linux/kernel/posix-cpu-timers.c
<<
>>
Prefs
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12
  13/*
  14 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
  15 */
  16void update_rlimit_cpu(unsigned long rlim_new)
  17{
  18        cputime_t cputime = secs_to_cputime(rlim_new);
  19        struct signal_struct *const sig = current->signal;
  20
  21        if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
  22            cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
  23                spin_lock_irq(&current->sighand->siglock);
  24                set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
  25                spin_unlock_irq(&current->sighand->siglock);
  26        }
  27}
  28
  29static int check_clock(const clockid_t which_clock)
  30{
  31        int error = 0;
  32        struct task_struct *p;
  33        const pid_t pid = CPUCLOCK_PID(which_clock);
  34
  35        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  36                return -EINVAL;
  37
  38        if (pid == 0)
  39                return 0;
  40
  41        read_lock(&tasklist_lock);
  42        p = find_task_by_vpid(pid);
  43        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  44                   same_thread_group(p, current) : thread_group_leader(p))) {
  45                error = -EINVAL;
  46        }
  47        read_unlock(&tasklist_lock);
  48
  49        return error;
  50}
  51
  52static inline union cpu_time_count
  53timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  54{
  55        union cpu_time_count ret;
  56        ret.sched = 0;          /* high half always zero when .cpu used */
  57        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  58                ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  59        } else {
  60                ret.cpu = timespec_to_cputime(tp);
  61        }
  62        return ret;
  63}
  64
  65static void sample_to_timespec(const clockid_t which_clock,
  66                               union cpu_time_count cpu,
  67                               struct timespec *tp)
  68{
  69        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  70                *tp = ns_to_timespec(cpu.sched);
  71        else
  72                cputime_to_timespec(cpu.cpu, tp);
  73}
  74
  75static inline int cpu_time_before(const clockid_t which_clock,
  76                                  union cpu_time_count now,
  77                                  union cpu_time_count then)
  78{
  79        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  80                return now.sched < then.sched;
  81        }  else {
  82                return cputime_lt(now.cpu, then.cpu);
  83        }
  84}
  85static inline void cpu_time_add(const clockid_t which_clock,
  86                                union cpu_time_count *acc,
  87                                union cpu_time_count val)
  88{
  89        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  90                acc->sched += val.sched;
  91        }  else {
  92                acc->cpu = cputime_add(acc->cpu, val.cpu);
  93        }
  94}
  95static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  96                                                union cpu_time_count a,
  97                                                union cpu_time_count b)
  98{
  99        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 100                a.sched -= b.sched;
 101        }  else {
 102                a.cpu = cputime_sub(a.cpu, b.cpu);
 103        }
 104        return a;
 105}
 106
 107/*
 108 * Divide and limit the result to res >= 1
 109 *
 110 * This is necessary to prevent signal delivery starvation, when the result of
 111 * the division would be rounded down to 0.
 112 */
 113static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
 114{
 115        cputime_t res = cputime_div(time, div);
 116
 117        return max_t(cputime_t, res, 1);
 118}
 119
 120/*
 121 * Update expiry time from increment, and increase overrun count,
 122 * given the current clock sample.
 123 */
 124static void bump_cpu_timer(struct k_itimer *timer,
 125                                  union cpu_time_count now)
 126{
 127        int i;
 128
 129        if (timer->it.cpu.incr.sched == 0)
 130                return;
 131
 132        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 133                unsigned long long delta, incr;
 134
 135                if (now.sched < timer->it.cpu.expires.sched)
 136                        return;
 137                incr = timer->it.cpu.incr.sched;
 138                delta = now.sched + incr - timer->it.cpu.expires.sched;
 139                /* Don't use (incr*2 < delta), incr*2 might overflow. */
 140                for (i = 0; incr < delta - incr; i++)
 141                        incr = incr << 1;
 142                for (; i >= 0; incr >>= 1, i--) {
 143                        if (delta < incr)
 144                                continue;
 145                        timer->it.cpu.expires.sched += incr;
 146                        timer->it_overrun += 1 << i;
 147                        delta -= incr;
 148                }
 149        } else {
 150                cputime_t delta, incr;
 151
 152                if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
 153                        return;
 154                incr = timer->it.cpu.incr.cpu;
 155                delta = cputime_sub(cputime_add(now.cpu, incr),
 156                                    timer->it.cpu.expires.cpu);
 157                /* Don't use (incr*2 < delta), incr*2 might overflow. */
 158                for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
 159                             incr = cputime_add(incr, incr);
 160                for (; i >= 0; incr = cputime_halve(incr), i--) {
 161                        if (cputime_lt(delta, incr))
 162                                continue;
 163                        timer->it.cpu.expires.cpu =
 164                                cputime_add(timer->it.cpu.expires.cpu, incr);
 165                        timer->it_overrun += 1 << i;
 166                        delta = cputime_sub(delta, incr);
 167                }
 168        }
 169}
 170
 171static inline cputime_t prof_ticks(struct task_struct *p)
 172{
 173        return cputime_add(p->utime, p->stime);
 174}
 175static inline cputime_t virt_ticks(struct task_struct *p)
 176{
 177        return p->utime;
 178}
 179
 180int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 181{
 182        int error = check_clock(which_clock);
 183        if (!error) {
 184                tp->tv_sec = 0;
 185                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 186                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 187                        /*
 188                         * If sched_clock is using a cycle counter, we
 189                         * don't have any idea of its true resolution
 190                         * exported, but it is much more than 1s/HZ.
 191                         */
 192                        tp->tv_nsec = 1;
 193                }
 194        }
 195        return error;
 196}
 197
 198int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 199{
 200        /*
 201         * You can never reset a CPU clock, but we check for other errors
 202         * in the call before failing with EPERM.
 203         */
 204        int error = check_clock(which_clock);
 205        if (error == 0) {
 206                error = -EPERM;
 207        }
 208        return error;
 209}
 210
 211
 212/*
 213 * Sample a per-thread clock for the given task.
