linux/kernel/kexec.c
<<
>>
Prefs
   1/*
   2 * kexec.c - kexec system call
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsrelease.h>
  25#include <linux/utsname.h>
  26#include <linux/numa.h>
  27#include <linux/suspend.h>
  28#include <linux/device.h>
  29#include <linux/freezer.h>
  30#include <linux/pm.h>
  31#include <linux/cpu.h>
  32#include <linux/console.h>
  33#include <linux/vmalloc.h>
  34
  35#include <asm/page.h>
  36#include <asm/uaccess.h>
  37#include <asm/io.h>
  38#include <asm/system.h>
  39#include <asm/sections.h>
  40
  41/* Per cpu memory for storing cpu states in case of system crash. */
  42note_buf_t* crash_notes;
  43
  44/* vmcoreinfo stuff */
  45static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  46u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  47size_t vmcoreinfo_size;
  48size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  49
  50/* Location of the reserved area for the crash kernel */
  51struct resource crashk_res = {
  52        .name  = "Crash kernel",
  53        .start = 0,
  54        .end   = 0,
  55        .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  56};
  57
  58int kexec_should_crash(struct task_struct *p)
  59{
  60        if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  61                return 1;
  62        return 0;
  63}
  64
  65/*
  66 * When kexec transitions to the new kernel there is a one-to-one
  67 * mapping between physical and virtual addresses.  On processors
  68 * where you can disable the MMU this is trivial, and easy.  For
  69 * others it is still a simple predictable page table to setup.
  70 *
  71 * In that environment kexec copies the new kernel to its final
  72 * resting place.  This means I can only support memory whose
  73 * physical address can fit in an unsigned long.  In particular
  74 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  75 * If the assembly stub has more restrictive requirements
  76 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  77 * defined more restrictively in <asm/kexec.h>.
  78 *
  79 * The code for the transition from the current kernel to the
  80 * the new kernel is placed in the control_code_buffer, whose size
  81 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
  82 * page of memory is necessary, but some architectures require more.
  83 * Because this memory must be identity mapped in the transition from
  84 * virtual to physical addresses it must live in the range
  85 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
  86 * modifiable.
  87 *
  88 * The assembly stub in the control code buffer is passed a linked list
  89 * of descriptor pages detailing the source pages of the new kernel,
  90 * and the destination addresses of those source pages.  As this data
  91 * structure is not used in the context of the current OS, it must
  92 * be self-contained.
  93 *
  94 * The code has been made to work with highmem pages and will use a
  95 * destination page in its final resting place (if it happens
  96 * to allocate it).  The end product of this is that most of the
  97 * physical address space, and most of RAM can be used.
  98 *
  99 * Future directions include:
 100 *  - allocating a page table with the control code buffer identity
 101 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 102 *    reliable.
 103 */
 104
 105/*
 106 * KIMAGE_NO_DEST is an impossible destination address..., for
 107 * allocating pages whose destination address we do not care about.
 108 */
 109#define KIMAGE_NO_DEST (-1UL)
 110
 111static int kimage_is_destination_range(struct kimage *image,
 112                                       unsigned long start, unsigned long end);
 113static struct page *kimage_alloc_page(struct kimage *image,
 114                                       gfp_t gfp_mask,
 115                                       unsigned long dest);
 116
 117static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
 118                            unsigned long nr_segments,
 119                            struct kexec_segment __user *segments)
 120{
 121        size_t segment_bytes;
 122        struct kimage *image;
 123        unsigned long i;
 124        int result;
 125
 126        /* Allocate a controlling structure */
 127        result = -ENOMEM;
 128        image = kzalloc(sizeof(*image), GFP_KERNEL);
 129        if (!image)
 130                goto out;
 131
 132        image->head = 0;
 133        image->entry = &image->head;
 134        image->last_entry = &image->head;
 135        image->control_page = ~0; /* By default this does not apply */
 136        image->start = entry;
 137        image->type = KEXEC_TYPE_DEFAULT;
 138
 139        /* Initialize the list of control pages */
 140        INIT_LIST_HEAD(&image->control_pages);
 141
 142        /* Initialize the list of destination pages */
 143        INIT_LIST_HEAD(&image->dest_pages);
 144
 145        /* Initialize the list of unuseable pages */
 146        INIT_LIST_HEAD(&image->unuseable_pages);
 147
 148        /* Read in the segments */
 149        image->nr_segments = nr_segments;
 150        segment_bytes = nr_segments * sizeof(*segments);
 151        result = copy_from_user(image->segment, segments, segment_bytes);
 152        if (result)
 153                goto out;
 154
 155        /*
 156         * Verify we have good destination addresses.  The caller is
 157         * responsible for making certain we don't attempt to load
 158         * the new image into invalid or reserved areas of RAM.  This
 159         * just verifies it is an address we can use.
 160         *
 161         * Since the kernel does everything in page size chunks ensure
 162         * the destination addreses are page aligned.  Too many
 163         * special cases crop of when we don't do this.  The most
 164         * insidious is getting overlapping destination addresses
 165         * simply because addresses are changed to page size
 166         * granularity.
 167         */
 168        result = -EADDRNOTAVAIL;
 169        for (i = 0; i < nr_segments; i++) {
 170                unsigned long mstart, mend;
 171
 172                mstart = image->segment[i].mem;
 173                mend   = mstart + image->segment[i].memsz;
 174                if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 175                        goto out;
 176                if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 177                        goto out;
 178        }
 179
 180        /* Verify our destination addresses do not overlap.
 181         * If we alloed overlapping destination addresses
 182         * through very weird things can happen with no
 183         * easy explanation as one segment stops on another.
