linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/module.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62
  63#include <asm/futex.h>
  64
  65#include "rtmutex_common.h"
  66
  67int __read_mostly futex_cmpxchg_enabled;
  68
  69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  70
  71/*
  72 * Priority Inheritance state:
  73 */
  74struct futex_pi_state {
  75        /*
  76         * list of 'owned' pi_state instances - these have to be
  77         * cleaned up in do_exit() if the task exits prematurely:
  78         */
  79        struct list_head list;
  80
  81        /*
  82         * The PI object:
  83         */
  84        struct rt_mutex pi_mutex;
  85
  86        struct task_struct *owner;
  87        atomic_t refcount;
  88
  89        union futex_key key;
  90};
  91
  92/**
  93 * struct futex_q - The hashed futex queue entry, one per waiting task
  94 * @task:               the task waiting on the futex
  95 * @lock_ptr:           the hash bucket lock
  96 * @key:                the key the futex is hashed on
  97 * @pi_state:           optional priority inheritance state
  98 * @rt_waiter:          rt_waiter storage for use with requeue_pi
  99 * @requeue_pi_key:     the requeue_pi target futex key
 100 * @bitset:             bitset for the optional bitmasked wakeup
 101 *
 102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 103 * we can wake only the relevant ones (hashed queues may be shared).
 104 *
 105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 107 * The order of wakup is always to make the first condition true, then
 108 * the second.
 109 *
 110 * PI futexes are typically woken before they are removed from the hash list via
 111 * the rt_mutex code. See unqueue_me_pi().
 112 */
 113struct futex_q {
 114        struct plist_node list;
 115
 116        struct task_struct *task;
 117        spinlock_t *lock_ptr;
 118        union futex_key key;
 119        struct futex_pi_state *pi_state;
 120        struct rt_mutex_waiter *rt_waiter;
 121        union futex_key *requeue_pi_key;
 122        u32 bitset;
 123};
 124
 125/*
 126 * Hash buckets are shared by all the futex_keys that hash to the same
 127 * location.  Each key may have multiple futex_q structures, one for each task
 128 * waiting on a futex.
 129 */
 130struct futex_hash_bucket {
 131        spinlock_t lock;
 132        struct plist_head chain;
 133};
 134
 135static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 136
 137/*
 138 * We hash on the keys returned from get_futex_key (see below).
 139 */
 140static struct futex_hash_bucket *hash_futex(union futex_key *key)
 141{
 142        u32 hash = jhash2((u32*)&key->both.word,
 143                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 144                          key->both.offset);
 145        return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 146}
 147
 148/*
 149 * Return 1 if two futex_keys are equal, 0 otherwise.
 150 */
 151static inline int match_futex(union futex_key *key1, union futex_key *key2)
 152{
 153        return (key1 && key2
 154                && key1->both.word == key2->both.word
 155                && key1->both.ptr == key2->both.ptr
 156                && key1->both.offset == key2->both.offset);
 157}
 158
 159/*
 160 * Take a reference to the resource addressed by a key.
 161 * Can be called while holding spinlocks.
 162 *
 163 */
 164static void get_futex_key_refs(union futex_key *key)
 165{
 166        if (!key->both.ptr)
 167                return;
 168
 169        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 170        case FUT_OFF_INODE:
 171                atomic_inc(&key->shared.inode->i_count);
 172                break;
 173        case FUT_OFF_MMSHARED:
 174                atomic_inc(&key->private.mm->mm_count);
 175                break;
 176        }
 177}
 178
 179/*
 180 * Drop a reference to the resource addressed by a key.
 181 * The hash bucket spinlock must not be held.
 182 */
 183static void drop_futex_key_refs(union futex_key *key)
 184{
 185        if (!key->both.ptr) {
 186                /* If we're here then we tried to put a key we failed to get */
 187                WARN_ON_ONCE(1);
 188                return;
 189        }
 190
 191        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 192        case FUT_OFF_INODE:
 193                iput(key->shared.inode);
 194                break;
 195        case FUT_OFF_MMSHARED:
 196                mmdrop(key->private.mm);
 197                break;
 198        }
 199}
 200
 201/**
 202 * get_futex_key() - Get parameters which are the keys for a futex
 203 * @uaddr:      virtual address of the futex
 204 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 205 * @key:        address where result is stored.
 206 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 207 *              VERIFY_WRITE)
 208 *
 209 * Returns a negative error code or 0
 210 * The key words are stored in *key on success.
 211 *
 212 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
 213 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 214 * We can usually work out the index without swapping in the page.
 215 *
 216 * lock_page() might sleep, the caller should not hold a spinlock.
 217 */
 218static int
 219get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 220{
 221        unsigned long address = (unsigned long)uaddr;
 222        struct mm_struct *mm = current->mm;
 223        struct page *page;
 224        int err;
 225
 226        /*
 227         * The futex address must be "naturally" aligned.
 228         */
 229        key->both.offset = address % PAGE_SIZE;
 230        if (unlikely((address % sizeof(u32)) != 0))
 231                return -EINVAL;
 232        address -= key->both.offset;
 233
 234        /*
 235         * PROCESS_PRIVATE futexes are fast.
 236         * As the mm cannot disappear under us and the 'key' only needs
 237         * virtual address, we dont even have to find the underlying vma.
 238         * Note : We do have to check 'uaddr' is a valid user address,
 239         *        but access_ok() should be faster than find_vma()
 240         */
 241        if (!fshared) {
 242                if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 243                        return -EFAULT;
 244                key->private.mm = mm;
 245                key->private.address = address;
 246                get_futex_key_refs(key);
 247                return 0;
 248        }
 249
 250again:
 251        err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
 252        if (err < 0)
 253                return err;
 254
 255        page = compound_head(page);
 256        lock_page(page);
 257        if (!page->mapping) {
 258                unlock_page(page);
 259                put_page(page);
 260                goto again;
 261        }
 262
 263        /*
 264         * Private mappings are handled in a simple way.
 265         *
 266         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 267         * it's a read-only handle, it's expected that futexes attach to
 268         * the object not the particular process.
 269         */
 270        if (PageAnon(page)) {
 271                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 272                key->private.mm = mm;
 273                key->private.address = address;
 274        } else {
 275                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 276                key->shared.inode = page->mapping->host;
 277                key->shared.pgoff = page->index;
 278        }
 279
 280        get_futex_key_refs(key);
 281
 282        unlock_page(page);
 283        put_page(page);
 284        return 0;
 285}
 286
 287static inline
 288void put_futex_key(int fshared, union futex_key *key)
 289{
 290        drop_futex_key_refs(key);
 291}
 292
 293/**
 294 * fault_in_user_writeable() - Fault in user address and verify RW access
 295 * @uaddr:      pointer to faulting user space address
 296 *
 297 * Slow path to fixup the fault we just took in the atomic write
 298 * access to @uaddr.
 299 *
 300 * We have no generic implementation of a non destructive write to the
 301 * user address. We know that we faulted in the atomic pagefault
 302 * disabled section so we can as well avoid the #PF overhead by
 303 * calling get_user_pages() right away.
 304 */
 305static int fault_in_user_writeable(u32 __user *uaddr)
 306{
 307        int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
 308                                 1, 1, 0, NULL, NULL);
 309        return ret < 0 ? ret : 0;
 310}
 311
 312/**
 313 * futex_top_waiter() - Return the highest priority waiter on a futex
 314 * @hb:         the hash bucket the futex_q's reside in
 315 * @key:        the futex key (to distinguish it from other futex futex_q's)
 316 *
 317 * Must be called with the hb lock held.
 318 */
 319static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 320                                        union futex_key *key)
 321{
 322        struct futex_q *this;
 323
 324        plist_for_each_entry(this, &hb->chain, list) {
 325                if (match_futex(&this->key, key))
 326                        return this;
 327        }
 328        return NULL;
 329}
 330
 331static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
 332{
 333        u32 curval;
 334
 335        pagefault_disable();
 336        curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
 337        pagefault_enable();
 338
 339        return curval;
 340}
 341
 342static int get_futex_value_locked(u32 *dest, u32 __user *from)
 343{
 344        int ret;
 345
 346        pagefault_disable();
 347        ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 348        pagefault_enable();
 349
 350        return ret ? -EFAULT : 0;
 351}
 352
 353
 354/*
 355 * PI code:
 356 */
 357static int refill_pi_state_cache(void)
 358{
 359        struct futex_pi_state *pi_state;
 360
 361        if (likely(current->pi_state_cache))
 362                return 0;
 363
 364        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 365
 366        if (!pi_state)
 367                return -ENOMEM;
 368
 369        INIT_LIST_HEAD(&pi_state->list);
 370        /* pi_mutex gets initialized later */
 371        pi_state->owner = NULL;
 372        atomic_set(&pi_state->refcount, 1);
 373        pi_state->key = FUTEX_KEY_INIT;
 374
 375        current->pi_state_cache = pi_state;
 376
 377        return 0;
 378}
 379
 380static struct futex_pi_state * alloc_pi_state(void)
 381{
 382        struct futex_pi_state *pi_state = current->pi_state_cache;
 383
 384        WARN_ON(!pi_state);
 385        current->pi_state_cache = NULL;
 386
 387        return pi_state;
 388}
 389
 390static void free_pi_state(struct futex_pi_state *pi_state)
 391{
 392        if (!atomic_dec_and_test(&pi_state->refcount))
 393                return;
 394
 395        /*
 396         * If pi_state->owner is NULL, the owner is most probably dying
 397         * and has cleaned up the pi_state already
 398         */
 399        if (pi_state->owner) {
 400                spin_lock_irq(&pi_state->owner->pi_lock);
 401                list_del_init(&pi_state->list);
 402                spin_unlock_irq(&pi_state->owner->pi_lock);
 403
 404                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 405        }
 406
 407        if (current->pi_state_cache)
 408                kfree(pi_state);
 409        else {
 410                /*
 411                 * pi_state->list is already empty.
