIG_DEBUG_MUTEXES
1121        p->blocked_on = NULL; /* not blocked yet */
1122#endif
1123
1124        p->bts = NULL;
1125
1126        p->stack_start = stack_start;
1127
1128        /* Perform scheduler related setup. Assign this task to a CPU. */
1129        sched_fork(p, clone_flags);
1130
1131        retval = perf_event_init_task(p);
1132        if (retval)
1133                goto bad_fork_cleanup_policy;
1134
1135        if ((retval = audit_alloc(p)))
1136                goto bad_fork_cleanup_policy;
1137        /* copy all the process information */
1138        if ((retval = copy_semundo(clone_flags, p)))
1139                goto bad_fork_cleanup_audit;
1140        if ((retval = copy_files(clone_flags, p)))
1141                goto bad_fork_cleanup_semundo;
1142        if ((retval = copy_fs(clone_flags, p)))
1143                goto bad_fork_cleanup_files;
1144        if ((retval = copy_sighand(clone_flags, p)))
1145                goto bad_fork_cleanup_fs;
1146        if ((retval = copy_signal(clone_flags, p)))
1147                goto bad_fork_cleanup_sighand;
1148        if ((retval = copy_mm(clone_flags, p)))
1149                goto bad_fork_cleanup_signal;
1150        if ((retval = copy_namespaces(clone_flags, p)))
1151                goto bad_fork_cleanup_mm;
1152        if ((retval = copy_io(clone_flags, p)))
1153                goto bad_fork_cleanup_namespaces;
1154        retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1155        if (retval)
1156                goto bad_fork_cleanup_io;
1157
1158        if (pid != &init_struct_pid) {
1159                retval = -ENOMEM;
1160                pid = alloc_pid(p->nsproxy->pid_ns);
1161                if (!pid)
1162                        goto bad_fork_cleanup_io;
1163
1164                if (clone_flags & CLONE_NEWPID) {
1165                        retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1166                        if (retval < 0)
1167                                goto bad_fork_free_pid;
1168                }
1169        }
1170
1171        p->pid = pid_nr(pid);
1172        p->tgid = p->pid;
1173        if (clone_flags & CLONE_THREAD)
1174                p->tgid = current->tgid;
1175
1176        if (current->nsproxy != p->nsproxy) {
1177                retval = ns_cgroup_clone(p, pid);
1178                if (retval)
1179                        goto bad_fork_free_pid;
1180        }
1181
1182        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1183        /*
1184         * Clear TID on mm_release()?
1185         */
1186        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1187#ifdef CONFIG_FUTEX
1188        p->robust_list = NULL;
1189#ifdef CONFIG_COMPAT
1190        p->compat_robust_list = NULL;
1191#endif
1192        INIT_LIST_HEAD(&p->pi_state_list);
1193        p->pi_state_cache = NULL;
1194#endif
1195        /*
1196         * sigaltstack should be cleared when sharing the same VM
1197         */
1198        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1199                p->sas_ss_sp = p->sas_ss_size = 0;
1200
1201        /*
1202         * Syscall tracing should be turned off in the child regardless
1203         * of CLONE_PTRACE.
1204         */
1205        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1206#ifdef TIF_SYSCALL_EMU
1207        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1208#endif
1209        clear_all_latency_tracing(p);
1210
1211        /* ok, now we should be set up.. */
1212        p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1213        p->pdeath_signal = 0;
1214        p->exit_state = 0;
1215
1216        /*
1217         * Ok, make it visible to the rest of the system.
1218         * We dont wake it up yet.
1219         */
1220        p->group_leader = p;
1221        INIT_LIST_HEAD(&p->thread_group);
1222
1223        /* Now that the task is set up, run cgroup callbacks if
1224         * necessary. We need to run them before the task is visible
1225         * on the tasklist. */
1226        cgroup_fork_callbacks(p);
1227        cgroup_callbacks_done = 1;
1228
1229        /* Need tasklist lock for parent etc handling! */
1230        write_lock_irq(&tasklist_lock);
1231
1232        /*
1233         * The task hasn't been attached yet, so its cpus_allowed mask will
1234         * not be changed, nor will its assigned CPU.
1235         *
1236         * The cpus_allowed mask of the parent may have changed after it was
1237         * copied first time - so re-copy it here, then check the child's CPU
1238         * to ensure it is on a valid CPU (and if not, just force it back to
1239         * parent's CPU). This avoids alot of nasty races.
