linux/kernel/mutex.c
<<
>>
Prefs
   1/*
   2 * kernel/mutex.c
   3 *
   4 * Mutexes: blocking mutual exclusion locks
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *
  10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11 * David Howells for suggestions and improvements.
  12 *
  13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14 *    from the -rt tree, where it was originally implemented for rtmutexes
  15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16 *    and Sven Dietrich.
  17 *
  18 * Also see Documentation/mutex-design.txt.
  19 */
  20#include <linux/mutex.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/interrupt.h>
  25#include <linux/debug_locks.h>
  26
  27/*
  28 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  29 * which forces all calls into the slowpath:
  30 */
  31#ifdef CONFIG_DEBUG_MUTEXES
  32# include "mutex-debug.h"
  33# include <asm-generic/mutex-null.h>
  34#else
  35# include "mutex.h"
  36# include <asm/mutex.h>
  37#endif
  38
  39/***
  40 * mutex_init - initialize the mutex
  41 * @lock: the mutex to be initialized
  42 * @key: the lock_class_key for the class; used by mutex lock debugging
  43 *
  44 * Initialize the mutex to unlocked state.
  45 *
  46 * It is not allowed to initialize an already locked mutex.
  47 */
  48void
  49__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  50{
  51        atomic_set(&lock->count, 1);
  52        spin_lock_init(&lock->wait_lock);
  53        INIT_LIST_HEAD(&lock->wait_list);
  54        mutex_clear_owner(lock);
  55
  56        debug_mutex_init(lock, name, key);
  57}
  58
  59EXPORT_SYMBOL(__mutex_init);
  60
  61#ifndef CONFIG_DEBUG_LOCK_ALLOC
  62/*
  63 * We split the mutex lock/unlock logic into separate fastpath and
  64 * slowpath functions, to reduce the register pressure on the fastpath.
  65 * We also put the fastpath first in the kernel image, to make sure the
  66 * branch is predicted by the CPU as default-untaken.
  67 */
  68static __used noinline void __sched
  69__mutex_lock_slowpath(atomic_t *lock_count);
  70
  71/***
  72 * mutex_lock - acquire the mutex
  73 * @lock: the mutex to be acquired
  74 *
  75 * Lock the mutex exclusively for this task. If the mutex is not
  76 * available right now, it will sleep until it can get it.
  77 *
  78 * The mutex must later on be released by the same task that
  79 * acquired it. Recursive locking is not allowed. The task
  80 * may not exit without first unlocking the mutex. Also, kernel
  81 * memory where the mutex resides mutex must not be freed with
  82 * the mutex still locked. The mutex must first be initialized
  83 * (or statically defined) before it can be locked. memset()-ing
  84 * the mutex to 0 is not allowed.
  85 *
  86 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  87 *   checks that will enforce the restrictions and will also do
  88 *   deadlock debugging. )
  89 *
  90 * This function is similar to (but not equivalent to) down().
  91 */
  92void __sched mutex_lock(struct mutex *lock)
  93{
  94        might_sleep();
  95        /*
  96         * The locking fastpath is the 1->0 transition from
  97         * 'unlocked' into 'locked' state.
  98         */
  99        __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
 100        mutex_set_owner(lock);
 101}
 102
 103EXPORT_SYMBOL(mutex_lock);
 104#endif
 105
 106static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
 107
 108/***
 109 * mutex_unlock - release the mutex
 110 * @lock: the mutex to be released
 111 *
 112 * Unlock a mutex that has been locked by this task previously.
 113 *
 114 * This function must not be used in interrupt context. Unlocking
 115 * of a not locked mutex is not allowed.
 116 *
 117 * This function is similar to (but not equivalent to) up().
 118 */
 119void __sched mutex_unlock(struct mutex *lock)
 120{
 121        /*
 122         * The unlocking fastpath is the 0->1 transition from 'locked'
 123         * into 'unlocked' state:
 124         */
 125#ifndef CONFIG_DEBUG_MUTEXES
 126        /*
 127         * When debugging is enabled we must not clear the owner before time,
 128         * the slow path will always be taken, and that clears the owner field
 129         * after verifying that it was indeed current.