 184         */
 185        result = -EINVAL;
 186        for (i = 0; i < nr_segments; i++) {
 187                unsigned long mstart, mend;
 188                unsigned long j;
 189
 190                mstart = image->segment[i].mem;
 191                mend   = mstart + image->segment[i].memsz;
 192                for (j = 0; j < i; j++) {
 193                        unsigned long pstart, pend;
 194                        pstart = image->segment[j].mem;
 195                        pend   = pstart + image->segment[j].memsz;
 196                        /* Do the segments overlap ? */
 197                        if ((mend > pstart) && (mstart < pend))
 198                                goto out;
 199                }
 200        }
 201
 202        /* Ensure our buffer sizes are strictly less than
 203         * our memory sizes.  This should always be the case,
 204         * and it is easier to check up front than to be surprised
 205         * later on.
 206         */
 207        result = -EINVAL;
 208        for (i = 0; i < nr_segments; i++) {
 209                if (image->segment[i].bufsz > image->segment[i].memsz)
 210                        goto out;
 211        }
 212
 213        result = 0;
 214out:
 215        if (result == 0)
 216                *rimage = image;
 217        else
 218                kfree(image);
 219
 220        return result;
 221
 222}
 223
 224static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
 225                                unsigned long nr_segments,
 226                                struct kexec_segment __user *segments)
 227{
 228        int result;
 229        struct kimage *image;
 230
 231        /* Allocate and initialize a controlling structure */
 232        image = NULL;
 233        result = do_kimage_alloc(&image, entry, nr_segments, segments);
 234        if (result)
 235                goto out;
 236
 237        *rimage = image;
 238
 239        /*
 240         * Find a location for the control code buffer, and add it
 241         * the vector of segments so that it's pages will also be
 242         * counted as destination pages.
 243         */
 244        result = -ENOMEM;
 245        image->control_code_page = kimage_alloc_control_pages(image,
 246                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 247        if (!image->control_code_page) {
 248                printk(KERN_ERR "Could not allocate control_code_buffer\n");
 249                goto out;
 250        }
 251
 252        image->swap_page = kimage_alloc_control_pages(image, 0);
 253        if (!image->swap_page) {
 254                printk(KERN_ERR "Could not allocate swap buffer\n");
 255                goto out;
 256        }
 257
 258        result = 0;
 259 out:
 260        if (result == 0)
 261                *rimage = image;
 262        else
 263                kfree(image);
 264
 265        return result;
 266}
 267
 268static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
 269                                unsigned long nr_segments,
 270                                struct kexec_segment __user *segments)
 271{
 272        int result;
 273        struct kimage *image;
 274        unsigned long i;
 275
 276        image = NULL;
 277        /* Verify we have a valid entry point */
 278        if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
 279                result = -EADDRNOTAVAIL;
 280                goto out;
 281        }
 282
 283        /* Allocate and initialize a controlling structure */
 284        result = do_kimage_alloc(&image, entry, nr_segments, segments);
 285        if (result)
 286                goto out;
 287
 288        /* Enable the special crash kernel control page
 289         * allocation policy.
 290         */
 291        image->control_page = crashk_res.start;
 292        image->type = KEXEC_TYPE_CRASH;
 293
 294        /*
 295         * Verify we have good destination addresses.  Normally
 296         * the caller is responsible for making certain we don't
 297         * attempt to load the new image into invalid or reserved
 298         * areas of RAM.  But crash kernels are preloaded into a
 299         * reserved area of ram.  We must ensure the addresses
 300         * are in the reserved area otherwise preloading the
 301         * kernel could corrupt things.
 302         */
 303        result = -EADDRNOTAVAIL;
 304        for (i = 0; i < nr_segments; i++) {
 305                unsigned long mstart, mend;
 306
 307                mstart = image->segment[i].mem;
 308                mend = mstart + image->segment[i].memsz - 1;
 309                /* Ensure we are within the crash kernel limits */
 310                if ((mstart < crashk_res.start) || (mend > crashk_res.end))
 311                        goto out;
 312        }
 313
 314        /*
 315         * Find a location for the control code buffer, and add
 316         * the vector of segments so that it's pages will also be
 317         * counted as destination pages.
 318         */
 319        result = -ENOMEM;
 320        image->control_code_page = kimage_alloc_control_pages(image,
 321                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 322        if (!image->control_code_page) {
 323                printk(KERN_ERR "Could not allocate control_code_buffer\n");
 324                goto out;
 325        }
 326
 327        result = 0;
 328out:
 329        if (result == 0)
 330                *rimage = image;
 331        else
 332                kfree(image);
 333
 334        return result;
 335}
 336
 337static int kimage_is_destination_range(struct kimage *image,
 338                                        unsigned long start,
 339                                        unsigned long end)
 340{
 341        unsigned long i;
 342
 343        for (i = 0; i < image->nr_segments; i++) {
 344                unsigned long mstart, mend;
 345
 346                mstart = image->segment[i].mem;
 347                mend = mstart + image->segment[i].memsz;
 348                if ((end > mstart) && (start < mend))
 349                        return 1;
 350        }
 351
 352        return 0;
 353}
 354
 355static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 356{
 357        struct page *pages;
 358
 359        pages = alloc_pages(gfp_mask, order);
 360        if (pages) {
 361                unsigned int count, i;
 362                pages->mapping = NULL;
 363                set_page_private(pages, order);
 364                count = 1 << order;
 365                for (i = 0; i < count; i++)
 366                        SetPageReserved(pages + i);
 367        }
 368
 369        return pages;
 370}
 371
 372static void kimage_free_pages(struct page *page)
 373{
 374        unsigned int order, count, i;
 375
 376        order = page_private(page);
 377        count = 1 << order;
 378        for (i = 0; i < count; i++)
 379                ClearPageReserved(page + i);
 380        __free_pages(page, order);
 381}
 382
 383static void kimage_free_page_list(struct list_head *list)
 384{
 385        struct list_head *pos, *next;
 386
 387        list_for_each_safe(pos, next, list) {
 388                struct page *page;
 389
 390                page = list_entry(pos, struct page, lru);
 391                list_del(&page->lru);
 392                kimage_free_pages(page);
 393        }
 394}
 395
 396static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 397                                                        unsigned int order)
 398{
 399        /* Control pages are special, they are the intermediaries
 400         * that are needed while we copy the rest of the pages
 401         * to their final resting place.  As such they must
 402         * not conflict with either the destination addresses
 403         * or memory the kernel is already using.