 412                 * clear pi_state->owner.
 413                 * refcount is at 0 - put it back to 1.
 414                 */
 415                pi_state->owner = NULL;
 416                atomic_set(&pi_state->refcount, 1);
 417                current->pi_state_cache = pi_state;
 418        }
 419}
 420
 421/*
 422 * Look up the task based on what TID userspace gave us.
 423 * We dont trust it.
 424 */
 425static struct task_struct * futex_find_get_task(pid_t pid)
 426{
 427        struct task_struct *p;
 428        const struct cred *cred = current_cred(), *pcred;
 429
 430        rcu_read_lock();
 431        p = find_task_by_vpid(pid);
 432        if (!p) {
 433                p = ERR_PTR(-ESRCH);
 434        } else {
 435                pcred = __task_cred(p);
 436                if (cred->euid != pcred->euid &&
 437                    cred->euid != pcred->uid)
 438                        p = ERR_PTR(-ESRCH);
 439                else
 440                        get_task_struct(p);
 441        }
 442
 443        rcu_read_unlock();
 444
 445        return p;
 446}
 447
 448/*
 449 * This task is holding PI mutexes at exit time => bad.
 450 * Kernel cleans up PI-state, but userspace is likely hosed.
 451 * (Robust-futex cleanup is separate and might save the day for userspace.)
 452 */
 453void exit_pi_state_list(struct task_struct *curr)
 454{
 455        struct list_head *next, *head = &curr->pi_state_list;
 456        struct futex_pi_state *pi_state;
 457        struct futex_hash_bucket *hb;
 458        union futex_key key = FUTEX_KEY_INIT;
 459
 460        if (!futex_cmpxchg_enabled)
 461                return;
 462        /*
 463         * We are a ZOMBIE and nobody can enqueue itself on
 464         * pi_state_list anymore, but we have to be careful
 465         * versus waiters unqueueing themselves:
 466         */
 467        spin_lock_irq(&curr->pi_lock);
 468        while (!list_empty(head)) {
 469
 470                next = head->next;
 471                pi_state = list_entry(next, struct futex_pi_state, list);
 472                key = pi_state->key;
 473                hb = hash_futex(&key);
 474                spin_unlock_irq(&curr->pi_lock);
 475
 476                spin_lock(&hb->lock);
 477
 478                spin_lock_irq(&curr->pi_lock);
 479                /*
 480                 * We dropped the pi-lock, so re-check whether this
 481                 * task still owns the PI-state:
 482                 */
 483                if (head->next != next) {
 484                        spin_unlock(&hb->lock);
 485                        continue;
 486                }
 487
 488                WARN_ON(pi_state->owner != curr);
 489                WARN_ON(list_empty(&pi_state->list));
 490                list_del_init(&pi_state->list);
 491                pi_state->owner = NULL;
 492                spin_unlock_irq(&curr->pi_lock);
 493
 494                rt_mutex_unlock(&pi_state->pi_mutex);
 495
 496                spin_unlock(&hb->lock);
 497
 498                spin_lock_irq(&curr->pi_lock);
 499        }
 500        spin_unlock_irq(&curr->pi_lock);
 501}
 502
 503static int
 504lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 505                union futex_key *key, struct futex_pi_state **ps)
 506{
 507        struct futex_pi_state *pi_state = NULL;
 508        struct futex_q *this, *next;
 509        struct plist_head *head;
 510        struct task_struct *p;
 511        pid_t pid = uval & FUTEX_TID_MASK;
 512
 513        head = &hb->chain;
 514
 515        plist_for_each_entry_safe(this, next, head, list) {
 516                if (match_futex(&this->key, key)) {
 517                        /*
 518                         * Another waiter already exists - bump up
 519                         * the refcount and return its pi_state:
 520                         */
 521                        pi_state = this->pi_state;
 522                        /*
 523                         * Userspace might have messed up non PI and PI futexes
 524                         */
 525                        if (unlikely(!pi_state))
 526                                return -EINVAL;
 527
 528                        WARN_ON(!atomic_read(&pi_state->refcount));
 529                        WARN_ON(pid && pi_state->owner &&
 530                                pi_state->owner->pid != pid);
 531
 532                        atomic_inc(&pi_state->refcount);
 533                        *ps = pi_state;
 534
 535                        return 0;
 536                }
 537        }
 538
 539        /*
 540         * We are the first waiter - try to look up the real owner and attach
 541         * the new pi_state to it, but bail out when TID = 0
 542         */
 543        if (!pid)
 544                return -ESRCH;
 545        p = futex_find_get_task(pid);
 546        if (IS_ERR(p))
 547                return PTR_ERR(p);
 548
 549        /*
 550         * We need to look at the task state flags to figure out,
 551         * whether the task is exiting. To protect against the do_exit
 552         * change of the task flags, we do this protected by
 553         * p->pi_lock:
 554         */
 555        spin_lock_irq(&p->pi_lock);
 556        if (unlikely(p->flags & PF_EXITING)) {
 557                /*
 558                 * The task is on the way out. When PF_EXITPIDONE is
 559                 * set, we know that the task has finished the
 560                 * cleanup:
 561                 */
 562                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 563
 564                spin_unlock_irq(&p->pi_lock);
 565                put_task_struct(p);
 566                return ret;
 567        }
 568
 569        pi_state = alloc_pi_state();
 570
 571        /*
 572         * Initialize the pi_mutex in locked state and make 'p'
 573         * the owner of it:
 574         */
 575        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 576
 577        /* Store the key for possible exit cleanups: */
 578        pi_state->key = *key;
 579
 580        WARN_ON(!list_empty(&pi_state->list));
 581        list_add(&pi_state->list, &p->pi_state_list);
 582        pi_state->owner = p;
 583        spin_unlock_irq(&p->pi_lock);
 584
 585        put_task_struct(p);
 586
 587        *ps = pi_state;
 588
 589        return 0;
 590}
 591
 592/**
 593 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 594 * @uaddr:              the pi futex user address
 595 * @hb:                 the pi futex hash bucket
 596 * @key:                the futex key associated with uaddr and hb
 597 * @ps:                 the pi_state pointer where we store the result of the
 598 *                      lookup
 599 * @task:               the task to perform the atomic lock work for.  This will
 600 *                      be "current" except in the case of requeue pi.
 601 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
 602 *
 603 * Returns:
 604 *  0 - ready to wait
 605 *  1 - acquired the lock
 606 * <0 - error
 607 *
 608 * The hb->lock and futex_key refs shall be held by the caller.
 609 */
 610static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 611                                union futex_key *key,
 612                                struct futex_pi_state **ps,
 613                                struct task_struct *task, int set_waiters)
 614{
 615        int lock_taken, ret, ownerdied = 0;
 616        u32 uval, newval, curval;
 617
 618retry:
 619        ret = lock_taken = 0;
 620
 621        /*
 622         * To avoid races, we attempt to take the lock here again
 623         * (by doing a 0 -> TID atomic cmpxchg), while holding all
 624         * the locks. It will most likely not succeed.
 625         */
 626        newval = task_pid_vnr(task);
 627        if (set_waiters)
 628                newval |= FUTEX_WAITERS;
 629
 630        curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
 631
 632        if (unlikely(curval == -EFAULT))
 633                return -EFAULT;
 634
 635        /*
 636         * Detect deadlocks.
 637         */
 638        if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
 639                return -EDEADLK;
 640
 641        /*
 642         * Surprise - we got the lock. Just return to userspace:
 643         */
 644        if (unlikely(!curval))
 645                return 1;
 646
 647        uval = curval;
 648
 649        /*
 650         * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 651         * to wake at the next unlock.
 652         */
 653        newval = curval | FUTEX_WAITERS;
 654
 655        /*
 656         * There are two cases, where a futex might have no owner (the
 657         * owner TID is 0): OWNER_DIED. We take over the futex in this
 658         * case. We also do an unconditional take over, when the owner
 659         * of the futex died.
 660         *
 661         * This is safe as we are protected by the hash bucket lock !
 662         */
 663        if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
 664                /* Keep the OWNER_DIED bit */
 665                newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
 666                ownerdied = 0;
 667                lock_taken = 1;
 668        }
 669
 670        curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
 671
 672        if (unlikely(curval == -EFAULT))
 673                return -EFAULT;
 674        if (unlikely(curval != uval))
 675                goto retry;
 676
 677        /*
 678         * We took the lock due to owner died take over.
 679         */
 680        if (unlikely(lock_taken))
 681                return 1;
 682
 683        /*
 684         * We dont have the lock. Look up the PI state (or create it if
 685         * we are the first waiter):
 686         */
 687        ret = lookup_pi_state(uval, hb, key, ps);
 688
 689        if (unlikely(ret)) {
 690                switch (ret) {
 691                case -ESRCH:
 692                        /*
 693                         * No owner found for this futex. Check if the
 694                         * OWNER_DIED bit is set to figure out whether
 695                         * this is a robust futex or not.
 696                         */
 697                        if (get_futex_value_locked(&curval, uaddr))
 698                                return -EFAULT;
 699
 700                        /*
 701                         * We simply start over in case of a robust
 702                         * futex. The code above will take the futex
 703                         * and return happy.
 704                         */
 705                        if (curval & FUTEX_OWNER_DIED) {
 706                                ownerdied = 1;
 707                                goto retry;
 708                        }
 709                default:
 710                        break;
 711                }
 712        }
 713
 714        return ret;
 715}
 716
 717/*
 718 * The hash bucket lock must be held when this is called.
 719 * Afterwards, the futex_q must not be accessed.
 720 */
 721static void wake_futex(struct futex_q *q)
 722{
 723        struct task_struct *p = q->task;
 724
 725        /*
 726         * We set q->lock_ptr = NULL _before_ we wake up the task. If
 727         * a non futex wake up happens on another CPU then the task
 728         * might exit and p would dereference a non existing task
 729         * struct. Prevent this by holding a reference on p across the
 730         * wake up.