1240         */
1241        p->cpus_allowed = current->cpus_allowed;
1242        p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1243        if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1244                        !cpu_online(task_cpu(p))))
1245                set_task_cpu(p, smp_processor_id());
1246
1247        /* CLONE_PARENT re-uses the old parent */
1248        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1249                p->real_parent = current->real_parent;
1250                p->parent_exec_id = current->parent_exec_id;
1251        } else {
1252                p->real_parent = current;
1253                p->parent_exec_id = current->self_exec_id;
1254        }
1255
1256        spin_lock(&current->sighand->siglock);
1257
1258        /*
1259         * Process group and session signals need to be delivered to just the
1260         * parent before the fork or both the parent and the child after the
1261         * fork. Restart if a signal comes in before we add the new process to
1262         * it's process group.
1263         * A fatal signal pending means that current will exit, so the new
1264         * thread can't slip out of an OOM kill (or normal SIGKILL).
1265         */
1266        recalc_sigpending();
1267        if (signal_pending(current)) {
1268                spin_unlock(&current->sighand->siglock);
1269                write_unlock_irq(&tasklist_lock);
1270                retval = -ERESTARTNOINTR;
1271                goto bad_fork_free_pid;
1272        }
1273
1274        if (clone_flags & CLONE_THREAD) {
1275                atomic_inc(&current->signal->count);
1276                atomic_inc(&current->signal->live);
1277                p->group_leader = current->group_leader;
1278                list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1279        }
1280
1281        if (likely(p->pid)) {
1282                list_add_tail(&p->sibling, &p->real_parent->children);
1283                tracehook_finish_clone(p, clone_flags, trace);
1284
1285                if (thread_group_leader(p)) {
1286                        if (clone_flags & CLONE_NEWPID)
1287                                p->nsproxy->pid_ns->child_reaper = p;
1288
1289                        p->signal->leader_pid = pid;
1290                        tty_kref_put(p->signal->tty);
1291                        p->signal->tty = tty_kref_get(current->signal->tty);
1292                        attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1293                        attach_pid(p, PIDTYPE_SID, task_session(current));
1294                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1295                        __get_cpu_var(process_counts)++;
1296                }
1297                attach_pid(p, PIDTYPE_PID, pid);
1298                nr_threads++;
1299        }
1300
1301        total_forks++;
1302        spin_unlock(&current->sighand->siglock);
1303        write_unlock_irq(&tasklist_lock);
1304        proc_fork_connector(p);
1305        cgroup_post_fork(p);
1306        perf_event_fork(p);
1307        return p;
1308
1309bad_fork_free_pid:
1310        if (pid != &init_struct_pid)
1311                free_pid(pid);
1312bad_fork_cleanup_io:
1313        put_io_context(p->io_context);
1314bad_fork_cleanup_namespaces:
1315        exit_task_namespaces(p);
1316bad_fork_cleanup_mm:
1317        if (p->mm)
1318                mmput(p->mm);
1319bad_fork_cleanup_signal:
1320        if (!(clone_flags & CLONE_THREAD))
1321                __cleanup_signal(p->signal);
1322bad_fork_cleanup_sighand:
1323        __cleanup_sighand(p->sighand);
1324bad_fork_cleanup_fs:
1325        exit_fs(p); /* blocking */
1326bad_fork_cleanup_files:
1327        exit_files(p); /* blocking */
1328bad_fork_cleanup_semundo:
1329        exit_sem(p);
1330bad_fork_cleanup_audit:
1331        audit_free(p);
1332bad_fork_cleanup_policy:
1333        perf_event_free_task(p);
1334#ifdef CONFIG_NUMA
1335        mpol_put(p->mempolicy);
1336bad_fork_cleanup_cgroup:
1337#endif
1338        cgroup_exit(p, cgroup_callbacks_done);
1339        delayacct_tsk_free(p);
1340        module_put(task_thread_info(p)->exec_domain->module);
1341bad_fork_cleanup_count:
1342        atomic_dec(&p->cred->user->processes);
1343        exit_creds(p);
1344bad_fork_free:
1345        free_task(p);
1346fork_out:
1347        return ERR_PTR(retval);
1348}
1349
1350noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1351{
1352        memset(regs, 0, sizeof(struct pt_regs));
1353        return regs;
1354}
1355
1356struct task_struct * __cpuinit fork_idle(int cpu)
1357{
1358        struct task_struct *task;
1359        struct pt_regs regs;
1360
1361        task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1362                            &init_struct_pid, 0);
1363        if (!IS_ERR(task))
1364                init_idle(task, cpu);
1365
1366        return task;
1367}
1368
1369/*
1370 *  Ok, this is the main fork-routine.