 404         *
 405         * The only case where we really need more than one of
 406         * these are for architectures where we cannot disable
 407         * the MMU and must instead generate an identity mapped
 408         * page table for all of the memory.
 409         *
 410         * At worst this runs in O(N) of the image size.
 411         */
 412        struct list_head extra_pages;
 413        struct page *pages;
 414        unsigned int count;
 415
 416        count = 1 << order;
 417        INIT_LIST_HEAD(&extra_pages);
 418
 419        /* Loop while I can allocate a page and the page allocated
 420         * is a destination page.
 421         */
 422        do {
 423                unsigned long pfn, epfn, addr, eaddr;
 424
 425                pages = kimage_alloc_pages(GFP_KERNEL, order);
 426                if (!pages)
 427                        break;
 428                pfn   = page_to_pfn(pages);
 429                epfn  = pfn + count;
 430                addr  = pfn << PAGE_SHIFT;
 431                eaddr = epfn << PAGE_SHIFT;
 432                if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 433                              kimage_is_destination_range(image, addr, eaddr)) {
 434                        list_add(&pages->lru, &extra_pages);
 435                        pages = NULL;
 436                }
 437        } while (!pages);
 438
 439        if (pages) {
 440                /* Remember the allocated page... */
 441                list_add(&pages->lru, &image->control_pages);
 442
 443                /* Because the page is already in it's destination
 444                 * location we will never allocate another page at
 445                 * that address.  Therefore kimage_alloc_pages
 446                 * will not return it (again) and we don't need
 447                 * to give it an entry in image->segment[].
 448                 */
 449        }
 450        /* Deal with the destination pages I have inadvertently allocated.
 451         *
 452         * Ideally I would convert multi-page allocations into single
 453         * page allocations, and add everyting to image->dest_pages.
 454         *
 455         * For now it is simpler to just free the pages.
 456         */
 457        kimage_free_page_list(&extra_pages);
 458
 459        return pages;
 460}
 461
 462static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 463                                                      unsigned int order)
 464{
 465        /* Control pages are special, they are the intermediaries
 466         * that are needed while we copy the rest of the pages
 467         * to their final resting place.  As such they must
 468         * not conflict with either the destination addresses
 469         * or memory the kernel is already using.
 470         *
 471         * Control pages are also the only pags we must allocate
 472         * when loading a crash kernel.  All of the other pages
 473         * are specified by the segments and we just memcpy
 474         * into them directly.
 475         *
 476         * The only case where we really need more than one of
 477         * these are for architectures where we cannot disable
 478         * the MMU and must instead generate an identity mapped
 479         * page table for all of the memory.
 480         *
 481         * Given the low demand this implements a very simple
 482         * allocator that finds the first hole of the appropriate
 483         * size in the reserved memory region, and allocates all
 484         * of the memory up to and including the hole.
 485         */
 486        unsigned long hole_start, hole_end, size;
 487        struct page *pages;
 488
 489        pages = NULL;
 490        size = (1 << order) << PAGE_SHIFT;
 491        hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 492        hole_end   = hole_start + size - 1;
 493        while (hole_end <= crashk_res.end) {
 494                unsigned long i;
 495
 496                if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
 497                        break;
 498                if (hole_end > crashk_res.end)
 499                        break;
 500                /* See if I overlap any of the segments */
 501                for (i = 0; i < image->nr_segments; i++) {
 502                        unsigned long mstart, mend;
 503
 504                        mstart = image->segment[i].mem;
 505                        mend   = mstart + image->segment[i].memsz - 1;
 506                        if ((hole_end >= mstart) && (hole_start <= mend)) {
 507                                /* Advance the hole to the end of the segment */
 508                                hole_start = (mend + (size - 1)) & ~(size - 1);
 509                                hole_end   = hole_start + size - 1;
 510                                break;
 511                        }
 512                }
 513                /* If I don't overlap any segments I have found my hole! */
 514                if (i == image->nr_segments) {
 515                        pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 516                        break;
 517                }
 518        }
 519        if (pages)
 520                image->control_page = hole_end;
 521
 522        return pages;
 523}
 524
 525
 526struct page *kimage_alloc_control_pages(struct kimage *image,
 527                                         unsigned int order)
 528{
 529        struct page *pages = NULL;
 530
 531        switch (image->type) {
 532        case KEXEC_TYPE_DEFAULT:
 533                pages = kimage_alloc_normal_control_pages(image, order);
 534                break;
 535        case KEXEC_TYPE_CRASH:
 536                pages = kimage_alloc_crash_control_pages(image, order);
 537                break;
 538        }
 539
 540        return pages;
 541}
 542
 543static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 544{
 545        if (*image->entry != 0)
 546                image->entry++;
 547
 548        if (image->entry == image->last_entry) {
 549                kimage_entry_t *ind_page;
 550                struct page *page;
 551
 552                page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 553                if (!page)
 554                        return -ENOMEM;
 555
 556                ind_page = page_address(page);
 557                *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
 558                image->entry = ind_page;
 559                image->last_entry = ind_page +
 560                                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 561        }
 562        *image->entry = entry;
 563        image->entry++;
 564        *image->entry = 0;
 565
 566        return 0;
 567}
 568
 569static int kimage_set_destination(struct kimage *image,
 570                                   unsigned long destination)
 571{
 572        int result;
 573
 574        destination &= PAGE_MASK;
 575        result = kimage_add_entry(image, destination | IND_DESTINATION);
 576        if (result == 0)
 577                image->destination = destination;
 578
 579        return result;
 580}
 581
 582
 583static int kimage_add_page(struct kimage *image, unsigned long page)
 584{
 585        int result;
 586
 587        page &= PAGE_MASK;
 588        result = kimage_add_entry(image, page | IND_SOURCE);
 589        if (result == 0)
 590                image->destination += PAGE_SIZE;
 591
 592        return result;
 593}
 594
 595
 596static void kimage_free_extra_pages(struct kimage *image)
 597{
 598        /* Walk through and free any extra destination pages I may have */
 599        kimage_free_page_list(&image->dest_pages);
 600
 601        /* Walk through and free any unuseable pages I have cached */
 602        kimage_free_page_list(&image->unuseable_pages);
 603
 604}
 605static void kimage_terminate(struct kimage *image)
 606{
 607        if (*image->entry != 0)
 608                image->entry++;
 609
 610        *image->entry = IND_DONE;
 611}
 612
 613#define for_each_kimage_entry(image, ptr, entry) \
 614        for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 615                ptr = (entry & IND_INDIRECTION)? \
 616                        phys_to_virt((entry & PAGE_MASK)): ptr +1)
 617
 618static void kimage_free_entry(kimage_entry_t entry)
 619{
 620        struct page *page;
 621
 622        page = pfn_to_page(entry >> PAGE_SHIFT);
 623        kimage_free_pages(page);
 624}
 625
 626static void kimage_free(struct kimage *image)
 627{
 628        kimage_entry_t *ptr, entry;
 629        kimage_entry_t ind = 0;
 630
 631        if (!image)
 632                return;
 633
 634        kimage_free_extra_pages(image);
 635        for_each_kimage_entry(image, ptr, entry) {
 636                if (entry & IND_INDIRECTION) {
 637                        /* Free the previous indirection page */
 638                        if (ind & IND_INDIRECTION)
 639                                kimage_free_entry(ind);
 640                        /* Save this indirection page until we are
 641                         * done with it.