 214 */
 215static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 216                            union cpu_time_count *cpu)
 217{
 218        switch (CPUCLOCK_WHICH(which_clock)) {
 219        default:
 220                return -EINVAL;
 221        case CPUCLOCK_PROF:
 222                cpu->cpu = prof_ticks(p);
 223                break;
 224        case CPUCLOCK_VIRT:
 225                cpu->cpu = virt_ticks(p);
 226                break;
 227        case CPUCLOCK_SCHED:
 228                cpu->sched = task_sched_runtime(p);
 229                break;
 230        }
 231        return 0;
 232}
 233
 234void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 235{
 236        struct sighand_struct *sighand;
 237        struct signal_struct *sig;
 238        struct task_struct *t;
 239
 240        *times = INIT_CPUTIME;
 241
 242        rcu_read_lock();
 243        sighand = rcu_dereference(tsk->sighand);
 244        if (!sighand)
 245                goto out;
 246
 247        sig = tsk->signal;
 248
 249        t = tsk;
 250        do {
 251                times->utime = cputime_add(times->utime, t->utime);
 252                times->stime = cputime_add(times->stime, t->stime);
 253                times->sum_exec_runtime += t->se.sum_exec_runtime;
 254
 255                t = next_thread(t);
 256        } while (t != tsk);
 257
 258        times->utime = cputime_add(times->utime, sig->utime);
 259        times->stime = cputime_add(times->stime, sig->stime);
 260        times->sum_exec_runtime += sig->sum_sched_runtime;
 261out:
 262        rcu_read_unlock();
 263}
 264
 265static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 266{
 267        if (cputime_gt(b->utime, a->utime))
 268                a->utime = b->utime;
 269
 270        if (cputime_gt(b->stime, a->stime))
 271                a->stime = b->stime;
 272
 273        if (b->sum_exec_runtime > a->sum_exec_runtime)
 274                a->sum_exec_runtime = b->sum_exec_runtime;
 275}
 276
 277void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 278{
 279        struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 280        struct task_cputime sum;
 281        unsigned long flags;
 282
 283        spin_lock_irqsave(&cputimer->lock, flags);
 284        if (!cputimer->running) {
 285                cputimer->running = 1;
 286                /*
 287                 * The POSIX timer interface allows for absolute time expiry
 288                 * values through the TIMER_ABSTIME flag, therefore we have
 289                 * to synchronize the timer to the clock every time we start
 290                 * it.
 291                 */
 292                thread_group_cputime(tsk, &sum);
 293                update_gt_cputime(&cputimer->cputime, &sum);
 294        }
 295        *times = cputimer->cputime;
 296        spin_unlock_irqrestore(&cputimer->lock, flags);
 297}
 298
 299/*
 300 * Sample a process (thread group) clock for the given group_leader task.
 301 * Must be called with tasklist_lock held for reading.
 302 */
 303static int cpu_clock_sample_group(const clockid_t which_clock,
 304                                  struct task_struct *p,
 305                                  union cpu_time_count *cpu)
 306{
 307        struct task_cputime cputime;
 308
 309        switch (CPUCLOCK_WHICH(which_clock)) {
 310        default:
 311                return -EINVAL;
 312        case CPUCLOCK_PROF:
 313                thread_group_cputime(p, &cputime);
 314                cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 315                break;
 316        case CPUCLOCK_VIRT:
 317                thread_group_cputime(p, &cputime);
 318                cpu->cpu = cputime.utime;
 319                break;
 320        case CPUCLOCK_SCHED:
 321                cpu->sched = thread_group_sched_runtime(p);
 322                break;
 323        }
 324        return 0;
 325}
 326
 327
 328int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 329{
 330        const pid_t pid = CPUCLOCK_PID(which_clock);
 331        int error = -EINVAL;
 332        union cpu_time_count rtn;
 333
 334        if (pid == 0) {
 335                /*
 336                 * Special case constant value for our own clocks.
 337                 * We don't have to do any lookup to find ourselves.
 338                 */
 339                if (CPUCLOCK_PERTHREAD(which_clock)) {
 340                        /*
 341                         * Sampling just ourselves we can do with no locking.
 342                         */
 343                        error = cpu_clock_sample(which_clock,
 344                                                 current, &rtn);
 345                } else {
 346                        read_lock(&tasklist_lock);
 347                        error = cpu_clock_sample_group(which_clock,
 348                                                       current, &rtn);
 349                        read_unlock(&tasklist_lock);
 350                }
 351        } else {
 352                /*
 353                 * Find the given PID, and validate that the caller
 354                 * should be able to see it.
 355                 */
 356                struct task_struct *p;
 357                rcu_read_lock();
 358                p = find_task_by_vpid(pid);
 359                if (p) {
 360                        if (CPUCLOCK_PERTHREAD(which_clock)) {
 361                                if (same_thread_group(p, current)) {
 362                                        error = cpu_clock_sample(which_clock,
 363                                                                 p, &rtn);
 364                                }
 365                        } else {
 366                                read_lock(&tasklist_lock);
 367                                if (thread_group_leader(p) && p->signal) {
 368                                        error =
 369                                            cpu_clock_sample_group(which_clock,
 370                                                                   p, &rtn);
 371                                }
 372                                read_unlock(&tasklist_lock);
 373                        }
 374                }
 375                rcu_read_unlock();
 376        }
 377
 378        if (error)
 379                return error;
 380        sample_to_timespec(which_clock, rtn, tp);
 381        return 0;
 382}
 383
 384
 385/*
 386 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 387 * This is called from sys_timer_create with the new timer already locked.
 388 */
 389int posix_cpu_timer_create(struct k_itimer *new_timer)
 390{
 391        int ret = 0;
 392        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 393        struct task_struct *p;
 394
 395        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 396                return -EINVAL;
 397
 398        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 399        new_timer->it.cpu.incr.sched = 0;
 400        new_timer->it.cpu.expires.sched = 0;
 401
 402        read_lock(&tasklist_lock);
 403        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 404                if (pid == 0) {
 405                        p = current;
 406                } else {
 407                        p = find_task_by_vpid(pid);
 408                        if (p && !same_thread_group(p, current))
 409                                p = NULL;
 410                }
 411        } else {
 412                if (pid == 0) {
 413                        p = current->group_leader;
 414                } else {
 415                        p = find_task_by_vpid(pid);
 416                        if (p && !thread_group_leader(p))
 417                                p = NULL;
 418                }
 419        }
 420        new_timer->it.cpu.task = p;
 421        if (p) {
 422                get_task_struct(p);
 423        } else {
 424                ret = -EINVAL;
 425        }
 426        read_unlock(&tasklist_lock);
 427
 428        return ret;
 429}
 430
 431/*
 432 * Clean up a CPU-clock timer that is about to be destroyed.
 433 * This is called from timer deletion with the timer already locked.
 434 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 435 * and try again.  (This happens when the timer is in the middle of firing.)
 436 */
 437int posix_cpu_timer_del(struct k_itimer *timer)
 438{
 439        struct task_struct *p = timer->it.cpu.task;
 440        int ret = 0;
 441
 442        if (likely(p != NULL)) {
 443                read_lock(&tasklist_lock);
 444                if (unlikely(p->signal == NULL)) {
 445                        /*
 446                         * We raced with the reaping of the task.
 447                         * The deletion should have cleared us off the list.
 448                         */
 449                        BUG_ON(!list_empty(&timer->it.cpu.entry));
 450                } else {
 451                        spin_lock(&p->sighand->siglock);
 452                        if (timer->it.cpu.firing)
 453                                ret = TIMER_RETRY;
 454                        else
 455                                list_del(&timer->it.cpu.entry);
 456                        spin_unlock(&p->sighand->siglock);
 457                }
 458                read_unlock(&tasklist_lock);
 459
 460                if (!ret)
 461                        put_task_struct(p);
 462        }
 463
 464        return ret;
 465}
 466
 467/*
 468 * Clean out CPU timers still ticking when a thread exited.  The task
 469 * pointer is cleared, and the expiry time is replaced with the residual
 470 * time for later timer_gettime calls to return.
