linux/kernel/kmod.c
<<
>>
Prefs
   1/*
   2        kmod, the new module loader (replaces kerneld)
   3        Kirk Petersen
   4
   5        Reorganized not to be a daemon by Adam Richter, with guidance
   6        from Greg Zornetzer.
   7
   8        Modified to avoid chroot and file sharing problems.
   9        Mikael Pettersson
  10
  11        Limit the concurrent number of kmod modprobes to catch loops from
  12        "modprobe needs a service that is in a module".
  13        Keith Owens <kaos@ocs.com.au> December 1999
  14
  15        Unblock all signals when we exec a usermode process.
  16        Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
  17
  18        call_usermodehelper wait flag, and remove exec_usermodehelper.
  19        Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
  20*/
  21#include <linux/module.h>
  22#include <linux/sched.h>
  23#include <linux/syscalls.h>
  24#include <linux/unistd.h>
  25#include <linux/kmod.h>
  26#include <linux/slab.h>
  27#include <linux/completion.h>
  28#include <linux/file.h>
  29#include <linux/fdtable.h>
  30#include <linux/workqueue.h>
  31#include <linux/security.h>
  32#include <linux/mount.h>
  33#include <linux/kernel.h>
  34#include <linux/init.h>
  35#include <linux/resource.h>
  36#include <linux/notifier.h>
  37#include <linux/suspend.h>
  38#include <asm/uaccess.h>
  39
  40#include <trace/events/module.h>
  41
  42extern int max_threads;
  43
  44static struct workqueue_struct *khelper_wq;
  45
  46#ifdef CONFIG_MODULES
  47
  48/*
  49        modprobe_path is set via /proc/sys.
  50*/
  51char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
  52
  53/**
  54 * __request_module - try to load a kernel module
  55 * @wait: wait (or not) for the operation to complete
  56 * @fmt: printf style format string for the name of the module
  57 * @...: arguments as specified in the format string
  58 *
  59 * Load a module using the user mode module loader. The function returns
  60 * zero on success or a negative errno code on failure. Note that a
  61 * successful module load does not mean the module did not then unload
  62 * and exit on an error of its own. Callers must check that the service
  63 * they requested is now available not blindly invoke it.
  64 *
  65 * If module auto-loading support is disabled then this function
  66 * becomes a no-operation.
  67 */
  68int __request_module(bool wait, const char *fmt, ...)
  69{
  70        va_list args;
  71        char module_name[MODULE_NAME_LEN];
  72        unsigned int max_modprobes;
  73        int ret;
  74        char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
  75        static char *envp[] = { "HOME=/",
  76                                "TERM=linux",
  77                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
  78                                NULL };
  79        static atomic_t kmod_concurrent = ATOMIC_INIT(0);
  80#define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
  81        static int kmod_loop_msg;
  82
  83        ret = security_kernel_module_request();
  84        if (ret)
  85                return ret;
  86
  87        va_start(args, fmt);
  88        ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
  89        va_end(args);
  90        if (ret >= MODULE_NAME_LEN)
  91                return -ENAMETOOLONG;
  92
  93        /* If modprobe needs a service that is in a module, we get a recursive
  94         * loop.  Limit the number of running kmod threads to max_threads/2 or
  95         * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
  96         * would be to run the parents of this process, counting how many times
  97         * kmod was invoked.  That would mean accessing the internals of the
  98         * process tables to get the command line, proc_pid_cmdline is static
  99         * and it is not worth changing the proc code just to handle this case. 
 100         * KAO.