 642                         */
 643                        ind = entry;
 644                }
 645                else if (entry & IND_SOURCE)
 646                        kimage_free_entry(entry);
 647        }
 648        /* Free the final indirection page */
 649        if (ind & IND_INDIRECTION)
 650                kimage_free_entry(ind);
 651
 652        /* Handle any machine specific cleanup */
 653        machine_kexec_cleanup(image);
 654
 655        /* Free the kexec control pages... */
 656        kimage_free_page_list(&image->control_pages);
 657        kfree(image);
 658}
 659
 660static kimage_entry_t *kimage_dst_used(struct kimage *image,
 661                                        unsigned long page)
 662{
 663        kimage_entry_t *ptr, entry;
 664        unsigned long destination = 0;
 665
 666        for_each_kimage_entry(image, ptr, entry) {
 667                if (entry & IND_DESTINATION)
 668                        destination = entry & PAGE_MASK;
 669                else if (entry & IND_SOURCE) {
 670                        if (page == destination)
 671                                return ptr;
 672                        destination += PAGE_SIZE;
 673                }
 674        }
 675
 676        return NULL;
 677}
 678
 679static struct page *kimage_alloc_page(struct kimage *image,
 680                                        gfp_t gfp_mask,
 681                                        unsigned long destination)
 682{
 683        /*
 684         * Here we implement safeguards to ensure that a source page
 685         * is not copied to its destination page before the data on
 686         * the destination page is no longer useful.
 687         *
 688         * To do this we maintain the invariant that a source page is
 689         * either its own destination page, or it is not a
 690         * destination page at all.
 691         *
 692         * That is slightly stronger than required, but the proof
 693         * that no problems will not occur is trivial, and the
 694         * implementation is simply to verify.
 695         *
 696         * When allocating all pages normally this algorithm will run
 697         * in O(N) time, but in the worst case it will run in O(N^2)
 698         * time.   If the runtime is a problem the data structures can
 699         * be fixed.
 700         */
 701        struct page *page;
 702        unsigned long addr;
 703
 704        /*
 705         * Walk through the list of destination pages, and see if I
 706         * have a match.
 707         */
 708        list_for_each_entry(page, &image->dest_pages, lru) {
 709                addr = page_to_pfn(page) << PAGE_SHIFT;
 710                if (addr == destination) {
 711                        list_del(&page->lru);
 712                        return page;
 713                }
 714        }
 715        page = NULL;
 716        while (1) {
 717                kimage_entry_t *old;
 718
 719                /* Allocate a page, if we run out of memory give up */
 720                page = kimage_alloc_pages(gfp_mask, 0);
 721                if (!page)
 722                        return NULL;
 723                /* If the page cannot be used file it away */
 724                if (page_to_pfn(page) >
 725                                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 726                        list_add(&page->lru, &image->unuseable_pages);
 727                        continue;
 728                }
 729                addr = page_to_pfn(page) << PAGE_SHIFT;
 730
 731                /* If it is the destination page we want use it */
 732                if (addr == destination)
 733                        break;
 734
 735                /* If the page is not a destination page use it */
 736                if (!kimage_is_destination_range(image, addr,
 737                                                  addr + PAGE_SIZE))
 738                        break;
 739
 740                /*
 741                 * I know that the page is someones destination page.
 742                 * See if there is already a source page for this
 743                 * destination page.  And if so swap the source pages.
 744                 */
 745                old = kimage_dst_used(image, addr);
 746                if (old) {
 747                        /* If so move it */
 748                        unsigned long old_addr;
 749                        struct page *old_page;
 750
 751                        old_addr = *old & PAGE_MASK;
 752                        old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
 753                        copy_highpage(page, old_page);
 754                        *old = addr | (*old & ~PAGE_MASK);
 755
 756                        /* The old page I have found cannot be a
 757                         * destination page, so return it if it's
 758                         * gfp_flags honor the ones passed in.
 759                         */
 760                        if (!(gfp_mask & __GFP_HIGHMEM) &&
 761                            PageHighMem(old_page)) {
 762                                kimage_free_pages(old_page);
 763                                continue;
 764                        }
 765                        addr = old_addr;
 766                        page = old_page;
 767                        break;
 768                }
 769                else {
 770                        /* Place the page on the destination list I
 771                         * will use it later.