1371 *
1372 * It copies the process, and if successful kick-starts
1373 * it and waits for it to finish using the VM if required.
1374 */
1375long do_fork(unsigned long clone_flags,
1376              unsigned long stack_start,
1377              struct pt_regs *regs,
1378              unsigned long stack_size,
1379              int __user *parent_tidptr,
1380              int __user *child_tidptr)
1381{
1382        struct task_struct *p;
1383        int trace = 0;
1384        long nr;
1385
1386        /*
1387         * Do some preliminary argument and permissions checking before we
1388         * actually start allocating stuff
1389         */
1390        if (clone_flags & CLONE_NEWUSER) {
1391                if (clone_flags & CLONE_THREAD)
1392                        return -EINVAL;
1393                /* hopefully this check will go away when userns support is
1394                 * complete
1395                 */
1396                if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1397                                !capable(CAP_SETGID))
1398                        return -EPERM;
1399        }
1400
1401        /*
1402         * We hope to recycle these flags after 2.6.26
1403         */
1404        if (unlikely(clone_flags & CLONE_STOPPED)) {
1405                static int __read_mostly count = 100;
1406
1407                if (count > 0 && printk_ratelimit()) {
1408                        char comm[TASK_COMM_LEN];
1409
1410                        count--;
1411                        printk(KERN_INFO "fork(): process `%s' used deprecated "
1412                                        "clone flags 0x%lx\n",
1413                                get_task_comm(comm, current),
1414                                clone_flags & CLONE_STOPPED);
1415                }
1416        }
1417
1418        /*
1419         * When called from kernel_thread, don't do user tracing stuff.
1420         */
1421        if (likely(user_mode(regs)))
1422                trace = tracehook_prepare_clone(clone_flags);
1423
1424        p = copy_process(clone_flags, stack_start, regs, stack_size,
1425                         child_tidptr, NULL, trace);
1426        /*
1427         * Do this prior waking up the new thread - the thread pointer
1428         * might get invalid after that point, if the thread exits quickly.
1429         */
1430        if (!IS_ERR(p)) {
1431                struct completion vfork;
1432
1433                trace_sched_process_fork(current, p);
1434
1435                nr = task_pid_vnr(p);
1436
1437                if (clone_flags & CLONE_PARENT_SETTID)
1438                        put_user(nr, parent_tidptr);
1439
1440                if (clone_flags & CLONE_VFORK) {
1441                        p->vfork_done = &vfork;
1442                        init_completion(&vfork);
1443                }
1444
1445                audit_finish_fork(p);
1446                tracehook_report_clone(regs, clone_flags, nr, p);
1447
1448                /*
1449                 * We set PF_STARTING at creation in case tracing wants to
1450                 * use this to distinguish a fully live task from one that
1451                 * hasn't gotten to tracehook_report_clone() yet.  Now we
1452                 * clear it and set the child going.
1453                 */
1454                p->flags &= ~PF_STARTING;
1455
1456                if (unlikely(clone_flags & CLONE_STOPPED)) {
1457                        /*
1458                         * We'll start up with an immediate SIGSTOP.