 731         */
 732        get_task_struct(p);
 733
 734        plist_del(&q->list, &q->list.plist);
 735        /*
 736         * The waiting task can free the futex_q as soon as
 737         * q->lock_ptr = NULL is written, without taking any locks. A
 738         * memory barrier is required here to prevent the following
 739         * store to lock_ptr from getting ahead of the plist_del.
 740         */
 741        smp_wmb();
 742        q->lock_ptr = NULL;
 743
 744        wake_up_state(p, TASK_NORMAL);
 745        put_task_struct(p);
 746}
 747
 748static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 749{
 750        struct task_struct *new_owner;
 751        struct futex_pi_state *pi_state = this->pi_state;
 752        u32 curval, newval;
 753
 754        if (!pi_state)
 755                return -EINVAL;
 756
 757        spin_lock(&pi_state->pi_mutex.wait_lock);
 758        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 759
 760        /*
 761         * This happens when we have stolen the lock and the original
 762         * pending owner did not enqueue itself back on the rt_mutex.
 763         * Thats not a tragedy. We know that way, that a lock waiter
 764         * is on the fly. We make the futex_q waiter the pending owner.
 765         */
 766        if (!new_owner)
 767                new_owner = this->task;
 768
 769        /*
 770         * We pass it to the next owner. (The WAITERS bit is always
 771         * kept enabled while there is PI state around. We must also
 772         * preserve the owner died bit.)
 773         */
 774        if (!(uval & FUTEX_OWNER_DIED)) {
 775                int ret = 0;
 776
 777                newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 778
 779                curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
 780
 781                if (curval == -EFAULT)
 782                        ret = -EFAULT;
 783                else if (curval != uval)
 784                        ret = -EINVAL;
 785                if (ret) {
 786                        spin_unlock(&pi_state->pi_mutex.wait_lock);
 787                        return ret;
 788                }
 789        }
 790
 791        spin_lock_irq(&pi_state->owner->pi_lock);
 792        WARN_ON(list_empty(&pi_state->list));
 793        list_del_init(&pi_state->list);
 794        spin_unlock_irq(&pi_state->owner->pi_lock);
 795
 796        spin_lock_irq(&new_owner->pi_lock);
 797        WARN_ON(!list_empty(&pi_state->list));
 798        list_add(&pi_state->list, &new_owner->pi_state_list);
 799        pi_state->owner = new_owner;
 800        spin_unlock_irq(&new_owner->pi_lock);
 801
 802        spin_unlock(&pi_state->pi_mutex.wait_lock);
 803        rt_mutex_unlock(&pi_state->pi_mutex);
 804
 805        return 0;
 806}
 807
 808static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 809{
 810        u32 oldval;
 811
 812        /*
 813         * There is no waiter, so we unlock the futex. The owner died
 814         * bit has not to be preserved here. We are the owner:
 815         */
 816        oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
 817
 818        if (oldval == -EFAULT)
 819                return oldval;
 820        if (oldval != uval)
 821                return -EAGAIN;
 822
 823        return 0;
 824}
 825
 826/*
 827 * Express the locking dependencies for lockdep:
 828 */
 829static inline void
 830double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 831{
 832        if (hb1 <= hb2) {
 833                spin_lock(&hb1->lock);
 834                if (hb1 < hb2)
 835                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 836        } else { /* hb1 > hb2 */
 837                spin_lock(&hb2->lock);
 838                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 839        }
 840}
 841
 842static inline void
 843double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 844{
 845        spin_unlock(&hb1->lock);
 846        if (hb1 != hb2)
 847                spin_unlock(&hb2->lock);
 848}
 849
 850/*
 851 * Wake up waiters matching bitset queued on this futex (uaddr).
 852 */
 853static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
 854{
 855        struct futex_hash_bucket *hb;
 856        struct futex_q *this, *next;
 857        struct plist_head *head;
 858        union futex_key key = FUTEX_KEY_INIT;
 859        int ret;
 860
 861        if (!bitset)
 862                return -EINVAL;
 863
 864        ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
 865        if (unlikely(ret != 0))
 866                goto out;
 867
 868        hb = hash_futex(&key);
 869        spin_lock(&hb->lock);
 870        head = &hb->chain;
 871
 872        plist_for_each_entry_safe(this, next, head, list) {
 873                if (match_futex (&this->key, &key)) {
 874                        if (this->pi_state || this->rt_waiter) {
 875                                ret = -EINVAL;
 876                                break;
 877                        }
 878
 879                        /* Check if one of the bits is set in both bitsets */
 880                        if (!(this->bitset & bitset))
 881                                continue;
 882
 883                        wake_futex(this);
 884                        if (++ret >= nr_wake)
 885                                break;
 886                }
 887        }
 888
 889        spin_unlock(&hb->lock);
 890        put_futex_key(fshared, &key);
 891out:
 892        return ret;
 893}
 894
 895/*
 896 * Wake up all waiters hashed on the physical page that is mapped
 897 * to this virtual address:
 898 */
 899static int
 900futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
 901              int nr_wake, int nr_wake2, int op)
 902{
 903        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
 904        struct futex_hash_bucket *hb1, *hb2;
 905        struct plist_head *head;
 906        struct futex_q *this, *next;
 907        int ret, op_ret;
 908
 909retry:
 910        ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
 911        if (unlikely(ret != 0))
 912                goto out;
 913        ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
 914        if (unlikely(ret != 0))
 915                goto out_put_key1;
 916
 917        hb1 = hash_futex(&key1);
 918        hb2 = hash_futex(&key2);
 919
 920retry_private:
 921        double_lock_hb(hb1, hb2);
 922        op_ret = futex_atomic_op_inuser(op, uaddr2);
 923        if (unlikely(op_ret < 0)) {
 924
 925                double_unlock_hb(hb1, hb2);
 926
 927#ifndef CONFIG_MMU
 928                /*
 929                 * we don't get EFAULT from MMU faults if we don't have an MMU,
 930                 * but we might get them from range checking
 931                 */
 932                ret = op_ret;
 933                goto out_put_keys;
 934#endif
 935
 936                if (unlikely(op_ret != -EFAULT)) {
 937                        ret = op_ret;
 938                        goto out_put_keys;
 939                }
 940
 941                ret = fault_in_user_writeable(uaddr2);
 942                if (ret)
 943                        goto out_put_keys;
 944
 945                if (!fshared)
 946                        goto retry_private;
 947
 948                put_futex_key(fshared, &key2);
 949                put_futex_key(fshared, &key1);
 950                goto retry;
 951        }
 952
 953        head = &hb1->chain;
 954
 955        plist_for_each_entry_safe(this, next, head, list) {
 956                if (match_futex (&this->key, &key1)) {
 957                        wake_futex(this);
 958                        if (++ret >= nr_wake)
 959                                break;
 960                }
 961        }
 962
 963        if (op_ret > 0) {
 964                head = &hb2->chain;
 965
 966                op_ret = 0;
 967                plist_for_each_entry_safe(this, next, head, list) {
 968                        if (match_futex (&this->key, &key2)) {
 969                                wake_futex(this);
 970                                if (++op_ret >= nr_wake2)
 971                                        break;
 972                        }
 973                }
 974                ret += op_ret;
 975        }
 976
 977        double_unlock_hb(hb1, hb2);
 978out_put_keys:
 979        put_futex_key(fshared, &key2);
 980out_put_key1:
 981        put_futex_key(fshared, &key1);
 982out:
 983        return ret;
 984}
 985
 986/**
 987 * requeue_futex() - Requeue a futex_q from one hb to another
 988 * @q:          the futex_q to requeue
 989 * @hb1:        the source hash_bucket
 990 * @hb2:        the target hash_bucket
 991 * @key2:       the new key for the requeued futex_q
 992 */
 993static inline
 994void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
 995                   struct futex_hash_bucket *hb2, union futex_key *key2)
 996{
 997
 998        /*
 999         * If key1 and key2 hash to the same bucket, no need to
1000         * requeue.
1001         */
1002        if (likely(&hb1->chain != &hb2->chain)) {
1003                plist_del(&q->list, &hb1->chain);
1004                plist_add(&q->list, &hb2->chain);
1005                q->lock_ptr = &hb2->lock;
1006#ifdef CONFIG_DEBUG_PI_LIST
1007                q->list.plist.lock = &hb2->lock;
1008#endif
1009        }
1010        get_futex_key_refs(key2);
1011        q->key = *key2;
1012}
1013
1014/**
1015 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1016 * @q:          the futex_q
1017 * @key:        the key of the requeue target futex
1018 * @hb:         the hash_bucket of the requeue target futex
1019 *
1020 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1021 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1022 * to the requeue target futex so the waiter can detect the wakeup on the right
1023 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1024 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1025 * to protect access to the pi_state to fixup the owner later.  Must be called
1026 * with both q->lock_ptr and hb->lock held.
1027 */
1028static inline
1029void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1030                           struct futex_hash_bucket *hb)
1031{
1032        get_futex_key_refs(key);
1033        q->key = *key;
1034
1035        WARN_ON(plist_node_empty(&q->list));
1036        plist_del(&q->list, &q->list.plist);
1037
1038        WARN_ON(!q->rt_waiter);
1039        q->rt_waiter = NULL;
1040
1041        q->lock_ptr = &hb->lock;
1042#ifdef CONFIG_DEBUG_PI_LIST
1043        q->list.plist.lock = &hb->lock;
1044#endif
1045
1046        wake_up_state(q->task, TASK_NORMAL);
1047}
1048
1049/**
1050 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1051 * @pifutex:            the user address of the to futex
1052 * @hb1:                the from futex hash bucket, must be locked by the caller
1053 * @hb2:                the to futex hash bucket, must be locked by the caller
1054 * @key1:               the from futex key
1055 * @key2:               the to futex key
1056 * @ps:                 address to store the pi_state pointer
1057 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1058 *
1059 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1060 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1061 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1062 * hb1 and hb2 must be held by the caller.