 772                         */
 773                        list_add(&page->lru, &image->dest_pages);
 774                }
 775        }
 776
 777        return page;
 778}
 779
 780static int kimage_load_normal_segment(struct kimage *image,
 781                                         struct kexec_segment *segment)
 782{
 783        unsigned long maddr;
 784        unsigned long ubytes, mbytes;
 785        int result;
 786        unsigned char __user *buf;
 787
 788        result = 0;
 789        buf = segment->buf;
 790        ubytes = segment->bufsz;
 791        mbytes = segment->memsz;
 792        maddr = segment->mem;
 793
 794        result = kimage_set_destination(image, maddr);
 795        if (result < 0)
 796                goto out;
 797
 798        while (mbytes) {
 799                struct page *page;
 800                char *ptr;
 801                size_t uchunk, mchunk;
 802
 803                page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 804                if (!page) {
 805                        result  = -ENOMEM;
 806                        goto out;
 807                }
 808                result = kimage_add_page(image, page_to_pfn(page)
 809                                                                << PAGE_SHIFT);
 810                if (result < 0)
 811                        goto out;
 812
 813                ptr = kmap(page);
 814                /* Start with a clear page */
 815                memset(ptr, 0, PAGE_SIZE);
 816                ptr += maddr & ~PAGE_MASK;
 817                mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
 818                if (mchunk > mbytes)
 819                        mchunk = mbytes;
 820
 821                uchunk = mchunk;
 822                if (uchunk > ubytes)
 823                        uchunk = ubytes;
 824
 825                result = copy_from_user(ptr, buf, uchunk);
 826                kunmap(page);
 827                if (result) {
 828                        result = (result < 0) ? result : -EIO;
 829                        goto out;
 830                }
 831                ubytes -= uchunk;
 832                maddr  += mchunk;
 833                buf    += mchunk;
 834                mbytes -= mchunk;
 835        }
 836out:
 837        return result;
 838}
 839
 840static int kimage_load_crash_segment(struct kimage *image,
 841                                        struct kexec_segment *segment)
 842{
 843        /* For crash dumps kernels we simply copy the data from
 844         * user space to it's destination.
 845         * We do things a page at a time for the sake of kmap.
 846         */
 847        unsigned long maddr;
 848        unsigned long ubytes, mbytes;
 849        int result;
 850        unsigned char __user *buf;
 851
 852        result = 0;
 853        buf = segment->buf;
 854        ubytes = segment->bufsz;
 855        mbytes = segment->memsz;
 856        maddr = segment->mem;
 857        while (mbytes) {
 858                struct page *page;
 859                char *ptr;
 860                size_t uchunk, mchunk;
 861
 862                page = pfn_to_page(maddr >> PAGE_SHIFT);
 863                if (!page) {
 864                        result  = -ENOMEM;
 865                        goto out;
 866                }
 867                ptr = kmap(page);
 868                ptr += maddr & ~PAGE_MASK;
 869                mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
 870                if (mchunk > mbytes)
 871                        mchunk = mbytes;
 872
 873                uchunk = mchunk;
 874                if (uchunk > ubytes) {
 875                        uchunk = ubytes;
 876                        /* Zero the trailing part of the page */
 877                        memset(ptr + uchunk, 0, mchunk - uchunk);
 878                }
 879                result = copy_from_user(ptr, buf, uchunk);
 880                kexec_flush_icache_page(page);
 881                kunmap(page);
 882                if (result) {
 883                        result = (result < 0) ? result : -EIO;
 884                        goto out;
 885                }
 886                ubytes -= uchunk;
 887                maddr  += mchunk;
 888                buf    += mchunk;
 889                mbytes -= mchunk;
 890        }
 891out:
 892        return result;
 893}
 894
 895static int kimage_load_segment(struct kimage *image,
 896                                struct kexec_segment *segment)
 897{
 898        int result = -ENOMEM;
 899
 900        switch (image->type) {
 901        case KEXEC_TYPE_DEFAULT:
 902                result = kimage_load_normal_segment(image, segment);
 903                break;
 904        case KEXEC_TYPE_CRASH:
 905                result = kimage_load_crash_segment(image, segment);
 906                break;
 907        }
 908
 909        return result;
 910}
 911
 912/*
 913 * Exec Kernel system call: for obvious reasons only root may call it.
 914 *
 915 * This call breaks up into three pieces.
 916 * - A generic part which loads the new kernel from the current
 917 *   address space, and very carefully places the data in the
 918 *   allocated pages.
 919 *
 920 * - A generic part that interacts with the kernel and tells all of
 921 *   the devices to shut down.  Preventing on-going dmas, and placing
 922 *   the devices in a consistent state so a later kernel can
 923 *   reinitialize them.
 924 *
 925 * - A machine specific part that includes the syscall number
 926 *   and the copies the image to it's final destination.  And
 927 *   jumps into the image at entry.
 928 *
 929 * kexec does not sync, or unmount filesystems so if you need
 930 * that to happen you need to do that yourself.
 931 */
 932struct kimage *kexec_image;
 933struct kimage *kexec_crash_image;
 934
 935static DEFINE_MUTEX(kexec_mutex);
 936
 937SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
 938                struct kexec_segment __user *, segments, unsigned long, flags)
 939{
 940        struct kimage **dest_image, *image;
 941        int result;
 942
 943        /* We only trust the superuser with rebooting the system. */
 944        if (!capable(CAP_SYS_BOOT))
 945                return -EPERM;
 946
 947        /*
 948         * Verify we have a legal set of flags
 949         * This leaves us room for future extensions.
 950         */
 951        if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
 952                return -EINVAL;
 953
 954        /* Verify we are on the appropriate architecture */
 955        if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
 956                ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
 957                return -EINVAL;
 958
 959        /* Put an artificial cap on the number
 960         * of segments passed to kexec_load.
 961         */
 962        if (nr_segments > KEXEC_SEGMENT_MAX)
 963                return -EINVAL;
 964
 965        image = NULL;
 966        result = 0;
 967
 968        /* Because we write directly to the reserved memory
 969         * region when loading crash kernels we need a mutex here to
 970         * prevent multiple crash  kernels from attempting to load
 971         * simultaneously, and to prevent a crash kernel from loading
 972         * over the top of a in use crash kernel.