1459                         */
1460                        sigaddset(&p->pending.signal, SIGSTOP);
1461                        set_tsk_thread_flag(p, TIF_SIGPENDING);
1462                        __set_task_state(p, TASK_STOPPED);
1463                } else {
1464                        wake_up_new_task(p, clone_flags);
1465                }
1466
1467                tracehook_report_clone_complete(trace, regs,
1468                                                clone_flags, nr, p);
1469
1470                if (clone_flags & CLONE_VFORK) {
1471                        freezer_do_not_count();
1472                        wait_for_completion(&vfork);
1473                        freezer_count();
1474                        tracehook_report_vfork_done(p, nr);
1475                }
1476        } else {
1477                nr = PTR_ERR(p);
1478        }
1479        return nr;
1480}
1481
1482#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1483#define ARCH_MIN_MMSTRUCT_ALIGN 0
1484#endif
1485
1486static void sighand_ctor(void *data)
1487{
1488        struct sighand_struct *sighand = data;
1489
1490        spin_lock_init(&sighand->siglock);
1491        init_waitqueue_head(&sighand->signalfd_wqh);
1492}
1493
1494void __init proc_caches_init(void)
1495{
1496        sighand_cachep = kmem_cache_create("sighand_cache",
1497                        sizeof(struct sighand_struct), 0,
1498                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1499                        SLAB_NOTRACK, sighand_ctor);
1500        signal_cachep = kmem_cache_create("signal_cache",
1501                        sizeof(struct signal_struct), 0,
1502                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1503        files_cachep = kmem_cache_create("files_cache",
1504                        sizeof(struct files_struct), 0,
1505                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1506        fs_cachep = kmem_cache_create("fs_cache",
1507                        sizeof(struct fs_struct), 0,
1508                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1509        mm_cachep = kmem_cache_create("mm_struct",
1510                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1511                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1512        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1513        mmap_init();
1514}
1515
1516/*
1517 * Check constraints on flags passed to the unshare system call and
1518 * force unsharing of additional process context as appropriate.
1519 */
1520static void check_unshare_flags(unsigned long *flags_ptr)
1521{
1522        /*
1523         * If unsharing a thread from a thread group, must also
1524         * unshare vm.
1525         */
1526        if (*flags_ptr & CLONE_THREAD)
1527                *flags_ptr |= CLONE_VM;
1528
1529        /*
1530         * If unsharing vm, must also unshare signal handlers.
1531         */
1532        if (*flags_ptr & CLONE_VM)
1533                *flags_ptr |= CLONE_SIGHAND;
1534
1535        /*
1536         * If unsharing signal handlers and the task was created
1537         * using CLONE_THREAD, then must unshare the thread
1538         */
1539        if ((*flags_ptr & CLONE_SIGHAND) &&
1540            (atomic_read(&current->signal->count) > 1))
1541                *flags_ptr |= CLONE_THREAD;
1542
1543        /*
1544         * If unsharing namespace, must also unshare filesystem information.
1545         */
1546        if (*flags_ptr & CLONE_NEWNS)
1547                *flags_ptr |= CLONE_FS;
1548}
1549
1550/*
1551 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1552 */
1553static int unshare_thread(unsigned long unshare_flags)
1554{
1555        if (unshare_flags & CLONE_THREAD)
1556                return -EINVAL;
1557
1558        return 0;
1559}
1560
1561/*
1562 * Unshare the filesystem structure if it is being shared
1563 */
1564static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1565{
1566        struct fs_struct *fs = current->fs;
1567
1568        if (!(unshare_flags & CLONE_FS) || !fs)
1569                return 0;
1570
1571        /* don't need lock here; in the worst case we'll do useless copy */
1572        if (fs->users == 1)
1573                return 0;
1574
1575        *new_fsp = copy_fs_struct(fs);
1576        if (!*new_fsp)
1577                return -ENOMEM;
1578
1579        return 0;
1580}
1581
1582/*
1583 * Unsharing of sighand is not supported yet
1584 */
1585static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1586{
1587        struct sighand_struct *sigh = current->sighand;
1588
1589        if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1590                return -EINVAL;
1591        else
1592                return 0;
1593}
1594
1595/*
1596 * Unshare vm if it is being shared
1597 */
1598static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1599{
1600        struct mm_struct *mm = current->mm;
1601
1602        if ((unshare_flags & CLONE_VM) &&
1603            (mm && atomic_read(&mm->mm_users) > 1)) {
1604                return -EINVAL;
1605        }
1606
1607        return 0;
1608}
1609
1610/*
1611 * Unshare file descriptor table if it is being shared
1612 */
1613static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1614{
1615        struct files_struct *fd = current->files;
1616        int error = 0;
1617
1618        if ((unshare_flags & CLONE_FILES) &&
1619            (fd && atomic_read(&fd->count) > 1)) {
1620                *new_fdp = dup_fd(fd, &error);
1621                if (!*new_fdp)
1622                        return error;
1623        }
1624
1625        return 0;
1626}
1627
1628/*
1629 * unshare allows a process to 'unshare' part of the process
1630 * context which was originally shared using clone.  copy_*
1631 * functions used by do_fork() cannot be used here directly
1632 * because they modify an inactive task_struct that is being
1633 * constructed. Here we are modifying the current, active,
1634 * task_struct.