 471 * This must be called with the siglock held.
 472 */
 473static void cleanup_timers(struct list_head *head,
 474                           cputime_t utime, cputime_t stime,
 475                           unsigned long long sum_exec_runtime)
 476{
 477        struct cpu_timer_list *timer, *next;
 478        cputime_t ptime = cputime_add(utime, stime);
 479
 480        list_for_each_entry_safe(timer, next, head, entry) {
 481                list_del_init(&timer->entry);
 482                if (cputime_lt(timer->expires.cpu, ptime)) {
 483                        timer->expires.cpu = cputime_zero;
 484                } else {
 485                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
 486                                                         ptime);
 487                }
 488        }
 489
 490        ++head;
 491        list_for_each_entry_safe(timer, next, head, entry) {
 492                list_del_init(&timer->entry);
 493                if (cputime_lt(timer->expires.cpu, utime)) {
 494                        timer->expires.cpu = cputime_zero;
 495                } else {
 496                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
 497                                                         utime);
 498                }
 499        }
 500
 501        ++head;
 502        list_for_each_entry_safe(timer, next, head, entry) {
 503                list_del_init(&timer->entry);
 504                if (timer->expires.sched < sum_exec_runtime) {
 505                        timer->expires.sched = 0;
 506                } else {
 507                        timer->expires.sched -= sum_exec_runtime;
 508                }
 509        }
 510}
 511
 512/*
 513 * These are both called with the siglock held, when the current thread
 514 * is being reaped.  When the final (leader) thread in the group is reaped,
 515 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 516 */
 517void posix_cpu_timers_exit(struct task_struct *tsk)
 518{
 519        cleanup_timers(tsk->cpu_timers,
 520                       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
 521
 522}
 523void posix_cpu_timers_exit_group(struct task_struct *tsk)
 524{
 525        struct signal_struct *const sig = tsk->signal;
 526
 527        cleanup_timers(tsk->signal->cpu_timers,
 528                       cputime_add(tsk->utime, sig->utime),
 529                       cputime_add(tsk->stime, sig->stime),
 530                       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
 531}
 532
 533static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 534{
 535        /*
 536         * That's all for this thread or process.
 537         * We leave our residual in expires to be reported.
 538         */
 539        put_task_struct(timer->it.cpu.task);
 540        timer->it.cpu.task = NULL;
 541        timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 542                                             timer->it.cpu.expires,
 543                                             now);
 544}
 545
 546static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 547{
 548        return cputime_eq(expires, cputime_zero) ||
 549               cputime_gt(expires, new_exp);
 550}
 551
 552static inline int expires_le(cputime_t expires, cputime_t new_exp)
 553{
 554        return !cputime_eq(expires, cputime_zero) &&
 555               cputime_le(expires, new_exp);
 556}
 557/*
 558 * Insert the timer on the appropriate list before any timers that
 559 * expire later.  This must be called with the tasklist_lock held
 560 * for reading, and interrupts disabled.
 561 */
 562static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
 563{
 564        struct task_struct *p = timer->it.cpu.task;
 565        struct list_head *head, *listpos;
 566        struct cpu_timer_list *const nt = &timer->it.cpu;
 567        struct cpu_timer_list *next;
 568        unsigned long i;
 569
 570        head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
 571                p->cpu_timers : p->signal->cpu_timers);
 572        head += CPUCLOCK_WHICH(timer->it_clock);
 573
 574        BUG_ON(!irqs_disabled());
 575        spin_lock(&p->sighand->siglock);
 576
 577        listpos = head;
 578        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 579                list_for_each_entry(next, head, entry) {
 580                        if (next->expires.sched > nt->expires.sched)
 581                                break;
 582                        listpos = &next->entry;
 583                }
 584        } else {
 585                list_for_each_entry(next, head, entry) {
 586                        if (cputime_gt(next->expires.cpu, nt->expires.cpu))
 587                                break;
 588                        listpos = &next->entry;
 589                }
 590        }
 591        list_add(&nt->entry, listpos);
 592
 593        if (listpos == head) {
 594                /*
 595                 * We are the new earliest-expiring timer.
 596                 * If we are a thread timer, there can always
 597                 * be a process timer telling us to stop earlier.
 598                 */
 599
 600                if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 601                        union cpu_time_count *exp = &nt->expires;
 602
 603                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
 604                        default:
 605                                BUG();
 606                        case CPUCLOCK_PROF:
 607                                if (expires_gt(p->cputime_expires.prof_exp,
 608                                               exp->cpu))
 609                                        p->cputime_expires.prof_exp = exp->cpu;
 610                                break;
 611                        case CPUCLOCK_VIRT:
 612                                if (expires_gt(p->cputime_expires.virt_exp,
 613                                               exp->cpu))
 614                                        p->cputime_expires.virt_exp = exp->cpu;
 615                                break;
 616                        case CPUCLOCK_SCHED:
 617                                if (p->cputime_expires.sched_exp == 0 ||
 618                                    p->cputime_expires.sched_exp > exp->sched)
 619                                        p->cputime_expires.sched_exp =
 620                                                                exp->sched;
 621                                break;
 622                        }
 623                } else {
 624                        struct signal_struct *const sig = p->signal;
 625                        union cpu_time_count *exp = &timer->it.cpu.expires;
 626
 627                        /*
 628                         * For a process timer, set the cached expiration time.
 629                         */
 630                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
 631                        default:
 632                                BUG();
 633                        case CPUCLOCK_VIRT:
 634                                if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
 635                                               exp->cpu))
 636                                        break;
 637                                sig->cputime_expires.virt_exp = exp->cpu;
 638                                break;
 639                        case CPUCLOCK_PROF:
 640                                if (expires_le(sig->it[CPUCLOCK_PROF].expires,
 641                                               exp->cpu))
 642                                        break;
 643                                i = sig->rlim[RLIMIT_CPU].rlim_cur;
 644                                if (i != RLIM_INFINITY &&
 645                                    i <= cputime_to_secs(exp->cpu))
 646                                        break;
 647                                sig->cputime_expires.prof_exp = exp->cpu;
 648                                break;
 649                        case CPUCLOCK_SCHED:
 650                                sig->cputime_expires.sched_exp = exp->sched;
 651                                break;
 652                        }
 653                }
 654        }
 655
 656        spin_unlock(&p->sighand->siglock);
 657}
 658
 659/*
 660 * The timer is locked, fire it and arrange for its reload.
 661 */
 662static void cpu_timer_fire(struct k_itimer *timer)
 663{
 664        if (unlikely(timer->sigq == NULL)) {
 665                /*
 666                 * This a special case for clock_nanosleep,
 667                 * not a normal timer from sys_timer_create.
