linux/kernel/profile.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/profile.c
   3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   4 *  with configurable resolution, support for restricting the cpus on
   5 *  which profiling is done, and switching between cpu time and
   6 *  schedule() calls via kernel command line parameters passed at boot.
   7 *
   8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
   9 *      Red Hat, July 2004
  10 *  Consolidation of architecture support code for profiling,
  11 *      William Irwin, Oracle, July 2004
  12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  13 *      to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/profile.h>
  18#include <linux/bootmem.h>
  19#include <linux/notifier.h>
  20#include <linux/mm.h>
  21#include <linux/cpumask.h>
  22#include <linux/cpu.h>
  23#include <linux/highmem.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/vmalloc.h>
  27#include <asm/sections.h>
  28#include <asm/irq_regs.h>
  29#include <asm/ptrace.h>
  30
  31struct profile_hit {
  32        u32 pc, hits;
  33};
  34#define PROFILE_GRPSHIFT        3
  35#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  36#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  37#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  38
  39/* Oprofile timer tick hook */
  40static int (*timer_hook)(struct pt_regs *) __read_mostly;
  41
  42static atomic_t *prof_buffer;
  43static unsigned long prof_len, prof_shift;
  44
  45int prof_on __read_mostly;
  46EXPORT_SYMBOL_GPL(prof_on);
  47
  48static cpumask_var_t prof_cpu_mask;
  49#ifdef CONFIG_SMP
  50static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  51static DEFINE_PER_CPU(int, cpu_profile_flip);
  52static DEFINE_MUTEX(profile_flip_mutex);
  53#endif /* CONFIG_SMP */
  54
  55int profile_setup(char *str)
  56{
  57        static char schedstr[] = "schedule";
  58        static char sleepstr[] = "sleep";
  59        static char kvmstr[] = "kvm";
  60        int par;
  61
  62        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  63#ifdef CONFIG_SCHEDSTATS
  64                prof_on = SLEEP_PROFILING;
  65                if (str[strlen(sleepstr)] == ',')
  66                        str += strlen(sleepstr) + 1;
  67                if (get_option(&str, &par))
  68                        prof_shift = par;
  69                printk(KERN_INFO
  70                        "kernel sleep profiling enabled (shift: %ld)\n",
  71                        prof_shift);
  72#else
  73                printk(KERN_WARNING
  74                        "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  75#endif /* CONFIG_SCHEDSTATS */
  76        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  77                prof_on = SCHED_PROFILING;
  78                if (str[strlen(schedstr)] == ',')
  79                        str += strlen(schedstr) + 1;
  80                if (get_option(&str, &par))
  81                        prof_shift = par;
  82                printk(KERN_INFO
  83                        "kernel schedule profiling enabled (shift: %ld)\n",
  84                        prof_shift);
  85        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  86                prof_on = KVM_PROFILING;
  87                if (str[strlen(kvmstr)] == ',')
  88                        str += strlen(kvmstr) + 1;
  89                if (get_option(&str, &par))
  90                        prof_shift = par;
  91                printk(KERN_INFO
  92                        "kernel KVM profiling enabled (shift: %ld)\n",
  93                        prof_shift);
  94        } else if (get_option(&str, &par)) {
  95                prof_shift = par;
  96                prof_on = CPU_PROFILING;
  97                printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
  98                        prof_shift);
  99        }
 100        return 1;
 101}
 102__setup("profile=", profile_setup);
 103
 104
 105int __ref profile_init(void)
 106{
 107        int buffer_bytes;
 108        if (!prof_on)
 109                return 0;
 110
 111        /* only text is profiled */
 112        prof_len = (_etext - _stext) >> prof_shift;
 113        buffer_bytes = prof_len*sizeof(atomic_t);
 114
 115        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 116                return -ENOMEM;
 117
 118        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 119
 120        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 121        if (prof_buffer)
 122                return 0;