 130         */
 131        mutex_clear_owner(lock);
 132#endif
 133        __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
 134}
 135
 136EXPORT_SYMBOL(mutex_unlock);
 137
 138/*
 139 * Lock a mutex (possibly interruptible), slowpath:
 140 */
 141static inline int __sched
 142__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 143                unsigned long ip)
 144{
 145        struct task_struct *task = current;
 146        struct mutex_waiter waiter;
 147        unsigned long flags;
 148
 149        preempt_disable();
 150        mutex_acquire(&lock->dep_map, subclass, 0, ip);
 151#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) && \
 152    !defined(CONFIG_HAVE_DEFAULT_NO_SPIN_MUTEXES)
 153        /*
 154         * Optimistic spinning.
 155         *
 156         * We try to spin for acquisition when we find that there are no
 157         * pending waiters and the lock owner is currently running on a
 158         * (different) CPU.
 159         *
 160         * The rationale is that if the lock owner is running, it is likely to
 161         * release the lock soon.
 162         *
 163         * Since this needs the lock owner, and this mutex implementation
 164         * doesn't track the owner atomically in the lock field, we need to
 165         * track it non-atomically.
 166         *
 167         * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
 168         * to serialize everything.
 169         */
 170
 171        for (;;) {
 172                struct thread_info *owner;
 173
 174                /*
 175                 * If there's an owner, wait for it to either
 176                 * release the lock or go to sleep.
 177                 */
 178                owner = ACCESS_ONCE(lock->owner);
 179                if (owner && !mutex_spin_on_owner(lock, owner))
 180                        break;
 181
 182                if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
 183                        lock_acquired(&lock->dep_map, ip);
 184                        mutex_set_owner(lock);
 185                        preempt_enable();
 186                        return 0;
 187                }
 188
 189                /*
 190                 * When there's no owner, we might have preempted between the
 191                 * owner acquiring the lock and setting the owner field. If
 192                 * we're an RT task that will live-lock because we won't let
 193                 * the owner complete.
 194                 */
 195                if (!owner && (need_resched() || rt_task(task)))
 196                        break;
 197
 198                /*
 199                 * The cpu_relax() call is a compiler barrier which forces
 200                 * everything in this loop to be re-loaded. We don't need
 201                 * memory barriers as we'll eventually observe the right
 202                 * values at the cost of a few extra spins.
 203                 */
 204                cpu_relax();
 205        }
 206#endif
 207        spin_lock_mutex(&lock->wait_lock, flags);
 208
 209        debug_mutex_lock_common(lock, &waiter);
 210        debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
 211
 212        /* add waiting tasks to the end of the waitqueue (FIFO): */
 213        list_add_tail(&waiter.list, &lock->wait_list);
 214        waiter.task = task;
 215
 216        if (atomic_xchg(&lock->count, -1) == 1)
 217                goto done;
 218
 219        lock_contended(&lock->dep_map, ip);
 220
 221        for (;;) {
 222                /*
 223                 * Lets try to take the lock again - this is needed even if
 224                 * we get here for the first time (shortly after failing to
 225                 * acquire the lock), to make sure that we get a wakeup once
 226                 * it's unlocked. Later on, if we sleep, this is the
 227                 * operation that gives us the lock. We xchg it to -1, so
 228                 * that when we release the lock, we properly wake up the
 229                 * other waiters:
 230                 */
 231                if (atomic_xchg(&lock->count, -1) == 1)
 232                        break;
 233
 234                /*
 235                 * got a signal? (This code gets eliminated in the
 236                 * TASK_UNINTERRUPTIBLE case.)
