linux/kernel/posix-timers.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *                           Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *                           Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38
  39#include <asm/uaccess.h>
  40#include <linux/list.h>
  41#include <linux/init.h>
  42#include <linux/compiler.h>
  43#include <linux/idr.h>
  44#include <linux/posix-timers.h>
  45#include <linux/syscalls.h>
  46#include <linux/wait.h>
  47#include <linux/workqueue.h>
  48#include <linux/module.h>
  49
  50/*
  51 * Management arrays for POSIX timers.   Timers are kept in slab memory
  52 * Timer ids are allocated by an external routine that keeps track of the
  53 * id and the timer.  The external interface is:
  54 *
  55 * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
  56 * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
  57 *                                                    related it to <ptr>
  58 * void idr_remove(struct idr *idp, int id);          to release <id>
  59 * void idr_init(struct idr *idp);                    to initialize <idp>
  60 *                                                    which we supply.
  61 * The idr_get_new *may* call slab for more memory so it must not be
  62 * called under a spin lock.  Likewise idr_remore may release memory
  63 * (but it may be ok to do this under a lock...).
  64 * idr_find is just a memory look up and is quite fast.  A -1 return
  65 * indicates that the requested id does not exist.
  66 */
  67
  68/*
  69 * Lets keep our timers in a slab cache :-)
  70 */
  71static struct kmem_cache *posix_timers_cache;
  72static struct idr posix_timers_id;
  73static DEFINE_SPINLOCK(idr_lock);
  74
  75/*
  76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  77 * SIGEV values.  Here we put out an error if this assumption fails.
  78 */
  79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  80                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  82#endif
  83
  84
  85/*
  86 * The timer ID is turned into a timer address by idr_find().
  87 * Verifying a valid ID consists of:
  88 *
  89 * a) checking that idr_find() returns other than -1.
  90 * b) checking that the timer id matches the one in the timer itself.
  91 * c) that the timer owner is in the callers thread group.
  92 */
  93
  94/*
  95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  96 *          to implement others.  This structure defines the various
  97 *          clocks and allows the possibility of adding others.  We
  98 *          provide an interface to add clocks to the table and expect
  99 *          the "arch" code to add at least one clock that is high
 100 *          resolution.  Here we define the standard CLOCK_REALTIME as a
 101 *          1/HZ resolution clock.
 102 *
 103 * RESOLUTION: Clock resolution is used to round up timer and interval
 104 *          times, NOT to report clock times, which are reported with as
 105 *          much resolution as the system can muster.  In some cases this
 106 *          resolution may depend on the underlying clock hardware and
 107 *          may not be quantifiable until run time, and only then is the
 108 *          necessary code is written.  The standard says we should say
 109 *          something about this issue in the documentation...
 110 *
 111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
 112 *          various clock functions.  For clocks that use the standard
 113 *          system timer code these entries should be NULL.  This will
 114 *          allow dispatch without the overhead of indirect function
 115 *          calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
 116 *          must supply functions here, even if the function just returns
 117 *          ENOSYS.  The standard POSIX timer management code assumes the
 118 *          following: 1.) The k_itimer struct (sched.h) is used for the
 119 *          timer.  2.) The list, it_lock, it_clock, it_id and it_pid
 120 *          fields are not modified by timer code.
 121 *
 122 *          At this time all functions EXCEPT clock_nanosleep can be
 123 *          redirected by the CLOCKS structure.  Clock_nanosleep is in
 124 *          there, but the code ignores it.
 125 *
 126 * Permissions: It is assumed that the clock_settime() function defined
 127 *          for each clock will take care of permission checks.  Some
 128 *          clocks may be set able by any user (i.e. local process
 129 *          clocks) others not.  Currently the only set able clock we
 130 *          have is CLOCK_REALTIME and its high res counter part, both of
 131 *          which we beg off on and pass to do_sys_settimeofday().
 132 */
 133
 134static struct k_clock posix_clocks[MAX_CLOCKS];
 135
 136/*
 137 * These ones are defined below.