 123
 124        prof_buffer = alloc_pages_exact(buffer_bytes,
 125                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 126        if (prof_buffer)
 127                return 0;
 128
 129        prof_buffer = vmalloc(buffer_bytes);
 130        if (prof_buffer)
 131                return 0;
 132
 133        free_cpumask_var(prof_cpu_mask);
 134        return -ENOMEM;
 135}
 136
 137/* Profile event notifications */
 138
 139static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 140static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 141static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 142
 143void profile_task_exit(struct task_struct *task)
 144{
 145        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 146}
 147
 148int profile_handoff_task(struct task_struct *task)
 149{
 150        int ret;
 151        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 152        return (ret == NOTIFY_OK) ? 1 : 0;
 153}
 154
 155void profile_munmap(unsigned long addr)
 156{
 157        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 158}
 159
 160int task_handoff_register(struct notifier_block *n)
 161{
 162        return atomic_notifier_chain_register(&task_free_notifier, n);
 163}
 164EXPORT_SYMBOL_GPL(task_handoff_register);
 165
 166int task_handoff_unregister(struct notifier_block *n)
 167{
 168        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 169}
 170EXPORT_SYMBOL_GPL(task_handoff_unregister);
 171
 172int profile_event_register(enum profile_type type, struct notifier_block *n)
 173{
 174        int err = -EINVAL;
 175
 176        switch (type) {
 177        case PROFILE_TASK_EXIT:
 178                err = blocking_notifier_chain_register(
 179                                &task_exit_notifier, n);
 180                break;
 181        case PROFILE_MUNMAP:
 182                err = blocking_notifier_chain_register(
 183                                &munmap_notifier, n);
 184                break;
 185        }
 186
 187        return err;
 188}
 189EXPORT_SYMBOL_GPL(profile_event_register);
 190
 191int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 192{
 193        int err = -EINVAL;
 194
 195        switch (type) {
 196        case PROFILE_TASK_EXIT:
 197                err = blocking_notifier_chain_unregister(
 198                                &task_exit_notifier, n);
 199                break;
 200        case PROFILE_MUNMAP:
 201                err = blocking_notifier_chain_unregister(
 202                                &munmap_notifier, n);
 203                break;
 204        }
 205
 206        return err;
 207}
 208EXPORT_SYMBOL_GPL(profile_event_unregister);
 209
 210int register_timer_hook(int (*hook)(struct pt_regs *))
 211{
 212        if (timer_hook)
 213                return -EBUSY;
 214        timer_hook = hook;
 215        return 0;
 216}
 217EXPORT_SYMBOL_GPL(register_timer_hook);
 218
 219void unregister_timer_hook(int (*hook)(struct pt_regs *))
 220{
 221        WARN_ON(hook != timer_hook);
 222        timer_hook = NULL;
 223        /* make sure all CPUs see the NULL hook */
 224        synchronize_sched();  /* Allow ongoing interrupts to complete. */
 225}
 226EXPORT_SYMBOL_GPL(unregister_timer_hook);
 227
 228
 229#ifdef CONFIG_SMP
 230/*
 231 * Each cpu has a pair of open-addressed hashtables for pending
 232 * profile hits. read_profile() IPI's all cpus to request them
 233 * to flip buffers and flushes their contents to prof_buffer itself.
 234 * Flip requests are serialized by the profile_flip_mutex. The sole
 235 * use of having a second hashtable is for avoiding cacheline
 236 * contention that would otherwise happen during flushes of pending
 237 * profile hits required for the accuracy of reported profile hits
 238 * and so resurrect the interrupt livelock issue.
 239 *
 240 * The open-addressed hashtables are indexed by profile buffer slot
 241 * and hold the number of pending hits to that profile buffer slot on
 242 * a cpu in an entry. When the hashtable overflows, all pending hits
 243 * are accounted to their corresponding profile buffer slots with
 244 * atomic_add() and the hashtable emptied. As numerous pending hits
 245 * may be accounted to a profile buffer slot in a hashtable entry,
 246 * this amortizes a number of atomic profile buffer increments likely
 247 * to be far larger than the number of entries in the hashtable,
 248 * particularly given that the number of distinct profile buffer
 249 * positions to which hits are accounted during short intervals (e.g.