 668                 */
 669                wake_up_process(timer->it_process);
 670                timer->it.cpu.expires.sched = 0;
 671        } else if (timer->it.cpu.incr.sched == 0) {
 672                /*
 673                 * One-shot timer.  Clear it as soon as it's fired.
 674                 */
 675                posix_timer_event(timer, 0);
 676                timer->it.cpu.expires.sched = 0;
 677        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 678                /*
 679                 * The signal did not get queued because the signal
 680                 * was ignored, so we won't get any callback to
 681                 * reload the timer.  But we need to keep it
 682                 * ticking in case the signal is deliverable next time.
 683                 */
 684                posix_cpu_timer_schedule(timer);
 685        }
 686}
 687
 688/*
 689 * Sample a process (thread group) timer for the given group_leader task.
 690 * Must be called with tasklist_lock held for reading.
 691 */
 692static int cpu_timer_sample_group(const clockid_t which_clock,
 693                                  struct task_struct *p,
 694                                  union cpu_time_count *cpu)
 695{
 696        struct task_cputime cputime;
 697
 698        thread_group_cputimer(p, &cputime);
 699        switch (CPUCLOCK_WHICH(which_clock)) {
 700        default:
 701                return -EINVAL;
 702        case CPUCLOCK_PROF:
 703                cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 704                break;
 705        case CPUCLOCK_VIRT:
 706                cpu->cpu = cputime.utime;
 707                break;
 708        case CPUCLOCK_SCHED:
 709                cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
 710                break;
 711        }
 712        return 0;
 713}
 714
 715/*
 716 * Guts of sys_timer_settime for CPU timers.
 717 * This is called with the timer locked and interrupts disabled.
 718 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 719 * and try again.  (This happens when the timer is in the middle of firing.)
 720 */
 721int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 722                        struct itimerspec *new, struct itimerspec *old)
 723{
 724        struct task_struct *p = timer->it.cpu.task;
 725        union cpu_time_count old_expires, new_expires, val;
 726        int ret;
 727
 728        if (unlikely(p == NULL)) {
 729                /*
 730                 * Timer refers to a dead task's clock.
 731                 */
 732                return -ESRCH;
 733        }
 734
 735        new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 736
 737        read_lock(&tasklist_lock);
 738        /*
 739         * We need the tasklist_lock to protect against reaping that
 740         * clears p->signal.  If p has just been reaped, we can no
 741         * longer get any information about it at all.
 742         */
 743        if (unlikely(p->signal == NULL)) {
 744                read_unlock(&tasklist_lock);
 745                put_task_struct(p);
 746                timer->it.cpu.task = NULL;
 747                return -ESRCH;
 748        }
 749
 750        /*
 751         * Disarm any old timer after extracting its expiry time.
 752         */
 753        BUG_ON(!irqs_disabled());
 754
 755        ret = 0;
 756        spin_lock(&p->sighand->siglock);
 757        old_expires = timer->it.cpu.expires;
 758        if (unlikely(timer->it.cpu.firing)) {
 759                timer->it.cpu.firing = -1;
 760                ret = TIMER_RETRY;
 761        } else
 762                list_del_init(&timer->it.cpu.entry);
 763        spin_unlock(&p->sighand->siglock);
 764
 765        /*
 766         * We need to sample the current value to convert the new
 767         * value from to relative and absolute, and to convert the
 768         * old value from absolute to relative.  To set a process
 769         * timer, we need a sample to balance the thread expiry
 770         * times (in arm_timer).  With an absolute time, we must
 771         * check if it's already passed.  In short, we need a sample.
 772         */
 773        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 774                cpu_clock_sample(timer->it_clock, p, &val);
 775        } else {
 776                cpu_timer_sample_group(timer->it_clock, p, &val);
 777        }
 778
 779        if (old) {
 780                if (old_expires.sched == 0) {
 781                        old->it_value.tv_sec = 0;
 782                        old->it_value.tv_nsec = 0;
 783                } else {
 784                        /*
 785                         * Update the timer in case it has
 786                         * overrun already.  If it has,
 787                         * we'll report it as having overrun
 788                         * and with the next reloaded timer
 789                         * already ticking, though we are
 790                         * swallowing that pending
 791                         * notification here to install the
 792                         * new setting.
 793                         */
 794                        bump_cpu_timer(timer, val);
 795                        if (cpu_time_before(timer->it_clock, val,
 796                                            timer->it.cpu.expires)) {
 797                                old_expires = cpu_time_sub(
 798                                        timer->it_clock,
 799                                        timer->it.cpu.expires, val);
 800                                sample_to_timespec(timer->it_clock,
 801                                                   old_expires,
 802                                                   &old->it_value);
 803                        } else {
 804                                old->it_value.tv_nsec = 1;
 805                                old->it_value.tv_sec = 0;
 806                        }
 807                }
 808        }
 809
 810        if (unlikely(ret)) {
 811                /*
 812                 * We are colliding with the timer actually firing.
 813                 * Punt after filling in the timer's old value, and
 814                 * disable this firing since we are already reporting
 815                 * it as an overrun (thanks to bump_cpu_timer above).
 816                 */
 817                read_unlock(&tasklist_lock);
 818                goto out;
 819        }
 820
 821        if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 822                cpu_time_add(timer->it_clock, &new_expires, val);
 823        }
 824
 825        /*
 826         * Install the new expiry time (or zero).
 827         * For a timer with no notification action, we don't actually
 828         * arm the timer (we'll just fake it for timer_gettime).
 829         */
 830        timer->it.cpu.expires = new_expires;
 831        if (new_expires.sched != 0 &&
 832            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
 833            cpu_time_before(timer->it_clock, val, new_expires)) {
 834                arm_timer(timer, val);
 835        }
 836
 837        read_unlock(&tasklist_lock);
 838
 839        /*
 840         * Install the new reload setting, and
 841         * set up the signal and overrun bookkeeping.
 842         */
 843        timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 844                                                &new->it_interval);
 845
 846        /*
 847         * This acts as a modification timestamp for the timer,
 848         * so any automatic reload attempt will punt on seeing
 849         * that we have reset the timer manually.
 850         */
 851        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 852                ~REQUEUE_PENDING;
 853        timer->it_overrun_last = 0;
 854        timer->it_overrun = -1;
 855
 856        if (new_expires.sched != 0 &&
 857            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
 858            !cpu_time_before(timer->it_clock, val, new_expires)) {
 859                /*
 860                 * The designated time already passed, so we notify
 861                 * immediately, even if the thread never runs to
 862                 * accumulate more time on this clock.
 863                 */
 864                cpu_timer_fire(timer);
 865        }
 866
 867        ret = 0;
 868 out:
 869        if (old) {
 870                sample_to_timespec(timer->it_clock,
 871                                   timer->it.cpu.incr, &old->it_interval);
 872        }
 873        return ret;
 874}
 875
 876void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 877{
 878        union cpu_time_count now;
 879        struct task_struct *p = timer->it.cpu.task;
 880        int clear_dead;
 881
 882        /*
 883         * Easy part: convert the reload time.