 138 */
 139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 140                         struct timespec __user *rmtp);
 141static void common_timer_get(struct k_itimer *, struct itimerspec *);
 142static int common_timer_set(struct k_itimer *, int,
 143                            struct itimerspec *, struct itimerspec *);
 144static int common_timer_del(struct k_itimer *timer);
 145
 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 147
 148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
 149
 150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 151{
 152        spin_unlock_irqrestore(&timr->it_lock, flags);
 153}
 154
 155/*
 156 * Call the k_clock hook function if non-null, or the default function.
 157 */
 158#define CLOCK_DISPATCH(clock, call, arglist) \
 159        ((clock) < 0 ? posix_cpu_##call arglist : \
 160         (posix_clocks[clock].call != NULL \
 161          ? (*posix_clocks[clock].call) arglist : common_##call arglist))
 162
 163/*
 164 * Default clock hook functions when the struct k_clock passed
 165 * to register_posix_clock leaves a function pointer null.
 166 *
 167 * The function common_CALL is the default implementation for
 168 * the function pointer CALL in struct k_clock.
 169 */
 170
 171static inline int common_clock_getres(const clockid_t which_clock,
 172                                      struct timespec *tp)
 173{
 174        tp->tv_sec = 0;
 175        tp->tv_nsec = posix_clocks[which_clock].res;
 176        return 0;
 177}
 178
 179/*
 180 * Get real time for posix timers
 181 */
 182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
 183{
 184        ktime_get_real_ts(tp);
 185        return 0;
 186}
 187
 188static inline int common_clock_set(const clockid_t which_clock,
 189                                   struct timespec *tp)
 190{
 191        return do_sys_settimeofday(tp, NULL);
 192}
 193
 194static int common_timer_create(struct k_itimer *new_timer)
 195{
 196        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 197        return 0;
 198}
 199
 200static int no_timer_create(struct k_itimer *new_timer)
 201{
 202        return -EOPNOTSUPP;
 203}
 204
 205static int no_nsleep(const clockid_t which_clock, int flags,
 206                     struct timespec *tsave, struct timespec __user *rmtp)
 207{
 208        return -EOPNOTSUPP;
 209}
 210
 211/*
 212 * Return nonzero if we know a priori this clockid_t value is bogus.
 213 */
 214static inline int invalid_clockid(const clockid_t which_clock)
 215{
 216        if (which_clock < 0)    /* CPU clock, posix_cpu_* will check it */
 217                return 0;
 218        if ((unsigned) which_clock >= MAX_CLOCKS)
 219                return 1;
 220        if (posix_clocks[which_clock].clock_getres != NULL)
 221                return 0;
 222        if (posix_clocks[which_clock].res != 0)
 223                return 0;
 224        return 1;
 225}
 226
 227/*
 228 * Get monotonic time for posix timers
 229 */
 230static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 231{
 232        ktime_get_ts(tp);
 233        return 0;
 234}
 235
 236/*
 237 * Get monotonic time for posix timers
 238 */
 239static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
 240{
 241        getrawmonotonic(tp);
 242        return 0;
 243}
 244
 245
 246static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
 247{
 248        *tp = current_kernel_time();
 249        return 0;
 250}
 251
 252static int posix_get_monotonic_coarse(clockid_t which_clock,
 253                                                struct timespec *tp)
 254{
 255        *tp = get_monotonic_coarse();
 256        return 0;
 257}
 258
 259int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
 260{
 261        *tp = ktime_to_timespec(KTIME_LOW_RES);
 262        return 0;
 263}
 264/*
 265 * Initialize everything, well, just everything in Posix clocks/timers ;)
 266 */
 267static __init int init_posix_timers(void)
 268{
 269        struct k_clock clock_realtime = {
 270                .clock_getres = hrtimer_get_res,
 271        };
 272        struct k_clock clock_monotonic = {
 273                .clock_getres = hrtimer_get_res,
 274                .clock_get = posix_ktime_get_ts,
 275                .clock_set = do_posix_clock_nosettime,
 276        };
 277        struct k_clock clock_monotonic_raw = {
 278                .clock_getres = hrtimer_get_res,
 279                .clock_get = posix_get_monotonic_raw,
 280                .clock_set = do_posix_clock_nosettime,
 281                .timer_create = no_timer_create,