 250 * several seconds) is usually very small. Exclusion from buffer
 251 * flipping is provided by interrupt disablement (note that for
 252 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 253 * process context).
 254 * The hash function is meant to be lightweight as opposed to strong,
 255 * and was vaguely inspired by ppc64 firmware-supported inverted
 256 * pagetable hash functions, but uses a full hashtable full of finite
 257 * collision chains, not just pairs of them.
 258 *
 259 * -- wli
 260 */
 261static void __profile_flip_buffers(void *unused)
 262{
 263        int cpu = smp_processor_id();
 264
 265        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 266}
 267
 268static void profile_flip_buffers(void)
 269{
 270        int i, j, cpu;
 271
 272        mutex_lock(&profile_flip_mutex);
 273        j = per_cpu(cpu_profile_flip, get_cpu());
 274        put_cpu();
 275        on_each_cpu(__profile_flip_buffers, NULL, 1);
 276        for_each_online_cpu(cpu) {
 277                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 278                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 279                        if (!hits[i].hits) {
 280                                if (hits[i].pc)
 281                                        hits[i].pc = 0;
 282                                continue;
 283                        }
 284                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 285                        hits[i].hits = hits[i].pc = 0;
 286                }
 287        }
 288        mutex_unlock(&profile_flip_mutex);
 289}
 290
 291static void profile_discard_flip_buffers(void)
 292{
 293        int i, cpu;
 294
 295        mutex_lock(&profile_flip_mutex);
 296        i = per_cpu(cpu_profile_flip, get_cpu());
 297        put_cpu();
 298        on_each_cpu(__profile_flip_buffers, NULL, 1);
 299        for_each_online_cpu(cpu) {
 300                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 301                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 302        }
 303        mutex_unlock(&profile_flip_mutex);
 304}
 305
 306void profile_hits(int type, void *__pc, unsigned int nr_hits)
 307{
 308        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 309        int i, j, cpu;
 310        struct profile_hit *hits;
 311
 312        if (prof_on != type || !prof_buffer)
 313                return;
 314        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 315        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 316        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 317        cpu = get_cpu();
 318        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 319        if (!hits) {
 320                put_cpu();
 321                return;
 322        }
 323        /*
 324         * We buffer the global profiler buffer into a per-CPU
 325         * queue and thus reduce the number of global (and possibly
 326         * NUMA-alien) accesses. The write-queue is self-coalescing:
 327         */
 328        local_irq_save(flags);
 329        do {
 330                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 331                        if (hits[i + j].pc == pc) {
 332                                hits[i + j].hits += nr_hits;
 333                                goto out;
 334                        } else if (!hits[i + j].hits) {
 335                                hits[i + j].pc = pc;
 336                                hits[i + j].hits = nr_hits;
 337                                goto out;
 338                        }
 339                }
 340                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 341        } while (i != primary);
 342
 343        /*
 344         * Add the current hit(s) and flush the write-queue out
 345         * to the global buffer:
 346         */
 347        atomic_add(nr_hits, &prof_buffer[pc]);
 348        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 349                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 350                hits[i].pc = hits[i].hits = 0;
 351        }
 352out:
 353        local_irq_restore(flags);
 354        put_cpu();
 355}
 356
 357static int __cpuinit profile_cpu_callback(struct notifier_block *info,
 358                                        unsigned long action, void *__cpu)
 359{
 360        int node, cpu = (unsigned long)__cpu;
 361        struct page *page;
 362
 363        switch (action) {
 364        case CPU_UP_PREPARE:
 365        case CPU_UP_PREPARE_FROZEN:
 366                node = cpu_to_node(cpu);
 367                per_cpu(cpu_profile_flip, cpu) = 0;
 368                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 369                        page = alloc_pages_exact_node(node,
 370                                        GFP_KERNEL | __GFP_ZERO,