1063 *
1064 * Returns:
1065 *  0 - failed to acquire the lock atomicly
1066 *  1 - acquired the lock
1067 * <0 - error
1068 */
1069static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1070                                 struct futex_hash_bucket *hb1,
1071                                 struct futex_hash_bucket *hb2,
1072                                 union futex_key *key1, union futex_key *key2,
1073                                 struct futex_pi_state **ps, int set_waiters)
1074{
1075        struct futex_q *top_waiter = NULL;
1076        u32 curval;
1077        int ret;
1078
1079        if (get_futex_value_locked(&curval, pifutex))
1080                return -EFAULT;
1081
1082        /*
1083         * Find the top_waiter and determine if there are additional waiters.
1084         * If the caller intends to requeue more than 1 waiter to pifutex,
1085         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1086         * as we have means to handle the possible fault.  If not, don't set
1087         * the bit unecessarily as it will force the subsequent unlock to enter
1088         * the kernel.
1089         */
1090        top_waiter = futex_top_waiter(hb1, key1);
1091
1092        /* There are no waiters, nothing for us to do. */
1093        if (!top_waiter)
1094                return 0;
1095
1096        /* Ensure we requeue to the expected futex. */
1097        if (!match_futex(top_waiter->requeue_pi_key, key2))
1098                return -EINVAL;
1099
1100        /*
1101         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1102         * the contended case or if set_waiters is 1.  The pi_state is returned
1103         * in ps in contended cases.
1104         */
1105        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1106                                   set_waiters);
1107        if (ret == 1)
1108                requeue_pi_wake_futex(top_waiter, key2, hb2);
1109
1110        return ret;
1111}
1112
1113/**
1114 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1115 * uaddr1:      source futex user address
1116 * uaddr2:      target futex user address
1117 * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1118 * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1119 * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1120 *              pi futex (pi to pi requeue is not supported)
1121 *
1122 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1123 * uaddr2 atomically on behalf of the top waiter.
1124 *
1125 * Returns:
1126 * >=0 - on success, the number of tasks requeued or woken
1127 *  <0 - on error
1128 */
1129static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1130                         int nr_wake, int nr_requeue, u32 *cmpval,
1131                         int requeue_pi)
1132{
1133        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1134        int drop_count = 0, task_count = 0, ret;
1135        struct futex_pi_state *pi_state = NULL;
1136        struct futex_hash_bucket *hb1, *hb2;
1137        struct plist_head *head1;
1138        struct futex_q *this, *next;
1139        u32 curval2;
1140
1141        if (requeue_pi) {
1142                /*
1143                 * requeue_pi requires a pi_state, try to allocate it now
1144                 * without any locks in case it fails.
1145                 */
1146                if (refill_pi_state_cache())
1147                        return -ENOMEM;
1148                /*
1149                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1150                 * + nr_requeue, since it acquires the rt_mutex prior to
1151                 * returning to userspace, so as to not leave the rt_mutex with
1152                 * waiters and no owner.  However, second and third wake-ups
1153                 * cannot be predicted as they involve race conditions with the
1154                 * first wake and a fault while looking up the pi_state.  Both
1155                 * pthread_cond_signal() and pthread_cond_broadcast() should
1156                 * use nr_wake=1.
1157                 */
1158                if (nr_wake != 1)
1159                        return -EINVAL;
1160        }
1161
1162retry:
1163        if (pi_state != NULL) {
1164                /*
1165                 * We will have to lookup the pi_state again, so free this one
1166                 * to keep the accounting correct.
1167                 */
1168                free_pi_state(pi_state);
1169                pi_state = NULL;
1170        }
1171
1172        ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1173        if (unlikely(ret != 0))
1174                goto out;
1175        ret = get_futex_key(uaddr2, fshared, &key2,
1176                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1177        if (unlikely(ret != 0))
1178                goto out_put_key1;
1179
1180        hb1 = hash_futex(&key1);
1181        hb2 = hash_futex(&key2);
1182
1183retry_private:
1184        double_lock_hb(hb1, hb2);
1185
1186        if (likely(cmpval != NULL)) {
1187                u32 curval;
1188
1189                ret = get_futex_value_locked(&curval, uaddr1);
1190
1191                if (unlikely(ret)) {
1192                        double_unlock_hb(hb1, hb2);
1193
1194                        ret = get_user(curval, uaddr1);
1195                        if (ret)
1196                                goto out_put_keys;
1197
1198                        if (!fshared)
1199                                goto retry_private;
1200
1201                        put_futex_key(fshared, &key2);
1202                        put_futex_key(fshared, &key1);
1203                        goto retry;
1204                }
1205                if (curval != *cmpval) {
1206                        ret = -EAGAIN;
1207                        goto out_unlock;
1208                }
1209        }
1210
1211        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1212                /*
1213                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1214                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1215                 * bit.  We force this here where we are able to easily handle
1216                 * faults rather in the requeue loop below.
1217                 */
1218                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1219                                                 &key2, &pi_state, nr_requeue);
1220
1221                /*
1222                 * At this point the top_waiter has either taken uaddr2 or is
1223                 * waiting on it.  If the former, then the pi_state will not
1224                 * exist yet, look it up one more time to ensure we have a
1225                 * reference to it.
1226                 */
1227                if (ret == 1) {
1228                        WARN_ON(pi_state);
1229                        drop_count++;
1230                        task_count++;
1231                        ret = get_futex_value_locked(&curval2, uaddr2);
1232                        if (!ret)
1233                                ret = lookup_pi_state(curval2, hb2, &key2,
1234                                                      &pi_state);
1235                }
1236
1237                switch (ret) {
1238                case 0:
1239                        break;
1240                case -EFAULT:
1241                        double_unlock_hb(hb1, hb2);
1242                        put_futex_key(fshared, &key2);
1243                        put_futex_key(fshared, &key1);
1244                        ret = fault_in_user_writeable(uaddr2);
1245                        if (!ret)
1246                                goto retry;
1247                        goto out;
1248                case -EAGAIN:
1249                        /* The owner was exiting, try again. */
1250                        double_unlock_hb(hb1, hb2);
1251                        put_futex_key(fshared, &key2);
1252                        put_futex_key(fshared, &key1);
1253                        cond_resched();
1254                        goto retry;
1255                default:
1256                        goto out_unlock;
1257                }
1258        }
1259
1260        head1 = &hb1->chain;
1261        plist_for_each_entry_safe(this, next, head1, list) {
1262                if (task_count - nr_wake >= nr_requeue)
1263                        break;
1264
1265                if (!match_futex(&this->key, &key1))
1266                        continue;
1267
1268                /*
1269                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1270                 * be paired with each other and no other futex ops.
1271                 */
1272                if ((requeue_pi && !this->rt_waiter) ||
1273                    (!requeue_pi && this->rt_waiter)) {
1274                        ret = -EINVAL;
1275                        break;
1276                }
1277
1278                /*
1279                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1280                 * lock, we already woke the top_waiter.  If not, it will be
1281                 * woken by futex_unlock_pi().
1282                 */
1283                if (++task_count <= nr_wake && !requeue_pi) {
1284                        wake_futex(this);
1285                        continue;
1286                }
1287
1288                /* Ensure we requeue to the expected futex for requeue_pi. */
1289                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1290                        ret = -EINVAL;
1291                        break;
1292                }
1293
1294                /*
1295                 * Requeue nr_requeue waiters and possibly one more in the case
1296                 * of requeue_pi if we couldn't acquire the lock atomically.
1297                 */
1298                if (requeue_pi) {
1299                        /* Prepare the waiter to take the rt_mutex. */
1300                        atomic_inc(&pi_state->refcount);
1301                        this->pi_state = pi_state;
1302                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1303                                                        this->rt_waiter,
1304                                                        this->task, 1);
1305                        if (ret == 1) {
1306                                /* We got the lock. */
1307                                requeue_pi_wake_futex(this, &key2, hb2);
1308                                drop_count++;
1309                                continue;
1310                        } else if (ret) {
1311                                /* -EDEADLK */
1312                                this->pi_state = NULL;
1313                                free_pi_state(pi_state);
1314                                goto out_unlock;
1315                        }
1316                }
1317                requeue_futex(this, hb1, hb2, &key2);
1318                drop_count++;
1319        }
1320
1321out_unlock:
1322        double_unlock_hb(hb1, hb2);
1323
1324        /*
1325         * drop_futex_key_refs() must be called outside the spinlocks. During
1326         * the requeue we moved futex_q's from the hash bucket at key1 to the
1327         * one at key2 and updated their key pointer.  We no longer need to
1328         * hold the references to key1.
1329         */
1330        while (--drop_count >= 0)
1331                drop_futex_key_refs(&key1);
1332
1333out_put_keys:
1334        put_futex_key(fshared, &key2);
1335out_put_key1:
1336        put_futex_key(fshared, &key1);
1337out:
1338        if (pi_state != NULL)
1339                free_pi_state(pi_state);
1340        return ret ? ret : task_count;
1341}
1342
1343/* The key must be already stored in q->key. */
1344static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1345{
1346        struct futex_hash_bucket *hb;
1347
1348        get_futex_key_refs(&q->key);
1349        hb = hash_futex(&q->key);
1350        q->lock_ptr = &hb->lock;
1351
1352        spin_lock(&hb->lock);
1353        return hb;
1354}
1355
1356static inline void
1357queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1358{
1359        spin_unlock(&hb->lock);
1360        drop_futex_key_refs(&q->key);
1361}
1362
1363/**
1364 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1365 * @q:  The futex_q to enqueue
1366 * @hb: The destination hash bucket
1367 *
1368 * The hb->lock must be held by the caller, and is released here. A call to
1369 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1370 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1371 * or nothing if the unqueue is done as part of the wake process and the unqueue
1372 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1373 * an example).
1374 */
1375static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1376{
1377        int prio;
1378
1379        /*
1380         * The priority used to register this element is
1381         * - either the real thread-priority for the real-time threads
1382         * (i.e. threads with a priority lower than MAX_RT_PRIO)
1383         * - or MAX_RT_PRIO for non-RT threads.