 282                .nsleep = no_nsleep,
 283        };
 284        struct k_clock clock_realtime_coarse = {
 285                .clock_getres = posix_get_coarse_res,
 286                .clock_get = posix_get_realtime_coarse,
 287                .clock_set = do_posix_clock_nosettime,
 288                .timer_create = no_timer_create,
 289                .nsleep = no_nsleep,
 290        };
 291        struct k_clock clock_monotonic_coarse = {
 292                .clock_getres = posix_get_coarse_res,
 293                .clock_get = posix_get_monotonic_coarse,
 294                .clock_set = do_posix_clock_nosettime,
 295                .timer_create = no_timer_create,
 296                .nsleep = no_nsleep,
 297        };
 298
 299        register_posix_clock(CLOCK_REALTIME, &clock_realtime);
 300        register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
 301        register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
 302        register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
 303        register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
 304
 305        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 306                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 307                                        NULL);
 308        idr_init(&posix_timers_id);
 309        return 0;
 310}
 311
 312__initcall(init_posix_timers);
 313
 314static void schedule_next_timer(struct k_itimer *timr)
 315{
 316        struct hrtimer *timer = &timr->it.real.timer;
 317
 318        if (timr->it.real.interval.tv64 == 0)
 319                return;
 320
 321        timr->it_overrun += (unsigned int) hrtimer_forward(timer,
 322                                                timer->base->get_time(),
 323                                                timr->it.real.interval);
 324
 325        timr->it_overrun_last = timr->it_overrun;
 326        timr->it_overrun = -1;
 327        ++timr->it_requeue_pending;
 328        hrtimer_restart(timer);
 329}
 330
 331/*
 332 * This function is exported for use by the signal deliver code.  It is
 333 * called just prior to the info block being released and passes that
 334 * block to us.  It's function is to update the overrun entry AND to
 335 * restart the timer.  It should only be called if the timer is to be
 336 * restarted (i.e. we have flagged this in the sys_private entry of the
 337 * info block).
 338 *
 339 * To protect aginst the timer going away while the interrupt is queued,
 340 * we require that the it_requeue_pending flag be set.
 341 */
 342void do_schedule_next_timer(struct siginfo *info)
 343{
 344        struct k_itimer *timr;
 345        unsigned long flags;
 346
 347        timr = lock_timer(info->si_tid, &flags);
 348
 349        if (timr && timr->it_requeue_pending == info->si_sys_private) {
 350                if (timr->it_clock < 0)
 351                        posix_cpu_timer_schedule(timr);
 352                else
 353                        schedule_next_timer(timr);
 354
 355                info->si_overrun += timr->it_overrun_last;
 356        }
 357
 358        if (timr)
 359                unlock_timer(timr, flags);
 360}
 361
 362int posix_timer_event(struct k_itimer *timr, int si_private)
 363{
 364        struct task_struct *task;
 365        int shared, ret = -1;
 366        /*
 367         * FIXME: if ->sigq is queued we can race with
 368         * dequeue_signal()->do_schedule_next_timer().
 369         *
 370         * If dequeue_signal() sees the "right" value of
 371         * si_sys_private it calls do_schedule_next_timer().
 372         * We re-queue ->sigq and drop ->it_lock().
 373         * do_schedule_next_timer() locks the timer
 374         * and re-schedules it while ->sigq is pending.
 375         * Not really bad, but not that we want.
 376         */
 377        timr->sigq->info.si_sys_private = si_private;
 378
 379        rcu_read_lock();
 380        task = pid_task(timr->it_pid, PIDTYPE_PID);
 381        if (task) {
 382                shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
 383                ret = send_sigqueue(timr->sigq, task, shared);
 384        }
 385        rcu_read_unlock();
 386        /* If we failed to send the signal the timer stops. */
 387        return ret > 0;
 388}
 389EXPORT_SYMBOL_GPL(posix_timer_event);
 390
 391/*
 392 * This function gets called when a POSIX.1b interval timer expires.  It
 393 * is used as a callback from the kernel internal timer.  The
 394 * run_timer_list code ALWAYS calls with interrupts on.