 101         *
 102         * "trace the ppid" is simple, but will fail if someone's
 103         * parent exits.  I think this is as good as it gets. --RR
 104         */
 105        max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
 106        atomic_inc(&kmod_concurrent);
 107        if (atomic_read(&kmod_concurrent) > max_modprobes) {
 108                /* We may be blaming an innocent here, but unlikely */
 109                if (kmod_loop_msg++ < 5)
 110                        printk(KERN_ERR
 111                               "request_module: runaway loop modprobe %s\n",
 112                               module_name);
 113                atomic_dec(&kmod_concurrent);
 114                return -ENOMEM;
 115        }
 116
 117        trace_module_request(module_name, wait, _RET_IP_);
 118
 119        ret = call_usermodehelper(modprobe_path, argv, envp,
 120                        wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
 121        atomic_dec(&kmod_concurrent);
 122        return ret;
 123}
 124EXPORT_SYMBOL(__request_module);
 125#endif /* CONFIG_MODULES */
 126
 127struct subprocess_info {
 128        struct work_struct work;
 129        struct completion *complete;
 130        struct cred *cred;
 131        char *path;
 132        char **argv;
 133        char **envp;
 134        enum umh_wait wait;
 135        int retval;
 136        struct file *stdin;
 137        void (*cleanup)(char **argv, char **envp);
 138};
 139
 140/*
 141 * This is the task which runs the usermode application
 142 */
 143static int ____call_usermodehelper(void *data)
 144{
 145        struct subprocess_info *sub_info = data;
 146        int retval;
 147
 148        BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
 149
 150        /* Unblock all signals */
 151        spin_lock_irq(&current->sighand->siglock);
 152        flush_signal_handlers(current, 1);
 153        sigemptyset(&current->blocked);
 154        recalc_sigpending();
 155        spin_unlock_irq(&current->sighand->siglock);
 156
 157        /* Install the credentials */
 158        commit_creds(sub_info->cred);
 159        sub_info->cred = NULL;
 160
 161        /* Install input pipe when needed */
 162        if (sub_info->stdin) {
 163                struct files_struct *f = current->files;
 164                struct fdtable *fdt;
 165                /* no races because files should be private here */
 166                sys_close(0);
 167                fd_install(0, sub_info->stdin);
 168                spin_lock(&f->file_lock);
 169                fdt = files_fdtable(f);
 170                FD_SET(0, fdt->open_fds);
 171                FD_CLR(0, fdt->close_on_exec);
 172                spin_unlock(&f->file_lock);
 173
 174                /* and disallow core files too */
 175                current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
 176        }
 177
 178        /* We can run anywhere, unlike our parent keventd(). */
 179        set_cpus_allowed_ptr(current, cpu_all_mask);
 180
 181        /*
 182         * Our parent is keventd, which runs with elevated scheduling priority.
 183         * Avoid propagating that into the userspace child.
 184         */
 185        set_user_nice(current, 0);
 186
 187        retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp);
 188
 189        /* Exec failed? */
 190        sub_info->retval = retval;
 191        do_exit(0);
 192}
 193
 194void call_usermodehelper_freeinfo(struct subprocess_info *info)
 195{
 196        if (info->cleanup)
 197                (*info->cleanup)(info->argv, info->envp);
 198        if (info->cred)
 199                put_cred(info->cred);
 200        kfree(info);
 201}
 202EXPORT_SYMBOL(call_usermodehelper_freeinfo);
 203
 204/* Keventd can't block, but this (a child) can. */
 205static int wait_for_helper(void *data)
 206{
 207        struct subprocess_info *sub_info = data;
 208        pid_t pid;
 209
 210        /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
 211         * populate the status, but will return -ECHILD. */
 212        allow_signal(SIGCHLD);
 213
 214        pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
 215        if (pid < 0) {
 216                sub_info->retval = pid;
 217        } else {
 218                int ret;
 219
 220                /*
 221                 * Normally it is bogus to call wait4() from in-kernel because
 222                 * wait4() wants to write the exit code to a userspace address.
 223                 * But wait_for_helper() always runs as keventd, and put_user()
 224                 * to a kernel address works OK for kernel threads, due to their
 225                 * having an mm_segment_t which spans the entire address space.
 226                 *
 227                 * Thus the __user pointer cast is valid here.
 228                 */
 229                sys_wait4(pid, (int __user *)&ret, 0, NULL);
 230
 231                /*
 232                 * If ret is 0, either ____call_usermodehelper failed and the
 233                 * real error code is already in sub_info->retval or
 234                 * sub_info->retval is 0 anyway, so don't mess with it then.
 235                 */
 236                if (ret)
 237                        sub_info->retval = ret;
 238        }
 239
 240        if (sub_info->wait == UMH_NO_WAIT)
 241                call_usermodehelper_freeinfo(sub_info);
 242        else
 243                complete(sub_info->complete);
 244        return 0;
 245}
 246
 247/* This is run by khelper thread  */
 248static void __call_usermodehelper(struct work_struct *work)
 249{
 250        struct subprocess_info *sub_info =
 251                container_of(work, struct subprocess_info, work);
 252        pid_t pid;
 253        enum umh_wait wait = sub_info->wait;
 254
 255        BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
 256
 257        /* CLONE_VFORK: wait until the usermode helper has execve'd
 258         * successfully We need the data structures to stay around
 259         * until that is done.  */
 260        if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT)
 261                pid = kernel_thread(wait_for_helper, sub_info,
 262                                    CLONE_FS | CLONE_FILES | SIGCHLD);
 263        else
 264                pid = kernel_thread(____call_usermodehelper, sub_info,
 265                                    CLONE_VFORK | SIGCHLD);
 266
 267        switch (wait) {
 268        case UMH_NO_WAIT:
 269                break;
 270
 271        case UMH_WAIT_PROC:
 272                if (pid > 0)
 273                        break;
 274                sub_info->retval = pid;
 275                /* FALLTHROUGH */
 276
 277        case UMH_WAIT_EXEC:
 278                complete(sub_info->complete);
 279        }
 280}
 281
 282#ifdef CONFIG_PM_SLEEP
 283/*
 284 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
 285 * (used for preventing user land processes from being created after the user
 286 * land has been frozen during a system-wide hibernation or suspend operation).