1384         * Thus, all RT-threads are woken first in priority order, and
1385         * the others are woken last, in FIFO order.
1386         */
1387        prio = min(current->normal_prio, MAX_RT_PRIO);
1388
1389        plist_node_init(&q->list, prio);
1390#ifdef CONFIG_DEBUG_PI_LIST
1391        q->list.plist.lock = &hb->lock;
1392#endif
1393        plist_add(&q->list, &hb->chain);
1394        q->task = current;
1395        spin_unlock(&hb->lock);
1396}
1397
1398/**
1399 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1400 * @q:  The futex_q to unqueue
1401 *
1402 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1403 * be paired with exactly one earlier call to queue_me().
1404 *
1405 * Returns:
1406 *   1 - if the futex_q was still queued (and we removed unqueued it)
1407 *   0 - if the futex_q was already removed by the waking thread
1408 */
1409static int unqueue_me(struct futex_q *q)
1410{
1411        spinlock_t *lock_ptr;
1412        int ret = 0;
1413
1414        /* In the common case we don't take the spinlock, which is nice. */
1415retry:
1416        lock_ptr = q->lock_ptr;
1417        barrier();
1418        if (lock_ptr != NULL) {
1419                spin_lock(lock_ptr);
1420                /*
1421                 * q->lock_ptr can change between reading it and
1422                 * spin_lock(), causing us to take the wrong lock.  This
1423                 * corrects the race condition.
1424                 *
1425                 * Reasoning goes like this: if we have the wrong lock,
1426                 * q->lock_ptr must have changed (maybe several times)
1427                 * between reading it and the spin_lock().  It can
1428                 * change again after the spin_lock() but only if it was
1429                 * already changed before the spin_lock().  It cannot,
1430                 * however, change back to the original value.  Therefore
1431                 * we can detect whether we acquired the correct lock.
1432                 */
1433                if (unlikely(lock_ptr != q->lock_ptr)) {
1434                        spin_unlock(lock_ptr);
1435                        goto retry;
1436                }
1437                WARN_ON(plist_node_empty(&q->list));
1438                plist_del(&q->list, &q->list.plist);
1439
1440                BUG_ON(q->pi_state);
1441
1442                spin_unlock(lock_ptr);
1443                ret = 1;
1444        }
1445
1446        drop_futex_key_refs(&q->key);
1447        return ret;
1448}
1449
1450/*
1451 * PI futexes can not be requeued and must remove themself from the
1452 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1453 * and dropped here.
1454 */
1455static void unqueue_me_pi(struct futex_q *q)
1456{
1457        WARN_ON(plist_node_empty(&q->list));
1458        plist_del(&q->list, &q->list.plist);
1459
1460        BUG_ON(!q->pi_state);
1461        free_pi_state(q->pi_state);
1462        q->pi_state = NULL;
1463
1464        spin_unlock(q->lock_ptr);
1465
1466        drop_futex_key_refs(&q->key);
1467}
1468
1469/*
1470 * Fixup the pi_state owner with the new owner.
1471 *
1472 * Must be called with hash bucket lock held and mm->sem held for non
1473 * private futexes.
1474 */
1475static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1476                                struct task_struct *newowner, int fshared)
1477{
1478        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1479        struct futex_pi_state *pi_state = q->pi_state;
1480        struct task_struct *oldowner = pi_state->owner;
1481        u32 uval, curval, newval;
1482        int ret;
1483
1484        /* Owner died? */
1485        if (!pi_state->owner)
1486                newtid |= FUTEX_OWNER_DIED;
1487
1488        /*
1489         * We are here either because we stole the rtmutex from the
1490         * pending owner or we are the pending owner which failed to
1491         * get the rtmutex. We have to replace the pending owner TID
1492         * in the user space variable. This must be atomic as we have
1493         * to preserve the owner died bit here.
1494         *
1495         * Note: We write the user space value _before_ changing the pi_state
1496         * because we can fault here. Imagine swapped out pages or a fork
1497         * that marked all the anonymous memory readonly for cow.
1498         *
1499         * Modifying pi_state _before_ the user space value would
1500         * leave the pi_state in an inconsistent state when we fault
1501         * here, because we need to drop the hash bucket lock to
1502         * handle the fault. This might be observed in the PID check
1503         * in lookup_pi_state.
1504         */
1505retry:
1506        if (get_futex_value_locked(&uval, uaddr))
1507                goto handle_fault;
1508
1509        while (1) {
1510                newval = (uval & FUTEX_OWNER_DIED) | newtid;
1511
1512                curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1513
1514                if (curval == -EFAULT)
1515                        goto handle_fault;
1516                if (curval == uval)
1517                        break;
1518                uval = curval;
1519        }
1520
1521        /*
1522         * We fixed up user space. Now we need to fix the pi_state
1523         * itself.
1524         */
1525        if (pi_state->owner != NULL) {
1526                spin_lock_irq(&pi_state->owner->pi_lock);
1527                WARN_ON(list_empty(&pi_state->list));
1528                list_del_init(&pi_state->list);
1529                spin_unlock_irq(&pi_state->owner->pi_lock);
1530        }
1531
1532        pi_state->owner = newowner;
1533
1534        spin_lock_irq(&newowner->pi_lock);
1535        WARN_ON(!list_empty(&pi_state->list));
1536        list_add(&pi_state->list, &newowner->pi_state_list);
1537        spin_unlock_irq(&newowner->pi_lock);
1538        return 0;
1539
1540        /*
1541         * To handle the page fault we need to drop the hash bucket
1542         * lock here. That gives the other task (either the pending
1543         * owner itself or the task which stole the rtmutex) the
1544         * chance to try the fixup of the pi_state. So once we are
1545         * back from handling the fault we need to check the pi_state
1546         * after reacquiring the hash bucket lock and before trying to
1547         * do another fixup. When the fixup has been done already we
1548         * simply return.
1549         */
1550handle_fault:
1551        spin_unlock(q->lock_ptr);
1552
1553        ret = fault_in_user_writeable(uaddr);
1554
1555        spin_lock(q->lock_ptr);
1556
1557        /*
1558         * Check if someone else fixed it for us:
1559         */
1560        if (pi_state->owner != oldowner)
1561                return 0;
1562
1563        if (ret)
1564                return ret;
1565
1566        goto retry;
1567}
1568
1569/*
1570 * In case we must use restart_block to restart a futex_wait,
1571 * we encode in the 'flags' shared capability
1572 */
1573#define FLAGS_SHARED            0x01
1574#define FLAGS_CLOCKRT           0x02
1575#define FLAGS_HAS_TIMEOUT       0x04
1576
1577static long futex_wait_restart(struct restart_block *restart);
1578
1579/**
1580 * fixup_owner() - Post lock pi_state and corner case management
1581 * @uaddr:      user address of the futex
1582 * @fshared:    whether the futex is shared (1) or not (0)
1583 * @q:          futex_q (contains pi_state and access to the rt_mutex)
1584 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1585 *
1586 * After attempting to lock an rt_mutex, this function is called to cleanup
1587 * the pi_state owner as well as handle race conditions that may allow us to
1588 * acquire the lock. Must be called with the hb lock held.
1589 *
1590 * Returns:
1591 *  1 - success, lock taken
1592 *  0 - success, lock not taken
1593 * <0 - on error (-EFAULT)
1594 */
1595static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1596                       int locked)
1597{
1598        struct task_struct *owner;
1599        int ret = 0;
1600
1601        if (locked) {
1602                /*
1603                 * Got the lock. We might not be the anticipated owner if we
1604                 * did a lock-steal - fix up the PI-state in that case:
1605                 */
1606                if (q->pi_state->owner != current)
1607                        ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1608                goto out;
1609        }
1610
1611        /*
1612         * Catch the rare case, where the lock was released when we were on the
1613         * way back before we locked the hash bucket.
1614         */
1615        if (q->pi_state->owner == current) {
1616                /*
1617                 * Try to get the rt_mutex now. This might fail as some other
1618                 * task acquired the rt_mutex after we removed ourself from the
1619                 * rt_mutex waiters list.
1620                 */
1621                if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1622                        locked = 1;
1623                        goto out;
1624                }
1625
1626                /*
1627                 * pi_state is incorrect, some other task did a lock steal and
1628                 * we returned due to timeout or signal without taking the
1629                 * rt_mutex. Too late. We can access the rt_mutex_owner without
1630                 * locking, as the other task is now blocked on the hash bucket
1631                 * lock. Fix the state up.
1632                 */
1633                owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1634                ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1635                goto out;
1636        }
1637
1638        /*
1639         * Paranoia check. If we did not take the lock, then we should not be
1640         * the owner, nor the pending owner, of the rt_mutex.
1641         */
1642        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1643                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1644                                "pi-state %p\n", ret,
1645                                q->pi_state->pi_mutex.owner,
1646                                q->pi_state->owner);
1647
1648out:
1649        return ret ? ret : locked;
1650}
1651
1652/**
1653 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1654 * @hb:         the futex hash bucket, must be locked by the caller
1655 * @q:          the futex_q to queue up on
1656 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1657 */
1658static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1659                                struct hrtimer_sleeper *timeout)
1660{
1661        /*
1662         * The task state is guaranteed to be set before another task can
1663         * wake it. set_current_state() is implemented using set_mb() and
1664         * queue_me() calls spin_unlock() upon completion, both serializing
1665         * access to the hash list and forcing another memory barrier.
1666         */
1667        set_current_state(TASK_INTERRUPTIBLE);
1668        queue_me(q, hb);
1669
1670        /* Arm the timer */
1671        if (timeout) {
1672                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1673                if (!hrtimer_active(&timeout->timer))
1674                        timeout->task = NULL;
1675        }
1676
1677        /*
1678         * If we have been removed from the hash list, then another task
1679         * has tried to wake us, and we can skip the call to schedule().