 395
 396 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 397 */
 398static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 399{
 400        struct k_itimer *timr;
 401        unsigned long flags;
 402        int si_private = 0;
 403        enum hrtimer_restart ret = HRTIMER_NORESTART;
 404
 405        timr = container_of(timer, struct k_itimer, it.real.timer);
 406        spin_lock_irqsave(&timr->it_lock, flags);
 407
 408        if (timr->it.real.interval.tv64 != 0)
 409                si_private = ++timr->it_requeue_pending;
 410
 411        if (posix_timer_event(timr, si_private)) {
 412                /*
 413                 * signal was not sent because of sig_ignor
 414                 * we will not get a call back to restart it AND
 415                 * it should be restarted.
 416                 */
 417                if (timr->it.real.interval.tv64 != 0) {
 418                        ktime_t now = hrtimer_cb_get_time(timer);
 419
 420                        /*
 421                         * FIXME: What we really want, is to stop this
 422                         * timer completely and restart it in case the
 423                         * SIG_IGN is removed. This is a non trivial
 424                         * change which involves sighand locking
 425                         * (sigh !), which we don't want to do late in
 426                         * the release cycle.
 427                         *
 428                         * For now we just let timers with an interval
 429                         * less than a jiffie expire every jiffie to
 430                         * avoid softirq starvation in case of SIG_IGN
 431                         * and a very small interval, which would put
 432                         * the timer right back on the softirq pending
 433                         * list. By moving now ahead of time we trick
 434                         * hrtimer_forward() to expire the timer
 435                         * later, while we still maintain the overrun
 436                         * accuracy, but have some inconsistency in
 437                         * the timer_gettime() case. This is at least
 438                         * better than a starved softirq. A more
 439                         * complex fix which solves also another related
 440                         * inconsistency is already in the pipeline.
 441                         */
 442#ifdef CONFIG_HIGH_RES_TIMERS
 443                        {
 444                                ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 445
 446                                if (timr->it.real.interval.tv64 < kj.tv64)
 447                                        now = ktime_add(now, kj);
 448                        }
 449#endif
 450                        timr->it_overrun += (unsigned int)
 451                                hrtimer_forward(timer, now,
 452                                                timr->it.real.interval);
 453                        ret = HRTIMER_RESTART;
 454                        ++timr->it_requeue_pending;
 455                }
 456        }
 457
 458        unlock_timer(timr, flags);
 459        return ret;
 460}
 461
 462static struct pid *good_sigevent(sigevent_t * event)
 463{
 464        struct task_struct *rtn = current->group_leader;
 465
 466        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 467                (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
 468                 !same_thread_group(rtn, current) ||
 469                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 470                return NULL;
 471
 472        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 473            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 474                return NULL;
 475
 476        return task_pid(rtn);
 477}
 478
 479void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
 480{
 481        if ((unsigned) clock_id >= MAX_CLOCKS) {
 482                printk("POSIX clock register failed for clock_id %d\n",
 483                       clock_id);
 484                return;
 485        }
 486
 487        posix_clocks[clock_id] = *new_clock;
 488}
 489EXPORT_SYMBOL_GPL(register_posix_clock);
 490
 491static struct k_itimer * alloc_posix_timer(void)
 492{
 493        struct k_itimer *tmr;
 494        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 495        if (!tmr)
 496                return tmr;
 497        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 498                kmem_cache_free(posix_timers_cache, tmr);
 499                return NULL;
 500        }
 501        memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
 502        return tmr;
 503}
 504
 505#define IT_ID_SET       1
 506#define IT_ID_NOT_SET   0
 507static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 508{