 884         */
 885        sample_to_timespec(timer->it_clock,
 886                           timer->it.cpu.incr, &itp->it_interval);
 887
 888        if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
 889                itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 890                return;
 891        }
 892
 893        if (unlikely(p == NULL)) {
 894                /*
 895                 * This task already died and the timer will never fire.
 896                 * In this case, expires is actually the dead value.
 897                 */
 898        dead:
 899                sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 900                                   &itp->it_value);
 901                return;
 902        }
 903
 904        /*
 905         * Sample the clock to take the difference with the expiry time.
 906         */
 907        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 908                cpu_clock_sample(timer->it_clock, p, &now);
 909                clear_dead = p->exit_state;
 910        } else {
 911                read_lock(&tasklist_lock);
 912                if (unlikely(p->signal == NULL)) {
 913                        /*
 914                         * The process has been reaped.
 915                         * We can't even collect a sample any more.
 916                         * Call the timer disarmed, nothing else to do.
 917                         */
 918                        put_task_struct(p);
 919                        timer->it.cpu.task = NULL;
 920                        timer->it.cpu.expires.sched = 0;
 921                        read_unlock(&tasklist_lock);
 922                        goto dead;
 923                } else {
 924                        cpu_timer_sample_group(timer->it_clock, p, &now);
 925                        clear_dead = (unlikely(p->exit_state) &&
 926                                      thread_group_empty(p));
 927                }
 928                read_unlock(&tasklist_lock);
 929        }
 930
 931        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 932                if (timer->it.cpu.incr.sched == 0 &&
 933                    cpu_time_before(timer->it_clock,
 934                                    timer->it.cpu.expires, now)) {
 935                        /*
 936                         * Do-nothing timer expired and has no reload,
 937                         * so it's as if it was never set.
 938                         */
 939                        timer->it.cpu.expires.sched = 0;
 940                        itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 941                        return;
 942                }
 943                /*
 944                 * Account for any expirations and reloads that should
 945                 * have happened.
 946                 */
 947                bump_cpu_timer(timer, now);
 948        }
 949
 950        if (unlikely(clear_dead)) {
 951                /*
 952                 * We've noticed that the thread is dead, but
 953                 * not yet reaped.  Take this opportunity to
 954                 * drop our task ref.
 955                 */
 956                clear_dead_task(timer, now);
 957                goto dead;
 958        }
 959
 960        if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 961                sample_to_timespec(timer->it_clock,
 962                                   cpu_time_sub(timer->it_clock,
 963                                                timer->it.cpu.expires, now),
 964                                   &itp->it_value);
 965        } else {
 966                /*
 967                 * The timer should have expired already, but the firing
 968                 * hasn't taken place yet.  Say it's just about to expire.
 969                 */
 970                itp->it_value.tv_nsec = 1;
 971                itp->it_value.tv_sec = 0;
 972        }
 973}
 974
 975/*
 976 * Check for any per-thread CPU timers that have fired and move them off
 977 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 978 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 979 */
 980static void check_thread_timers(struct task_struct *tsk,
 981                                struct list_head *firing)
 982{
 983        int maxfire;
 984        struct list_head *timers = tsk->cpu_timers;
 985        struct signal_struct *const sig = tsk->signal;
 986
 987        maxfire = 20;
 988        tsk->cputime_expires.prof_exp = cputime_zero;
 989        while (!list_empty(timers)) {
 990                struct cpu_timer_list *t = list_first_entry(timers,
 991                                                      struct cpu_timer_list,
 992                                                      entry);
 993                if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
 994                        tsk->cputime_expires.prof_exp = t->expires.cpu;
 995                        break;
 996                }
 997                t->firing = 1;
 998                list_move_tail(&t->entry, firing);
 999        }
1000
1001        ++timers;
1002        maxfire = 20;
1003        tsk->cputime_expires.virt_exp = cputime_zero;
1004        while (!list_empty(timers)) {
1005                struct cpu_timer_list *t = list_first_entry(timers,
1006                                                      struct cpu_timer_list,
1007                                                      entry);
1008                if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1009                        tsk->cputime_expires.virt_exp = t->expires.cpu;
1010                        break;
1011                }
1012                t->firing = 1;
1013                list_move_tail(&t->entry, firing);
1014        }
1015
1016        ++timers;
1017        maxfire = 20;
1018        tsk->cputime_expires.sched_exp = 0;
1019        while (!list_empty(timers)) {
1020                struct cpu_timer_list *t = list_first_entry(timers,
1021                                                      struct cpu_timer_list,
1022                                                      entry);
1023                if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1024                        tsk->cputime_expires.sched_exp = t->expires.sched;
1025                        break;
1026                }
1027                t->firing = 1;
1028                list_move_tail(&t->entry, firing);
1029        }
1030
1031        /*
1032         * Check for the special case thread timers.
1033         */
1034        if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1035                unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1036                unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1037
1038                if (hard != RLIM_INFINITY &&
1039                    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1040                        /*
1041                         * At the hard limit, we just die.
1042                         * No need to calculate anything else now.
1043                         */
1044                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1045                        return;
1046                }
1047                if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1048                        /*
1049                         * At the soft limit, send a SIGXCPU every second.
1050                         */
1051                        if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1052                            < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1053                                sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1054                                                                USEC_PER_SEC;
1055                        }
1056                        printk(KERN_INFO
1057                                "RT Watchdog Timeout: %s[%d]\n",
1058                                tsk->comm, task_pid_nr(tsk));
1059                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1060                }
1061        }
1062}
1063
1064static void stop_process_timers(struct task_struct *tsk)
1065{
1066        struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1067        unsigned long flags;
1068
1069        if (!cputimer->running)
1070                return;
1071
1072        spin_lock_irqsave(&cputimer->lock, flags);
1073        cputimer->running = 0;
1074        spin_unlock_irqrestore(&cputimer->lock, flags);
1075}
1076
1077static u32 onecputick;
1078
1079static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1080                             cputime_t *expires, cputime_t cur_time, int signo)
1081{
1082        if (cputime_eq(it->expires, cputime_zero))
1083                return;
1084
1085        if (cputime_ge(cur_time, it->expires)) {
1086                if (!cputime_eq(it->incr, cputime_zero)) {
1087                        it->expires = cputime_add(it->expires, it->incr);
1088                        it->error += it->incr_error;
1089                        if (it->error >= onecputick) {
1090                                it->expires = cputime_sub(it->expires,
1091                                                          cputime_one_jiffy);
1092                                it->error -= onecputick;
1093                        }
1094                } else {
1095                        it->expires = cputime_zero;
1096                }
1097
1098                trace_itimer_expire(signo == SIGPROF ?