 973         *
 974         * KISS: always take the mutex.
 975         */
 976        if (!mutex_trylock(&kexec_mutex))
 977                return -EBUSY;
 978
 979        dest_image = &kexec_image;
 980        if (flags & KEXEC_ON_CRASH)
 981                dest_image = &kexec_crash_image;
 982        if (nr_segments > 0) {
 983                unsigned long i;
 984
 985                /* Loading another kernel to reboot into */
 986                if ((flags & KEXEC_ON_CRASH) == 0)
 987                        result = kimage_normal_alloc(&image, entry,
 988                                                        nr_segments, segments);
 989                /* Loading another kernel to switch to if this one crashes */
 990                else if (flags & KEXEC_ON_CRASH) {
 991                        /* Free any current crash dump kernel before
 992                         * we corrupt it.
 993                         */
 994                        kimage_free(xchg(&kexec_crash_image, NULL));
 995                        result = kimage_crash_alloc(&image, entry,
 996                                                     nr_segments, segments);
 997                }
 998                if (result)
 999                        goto out;
1000
1001                if (flags & KEXEC_PRESERVE_CONTEXT)
1002                        image->preserve_context = 1;
1003                result = machine_kexec_prepare(image);
1004                if (result)
1005                        goto out;
1006
1007                for (i = 0; i < nr_segments; i++) {
1008                        result = kimage_load_segment(image, &image->segment[i]);
1009                        if (result)
1010                                goto out;
1011                }
1012                kimage_terminate(image);
1013        }
1014        /* Install the new kernel, and  Uninstall the old */
1015        image = xchg(dest_image, image);
1016
1017out:
1018        mutex_unlock(&kexec_mutex);
1019        kimage_free(image);
1020
1021        return result;
1022}
1023
1024#ifdef CONFIG_COMPAT
1025asmlinkage long compat_sys_kexec_load(unsigned long entry,
1026                                unsigned long nr_segments,
1027                                struct compat_kexec_segment __user *segments,
1028                                unsigned long flags)
1029{
1030        struct compat_kexec_segment in;
1031        struct kexec_segment out, __user *ksegments;
1032        unsigned long i, result;
1033
1034        /* Don't allow clients that don't understand the native
1035         * architecture to do anything.
1036         */
1037        if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1038                return -EINVAL;
1039
1040        if (nr_segments > KEXEC_SEGMENT_MAX)
1041                return -EINVAL;
1042
1043        ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1044        for (i=0; i < nr_segments; i++) {
1045                result = copy_from_user(&in, &segments[i], sizeof(in));
1046                if (result)
1047                        return -EFAULT;
1048
1049                out.buf   = compat_ptr(in.buf);
1050                out.bufsz = in.bufsz;
1051                out.mem   = in.mem;
1052                out.memsz = in.memsz;
1053
1054                result = copy_to_user(&ksegments[i], &out, sizeof(out));
1055                if (result)
1056                        return -EFAULT;
1057        }
1058
1059        return sys_kexec_load(entry, nr_segments, ksegments, flags);
1060}
1061#endif
1062
1063void crash_kexec(struct pt_regs *regs)
1064{
1065        /* Take the kexec_mutex here to prevent sys_kexec_load
1066         * running on one cpu from replacing the crash kernel
1067         * we are using after a panic on a different cpu.
1068         *
1069         * If the crash kernel was not located in a fixed area
1070         * of memory the xchg(&kexec_crash_image) would be
1071         * sufficient.  But since I reuse the memory...
1072         */
1073        if (mutex_trylock(&kexec_mutex)) {
1074                if (kexec_crash_image) {
1075                        struct pt_regs fixed_regs;
1076                        crash_setup_regs(&fixed_regs, regs);
1077                        crash_save_vmcoreinfo();
1078                        machine_crash_shutdown(&fixed_regs);
1079                        machine_kexec(kexec_crash_image);
1080                }
1081                mutex_unlock(&kexec_mutex);
1082        }
1083}
1084
1085static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1086                            size_t data_len)
1087{
1088        struct elf_note note;
1089
1090        note.n_namesz = strlen(name) + 1;
1091        note.n_descsz = data_len;
1092        note.n_type   = type;
1093        memcpy(buf, &note, sizeof(note));
1094        buf += (sizeof(note) + 3)/4;
1095        memcpy(buf, name, note.n_namesz);
1096        buf += (note.n_namesz + 3)/4;
1097        memcpy(buf, data, note.n_descsz);
1098        buf += (note.n_descsz + 3)/4;
1099
1100        return buf;
1101}
1102
1103static void final_note(u32 *buf)
1104{
1105        struct elf_note note;
1106
1107        note.n_namesz = 0;
1108        note.n_descsz = 0;
1109        note.n_type   = 0;
1110        memcpy(buf, &note, sizeof(note));
1111}
1112
1113void crash_save_cpu(struct pt_regs *regs, int cpu)
1114{
1115        struct elf_prstatus prstatus;
1116        u32 *buf;
1117
1118        if ((cpu < 0) || (cpu >= nr_cpu_ids))
1119                return;
1120
1121        /* Using ELF notes here is opportunistic.
1122         * I need a well defined structure format
1123         * for the data I pass, and I need tags
1124         * on the data to indicate what information I have
1125         * squirrelled away.  ELF notes happen to provide
1126         * all of that, so there is no need to invent something new.
1127         */
1128        buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1129        if (!buf)
1130                return;
1131        memset(&prstatus, 0, sizeof(prstatus));
1132        prstatus.pr_pid = current->pid;
1133        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1134        buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1135                              &prstatus, sizeof(prstatus));
1136        final_note(buf);
1137}
1138
1139static int __init crash_notes_memory_init(void)
1140{
1141        /* Allocate memory for saving cpu registers. */
1142        crash_notes = alloc_percpu(note_buf_t);
1143        if (!crash_notes) {
1144                printk("Kexec: Memory allocation for saving cpu register"
1145                " states failed\n");
1146                return -ENOMEM;
1147        }
1148        return 0;
1149}
1150module_init(crash_notes_memory_init)
1151
1152
1153/*
1154 * parsing the "crashkernel" commandline
1155 *
1156 * this code is intended to be called from architecture specific code
1157 */
1158
1159
1160/*
1161 * This function parses command lines in the format
1162 *
1163 *   crashkernel=ramsize-range:size[,...][@offset]
1164 *
1165 * The function returns 0 on success and -EINVAL on failure.