 509        if (it_id_set) {
 510                unsigned long flags;
 511                spin_lock_irqsave(&idr_lock, flags);
 512                idr_remove(&posix_timers_id, tmr->it_id);
 513                spin_unlock_irqrestore(&idr_lock, flags);
 514        }
 515        put_pid(tmr->it_pid);
 516        sigqueue_free(tmr->sigq);
 517        kmem_cache_free(posix_timers_cache, tmr);
 518}
 519
 520/* Create a POSIX.1b interval timer. */
 521
 522SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 523                struct sigevent __user *, timer_event_spec,
 524                timer_t __user *, created_timer_id)
 525{
 526        struct k_itimer *new_timer;
 527        int error, new_timer_id;
 528        sigevent_t event;
 529        int it_id_set = IT_ID_NOT_SET;
 530
 531        if (invalid_clockid(which_clock))
 532                return -EINVAL;
 533
 534        new_timer = alloc_posix_timer();
 535        if (unlikely(!new_timer))
 536                return -EAGAIN;
 537
 538        spin_lock_init(&new_timer->it_lock);
 539 retry:
 540        if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
 541                error = -EAGAIN;
 542                goto out;
 543        }
 544        spin_lock_irq(&idr_lock);
 545        error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
 546        spin_unlock_irq(&idr_lock);
 547        if (error) {
 548                if (error == -EAGAIN)
 549                        goto retry;
 550                /*
 551                 * Weird looking, but we return EAGAIN if the IDR is
 552                 * full (proper POSIX return value for this)
 553                 */
 554                error = -EAGAIN;
 555                goto out;
 556        }
 557
 558        it_id_set = IT_ID_SET;
 559        new_timer->it_id = (timer_t) new_timer_id;
 560        new_timer->it_clock = which_clock;
 561        new_timer->it_overrun = -1;
 562        error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
 563        if (error)
 564                goto out;
 565
 566        /*
 567         * return the timer_id now.  The next step is hard to
 568         * back out if there is an error.
 569         */
 570        if (copy_to_user(created_timer_id,
 571                         &new_timer_id, sizeof (new_timer_id))) {
 572                error = -EFAULT;
 573                goto out;
 574        }
 575        if (timer_event_spec) {
 576                if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 577                        error = -EFAULT;
 578                        goto out;
 579                }
 580                rcu_read_lock();
 581                new_timer->it_pid = get_pid(good_sigevent(&event));
 582                rcu_read_unlock();
 583                if (!new_timer->it_pid) {
 584                        error = -EINVAL;
 585                        goto out;
 586                }
 587        } else {
 588                event.sigev_notify = SIGEV_SIGNAL;
 589                event.sigev_signo = SIGALRM;
 590                event.sigev_value.sival_int = new_timer->it_id;
 591                new_timer->it_pid = get_pid(task_tgid(current));
 592        }
 593
 594        new_timer->it_sigev_notify     = event.sigev_notify;
 595        new_timer->sigq->info.si_signo = event.sigev_signo;
 596        new_timer->sigq->info.si_value = event.sigev_value;
 597        new_timer->sigq->info.si_tid   = new_timer->it_id;
 598        new_timer->sigq->info.si_code  = SI_TIMER;
 599
 600        spin_lock_irq(&current->sighand->siglock);
 601        new_timer->it_signal = current->signal;
 602        list_add(&new_timer->list, &current->signal->posix_timers);
 603        spin_unlock_irq(&current->sighand->siglock);
 604
 605        return 0;
 606        /*
 607         * In the case of the timer belonging to another task, after
 608         * the task is unlocked, the timer is owned by the other task
 609         * and may cease to exist at any time.  Don't use or modify
 610         * new_timer after the unlock call.
 611         */
 612out:
 613        release_posix_timer(new_timer, it_id_set);
 614        return error;
 615}
 616
 617/*
 618 * Locking issues: We need to protect the result of the id look up until
 619 * we get the timer locked down so it is not deleted under us.  The
 620 * removal is done under the idr spinlock so we use that here to bridge
 621 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 622 * be release with out holding the timer lock.
 623 */
 624static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
 625{
 626        struct k_itimer *timr;
 627        /*
 628         * Watch out here.  We do a irqsave on the idr_lock and pass the
 629         * flags part over to the timer lock.  Must not let interrupts in
 630         * while we are moving the lock.