1099                                    ITIMER_PROF : ITIMER_VIRTUAL,
1100                                    tsk->signal->leader_pid, cur_time);
1101                __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1102        }
1103
1104        if (!cputime_eq(it->expires, cputime_zero) &&
1105            (cputime_eq(*expires, cputime_zero) ||
1106             cputime_lt(it->expires, *expires))) {
1107                *expires = it->expires;
1108        }
1109}
1110
1111/*
1112 * Check for any per-thread CPU timers that have fired and move them
1113 * off the tsk->*_timers list onto the firing list.  Per-thread timers
1114 * have already been taken off.
1115 */
1116static void check_process_timers(struct task_struct *tsk,
1117                                 struct list_head *firing)
1118{
1119        int maxfire;
1120        struct signal_struct *const sig = tsk->signal;
1121        cputime_t utime, ptime, virt_expires, prof_expires;
1122        unsigned long long sum_sched_runtime, sched_expires;
1123        struct list_head *timers = sig->cpu_timers;
1124        struct task_cputime cputime;
1125
1126        /*
1127         * Don't sample the current process CPU clocks if there are no timers.
1128         */
1129        if (list_empty(&timers[CPUCLOCK_PROF]) &&
1130            cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1131            sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1132            list_empty(&timers[CPUCLOCK_VIRT]) &&
1133            cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1134            list_empty(&timers[CPUCLOCK_SCHED])) {
1135                stop_process_timers(tsk);
1136                return;
1137        }
1138
1139        /*
1140         * Collect the current process totals.
1141         */
1142        thread_group_cputimer(tsk, &cputime);
1143        utime = cputime.utime;
1144        ptime = cputime_add(utime, cputime.stime);
1145        sum_sched_runtime = cputime.sum_exec_runtime;
1146        maxfire = 20;
1147        prof_expires = cputime_zero;
1148        while (!list_empty(timers)) {
1149                struct cpu_timer_list *tl = list_first_entry(timers,
1150                                                      struct cpu_timer_list,
1151                                                      entry);
1152                if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1153                        prof_expires = tl->expires.cpu;
1154                        break;
1155                }
1156                tl->firing = 1;
1157                list_move_tail(&tl->entry, firing);
1158        }
1159
1160        ++timers;
1161        maxfire = 20;
1162        virt_expires = cputime_zero;
1163        while (!list_empty(timers)) {
1164                struct cpu_timer_list *tl = list_first_entry(timers,
1165                                                      struct cpu_timer_list,
1166                                                      entry);
1167                if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1168                        virt_expires = tl->expires.cpu;
1169                        break;
1170                }
1171                tl->firing = 1;
1172                list_move_tail(&tl->entry, firing);
1173        }
1174
1175        ++timers;
1176        maxfire = 20;
1177        sched_expires = 0;
1178        while (!list_empty(timers)) {
1179                struct cpu_timer_list *tl = list_first_entry(timers,
1180                                                      struct cpu_timer_list,
1181                                                      entry);
1182                if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1183                        sched_expires = tl->expires.sched;
1184                        break;
1185                }
1186                tl->firing = 1;
1187                list_move_tail(&tl->entry, firing);
1188        }
1189
1190        /*
1191         * Check for the special case process timers.
1192         */
1193        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1194                         SIGPROF);
1195        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1196                         SIGVTALRM);
1197
1198        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1199                unsigned long psecs = cputime_to_secs(ptime);
1200                cputime_t x;
1201                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1202                        /*
1203                         * At the hard limit, we just die.
1204                         * No need to calculate anything else now.
1205                         */
1206                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1207                        return;
1208                }
1209                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1210                        /*
1211                         * At the soft limit, send a SIGXCPU every second.
1212                         */
1213                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1214                        if (sig->rlim[RLIMIT_CPU].rlim_cur
1215                            < sig->rlim[RLIMIT_CPU].rlim_max) {
1216                                sig->rlim[RLIMIT_CPU].rlim_cur++;
1217                        }
1218                }
1219                x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1220                if (cputime_eq(prof_expires, cputime_zero) ||
1221                    cputime_lt(x, prof_expires)) {
1222                        prof_expires = x;
1223                }
1224        }
1225
1226        if (!cputime_eq(prof_expires, cputime_zero) &&
1227            (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1228             cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1229                sig->cputime_expires.prof_exp = prof_expires;
1230        if (!cputime_eq(virt_expires, cputime_zero) &&
1231            (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1232             cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1233                sig->cputime_expires.virt_exp = virt_expires;
1234        if (sched_expires != 0 &&
1235            (sig->cputime_expires.sched_exp == 0 ||
1236             sig->cputime_expires.sched_exp > sched_expires))
1237                sig->cputime_expires.sched_exp = sched_expires;
1238}
1239
1240/*
1241 * This is called from the signal code (via do_schedule_next_timer)
1242 * when the last timer signal was delivered and we have to reload the timer.
1243 */
1244void posix_cpu_timer_schedule(struct k_itimer *timer)
1245{
1246        struct task_struct *p = timer->it.cpu.task;
1247        union cpu_time_count now;
1248
1249        if (unlikely(p == NULL))
1250                /*
1251                 * The task was cleaned up already, no future firings.
1252                 */
1253                goto out;
1254
1255        /*
1256         * Fetch the current sample and update the timer's expiry time.
1257         */
1258        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1259                cpu_clock_sample(timer->it_clock, p, &now);
1260                bump_cpu_timer(timer, now);
1261                if (unlikely(p->exit_state)) {
1262                        clear_dead_task(timer, now);
1263                        goto out;
1264                }
1265                read_lock(&tasklist_lock); /* arm_timer needs it.  */
1266        } else {
1267                read_lock(&tasklist_lock);
1268                if (unlikely(p->signal == NULL)) {
1269                        /*
1270                         * The process has been reaped.
1271                         * We can't even collect a sample any more.
1272                         */
1273                        put_task_struct(p);
1274                        timer->it.cpu.task = p = NULL;
1275                        timer->it.cpu.expires.sched = 0;
1276                        goto out_unlock;
1277                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1278                        /*
1279                         * We've noticed that the thread is dead, but
1280                         * not yet reaped.  Take this opportunity to
1281                         * drop our task ref.
1282                         */
1283                        clear_dead_task(timer, now);
1284                        goto out_unlock;
1285                }
1286                cpu_timer_sample_group(timer->it_clock, p, &now);
1287                bump_cpu_timer(timer, now);
1288                /* Leave the tasklist_lock locked for the call below.  */
1289        }
1290
1291        /*
1292         * Now re-arm for the new expiry time.
1293         */
1294        arm_timer(timer, now);
1295
1296out_unlock:
1297        read_unlock(&tasklist_lock);
1298
1299out:
1300        timer->it_overrun_last = timer->it_overrun;
1301        timer->it_overrun = -1;
1302        ++timer->it_requeue_pending;
1303}
1304
1305/**
1306 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1307 *
1308 * @cputime:    The struct to compare.
1309 *
1310 * Checks @cputime to see if all fields are zero.  Returns true if all fields
1311 * are zero, false if any field is nonzero.