1680         */
1681        if (likely(!plist_node_empty(&q->list))) {
1682                /*
1683                 * If the timer has already expired, current will already be
1684                 * flagged for rescheduling. Only call schedule if there
1685                 * is no timeout, or if it has yet to expire.
1686                 */
1687                if (!timeout || timeout->task)
1688                        schedule();
1689        }
1690        __set_current_state(TASK_RUNNING);
1691}
1692
1693/**
1694 * futex_wait_setup() - Prepare to wait on a futex
1695 * @uaddr:      the futex userspace address
1696 * @val:        the expected value
1697 * @fshared:    whether the futex is shared (1) or not (0)
1698 * @q:          the associated futex_q
1699 * @hb:         storage for hash_bucket pointer to be returned to caller
1700 *
1701 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1702 * compare it with the expected value.  Handle atomic faults internally.
1703 * Return with the hb lock held and a q.key reference on success, and unlocked
1704 * with no q.key reference on failure.
1705 *
1706 * Returns:
1707 *  0 - uaddr contains val and hb has been locked
1708 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1709 */
1710static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1711                           struct futex_q *q, struct futex_hash_bucket **hb)
1712{
1713        u32 uval;
1714        int ret;
1715
1716        /*
1717         * Access the page AFTER the hash-bucket is locked.
1718         * Order is important:
1719         *
1720         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1721         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1722         *
1723         * The basic logical guarantee of a futex is that it blocks ONLY
1724         * if cond(var) is known to be true at the time of blocking, for
1725         * any cond.  If we queued after testing *uaddr, that would open
1726         * a race condition where we could block indefinitely with
1727         * cond(var) false, which would violate the guarantee.
1728         *
1729         * A consequence is that futex_wait() can return zero and absorb
1730         * a wakeup when *uaddr != val on entry to the syscall.  This is
1731         * rare, but normal.
1732         */
1733retry:
1734        q->key = FUTEX_KEY_INIT;
1735        ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1736        if (unlikely(ret != 0))
1737                return ret;
1738
1739retry_private:
1740        *hb = queue_lock(q);
1741
1742        ret = get_futex_value_locked(&uval, uaddr);
1743
1744        if (ret) {
1745                queue_unlock(q, *hb);
1746
1747                ret = get_user(uval, uaddr);
1748                if (ret)
1749                        goto out;
1750
1751                if (!fshared)
1752                        goto retry_private;
1753
1754                put_futex_key(fshared, &q->key);
1755                goto retry;
1756        }
1757
1758        if (uval != val) {
1759                queue_unlock(q, *hb);
1760                ret = -EWOULDBLOCK;
1761        }
1762
1763out:
1764        if (ret)
1765                put_futex_key(fshared, &q->key);
1766        return ret;
1767}
1768
1769static int futex_wait(u32 __user *uaddr, int fshared,
1770                      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1771{
1772        struct hrtimer_sleeper timeout, *to = NULL;
1773        struct restart_block *restart;
1774        struct futex_hash_bucket *hb;
1775        struct futex_q q;
1776        int ret;
1777
1778        if (!bitset)
1779                return -EINVAL;
1780
1781        q.pi_state = NULL;
1782        q.bitset = bitset;
1783        q.rt_waiter = NULL;
1784        q.requeue_pi_key = NULL;
1785
1786        if (abs_time) {
1787                to = &timeout;
1788
1789                hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1790                                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1791                hrtimer_init_sleeper(to, current);
1792                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1793                                             current->timer_slack_ns);
1794        }
1795
1796retry:
1797        /* Prepare to wait on uaddr. */
1798        ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1799        if (ret)
1800                goto out;
1801
1802        /* queue_me and wait for wakeup, timeout, or a signal. */
1803        futex_wait_queue_me(hb, &q, to);
1804
1805        /* If we were woken (and unqueued), we succeeded, whatever. */
1806        ret = 0;
1807        if (!unqueue_me(&q))
1808                goto out_put_key;
1809        ret = -ETIMEDOUT;
1810        if (to && !to->task)
1811                goto out_put_key;
1812
1813        /*
1814         * We expect signal_pending(current), but we might be the
1815         * victim of a spurious wakeup as well.
1816         */
1817        if (!signal_pending(current)) {
1818                put_futex_key(fshared, &q.key);
1819                goto retry;
1820        }
1821
1822        ret = -ERESTARTSYS;
1823        if (!abs_time)
1824                goto out_put_key;
1825
1826        restart = &current_thread_info()->restart_block;
1827        restart->fn = futex_wait_restart;
1828        restart->futex.uaddr = (u32 *)uaddr;
1829        restart->futex.val = val;
1830        restart->futex.time = abs_time->tv64;
1831        restart->futex.bitset = bitset;
1832        restart->futex.flags = FLAGS_HAS_TIMEOUT;
1833
1834        if (fshared)
1835                restart->futex.flags |= FLAGS_SHARED;
1836        if (clockrt)
1837                restart->futex.flags |= FLAGS_CLOCKRT;
1838
1839        ret = -ERESTART_RESTARTBLOCK;
1840
1841out_put_key:
1842        put_futex_key(fshared, &q.key);
1843out:
1844        if (to) {
1845                hrtimer_cancel(&to->timer);
1846                destroy_hrtimer_on_stack(&to->timer);
1847        }
1848        return ret;
1849}
1850
1851
1852static long futex_wait_restart(struct restart_block *restart)
1853{
1854        u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1855        int fshared = 0;
1856        ktime_t t, *tp = NULL;
1857
1858        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1859                t.tv64 = restart->futex.time;
1860                tp = &t;
1861        }
1862        restart->fn = do_no_restart_syscall;
1863        if (restart->futex.flags & FLAGS_SHARED)
1864                fshared = 1;
1865        return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1866                                restart->futex.bitset,
1867                                restart->futex.flags & FLAGS_CLOCKRT);
1868}
1869
1870
1871/*
1872 * Userspace tried a 0 -> TID atomic transition of the futex value
1873 * and failed. The kernel side here does the whole locking operation:
1874 * if there are waiters then it will block, it does PI, etc. (Due to
1875 * races the kernel might see a 0 value of the futex too.)
1876 */
1877static int futex_lock_pi(u32 __user *uaddr, int fshared,
1878                         int detect, ktime_t *time, int trylock)
1879{
1880        struct hrtimer_sleeper timeout, *to = NULL;
1881        struct futex_hash_bucket *hb;
1882        struct futex_q q;
1883        int res, ret;
1884
1885        if (refill_pi_state_cache())
1886                return -ENOMEM;
1887
1888        if (time) {
1889                to = &timeout;
1890                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1891                                      HRTIMER_MODE_ABS);
1892                hrtimer_init_sleeper(to, current);
1893                hrtimer_set_expires(&to->timer, *time);
1894        }
1895
1896        q.pi_state = NULL;
1897        q.rt_waiter = NULL;
1898        q.requeue_pi_key = NULL;
1899retry:
1900        q.key = FUTEX_KEY_INIT;
1901        ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1902        if (unlikely(ret != 0))
1903                goto out;
1904
1905retry_private:
1906        hb = queue_lock(&q);
1907
1908        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1909        if (unlikely(ret)) {
1910                switch (ret) {
1911                case 1:
1912                        /* We got the lock. */
1913                        ret = 0;
1914                        goto out_unlock_put_key;
1915                case -EFAULT:
1916                        goto uaddr_faulted;
1917                case -EAGAIN:
1918                        /*
1919                         * Task is exiting and we just wait for the
1920                         * exit to complete.
1921                         */
1922                        queue_unlock(&q, hb);
1923                        put_futex_key(fshared, &q.key);
1924                        cond_resched();
1925                        goto retry;
1926                default:
1927                        goto out_unlock_put_key;
1928                }
1929        }
1930
1931        /*
1932         * Only actually queue now that the atomic ops are done:
1933         */
1934        queue_me(&q, hb);
1935
1936        WARN_ON(!q.pi_state);
1937        /*
1938         * Block on the PI mutex:
1939         */
1940        if (!trylock)
1941                ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1942        else {
1943                ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1944                /* Fixup the trylock return value: */
1945                ret = ret ? 0 : -EWOULDBLOCK;
1946        }
1947
1948        spin_lock(q.lock_ptr);
1949        /*
1950         * Fixup the pi_state owner and possibly acquire the lock if we
1951         * haven't already.
1952         */
1953        res = fixup_owner(uaddr, fshared, &q, !ret);
1954        /*
1955         * If fixup_owner() returned an error, proprogate that.  If it acquired
1956         * the lock, clear our -ETIMEDOUT or -EINTR.
1957         */
1958        if (res)
1959                ret = (res < 0) ? res : 0;
1960
1961        /*
1962         * If fixup_owner() faulted and was unable to handle the fault, unlock
1963         * it and return the fault to userspace.
1964         */
1965        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1966                rt_mutex_unlock(&q.pi_state->pi_mutex);
1967
1968        /* Unqueue and drop the lock */
1969        unqueue_me_pi(&q);
1970
1971        goto out;
1972
1973out_unlock_put_key:
1974        queue_unlock(&q, hb);
1975
1976out_put_key:
1977        put_futex_key(fshared, &q.key);
1978out:
1979        if (to)
1980                destroy_hrtimer_on_stack(&to->timer);
1981        return ret != -EINTR ? ret : -ERESTARTNOINTR;
1982
1983uaddr_faulted:
1984        queue_unlock(&q, hb);
1985
1986        ret = fault_in_user_writeable(uaddr);
1987        if (ret)
1988                goto out_put_key;
1989
1990        if (!fshared)
1991                goto retry_private;
1992
1993        put_futex_key(fshared, &q.key);
1994        goto retry;
1995}
1996
1997/*
1998 * Userspace attempted a TID -> 0 atomic transition, and failed.
1999 * This is the in-kernel slowpath: we look up the PI state (if any),
2000 * and do the rt-mutex unlock.