 631         */
 632        spin_lock_irqsave(&idr_lock, *flags);
 633        timr = idr_find(&posix_timers_id, (int)timer_id);
 634        if (timr) {
 635                spin_lock(&timr->it_lock);
 636                if (timr->it_signal == current->signal) {
 637                        spin_unlock(&idr_lock);
 638                        return timr;
 639                }
 640                spin_unlock(&timr->it_lock);
 641        }
 642        spin_unlock_irqrestore(&idr_lock, *flags);
 643
 644        return NULL;
 645}
 646
 647/*
 648 * Get the time remaining on a POSIX.1b interval timer.  This function
 649 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 650 * mess with irq.
 651 *
 652 * We have a couple of messes to clean up here.  First there is the case
 653 * of a timer that has a requeue pending.  These timers should appear to
 654 * be in the timer list with an expiry as if we were to requeue them
 655 * now.
 656 *
 657 * The second issue is the SIGEV_NONE timer which may be active but is
 658 * not really ever put in the timer list (to save system resources).
 659 * This timer may be expired, and if so, we will do it here.  Otherwise
 660 * it is the same as a requeue pending timer WRT to what we should
 661 * report.
 662 */
 663static void
 664common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 665{
 666        ktime_t now, remaining, iv;
 667        struct hrtimer *timer = &timr->it.real.timer;
 668
 669        memset(cur_setting, 0, sizeof(struct itimerspec));
 670
 671        iv = timr->it.real.interval;
 672
 673        /* interval timer ? */
 674        if (iv.tv64)
 675                cur_setting->it_interval = ktime_to_timespec(iv);
 676        else if (!hrtimer_active(timer) &&
 677                 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 678                return;
 679
 680        now = timer->base->get_time();
 681
 682        /*
 683         * When a requeue is pending or this is a SIGEV_NONE
 684         * timer move the expiry time forward by intervals, so
 685         * expiry is > now.
 686         */
 687        if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 688            (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 689                timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
 690
 691        remaining = ktime_sub(hrtimer_get_expires(timer), now);
 692        /* Return 0 only, when the timer is expired and not pending */
 693        if (remaining.tv64 <= 0) {
 694                /*
 695                 * A single shot SIGEV_NONE timer must return 0, when
 696                 * it is expired !
 697                 */
 698                if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 699                        cur_setting->it_value.tv_nsec = 1;
 700        } else
 701                cur_setting->it_value = ktime_to_timespec(remaining);
 702}
 703
 704/* Get the time remaining on a POSIX.1b interval timer. */
 705SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 706                struct itimerspec __user *, setting)
 707{
 708        struct k_itimer *timr;
 709        struct itimerspec cur_setting;
 710        unsigned long flags;
 711
 712        timr = lock_timer(timer_id, &flags);
 713        if (!timr)
 714                return -EINVAL;
 715
 716        CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
 717
 718        unlock_timer(timr, flags);
 719
 720        if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 721                return -EFAULT;
 722
 723        return 0;
 724}
 725
 726/*
 727 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 728 * be the overrun of the timer last delivered.  At the same time we are
 729 * accumulating overruns on the next timer.  The overrun is frozen when
 730 * the signal is delivered, either at the notify time (if the info block
 731 * is not queued) or at the actual delivery time (as we are informed by
 732 * the call back to do_schedule_next_timer().  So all we need to do is
 733 * to pick up the frozen overrun.