1635 */
1636SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1637{
1638        int err = 0;
1639        struct fs_struct *fs, *new_fs = NULL;
1640        struct sighand_struct *new_sigh = NULL;
1641        struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1642        struct files_struct *fd, *new_fd = NULL;
1643        struct nsproxy *new_nsproxy = NULL;
1644        int do_sysvsem = 0;
1645
1646        check_unshare_flags(&unshare_flags);
1647
1648        /* Return -EINVAL for all unsupported flags */
1649        err = -EINVAL;
1650        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1651                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1652                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1653                goto bad_unshare_out;
1654
1655        /*
1656         * CLONE_NEWIPC must also detach from the undolist: after switching
1657         * to a new ipc namespace, the semaphore arrays from the old
1658         * namespace are unreachable.
1659         */
1660        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1661                do_sysvsem = 1;
1662        if ((err = unshare_thread(unshare_flags)))
1663                goto bad_unshare_out;
1664        if ((err = unshare_fs(unshare_flags, &new_fs)))
1665                goto bad_unshare_cleanup_thread;
1666        if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1667                goto bad_unshare_cleanup_fs;
1668        if ((err = unshare_vm(unshare_flags, &new_mm)))
1669                goto bad_unshare_cleanup_sigh;
1670        if ((err = unshare_fd(unshare_flags, &new_fd)))
1671                goto bad_unshare_cleanup_vm;
1672        if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1673                        new_fs)))
1674                goto bad_unshare_cleanup_fd;
1675
1676        if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1677                if (do_sysvsem) {
1678                        /*
1679                         * CLONE_SYSVSEM is equivalent to sys_exit().
1680                         */
1681                        exit_sem(current);
1682                }
1683
1684                if (new_nsproxy) {
1685                        switch_task_namespaces(current, new_nsproxy);
1686                        new_nsproxy = NULL;
1687                }
1688
1689                task_lock(current);
1690
1691                if (new_fs) {
1692                        fs = current->fs;
1693                        write_lock(&fs->lock);
1694                        current->fs = new_fs;
1695                        if (--fs->users)
1696                                new_fs = NULL;
1697                        else
1698                                new_fs = fs;
1699                        write_unlock(&fs->lock);
1700                }
1701
1702                if (new_mm) {
1703                        mm = current->mm;
1704                        active_mm = current->active_mm;
1705                        current->mm = new_mm;
1706                        current->active_mm = new_mm;
1707                        activate_mm(active_mm, new_mm);
1708                        new_mm = mm;
1709                }
1710
1711                if (new_fd) {
1712                        fd = current->files;
1713                        current->files = new_fd;
1714                        new_fd = fd;
1715                }
1716
1717                task_unlock(current);
1718        }
1719
1720        if (new_nsproxy)
1721                put_nsproxy(new_nsproxy);
1722
1723bad_unshare_cleanup_fd:
1724        if (new_fd)
1725                put_files_struct(new_fd);
1726
1727bad_unshare_cleanup_vm:
1728        if (new_mm)
1729                mmput(new_mm);
1730
1731bad_unshare_cleanup_sigh:
1732        if (new_sigh)
1733                if (atomic_dec_and_test(&new_sigh->count))
1734                        kmem_cache_free(sighand_cachep, new_sigh);
1735
1736bad_unshare_cleanup_fs:
1737        if (new_fs)
1738                free_fs_struct(new_fs);
1739
1740bad_unshare_cleanup_thread:
1741bad_unshare_out:
1742        return err;
1743}
1744
1745/*
1746 *      Helper to unshare the files of the current task.
1747 *      We don't want to expose copy_files internals to
1748 *      the exec layer of the kernel.
1749 */
1750
1751int unshare_files(struct files_struct **displaced)
1752{
1753        struct task_struct *task = current;
1754        struct files_struct *copy = NULL;
1755        int error;
1756
1757        error = unshare_fd(CLONE_FILES, &copy);
1758        if (error || !copy) {
1759                *displaced = NULL;
1760                return error;
1761        }
1762        *displaced = task->files;
1763        task_lock(task);
1764        task->files = copy;
1765        task_unlock(task);
1766        return 0;
1767}
1768