2001 */
2002static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2003{
2004        struct futex_hash_bucket *hb;
2005        struct futex_q *this, *next;
2006        u32 uval;
2007        struct plist_head *head;
2008        union futex_key key = FUTEX_KEY_INIT;
2009        int ret;
2010
2011retry:
2012        if (get_user(uval, uaddr))
2013                return -EFAULT;
2014        /*
2015         * We release only a lock we actually own:
2016         */
2017        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2018                return -EPERM;
2019
2020        ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2021        if (unlikely(ret != 0))
2022                goto out;
2023
2024        hb = hash_futex(&key);
2025        spin_lock(&hb->lock);
2026
2027        /*
2028         * To avoid races, try to do the TID -> 0 atomic transition
2029         * again. If it succeeds then we can return without waking
2030         * anyone else up:
2031         */
2032        if (!(uval & FUTEX_OWNER_DIED))
2033                uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2034
2035
2036        if (unlikely(uval == -EFAULT))
2037                goto pi_faulted;
2038        /*
2039         * Rare case: we managed to release the lock atomically,
2040         * no need to wake anyone else up:
2041         */
2042        if (unlikely(uval == task_pid_vnr(current)))
2043                goto out_unlock;
2044
2045        /*
2046         * Ok, other tasks may need to be woken up - check waiters
2047         * and do the wakeup if necessary:
2048         */
2049        head = &hb->chain;
2050
2051        plist_for_each_entry_safe(this, next, head, list) {
2052                if (!match_futex (&this->key, &key))
2053                        continue;
2054                ret = wake_futex_pi(uaddr, uval, this);
2055                /*
2056                 * The atomic access to the futex value
2057                 * generated a pagefault, so retry the
2058                 * user-access and the wakeup:
2059                 */
2060                if (ret == -EFAULT)
2061                        goto pi_faulted;
2062                goto out_unlock;
2063        }
2064        /*
2065         * No waiters - kernel unlocks the futex:
2066         */
2067        if (!(uval & FUTEX_OWNER_DIED)) {
2068                ret = unlock_futex_pi(uaddr, uval);
2069                if (ret == -EFAULT)
2070                        goto pi_faulted;
2071        }
2072
2073out_unlock:
2074        spin_unlock(&hb->lock);
2075        put_futex_key(fshared, &key);
2076
2077out:
2078        return ret;
2079
2080pi_faulted:
2081        spin_unlock(&hb->lock);
2082        put_futex_key(fshared, &key);
2083
2084        ret = fault_in_user_writeable(uaddr);
2085        if (!ret)
2086                goto retry;
2087
2088        return ret;
2089}
2090
2091/**
2092 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2093 * @hb:         the hash_bucket futex_q was original enqueued on
2094 * @q:          the futex_q woken while waiting to be requeued
2095 * @key2:       the futex_key of the requeue target futex
2096 * @timeout:    the timeout associated with the wait (NULL if none)
2097 *
2098 * Detect if the task was woken on the initial futex as opposed to the requeue
2099 * target futex.  If so, determine if it was a timeout or a signal that caused
2100 * the wakeup and return the appropriate error code to the caller.  Must be
2101 * called with the hb lock held.
2102 *
2103 * Returns
2104 *  0 - no early wakeup detected
2105 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2106 */
2107static inline
2108int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2109                                   struct futex_q *q, union futex_key *key2,
2110                                   struct hrtimer_sleeper *timeout)
2111{
2112        int ret = 0;
2113
2114        /*
2115         * With the hb lock held, we avoid races while we process the wakeup.
2116         * We only need to hold hb (and not hb2) to ensure atomicity as the
2117         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2118         * It can't be requeued from uaddr2 to something else since we don't
2119         * support a PI aware source futex for requeue.
2120         */
2121        if (!match_futex(&q->key, key2)) {
2122                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2123                /*
2124                 * We were woken prior to requeue by a timeout or a signal.
2125                 * Unqueue the futex_q and determine which it was.
2126                 */
2127                plist_del(&q->list, &q->list.plist);
2128
2129                /* Handle spurious wakeups gracefully */
2130                ret = -EWOULDBLOCK;
2131                if (timeout && !timeout->task)
2132                        ret = -ETIMEDOUT;
2133                else if (signal_pending(current))
2134                        ret = -ERESTARTNOINTR;
2135        }
2136        return ret;
2137}
2138
2139/**
2140 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2141 * @uaddr:      the futex we initially wait on (non-pi)
2142 * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2143 *              the same type, no requeueing from private to shared, etc.
2144 * @val:        the expected value of uaddr
2145 * @abs_time:   absolute timeout
2146 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2147 * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2148 * @uaddr2:     the pi futex we will take prior to returning to user-space
2149 *
2150 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2151 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2152 * complete the acquisition of the rt_mutex prior to returning to userspace.
2153 * This ensures the rt_mutex maintains an owner when it has waiters; without
2154 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2155 * need to.
2156 *
2157 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2158 * via the following:
2159 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2160 * 2) wakeup on uaddr2 after a requeue
2161 * 3) signal
2162 * 4) timeout
2163 *
2164 * If 3, cleanup and return -ERESTARTNOINTR.
2165 *
2166 * If 2, we may then block on trying to take the rt_mutex and return via:
2167 * 5) successful lock
2168 * 6) signal
2169 * 7) timeout
2170 * 8) other lock acquisition failure
2171 *
2172 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2173 *
2174 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2175 *
2176 * Returns:
2177 *  0 - On success
2178 * <0 - On error
2179 */
2180static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2181                                 u32 val, ktime_t *abs_time, u32 bitset,
2182                                 int clockrt, u32 __user *uaddr2)
2183{
2184        struct hrtimer_sleeper timeout, *to = NULL;
2185        struct rt_mutex_waiter rt_waiter;
2186        struct rt_mutex *pi_mutex = NULL;
2187        struct futex_hash_bucket *hb;
2188        union futex_key key2;
2189        struct futex_q q;
2190        int res, ret;
2191
2192        if (!bitset)
2193                return -EINVAL;
2194
2195        if (abs_time) {
2196                to = &timeout;
2197                hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2198                                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2199                hrtimer_init_sleeper(to, current);
2200                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2201                                             current->timer_slack_ns);
2202        }
2203
2204        /*
2205         * The waiter is allocated on our stack, manipulated by the requeue
2206         * code while we sleep on uaddr.
2207         */
2208        debug_rt_mutex_init_waiter(&rt_waiter);
2209        rt_waiter.task = NULL;
2210
2211        key2 = FUTEX_KEY_INIT;
2212        ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2213        if (unlikely(ret != 0))
2214                goto out;
2215
2216        q.pi_state = NULL;
2217        q.bitset = bitset;
2218        q.rt_waiter = &rt_waiter;
2219        q.requeue_pi_key = &key2;
2220
2221        /* Prepare to wait on uaddr. */
2222        ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2223        if (ret)
2224                goto out_key2;
2225
2226        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2227        futex_wait_queue_me(hb, &q, to);
2228
2229        spin_lock(&hb->lock);
2230        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2231        spin_unlock(&hb->lock);
2232        if (ret)
2233                goto out_put_keys;
2234
2235        /*
2236         * In order for us to be here, we know our q.key == key2, and since
2237         * we took the hb->lock above, we also know that futex_requeue() has
2238         * completed and we no longer have to concern ourselves with a wakeup
2239         * race with the atomic proxy lock acquition by the requeue code.
2240         */
2241
2242        /* Check if the requeue code acquired the second futex for us. */
2243        if (!q.rt_waiter) {
2244                /*
2245                 * Got the lock. We might not be the anticipated owner if we
2246                 * did a lock-steal - fix up the PI-state in that case.
2247                 */
2248                if (q.pi_state && (q.pi_state->owner != current)) {
2249                        spin_lock(q.lock_ptr);
2250                        ret = fixup_pi_state_owner(uaddr2, &q, current,
2251                                                   fshared);
2252                        spin_unlock(q.lock_ptr);
2253                }
2254        } else {
2255                /*
2256                 * We have been woken up by futex_unlock_pi(), a timeout, or a
2257                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2258                 * the pi_state.
2259                 */
2260                WARN_ON(!&q.pi_state);
2261                pi_mutex = &q.pi_state->pi_mutex;
2262                ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2263                debug_rt_mutex_free_waiter(&rt_waiter);
2264
2265                spin_lock(q.lock_ptr);
2266                /*
2267                 * Fixup the pi_state owner and possibly acquire the lock if we
2268                 * haven't already.
2269                 */
2270                res = fixup_owner(uaddr2, fshared, &q, !ret);
2271                /*
2272                 * If fixup_owner() returned an error, proprogate that.  If it
2273                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2274                 */
2275                if (res)
2276                        ret = (res < 0) ? res : 0;
2277
2278                /* Unqueue and drop the lock. */
2279                unqueue_me_pi(&q);
2280        }
2281
2282        /*
2283         * If fixup_pi_state_owner() faulted and was unable to handle the
2284         * fault, unlock the rt_mutex and return the fault to userspace.
2285         */
2286        if (ret == -EFAULT) {
2287                if (rt_mutex_owner(pi_mutex) == current)
2288                        rt_mutex_unlock(pi_mutex);
2289        } else if (ret == -EINTR) {
2290                /*
2291                 * We've already been requeued, but cannot restart by calling
2292                 * futex_lock_pi() directly. We could restart this syscall, but
2293                 * it would detect that the user space "val" changed and return
2294                 * -EWOULDBLOCK.  Save the overhead of the restart and return
2295                 * -EWOULDBLOCK directly.
2296                 */
2297                ret = -EWOULDBLOCK;
2298        }
2299
2300out_put_keys:
2301        put_futex_key(fshared, &q.key);
2302out_key2:
2303        put_futex_key(fshared, &key2);
2304
2305out:
2306        if (to) {
2307                hrtimer_cancel(&to->timer);
2308                destroy_hrtimer_on_stack(&to->timer);
2309        }
2310        return ret;
2311}
2312
2313/*
2314 * Support for robust futexes: the kernel cleans up held futexes at
2315 * thread exit time.