 734 */
 735SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 736{
 737        struct k_itimer *timr;
 738        int overrun;
 739        unsigned long flags;
 740
 741        timr = lock_timer(timer_id, &flags);
 742        if (!timr)
 743                return -EINVAL;
 744
 745        overrun = timr->it_overrun_last;
 746        unlock_timer(timr, flags);
 747
 748        return overrun;
 749}
 750
 751/* Set a POSIX.1b interval timer. */
 752/* timr->it_lock is taken. */
 753static int
 754common_timer_set(struct k_itimer *timr, int flags,
 755                 struct itimerspec *new_setting, struct itimerspec *old_setting)
 756{
 757        struct hrtimer *timer = &timr->it.real.timer;
 758        enum hrtimer_mode mode;
 759
 760        if (old_setting)
 761                common_timer_get(timr, old_setting);
 762
 763        /* disable the timer */
 764        timr->it.real.interval.tv64 = 0;
 765        /*
 766         * careful here.  If smp we could be in the "fire" routine which will
 767         * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 768         */
 769        if (hrtimer_try_to_cancel(timer) < 0)
 770                return TIMER_RETRY;
 771
 772        timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 773                ~REQUEUE_PENDING;
 774        timr->it_overrun_last = 0;
 775
 776        /* switch off the timer when it_value is zero */
 777        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 778                return 0;
 779
 780        mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 781        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 782        timr->it.real.timer.function = posix_timer_fn;
 783
 784        hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
 785
 786        /* Convert interval */
 787        timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 788
 789        /* SIGEV_NONE timers are not queued ! See common_timer_get */
 790        if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 791                /* Setup correct expiry time for relative timers */
 792                if (mode == HRTIMER_MODE_REL) {
 793                        hrtimer_add_expires(timer, timer->base->get_time());
 794                }
 795                return 0;
 796        }
 797
 798        hrtimer_start_expires(timer, mode);
 799        return 0;
 800}
 801
 802/* Set a POSIX.1b interval timer */
 803SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 804                const struct itimerspec __user *, new_setting,
 805                struct itimerspec __user *, old_setting)
 806{
 807        struct k_itimer *timr;
 808        struct itimerspec new_spec, old_spec;
 809        int error = 0;
 810        unsigned long flag;
 811        struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 812
 813        if (!new_setting)
 814                return -EINVAL;
 815
 816        if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 817                return -EFAULT;
 818
 819        if (!timespec_valid(&new_spec.it_interval) ||
 820            !timespec_valid(&new_spec.it_value))
 821                return -EINVAL;
 822retry:
 823        timr = lock_timer(timer_id, &flag);
 824        if (!timr)
 825                return -EINVAL;
 826
 827        error = CLOCK_DISPATCH(timr->it_clock, timer_set,
 828                               (timr, flags, &new_spec, rtn));
 829
 830        unlock_timer(timr, flag);
 831        if (error == TIMER_RETRY) {
 832                rtn = NULL;     // We already got the old time...
 833                goto retry;
 834        }
 835
 836        if (old_setting && !error &&
 837            copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 838                error = -EFAULT;
 839
 840        return error;
 841}
 842
 843static inline int common_timer_del(struct k_itimer *timer)
 844{
 845        timer->it.real.interval.tv64 = 0;
 846
 847        if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 848                return TIMER_RETRY;
 849        return 0;
 850}
 851
 852static inline int timer_delete_hook(struct k_itimer *timer)
 853{
 854        return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
 855}
 856
 857/* Delete a POSIX.1b interval timer. */
 858SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 859{
 860        struct k_itimer *timer;
 861        unsigned long flags;
 862
 863retry_delete:
 864        timer = lock_timer(timer_id, &flags);
 865        if (!timer)
 866                return -EINVAL;
 867
 868        if (timer_delete_hook(timer) == TIMER_RETRY) {
 869                unlock_timer(timer, flags);
 870                goto retry_delete;
 871        }
 872
 873        spin_lock(&current->sighand->siglock);
 874        list_del(&timer->list);
 875        spin_unlock(&current->sighand->siglock);
 876        /*
 877         * This keeps any tasks waiting on the spin lock from thinking
 878         * they got something (see the lock code above).
 879         */
 880        timer->it_signal = NULL;
 881
 882        unlock_timer(timer, flags);
 883        release_posix_timer(timer, IT_ID_SET);
 884        return 0;
 885}
 886
 887/*
 888 * return timer owned by the process, used by exit_itimers
 889 */
 890static void itimer_delete(struct k_itimer *timer)
 891{
 892        unsigned long flags;
 893
 894retry_delete:
 895        spin_lock_irqsave(&timer->it_lock, flags);
 896
 897        if (timer_delete_hook(timer) == TIMER_RETRY) {
 898                unlock_timer(timer, flags);
 899                goto retry_delete;
 900        }
 901        list_del(&timer->list);
 902        /*
 903         * This keeps any tasks waiting on the spin lock from thinking
 904         * they got something (see the lock code above).