 287 */
 288static int usermodehelper_disabled;
 289
 290/* Number of helpers running */
 291static atomic_t running_helpers = ATOMIC_INIT(0);
 292
 293/*
 294 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
 295 * helpers to finish.
 296 */
 297static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
 298
 299/*
 300 * Time to wait for running_helpers to become zero before the setting of
 301 * usermodehelper_disabled in usermodehelper_pm_callback() fails
 302 */
 303#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
 304
 305/**
 306 * usermodehelper_disable - prevent new helpers from being started
 307 */
 308int usermodehelper_disable(void)
 309{
 310        long retval;
 311
 312        usermodehelper_disabled = 1;
 313        smp_mb();
 314        /*
 315         * From now on call_usermodehelper_exec() won't start any new
 316         * helpers, so it is sufficient if running_helpers turns out to
 317         * be zero at one point (it may be increased later, but that
 318         * doesn't matter).
 319         */
 320        retval = wait_event_timeout(running_helpers_waitq,
 321                                        atomic_read(&running_helpers) == 0,
 322                                        RUNNING_HELPERS_TIMEOUT);
 323        if (retval)
 324                return 0;
 325
 326        usermodehelper_disabled = 0;
 327        return -EAGAIN;
 328}
 329
 330/**
 331 * usermodehelper_enable - allow new helpers to be started again
 332 */
 333void usermodehelper_enable(void)
 334{
 335        usermodehelper_disabled = 0;
 336}
 337
 338static void helper_lock(void)
 339{
 340        atomic_inc(&running_helpers);
 341        smp_mb__after_atomic_inc();
 342}
 343
 344static void helper_unlock(void)
 345{
 346        if (atomic_dec_and_test(&running_helpers))
 347                wake_up(&running_helpers_waitq);
 348}
 349#else /* CONFIG_PM_SLEEP */
 350#define usermodehelper_disabled 0
 351
 352static inline void helper_lock(void) {}
 353static inline void helper_unlock(void) {}
 354#endif /* CONFIG_PM_SLEEP */
 355
 356/**
 357 * call_usermodehelper_setup - prepare to call a usermode helper
 358 * @path: path to usermode executable
 359 * @argv: arg vector for process
 360 * @envp: environment for process
 361 * @gfp_mask: gfp mask for memory allocation
 362 *
 363 * Returns either %NULL on allocation failure, or a subprocess_info
 364 * structure.  This should be passed to call_usermodehelper_exec to
 365 * exec the process and free the structure.
 366 */
 367struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
 368                                                  char **envp, gfp_t gfp_mask)
 369{
 370        struct subprocess_info *sub_info;
 371        sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
 372        if (!sub_info)
 373                goto out;
 374
 375        INIT_WORK(&sub_info->work, __call_usermodehelper);
 376        sub_info->path = path;
 377        sub_info->argv = argv;
 378        sub_info->envp = envp;
 379        sub_info->cred = prepare_usermodehelper_creds();
 380        if (!sub_info->cred) {
 381                kfree(sub_info);
 382                return NULL;
 383        }
 384
 385  out:
 386        return sub_info;
 387}
 388EXPORT_SYMBOL(call_usermodehelper_setup);
 389
 390/**
 391 * call_usermodehelper_setkeys - set the session keys for usermode helper
 392 * @info: a subprocess_info returned by call_usermodehelper_setup
 393 * @session_keyring: the session keyring for the process
 394 */
 395void call_usermodehelper_setkeys(struct subprocess_info *info,
 396                                 struct key *session_keyring)
 397{
 398#ifdef CONFIG_KEYS
 399        struct thread_group_cred *tgcred = info->cred->tgcred;
 400        key_put(tgcred->session_keyring);
 401        tgcred->session_keyring = key_get(session_keyring);
 402#else
 403        BUG();
 404#endif
 405}
 406EXPORT_SYMBOL(call_usermodehelper_setkeys);
 407
 408/**
 409 * call_usermodehelper_setcleanup - set a cleanup function
 410 * @info: a subprocess_info returned by call_usermodehelper_setup
 411 * @cleanup: a cleanup function
 412 *
 413 * The cleanup function is just befor ethe subprocess_info is about to
 414 * be freed.  This can be used for freeing the argv and envp.  The
 415 * Function must be runnable in either a process context or the
 416 * context in which call_usermodehelper_exec is called.