2316 *
2317 * Implementation: user-space maintains a per-thread list of locks it
2318 * is holding. Upon do_exit(), the kernel carefully walks this list,
2319 * and marks all locks that are owned by this thread with the
2320 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2321 * always manipulated with the lock held, so the list is private and
2322 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2323 * field, to allow the kernel to clean up if the thread dies after
2324 * acquiring the lock, but just before it could have added itself to
2325 * the list. There can only be one such pending lock.
2326 */
2327
2328/**
2329 * sys_set_robust_list() - Set the robust-futex list head of a task
2330 * @head:       pointer to the list-head
2331 * @len:        length of the list-head, as userspace expects
2332 */
2333SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2334                size_t, len)
2335{
2336        if (!futex_cmpxchg_enabled)
2337                return -ENOSYS;
2338        /*
2339         * The kernel knows only one size for now:
2340         */
2341        if (unlikely(len != sizeof(*head)))
2342                return -EINVAL;
2343
2344        current->robust_list = head;
2345
2346        return 0;
2347}
2348
2349/**
2350 * sys_get_robust_list() - Get the robust-futex list head of a task
2351 * @pid:        pid of the process [zero for current task]
2352 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2353 * @len_ptr:    pointer to a length field, the kernel fills in the header size
2354 */
2355SYSCALL_DEFINE3(get_robust_list, int, pid,
2356                struct robust_list_head __user * __user *, head_ptr,
2357                size_t __user *, len_ptr)
2358{
2359        struct robust_list_head __user *head;
2360        unsigned long ret;
2361        const struct cred *cred = current_cred(), *pcred;
2362
2363        if (!futex_cmpxchg_enabled)
2364                return -ENOSYS;
2365
2366        if (!pid)
2367                head = current->robust_list;
2368        else {
2369                struct task_struct *p;
2370
2371                ret = -ESRCH;
2372                rcu_read_lock();
2373                p = find_task_by_vpid(pid);
2374                if (!p)
2375                        goto err_unlock;
2376                ret = -EPERM;
2377                pcred = __task_cred(p);
2378                if (cred->euid != pcred->euid &&
2379                    cred->euid != pcred->uid &&
2380                    !capable(CAP_SYS_PTRACE))
2381                        goto err_unlock;
2382                head = p->robust_list;
2383                rcu_read_unlock();
2384        }
2385
2386        if (put_user(sizeof(*head), len_ptr))
2387                return -EFAULT;
2388        return put_user(head, head_ptr);
2389
2390err_unlock:
2391        rcu_read_unlock();
2392
2393        return ret;
2394}
2395
2396/*
2397 * Process a futex-list entry, check whether it's owned by the
2398 * dying task, and do notification if so:
2399 */
2400int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2401{
2402        u32 uval, nval, mval;
2403
2404retry:
2405        if (get_user(uval, uaddr))
2406                return -1;
2407
2408        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2409                /*
2410                 * Ok, this dying thread is truly holding a futex
2411                 * of interest. Set the OWNER_DIED bit atomically
2412                 * via cmpxchg, and if the value had FUTEX_WAITERS
2413                 * set, wake up a waiter (if any). (We have to do a
2414                 * futex_wake() even if OWNER_DIED is already set -
2415                 * to handle the rare but possible case of recursive
2416                 * thread-death.) The rest of the cleanup is done in
2417                 * userspace.
2418                 */
2419                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2420                nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2421
2422                if (nval == -EFAULT)
2423                        return -1;
2424
2425                if (nval != uval)
2426                        goto retry;
2427
2428                /*
2429                 * Wake robust non-PI futexes here. The wakeup of
2430                 * PI futexes happens in exit_pi_state():
2431                 */
2432                if (!pi && (uval & FUTEX_WAITERS))
2433                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2434        }
2435        return 0;
2436}
2437
2438/*
2439 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2440 */
2441static inline int fetch_robust_entry(struct robust_list __user **entry,
2442                                     struct robust_list __user * __user *head,
2443                                     int *pi)
2444{
2445        unsigned long uentry;
2446
2447        if (get_user(uentry, (unsigned long __user *)head))
2448                return -EFAULT;
2449
2450        *entry = (void __user *)(uentry & ~1UL);
2451        *pi = uentry & 1;
2452
2453        return 0;
2454}
2455
2456/*
2457 * Walk curr->robust_list (very carefully, it's a userspace list!)
2458 * and mark any locks found there dead, and notify any waiters.
2459 *
2460 * We silently return on any sign of list-walking problem.
2461 */
2462void exit_robust_list(struct task_struct *curr)
2463{
2464        struct robust_list_head __user *head = curr->robust_list;
2465        struct robust_list __user *entry, *next_entry, *pending;
2466        unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2467        unsigned long futex_offset;
2468        int rc;
2469
2470        if (!futex_cmpxchg_enabled)
2471                return;
2472
2473        /*
2474         * Fetch the list head (which was registered earlier, via
2475         * sys_set_robust_list()):
2476         */
2477        if (fetch_robust_entry(&entry, &head->list.next, &pi))
2478                return;
2479        /*
2480         * Fetch the relative futex offset:
2481         */
2482        if (get_user(futex_offset, &head->futex_offset))
2483                return;
2484        /*
2485         * Fetch any possibly pending lock-add first, and handle it
2486         * if it exists:
2487         */
2488        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2489                return;
2490
2491        next_entry = NULL;      /* avoid warning with gcc */
2492        while (entry != &head->list) {
2493                /*
2494                 * Fetch the next entry in the list before calling
2495                 * handle_futex_death:
2496                 */
2497                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2498                /*
2499                 * A pending lock might already be on the list, so
2500                 * don't process it twice:
2501                 */
2502                if (entry != pending)
2503                        if (handle_futex_death((void __user *)entry + futex_offset,
2504                                                curr, pi))
2505                                return;
2506                if (rc)
2507                        return;
2508                entry = next_entry;
2509                pi = next_pi;
2510                /*
2511                 * Avoid excessively long or circular lists:
2512                 */
2513                if (!--limit)
2514                        break;
2515
2516                cond_resched();
2517        }
2518
2519        if (pending)
2520                handle_futex_death((void __user *)pending + futex_offset,
2521                                   curr, pip);
2522}
2523
2524long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2525                u32 __user *uaddr2, u32 val2, u32 val3)
2526{
2527        int clockrt, ret = -ENOSYS;
2528        int cmd = op & FUTEX_CMD_MASK;
2529        int fshared = 0;
2530
2531        if (!(op & FUTEX_PRIVATE_FLAG))
2532                fshared = 1;
2533
2534        clockrt = op & FUTEX_CLOCK_REALTIME;
2535        if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2536                return -ENOSYS;
2537
2538        switch (cmd) {
2539        case FUTEX_WAIT:
2540                val3 = FUTEX_BITSET_MATCH_ANY;
2541        case FUTEX_WAIT_BITSET:
2542                ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2543                break;
2544        case FUTEX_WAKE:
2545                val3 = FUTEX_BITSET_MATCH_ANY;
2546        case FUTEX_WAKE_BITSET:
2547                ret = futex_wake(uaddr, fshared, val, val3);
2548                break;
2549        case FUTEX_REQUEUE:
2550                ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2551                break;
2552        case FUTEX_CMP_REQUEUE:
2553                ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2554                                    0);
2555                break;
2556        case FUTEX_WAKE_OP:
2557                ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2558                break;
2559        case FUTEX_LOCK_PI:
2560                if (futex_cmpxchg_enabled)
2561                        ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2562                break;
2563        case FUTEX_UNLOCK_PI:
2564                if (futex_cmpxchg_enabled)
2565                        ret = futex_unlock_pi(uaddr, fshared);
2566                break;
2567        case FUTEX_TRYLOCK_PI:
2568                if (futex_cmpxchg_enabled)
2569                        ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2570                break;
2571        case FUTEX_WAIT_REQUEUE_PI:
2572                val3 = FUTEX_BITSET_MATCH_ANY;
2573                ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2574                                            clockrt, uaddr2);
2575                break;
2576        case FUTEX_CMP_REQUEUE_PI:
2577                ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2578                                    1);
2579                break;
2580        default:
2581                ret = -ENOSYS;
2582        }
2583        return ret;
2584}
2585
2586
2587SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2588                struct timespec __user *, utime, u32 __user *, uaddr2,
2589                u32, val3)
2590{
2591        struct timespec ts;
2592        ktime_t t, *tp = NULL;
2593        u32 val2 = 0;
2594        int cmd = op & FUTEX_CMD_MASK;
2595
2596        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2597                      cmd == FUTEX_WAIT_BITSET ||
2598                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2599                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2600                        return -EFAULT;
2601                if (!timespec_valid(&ts))
2602                        return -EINVAL;
2603
2604                t = timespec_to_ktime(ts);
2605                if (cmd == FUTEX_WAIT)
2606                        t = ktime_add_safe(ktime_get(), t);
2607                tp = &t;
2608        }
2609        /*
2610         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2611         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2612         */
2613        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2614            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2615                val2 = (u32) (unsigned long) utime;
2616
2617        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2618}
2619
2620static int __init futex_init(void)
2621{
2622        u32 curval;
2623        int i;
2624
2625        /*
2626         * This will fail and we want it. Some arch implementations do
2627         * runtime detection of the futex_atomic_cmpxchg_inatomic()
2628         * functionality. We want to know that before we call in any
2629         * of the complex code paths. Also we want to prevent
2630         * registration of robust lists in that case. NULL is
2631         * guaranteed to fault and we get -EFAULT on functional
2632         * implementation, the non functional ones will return
2633         * -ENOSYS.
2634         */
2635        curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2636        if (curval == -EFAULT)
2637                futex_cmpxchg_enabled = 1;
2638
2639        for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2640                plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2641                spin_lock_init(&futex_queues[i].lock);
2642        }
2643
2644        return 0;
2645}
2646__initcall(futex_init);
2647