 237                 */
 238                if (unlikely(signal_pending_state(state, task))) {
 239                        mutex_remove_waiter(lock, &waiter,
 240                                            task_thread_info(task));
 241                        mutex_release(&lock->dep_map, 1, ip);
 242                        spin_unlock_mutex(&lock->wait_lock, flags);
 243
 244                        debug_mutex_free_waiter(&waiter);
 245                        preempt_enable();
 246                        return -EINTR;
 247                }
 248                __set_task_state(task, state);
 249
 250                /* didnt get the lock, go to sleep: */
 251                spin_unlock_mutex(&lock->wait_lock, flags);
 252                preempt_enable_no_resched();
 253                schedule();
 254                preempt_disable();
 255                spin_lock_mutex(&lock->wait_lock, flags);
 256        }
 257
 258done:
 259        lock_acquired(&lock->dep_map, ip);
 260        /* got the lock - rejoice! */
 261        mutex_remove_waiter(lock, &waiter, current_thread_info());
 262        mutex_set_owner(lock);
 263
 264        /* set it to 0 if there are no waiters left: */
 265        if (likely(list_empty(&lock->wait_list)))
 266                atomic_set(&lock->count, 0);
 267
 268        spin_unlock_mutex(&lock->wait_lock, flags);
 269
 270        debug_mutex_free_waiter(&waiter);
 271        preempt_enable();
 272
 273        return 0;
 274}
 275
 276#ifdef CONFIG_DEBUG_LOCK_ALLOC
 277void __sched
 278mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 279{
 280        might_sleep();
 281        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_);
 282}
 283
 284EXPORT_SYMBOL_GPL(mutex_lock_nested);
 285
 286int __sched
 287mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
 288{
 289        might_sleep();
 290        return __mutex_lock_common(lock, TASK_KILLABLE, subclass, _RET_IP_);
 291}
 292EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 293
 294int __sched
 295mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
 296{
 297        might_sleep();
 298        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
 299                                   subclass, _RET_IP_);
 300}
 301
 302EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 303#endif
 304
 305/*
 306 * Release the lock, slowpath:
 307 */
 308static inline void
 309__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
 310{
 311        struct mutex *lock = container_of(lock_count, struct mutex, count);
 312        unsigned long flags;
 313
 314        spin_lock_mutex(&lock->wait_lock, flags);
 315        mutex_release(&lock->dep_map, nested, _RET_IP_);
 316        debug_mutex_unlock(lock);
 317
 318        /*
 319         * some architectures leave the lock unlocked in the fastpath failure
 320         * case, others need to leave it locked. In the later case we have to
 321         * unlock it here
 322         */
 323        if (__mutex_slowpath_needs_to_unlock())
 324                atomic_set(&lock->count, 1);
 325
 326        if (!list_empty(&lock->wait_list)) {
 327                /* get the first entry from the wait-list: */
 328                struct mutex_waiter *waiter =
 329                                list_entry(lock->wait_list.next,
 330                                           struct mutex_waiter, list);
 331
 332                debug_mutex_wake_waiter(lock, waiter);
 333
 334                wake_up_process(waiter->task);
 335        }
 336
 337        spin_unlock_mutex(&lock->wait_lock, flags);
 338}
 339
 340/*
 341 * Release the lock, slowpath:
 342 */
 343static __used noinline void
 344__mutex_unlock_slowpath(atomic_t *lock_count)
 345{
 346        __mutex_unlock_common_slowpath(lock_count, 1);
 347}
 348
 349#ifndef CONFIG_DEBUG_LOCK_ALLOC
 350/*
 351 * Here come the less common (and hence less performance-critical) APIs:
 352 * mutex_lock_interruptible() and mutex_trylock().
 353 */
 354static noinline int __sched
 355__mutex_lock_killable_slowpath(atomic_t *lock_count);
 356
 357static noinline int __sched
 358__mutex_lock_interruptible_slowpath(atomic_t *lock_count);
 359
 360/***
 361 * mutex_lock_interruptible - acquire the mutex, interruptable
 362 * @lock: the mutex to be acquired
 363 *
 364 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 365 * been acquired or sleep until the mutex becomes available. If a
 366 * signal arrives while waiting for the lock then this function
 367 * returns -EINTR.
 368 *
 369 * This function is similar to (but not equivalent to) down_interruptible().