 371                                        0);
 372                        if (!page)
 373                                return NOTIFY_BAD;
 374                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 375                }
 376                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 377                        page = alloc_pages_exact_node(node,
 378                                        GFP_KERNEL | __GFP_ZERO,
 379                                        0);
 380                        if (!page)
 381                                goto out_free;
 382                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 383                }
 384                break;
 385out_free:
 386                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 387                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 388                __free_page(page);
 389                return NOTIFY_BAD;
 390        case CPU_ONLINE:
 391        case CPU_ONLINE_FROZEN:
 392                if (prof_cpu_mask != NULL)
 393                        cpumask_set_cpu(cpu, prof_cpu_mask);
 394                break;
 395        case CPU_UP_CANCELED:
 396        case CPU_UP_CANCELED_FROZEN:
 397        case CPU_DEAD:
 398        case CPU_DEAD_FROZEN:
 399                if (prof_cpu_mask != NULL)
 400                        cpumask_clear_cpu(cpu, prof_cpu_mask);
 401                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 402                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 403                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 404                        __free_page(page);
 405                }
 406                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 407                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 408                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 409                        __free_page(page);
 410                }
 411                break;
 412        }
 413        return NOTIFY_OK;
 414}
 415#else /* !CONFIG_SMP */
 416#define profile_flip_buffers()          do { } while (0)
 417#define profile_discard_flip_buffers()  do { } while (0)
 418#define profile_cpu_callback            NULL
 419
 420void profile_hits(int type, void *__pc, unsigned int nr_hits)
 421{
 422        unsigned long pc;
 423
 424        if (prof_on != type || !prof_buffer)
 425                return;
 426        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 427        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 428}
 429#endif /* !CONFIG_SMP */
 430EXPORT_SYMBOL_GPL(profile_hits);
 431
 432void profile_tick(int type)
 433{
 434        struct pt_regs *regs = get_irq_regs();
 435
 436        if (type == CPU_PROFILING && timer_hook)
 437                timer_hook(regs);
 438        if (!user_mode(regs) && prof_cpu_mask != NULL &&
 439            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 440                profile_hit(type, (void *)profile_pc(regs));
 441}
 442
 443#ifdef CONFIG_PROC_FS
 444#include <linux/proc_fs.h>
 445#include <linux/seq_file.h>
 446#include <asm/uaccess.h>
 447
 448static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 449{
 450        seq_cpumask(m, prof_cpu_mask);
 451        seq_putc(m, '\n');
 452        return 0;
 453}
 454
 455static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 456{
 457        return single_open(file, prof_cpu_mask_proc_show, NULL);
 458}
 459
 460static ssize_t prof_cpu_mask_proc_write(struct file *file,
 461        const char __user *buffer, size_t count, loff_t *pos)
 462{
 463        cpumask_var_t new_value;
 464        int err;
 465
 466        if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 467                return -ENOMEM;
 468
 469        err = cpumask_parse_user(buffer, count, new_value);
 470        if (!err) {
 471                cpumask_copy(prof_cpu_mask, new_value);
 472                err = count;
 473        }
 474        free_cpumask_var(new_value);
 475        return err;
 476}
 477
 478static const struct file_operations prof_cpu_mask_proc_fops = {
 479        .open           = prof_cpu_mask_proc_open,
 480        .read           = seq_read,
 481        .llseek         = seq_lseek,
 482        .release        = single_release,
 483        .write          = prof_cpu_mask_proc_write,
 484};
 485
 486void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
 487{
 488        /* create /proc/irq/prof_cpu_mask */
 489        proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
 490}
 491
 492/*
 493 * This function accesses profiling information. The returned data is
 494 * binary: the sampling step and the actual contents of the profile
 495 * buffer. Use of the program readprofile is recommended in order to
 496 * get meaningful info out of these data.