 905         */
 906        timer->it_signal = NULL;
 907
 908        unlock_timer(timer, flags);
 909        release_posix_timer(timer, IT_ID_SET);
 910}
 911
 912/*
 913 * This is called by do_exit or de_thread, only when there are no more
 914 * references to the shared signal_struct.
 915 */
 916void exit_itimers(struct signal_struct *sig)
 917{
 918        struct k_itimer *tmr;
 919
 920        while (!list_empty(&sig->posix_timers)) {
 921                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 922                itimer_delete(tmr);
 923        }
 924}
 925
 926/* Not available / possible... functions */
 927int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
 928{
 929        return -EINVAL;
 930}
 931EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
 932
 933int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
 934                               struct timespec *t, struct timespec __user *r)
 935{
 936#ifndef ENOTSUP
 937        return -EOPNOTSUPP;     /* aka ENOTSUP in userland for POSIX */
 938#else  /*  parisc does define it separately.  */
 939        return -ENOTSUP;
 940#endif
 941}
 942EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
 943
 944SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
 945                const struct timespec __user *, tp)
 946{
 947        struct timespec new_tp;
 948
 949        if (invalid_clockid(which_clock))
 950                return -EINVAL;
 951        if (copy_from_user(&new_tp, tp, sizeof (*tp)))
 952                return -EFAULT;
 953
 954        return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
 955}
 956
 957SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
 958                struct timespec __user *,tp)
 959{
 960        struct timespec kernel_tp;
 961        int error;
 962
 963        if (invalid_clockid(which_clock))
 964                return -EINVAL;
 965        error = CLOCK_DISPATCH(which_clock, clock_get,
 966                               (which_clock, &kernel_tp));
 967        if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
 968                error = -EFAULT;
 969
 970        return error;
 971
 972}
 973
 974SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
 975                struct timespec __user *, tp)
 976{
 977        struct timespec rtn_tp;
 978        int error;
 979
 980        if (invalid_clockid(which_clock))
 981                return -EINVAL;
 982
 983        error = CLOCK_DISPATCH(which_clock, clock_getres,
 984                               (which_clock, &rtn_tp));
 985
 986        if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
 987                error = -EFAULT;
 988        }
 989
 990        return error;
 991}
 992
 993/*
 994 * nanosleep for monotonic and realtime clocks
 995 */
 996static int common_nsleep(const clockid_t which_clock, int flags,
 997                         struct timespec *tsave, struct timespec __user *rmtp)
 998{
 999        return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1000                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1001                                 which_clock);
1002}
1003
1004SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1005                const struct timespec __user *, rqtp,
1006                struct timespec __user *, rmtp)
1007{
1008        struct timespec t;
1009
1010        if (invalid_clockid(which_clock))
1011                return -EINVAL;
1012
1013        if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1014                return -EFAULT;
1015
1016        if (!timespec_valid(&t))
1017                return -EINVAL;
1018
1019        return CLOCK_DISPATCH(which_clock, nsleep,
1020                              (which_clock, flags, &t, rmtp));
1021}
1022
1023/*
1024 * nanosleep_restart for monotonic and realtime clocks
1025 */
1026static int common_nsleep_restart(struct restart_block *restart_block)
1027{
1028        return hrtimer_nanosleep_restart(restart_block);
1029}
1030
1031/*
1032 * This will restart clock_nanosleep. This is required only by
1033 * compat_clock_nanosleep_restart for now.
1034 */
1035long
1036clock_nanosleep_restart(struct restart_block *restart_block)
1037{
1038        clockid_t which_clock = restart_block->arg0;
1039
1040        return CLOCK_DISPATCH(which_clock, nsleep_restart,
1041                              (restart_block));
1042}
1043