 417 */
 418void call_usermodehelper_setcleanup(struct subprocess_info *info,
 419                                    void (*cleanup)(char **argv, char **envp))
 420{
 421        info->cleanup = cleanup;
 422}
 423EXPORT_SYMBOL(call_usermodehelper_setcleanup);
 424
 425/**
 426 * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
 427 * @sub_info: a subprocess_info returned by call_usermodehelper_setup
 428 * @filp: set to the write-end of a pipe
 429 *
 430 * This constructs a pipe, and sets the read end to be the stdin of the
 431 * subprocess, and returns the write-end in *@filp.
 432 */
 433int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
 434                                  struct file **filp)
 435{
 436        struct file *f;
 437
 438        f = create_write_pipe(0);
 439        if (IS_ERR(f))
 440                return PTR_ERR(f);
 441        *filp = f;
 442
 443        f = create_read_pipe(f, 0);
 444        if (IS_ERR(f)) {
 445                free_write_pipe(*filp);
 446                return PTR_ERR(f);
 447        }
 448        sub_info->stdin = f;
 449
 450        return 0;
 451}
 452EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
 453
 454/**
 455 * call_usermodehelper_exec - start a usermode application
 456 * @sub_info: information about the subprocessa
 457 * @wait: wait for the application to finish and return status.
 458 *        when -1 don't wait at all, but you get no useful error back when
 459 *        the program couldn't be exec'ed. This makes it safe to call
 460 *        from interrupt context.
 461 *
 462 * Runs a user-space application.  The application is started
 463 * asynchronously if wait is not set, and runs as a child of keventd.
 464 * (ie. it runs with full root capabilities).
 465 */
 466int call_usermodehelper_exec(struct subprocess_info *sub_info,
 467                             enum umh_wait wait)
 468{
 469        DECLARE_COMPLETION_ONSTACK(done);
 470        int retval = 0;
 471
 472        BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
 473        validate_creds(sub_info->cred);
 474
 475        helper_lock();
 476        if (sub_info->path[0] == '\0')
 477                goto out;
 478
 479        if (!khelper_wq || usermodehelper_disabled) {
 480                retval = -EBUSY;
 481                goto out;
 482        }
 483
 484        sub_info->complete = &done;
 485        sub_info->wait = wait;
 486
 487        queue_work(khelper_wq, &sub_info->work);
 488        if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
 489                goto unlock;
 490        wait_for_completion(&done);
 491        retval = sub_info->retval;
 492
 493out:
 494        call_usermodehelper_freeinfo(sub_info);
 495unlock:
 496        helper_unlock();
 497        return retval;
 498}
 499EXPORT_SYMBOL(call_usermodehelper_exec);
 500
 501/**
 502 * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
 503 * @path: path to usermode executable
 504 * @argv: arg vector for process
 505 * @envp: environment for process
 506 * @filp: set to the write-end of a pipe
 507 *
 508 * This is a simple wrapper which executes a usermode-helper function
 509 * with a pipe as stdin.  It is implemented entirely in terms of
 510 * lower-level call_usermodehelper_* functions.
 511 */
 512int call_usermodehelper_pipe(char *path, char **argv, char **envp,
 513                             struct file **filp)
 514{
 515        struct subprocess_info *sub_info;
 516        int ret;
 517
 518        sub_info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL);
 519        if (sub_info == NULL)
 520                return -ENOMEM;
 521
 522        ret = call_usermodehelper_stdinpipe(sub_info, filp);
 523        if (ret < 0)
 524                goto out;
 525
 526        return call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
 527
 528  out:
 529        call_usermodehelper_freeinfo(sub_info);
 530        return ret;
 531}
 532EXPORT_SYMBOL(call_usermodehelper_pipe);
 533
 534void __init usermodehelper_init(void)
 535{
 536        khelper_wq = create_singlethread_workqueue("khelper");
 537        BUG_ON(!khelper_wq);
 538}
 539