1166 */
1167static int __init parse_crashkernel_mem(char                    *cmdline,
1168                                        unsigned long long      system_ram,
1169                                        unsigned long long      *crash_size,
1170                                        unsigned long long      *crash_base)
1171{
1172        char *cur = cmdline, *tmp;
1173
1174        /* for each entry of the comma-separated list */
1175        do {
1176                unsigned long long start, end = ULLONG_MAX, size;
1177
1178                /* get the start of the range */
1179                start = memparse(cur, &tmp);
1180                if (cur == tmp) {
1181                        pr_warning("crashkernel: Memory value expected\n");
1182                        return -EINVAL;
1183                }
1184                cur = tmp;
1185                if (*cur != '-') {
1186                        pr_warning("crashkernel: '-' expected\n");
1187                        return -EINVAL;
1188                }
1189                cur++;
1190
1191                /* if no ':' is here, than we read the end */
1192                if (*cur != ':') {
1193                        end = memparse(cur, &tmp);
1194                        if (cur == tmp) {
1195                                pr_warning("crashkernel: Memory "
1196                                                "value expected\n");
1197                                return -EINVAL;
1198                        }
1199                        cur = tmp;
1200                        if (end <= start) {
1201                                pr_warning("crashkernel: end <= start\n");
1202                                return -EINVAL;
1203                        }
1204                }
1205
1206                if (*cur != ':') {
1207                        pr_warning("crashkernel: ':' expected\n");
1208                        return -EINVAL;
1209                }
1210                cur++;
1211
1212                size = memparse(cur, &tmp);
1213                if (cur == tmp) {
1214                        pr_warning("Memory value expected\n");
1215                        return -EINVAL;
1216                }
1217                cur = tmp;
1218                if (size >= system_ram) {
1219                        pr_warning("crashkernel: invalid size\n");
1220                        return -EINVAL;
1221                }
1222
1223                /* match ? */
1224                if (system_ram >= start && system_ram < end) {
1225                        *crash_size = size;
1226                        break;
1227                }
1228        } while (*cur++ == ',');
1229
1230        if (*crash_size > 0) {
1231                while (*cur && *cur != ' ' && *cur != '@')
1232                        cur++;
1233                if (*cur == '@') {
1234                        cur++;
1235                        *crash_base = memparse(cur, &tmp);
1236                        if (cur == tmp) {
1237                                pr_warning("Memory value expected "
1238                                                "after '@'\n");
1239                                return -EINVAL;
1240                        }
1241                }
1242        }
1243
1244        return 0;
1245}
1246
1247/*
1248 * That function parses "simple" (old) crashkernel command lines like
1249 *
1250 *      crashkernel=size[@offset]
1251 *
1252 * It returns 0 on success and -EINVAL on failure.
1253 */
1254static int __init parse_crashkernel_simple(char                 *cmdline,
1255                                           unsigned long long   *crash_size,
1256                                           unsigned long long   *crash_base)
1257{
1258        char *cur = cmdline;
1259
1260        *crash_size = memparse(cmdline, &cur);
1261        if (cmdline == cur) {
1262                pr_warning("crashkernel: memory value expected\n");
1263                return -EINVAL;
1264        }
1265
1266        if (*cur == '@')
1267                *crash_base = memparse(cur+1, &cur);
1268
1269        return 0;
1270}
1271
1272/*
1273 * That function is the entry point for command line parsing and should be
1274 * called from the arch-specific code.
1275 */
1276int __init parse_crashkernel(char                *cmdline,
1277                             unsigned long long system_ram,
1278                             unsigned long long *crash_size,
1279                             unsigned long long *crash_base)
1280{
1281        char    *p = cmdline, *ck_cmdline = NULL;
1282        char    *first_colon, *first_space;
1283
1284        BUG_ON(!crash_size || !crash_base);
1285        *crash_size = 0;
1286        *crash_base = 0;
1287
1288        /* find crashkernel and use the last one if there are more */
1289        p = strstr(p, "crashkernel=");
1290        while (p) {
1291                ck_cmdline = p;
1292                p = strstr(p+1, "crashkernel=");
1293        }
1294
1295        if (!ck_cmdline)
1296                return -EINVAL;
1297
1298        ck_cmdline += 12; /* strlen("crashkernel=") */
1299
1300        /*
1301         * if the commandline contains a ':', then that's the extended
1302         * syntax -- if not, it must be the classic syntax
1303         */
1304        first_colon = strchr(ck_cmdline, ':');
1305        first_space = strchr(ck_cmdline, ' ');
1306        if (first_colon && (!first_space || first_colon < first_space))
1307                return parse_crashkernel_mem(ck_cmdline, system_ram,
1308                                crash_size, crash_base);
1309        else
1310                return parse_crashkernel_simple(ck_cmdline, crash_size,
1311                                crash_base);
1312
1313        return 0;
1314}
1315
1316
1317
1318void crash_save_vmcoreinfo(void)
1319{
1320        u32 *buf;
1321
1322        if (!vmcoreinfo_size)
1323                return;
1324
1325        vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1326
1327        buf = (u32 *)vmcoreinfo_note;
1328
1329        buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1330                              vmcoreinfo_size);
1331
1332        final_note(buf);
1333}
1334
1335void vmcoreinfo_append_str(const char *fmt, ...)