1312 */
1313static inline int task_cputime_zero(const struct task_cputime *cputime)
1314{
1315        if (cputime_eq(cputime->utime, cputime_zero) &&
1316            cputime_eq(cputime->stime, cputime_zero) &&
1317            cputime->sum_exec_runtime == 0)
1318                return 1;
1319        return 0;
1320}
1321
1322/**
1323 * task_cputime_expired - Compare two task_cputime entities.
1324 *
1325 * @sample:     The task_cputime structure to be checked for expiration.
1326 * @expires:    Expiration times, against which @sample will be checked.
1327 *
1328 * Checks @sample against @expires to see if any field of @sample has expired.
1329 * Returns true if any field of the former is greater than the corresponding
1330 * field of the latter if the latter field is set.  Otherwise returns false.
1331 */
1332static inline int task_cputime_expired(const struct task_cputime *sample,
1333                                        const struct task_cputime *expires)
1334{
1335        if (!cputime_eq(expires->utime, cputime_zero) &&
1336            cputime_ge(sample->utime, expires->utime))
1337                return 1;
1338        if (!cputime_eq(expires->stime, cputime_zero) &&
1339            cputime_ge(cputime_add(sample->utime, sample->stime),
1340                       expires->stime))
1341                return 1;
1342        if (expires->sum_exec_runtime != 0 &&
1343            sample->sum_exec_runtime >= expires->sum_exec_runtime)
1344                return 1;
1345        return 0;
1346}
1347
1348/**
1349 * fastpath_timer_check - POSIX CPU timers fast path.
1350 *
1351 * @tsk:        The task (thread) being checked.
1352 *
1353 * Check the task and thread group timers.  If both are zero (there are no
1354 * timers set) return false.  Otherwise snapshot the task and thread group
1355 * timers and compare them with the corresponding expiration times.  Return
1356 * true if a timer has expired, else return false.
1357 */
1358static inline int fastpath_timer_check(struct task_struct *tsk)
1359{
1360        struct signal_struct *sig;
1361
1362        /* tsk == current, ensure it is safe to use ->signal/sighand */
1363        if (unlikely(tsk->exit_state))
1364                return 0;
1365
1366        if (!task_cputime_zero(&tsk->cputime_expires)) {
1367                struct task_cputime task_sample = {
1368                        .utime = tsk->utime,
1369                        .stime = tsk->stime,
1370                        .sum_exec_runtime = tsk->se.sum_exec_runtime
1371                };
1372
1373                if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1374                        return 1;
1375        }
1376
1377        sig = tsk->signal;
1378        if (!task_cputime_zero(&sig->cputime_expires)) {
1379                struct task_cputime group_sample;
1380
1381                thread_group_cputimer(tsk, &group_sample);
1382                if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1383                        return 1;
1384        }
1385
1386        return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
1387}
1388
1389/*
1390 * This is called from the timer interrupt handler.  The irq handler has
1391 * already updated our counts.  We need to check if any timers fire now.
1392 * Interrupts are disabled.
1393 */
1394void run_posix_cpu_timers(struct task_struct *tsk)
1395{
1396        LIST_HEAD(firing);
1397        struct k_itimer *timer, *next;
1398
1399        BUG_ON(!irqs_disabled());
1400
1401        /*
1402         * The fast path checks that there are no expired thread or thread
1403         * group timers.  If that's so, just return.
1404         */
1405        if (!fastpath_timer_check(tsk))
1406                return;
1407
1408        spin_lock(&tsk->sighand->siglock);
1409        /*
1410         * Here we take off tsk->signal->cpu_timers[N] and
1411         * tsk->cpu_timers[N] all the timers that are firing, and
1412         * put them on the firing list.
1413         */
1414        check_thread_timers(tsk, &firing);
1415        check_process_timers(tsk, &firing);
1416
1417        /*
1418         * We must release these locks before taking any timer's lock.
1419         * There is a potential race with timer deletion here, as the
1420         * siglock now protects our private firing list.  We have set
1421         * the firing flag in each timer, so that a deletion attempt
1422         * that gets the timer lock before we do will give it up and
1423         * spin until we've taken care of that timer below.
1424         */
1425        spin_unlock(&tsk->sighand->siglock);
1426
1427        /*
1428         * Now that all the timers on our list have the firing flag,
1429         * noone will touch their list entries but us.  We'll take
1430         * each timer's lock before clearing its firing flag, so no
1431         * timer call will interfere.
1432         */
1433        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1434                int cpu_firing;
1435
1436                spin_lock(&timer->it_lock);
1437                list_del_init(&timer->it.cpu.entry);
1438                cpu_firing = timer->it.cpu.firing;
1439                timer->it.cpu.firing = 0;
1440                /*
1441                 * The firing flag is -1 if we collided with a reset
1442                 * of the timer, which already reported this
1443                 * almost-firing as an overrun.  So don't generate an event.
1444                 */
1445                if (likely(cpu_firing >= 0))
1446                        cpu_timer_fire(timer);
1447                spin_unlock(&timer->it_lock);
1448        }
1449}
1450
1451/*
1452 * Set one of the process-wide special case CPU timers.
1453 * The tsk->sighand->siglock must be held by the caller.
1454 * The *newval argument is relative and we update it to be absolute, *oldval
1455 * is absolute and we update it to be relative.
1456 */
1457void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1458                           cputime_t *newval, cputime_t *oldval)
1459{
1460        union cpu_time_count now;
1461        struct list_head *head;
1462
1463        BUG_ON(clock_idx == CPUCLOCK_SCHED);
1464        cpu_timer_sample_group(clock_idx, tsk, &now);
1465
1466        if (oldval) {
1467                if (!cputime_eq(*oldval, cputime_zero)) {
1468                        if (cputime_le(*oldval, now.cpu)) {
1469                                /* Just about to fire. */
1470                                *oldval = cputime_one_jiffy;
1471                        } else {
1472                                *oldval = cputime_sub(*oldval, now.cpu);
1473                        }
1474                }
1475
1476                if (cputime_eq(*newval, cputime_zero))
1477                        return;
1478                *newval = cputime_add(*newval, now.cpu);
1479
1480                /*
1481                 * If the RLIMIT_CPU timer will expire before the
1482                 * ITIMER_PROF timer, we have nothing else to do.
1483                 */
1484                if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1485                    < cputime_to_secs(*newval))
1486                        return;
1487        }
1488
1489        /*
1490         * Check whether there are any process timers already set to fire
1491         * before this one.  If so, we don't have anything more to do.
1492         */
1493        head = &tsk->signal->cpu_timers[clock_idx];
1494        if (list_empty(head) ||
1495            cputime_ge(list_first_entry(head,
1496                                  struct cpu_timer_list, entry)->expires.cpu,
1497                       *newval)) {
1498                switch (clock_idx) {
1499                case CPUCLOCK_PROF:
1500                        tsk->signal->cputime_expires.prof_exp = *newval;
1501                        break;
1502                case CPUCLOCK_VIRT:
1503                        tsk->signal->cputime_expires.virt_exp = *newval;
1504                        break;
1505                }
1506        }
1507}
1508
1509static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1510                            struct timespec *rqtp, struct itimerspec *it)
1511{
1512        struct k_itimer timer;
1513        int error;
1514
1515        /*
1516         * Set up a temporary timer and then wait for it to go off.