 497 */
 498static ssize_t
 499read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 500{
 501        unsigned long p = *ppos;
 502        ssize_t read;
 503        char *pnt;
 504        unsigned int sample_step = 1 << prof_shift;
 505
 506        profile_flip_buffers();
 507        if (p >= (prof_len+1)*sizeof(unsigned int))
 508                return 0;
 509        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 510                count = (prof_len+1)*sizeof(unsigned int) - p;
 511        read = 0;
 512
 513        while (p < sizeof(unsigned int) && count > 0) {
 514                if (put_user(*((char *)(&sample_step)+p), buf))
 515                        return -EFAULT;
 516                buf++; p++; count--; read++;
 517        }
 518        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 519        if (copy_to_user(buf, (void *)pnt, count))
 520                return -EFAULT;
 521        read += count;
 522        *ppos += read;
 523        return read;
 524}
 525
 526/*
 527 * Writing to /proc/profile resets the counters
 528 *
 529 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 530 * interrupt frequency, on architectures that support this.
 531 */
 532static ssize_t write_profile(struct file *file, const char __user *buf,
 533                             size_t count, loff_t *ppos)
 534{
 535#ifdef CONFIG_SMP
 536        extern int setup_profiling_timer(unsigned int multiplier);
 537
 538        if (count == sizeof(int)) {
 539                unsigned int multiplier;
 540
 541                if (copy_from_user(&multiplier, buf, sizeof(int)))
 542                        return -EFAULT;
 543
 544                if (setup_profiling_timer(multiplier))
 545                        return -EINVAL;
 546        }
 547#endif
 548        profile_discard_flip_buffers();
 549        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 550        return count;
 551}
 552
 553static const struct file_operations proc_profile_operations = {
 554        .read           = read_profile,
 555        .write          = write_profile,
 556};
 557
 558#ifdef CONFIG_SMP
 559static void profile_nop(void *unused)
 560{
 561}
 562
 563static int create_hash_tables(void)
 564{
 565        int cpu;
 566
 567        for_each_online_cpu(cpu) {
 568                int node = cpu_to_node(cpu);
 569                struct page *page;
 570
 571                page = alloc_pages_exact_node(node,
 572                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 573                                0);
 574                if (!page)
 575                        goto out_cleanup;
 576                per_cpu(cpu_profile_hits, cpu)[1]
 577                                = (struct profile_hit *)page_address(page);
 578                page = alloc_pages_exact_node(node,
 579                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 580                                0);
 581                if (!page)
 582                        goto out_cleanup;
 583                per_cpu(cpu_profile_hits, cpu)[0]
 584                                = (struct profile_hit *)page_address(page);
 585        }
 586        return 0;
 587out_cleanup:
 588        prof_on = 0;
 589        smp_mb();
 590        on_each_cpu(profile_nop, NULL, 1);
 591        for_each_online_cpu(cpu) {
 592                struct page *page;
 593
 594                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 595                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 596                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 597                        __free_page(page);
 598                }
 599                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 600                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 601                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 602                        __free_page(page);
 603                }
 604        }
 605        return -1;
 606}
 607#else
 608#define create_hash_tables()                    ({ 0; })
 609#endif
 610
 611int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 612{
 613        struct proc_dir_entry *entry;
 614
 615        if (!prof_on)
 616                return 0;
 617        if (create_hash_tables())
 618                return -ENOMEM;
 619        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 620                            NULL, &proc_profile_operations);
 621        if (!entry)
 622                return 0;
 623        entry->size = (1+prof_len) * sizeof(atomic_t);
 624        hotcpu_notifier(profile_cpu_callback, 0);
 625        return 0;
 626}
 627module_init(create_proc_profile);
 628#endif /* CONFIG_PROC_FS */
 629