1336{
1337        va_list args;
1338        char buf[0x50];
1339        int r;
1340
1341        va_start(args, fmt);
1342        r = vsnprintf(buf, sizeof(buf), fmt, args);
1343        va_end(args);
1344
1345        if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1346                r = vmcoreinfo_max_size - vmcoreinfo_size;
1347
1348        memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1349
1350        vmcoreinfo_size += r;
1351}
1352
1353/*
1354 * provide an empty default implementation here -- architecture
1355 * code may override this
1356 */
1357void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1358{}
1359
1360unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1361{
1362        return __pa((unsigned long)(char *)&vmcoreinfo_note);
1363}
1364
1365static int __init crash_save_vmcoreinfo_init(void)
1366{
1367        VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1368        VMCOREINFO_PAGESIZE(PAGE_SIZE);
1369
1370        VMCOREINFO_SYMBOL(init_uts_ns);
1371        VMCOREINFO_SYMBOL(node_online_map);
1372        VMCOREINFO_SYMBOL(swapper_pg_dir);
1373        VMCOREINFO_SYMBOL(_stext);
1374        VMCOREINFO_SYMBOL(vmlist);
1375
1376#ifndef CONFIG_NEED_MULTIPLE_NODES
1377        VMCOREINFO_SYMBOL(mem_map);
1378        VMCOREINFO_SYMBOL(contig_page_data);
1379#endif
1380#ifdef CONFIG_SPARSEMEM
1381        VMCOREINFO_SYMBOL(mem_section);
1382        VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1383        VMCOREINFO_STRUCT_SIZE(mem_section);
1384        VMCOREINFO_OFFSET(mem_section, section_mem_map);
1385#endif
1386        VMCOREINFO_STRUCT_SIZE(page);
1387        VMCOREINFO_STRUCT_SIZE(pglist_data);
1388        VMCOREINFO_STRUCT_SIZE(zone);
1389        VMCOREINFO_STRUCT_SIZE(free_area);
1390        VMCOREINFO_STRUCT_SIZE(list_head);
1391        VMCOREINFO_SIZE(nodemask_t);
1392        VMCOREINFO_OFFSET(page, flags);
1393        VMCOREINFO_OFFSET(page, _count);
1394        VMCOREINFO_OFFSET(page, mapping);
1395        VMCOREINFO_OFFSET(page, lru);
1396        VMCOREINFO_OFFSET(pglist_data, node_zones);
1397        VMCOREINFO_OFFSET(pglist_data, nr_zones);
1398#ifdef CONFIG_FLAT_NODE_MEM_MAP
1399        VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1400#endif
1401        VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1402        VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1403        VMCOREINFO_OFFSET(pglist_data, node_id);
1404        VMCOREINFO_OFFSET(zone, free_area);
1405        VMCOREINFO_OFFSET(zone, vm_stat);
1406        VMCOREINFO_OFFSET(zone, spanned_pages);
1407        VMCOREINFO_OFFSET(free_area, free_list);
1408        VMCOREINFO_OFFSET(list_head, next);
1409        VMCOREINFO_OFFSET(list_head, prev);
1410        VMCOREINFO_OFFSET(vm_struct, addr);
1411        VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1412        log_buf_kexec_setup();
1413        VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1414        VMCOREINFO_NUMBER(NR_FREE_PAGES);
1415        VMCOREINFO_NUMBER(PG_lru);
1416        VMCOREINFO_NUMBER(PG_private);
1417        VMCOREINFO_NUMBER(PG_swapcache);
1418
1419        arch_crash_save_vmcoreinfo();
1420
1421        return 0;
1422}
1423
1424module_init(crash_save_vmcoreinfo_init)
1425
1426/*
1427 * Move into place and start executing a preloaded standalone
1428 * executable.  If nothing was preloaded return an error.
1429 */
1430int kernel_kexec(void)
1431{
1432        int error = 0;
1433
1434        if (!mutex_trylock(&kexec_mutex))
1435                return -EBUSY;
1436        if (!kexec_image) {
1437                error = -EINVAL;
1438                goto Unlock;
1439        }
1440
1441#ifdef CONFIG_KEXEC_JUMP
1442        if (kexec_image->preserve_context) {
1443                mutex_lock(&pm_mutex);
1444                pm_prepare_console();
1445                error = freeze_processes();
1446                if (error) {
1447                        error = -EBUSY;
1448                        goto Restore_console;
1449                }
1450                suspend_console();
1451                error = dpm_suspend_start(PMSG_FREEZE);
1452                if (error)
1453                        goto Resume_console;
1454                /* At this point, dpm_suspend_start() has been called,
1455                 * but *not* dpm_suspend_noirq(). We *must* call
1456                 * dpm_suspend_noirq() now.  Otherwise, drivers for
1457                 * some devices (e.g. interrupt controllers) become
1458                 * desynchronized with the actual state of the
1459                 * hardware at resume time, and evil weirdness ensues.
1460                 */
1461                error = dpm_suspend_noirq(PMSG_FREEZE);
1462                if (error)
1463                        goto Resume_devices;
1464                error = disable_nonboot_cpus();
1465                if (error)
1466                        goto Enable_cpus;
1467                local_irq_disable();
1468                /* Suspend system devices */
1469                error = sysdev_suspend(PMSG_FREEZE);
1470                if (error)
1471                        goto Enable_irqs;
1472        } else
1473#endif
1474        {
1475                kernel_restart_prepare(NULL);
1476                printk(KERN_EMERG "Starting new kernel\n");
1477                machine_shutdown();
1478        }
1479
1480        machine_kexec(kexec_image);
1481
1482#ifdef CONFIG_KEXEC_JUMP
1483        if (kexec_image->preserve_context) {
1484                sysdev_resume();
1485 Enable_irqs:
1486                local_irq_enable();
1487 Enable_cpus:
1488                enable_nonboot_cpus();
1489                dpm_resume_noirq(PMSG_RESTORE);
1490 Resume_devices:
1491                dpm_resume_end(PMSG_RESTORE);
1492 Resume_console:
1493                resume_console();
1494                thaw_processes();
1495 Restore_console:
1496                pm_restore_console();
1497                mutex_unlock(&pm_mutex);
1498        }
1499#endif
1500
1501 Unlock:
1502        mutex_unlock(&kexec_mutex);
1503        return error;
1504}
1505