 370 */
 371int __sched mutex_lock_interruptible(struct mutex *lock)
 372{
 373        int ret;
 374
 375        might_sleep();
 376        ret =  __mutex_fastpath_lock_retval
 377                        (&lock->count, __mutex_lock_interruptible_slowpath);
 378        if (!ret)
 379                mutex_set_owner(lock);
 380
 381        return ret;
 382}
 383
 384EXPORT_SYMBOL(mutex_lock_interruptible);
 385
 386int __sched mutex_lock_killable(struct mutex *lock)
 387{
 388        int ret;
 389
 390        might_sleep();
 391        ret = __mutex_fastpath_lock_retval
 392                        (&lock->count, __mutex_lock_killable_slowpath);
 393        if (!ret)
 394                mutex_set_owner(lock);
 395
 396        return ret;
 397}
 398EXPORT_SYMBOL(mutex_lock_killable);
 399
 400static __used noinline void __sched
 401__mutex_lock_slowpath(atomic_t *lock_count)
 402{
 403        struct mutex *lock = container_of(lock_count, struct mutex, count);
 404
 405        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_);
 406}
 407
 408static noinline int __sched
 409__mutex_lock_killable_slowpath(atomic_t *lock_count)
 410{
 411        struct mutex *lock = container_of(lock_count, struct mutex, count);
 412
 413        return __mutex_lock_common(lock, TASK_KILLABLE, 0, _RET_IP_);
 414}
 415
 416static noinline int __sched
 417__mutex_lock_interruptible_slowpath(atomic_t *lock_count)
 418{
 419        struct mutex *lock = container_of(lock_count, struct mutex, count);
 420
 421        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_);
 422}
 423#endif
 424
 425/*
 426 * Spinlock based trylock, we take the spinlock and check whether we
 427 * can get the lock:
 428 */
 429static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
 430{
 431        struct mutex *lock = container_of(lock_count, struct mutex, count);
 432        unsigned long flags;
 433        int prev;
 434
 435        spin_lock_mutex(&lock->wait_lock, flags);
 436
 437        prev = atomic_xchg(&lock->count, -1);
 438        if (likely(prev == 1)) {
 439                mutex_set_owner(lock);
 440                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
 441        }
 442
 443        /* Set it back to 0 if there are no waiters: */
 444        if (likely(list_empty(&lock->wait_list)))
 445                atomic_set(&lock->count, 0);
 446
 447        spin_unlock_mutex(&lock->wait_lock, flags);
 448
 449        return prev == 1;
 450}
 451
 452/***
 453 * mutex_trylock - try acquire the mutex, without waiting
 454 * @lock: the mutex to be acquired
 455 *
 456 * Try to acquire the mutex atomically. Returns 1 if the mutex
 457 * has been acquired successfully, and 0 on contention.
 458 *
 459 * NOTE: this function follows the spin_trylock() convention, so
 460 * it is negated to the down_trylock() return values! Be careful
 461 * about this when converting semaphore users to mutexes.
 462 *
 463 * This function must not be used in interrupt context. The
 464 * mutex must be released by the same task that acquired it.
 465 */
 466int __sched mutex_trylock(struct mutex *lock)
 467{
 468        int ret;
 469
 470        ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
 471        if (ret)
 472                mutex_set_owner(lock);
 473
 474        return ret;
 475}
 476EXPORT_SYMBOL(mutex_trylock);
 477
 478/**
 479 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 480 * @cnt: the atomic which we are to dec
 481 * @lock: the mutex to return holding if we dec to 0
 482 *
 483 * return true and hold lock if we dec to 0, return false otherwise
 484 */
 485int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
 486{
 487        /* dec if we can't possibly hit 0 */
 488        if (atomic_add_unless(cnt, -1, 1))
 489                return 0;
 490        /* we might hit 0, so take the lock */
 491        mutex_lock(lock);
 492        if (!atomic_dec_and_test(cnt)) {
 493                /* when we actually did the dec, we didn't hit 0 */
 494                mutex_unlock(lock);
 495                return 0;
 496        }
 497        /* we hit 0, and we hold the lock */
 498        return 1;
 499}
 500EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
 501