1517         */
1518        memset(&timer, 0, sizeof timer);
1519        spin_lock_init(&timer.it_lock);
1520        timer.it_clock = which_clock;
1521        timer.it_overrun = -1;
1522        error = posix_cpu_timer_create(&timer);
1523        timer.it_process = current;
1524        if (!error) {
1525                static struct itimerspec zero_it;
1526
1527                memset(it, 0, sizeof *it);
1528                it->it_value = *rqtp;
1529
1530                spin_lock_irq(&timer.it_lock);
1531                error = posix_cpu_timer_set(&timer, flags, it, NULL);
1532                if (error) {
1533                        spin_unlock_irq(&timer.it_lock);
1534                        return error;
1535                }
1536
1537                while (!signal_pending(current)) {
1538                        if (timer.it.cpu.expires.sched == 0) {
1539                                /*
1540                                 * Our timer fired and was reset.
1541                                 */
1542                                spin_unlock_irq(&timer.it_lock);
1543                                return 0;
1544                        }
1545
1546                        /*
1547                         * Block until cpu_timer_fire (or a signal) wakes us.
1548                         */
1549                        __set_current_state(TASK_INTERRUPTIBLE);
1550                        spin_unlock_irq(&timer.it_lock);
1551                        schedule();
1552                        spin_lock_irq(&timer.it_lock);
1553                }
1554
1555                /*
1556                 * We were interrupted by a signal.
1557                 */
1558                sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1559                posix_cpu_timer_set(&timer, 0, &zero_it, it);
1560                spin_unlock_irq(&timer.it_lock);
1561
1562                if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1563                        /*
1564                         * It actually did fire already.
1565                         */
1566                        return 0;
1567                }
1568
1569                error = -ERESTART_RESTARTBLOCK;
1570        }
1571
1572        return error;
1573}
1574
1575int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1576                     struct timespec *rqtp, struct timespec __user *rmtp)
1577{
1578        struct restart_block *restart_block =
1579            &current_thread_info()->restart_block;
1580        struct itimerspec it;
1581        int error;
1582
1583        /*
1584         * Diagnose required errors first.
1585         */
1586        if (CPUCLOCK_PERTHREAD(which_clock) &&
1587            (CPUCLOCK_PID(which_clock) == 0 ||
1588             CPUCLOCK_PID(which_clock) == current->pid))
1589                return -EINVAL;
1590
1591        error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1592
1593        if (error == -ERESTART_RESTARTBLOCK) {
1594
1595                if (flags & TIMER_ABSTIME)
1596                        return -ERESTARTNOHAND;
1597                /*
1598                 * Report back to the user the time still remaining.
1599                 */
1600                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1601                        return -EFAULT;
1602
1603                restart_block->fn = posix_cpu_nsleep_restart;
1604                restart_block->arg0 = which_clock;
1605                restart_block->arg1 = (unsigned long) rmtp;
1606                restart_block->arg2 = rqtp->tv_sec;
1607                restart_block->arg3 = rqtp->tv_nsec;
1608        }
1609        return error;
1610}
1611
1612long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1613{
1614        clockid_t which_clock = restart_block->arg0;
1615        struct timespec __user *rmtp;
1616        struct timespec t;
1617        struct itimerspec it;
1618        int error;
1619
1620        rmtp = (struct timespec __user *) restart_block->arg1;
1621        t.tv_sec = restart_block->arg2;
1622        t.tv_nsec = restart_block->arg3;
1623
1624        restart_block->fn = do_no_restart_syscall;
1625        error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1626
1627        if (error == -ERESTART_RESTARTBLOCK) {
1628                /*
1629                 * Report back to the user the time still remaining.
1630                 */
1631                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1632                        return -EFAULT;
1633
1634                restart_block->fn = posix_cpu_nsleep_restart;
1635                restart_block->arg0 = which_clock;
1636                restart_block->arg1 = (unsigned long) rmtp;
1637                restart_block->arg2 = t.tv_sec;
1638                restart_block->arg3 = t.tv_nsec;
1639        }
1640        return error;
1641
1642}
1643
1644
1645#define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1646#define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1647
1648static int process_cpu_clock_getres(const clockid_t which_clock,
1649                                    struct timespec *tp)
1650{
1651        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1652}
1653static int process_cpu_clock_get(const clockid_t which_clock,
1654                                 struct timespec *tp)
1655{
1656        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1657}
1658static int process_cpu_timer_create(struct k_itimer *timer)
1659{
1660        timer->it_clock = PROCESS_CLOCK;
1661        return posix_cpu_timer_create(timer);
1662}
1663static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1664                              struct timespec *rqtp,
1665                              struct timespec __user *rmtp)
1666{
1667        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1668}
1669static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1670{
1671        return -EINVAL;
1672}
1673static int thread_cpu_clock_getres(const clockid_t which_clock,
1674                                   struct timespec *tp)
1675{
1676        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1677}
1678static int thread_cpu_clock_get(const clockid_t which_clock,
1679                                struct timespec *tp)
1680{
1681        return posix_cpu_clock_get(THREAD_CLOCK, tp);
1682}
1683static int thread_cpu_timer_create(struct k_itimer *timer)
1684{
1685        timer->it_clock = THREAD_CLOCK;
1686        return posix_cpu_timer_create(timer);
1687}
1688static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1689                              struct timespec *rqtp, struct timespec __user *rmtp)
1690{
1691        return -EINVAL;
1692}
1693static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1694{
1695        return -EINVAL;
1696}
1697
1698static __init int init_posix_cpu_timers(void)
1699{
1700        struct k_clock process = {
1701                .clock_getres = process_cpu_clock_getres,
1702                .clock_get = process_cpu_clock_get,
1703                .clock_set = do_posix_clock_nosettime,
1704                .timer_create = process_cpu_timer_create,
1705                .nsleep = process_cpu_nsleep,
1706                .nsleep_restart = process_cpu_nsleep_restart,
1707        };
1708        struct k_clock thread = {
1709                .clock_getres = thread_cpu_clock_getres,
1710                .clock_get = thread_cpu_clock_get,
1711                .clock_set = do_posix_clock_nosettime,
1712                .timer_create = thread_cpu_timer_create,
1713                .nsleep = thread_cpu_nsleep,
1714                .nsleep_restart = thread_cpu_nsleep_restart,
1715        };
1716        struct timespec ts;
1717
1718        register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1719        register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1720
1721        cputime_to_timespec(cputime_one_jiffy, &ts);
1722        onecputick = ts.tv_nsec;
1723        WARN_ON(ts.tv_sec != 0);
1724
1725        return 0;
1726}
1727__initcall(init_posix_cpu_timers);
1728