linux/kernel/rcutree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <asm/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/module.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/percpu.h>
  45#include <linux/notifier.h>
  46#include <linux/cpu.h>
  47#include <linux/mutex.h>
  48#include <linux/time.h>
  49
  50#include "rcutree.h"
  51
  52/* Data structures. */
  53
  54#define RCU_STATE_INITIALIZER(name) { \
  55        .level = { &name.node[0] }, \
  56        .levelcnt = { \
  57                NUM_RCU_LVL_0,  /* root of hierarchy. */ \
  58                NUM_RCU_LVL_1, \
  59                NUM_RCU_LVL_2, \
  60                NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
  61        }, \
  62        .signaled = RCU_GP_IDLE, \
  63        .gpnum = -300, \
  64        .completed = -300, \
  65        .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
  66        .orphan_cbs_list = NULL, \
  67        .orphan_cbs_tail = &name.orphan_cbs_list, \
  68        .orphan_qlen = 0, \
  69        .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
  70        .n_force_qs = 0, \
  71        .n_force_qs_ngp = 0, \
  72}
  73
  74struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
  75DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
  76
  77struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
  78DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
  79
  80
  81/*
  82 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
  83 * permit this function to be invoked without holding the root rcu_node
  84 * structure's ->lock, but of course results can be subject to change.
  85 */
  86static int rcu_gp_in_progress(struct rcu_state *rsp)
  87{
  88        return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  89}
  90
  91/*
  92 * Note a quiescent state.  Because we do not need to know
  93 * how many quiescent states passed, just if there was at least
  94 * one since the start of the grace period, this just sets a flag.
  95 */
  96void rcu_sched_qs(int cpu)
  97{
  98        struct rcu_data *rdp;
  99
 100        rdp = &per_cpu(rcu_sched_data, cpu);
 101        rdp->passed_quiesc_completed = rdp->completed;
 102        barrier();
 103        rdp->passed_quiesc = 1;
 104        rcu_preempt_note_context_switch(cpu);
 105}
 106
 107void rcu_bh_qs(int cpu)
 108{
 109        struct rcu_data *rdp;
 110
 111        rdp = &per_cpu(rcu_bh_data, cpu);
 112        rdp->passed_quiesc_completed = rdp->completed;
 113        barrier();
 114        rdp->passed_quiesc = 1;
 115}
 116
 117#ifdef CONFIG_NO_HZ
 118DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 119        .dynticks_nesting = 1,
 120        .dynticks = 1,
 121};
 122#endif /* #ifdef CONFIG_NO_HZ */
 123
 124static int blimit = 10;         /* Maximum callbacks per softirq. */
 125static int qhimark = 10000;     /* If this many pending, ignore blimit. */
 126static int qlowmark = 100;      /* Once only this many pending, use blimit. */
 127
 128module_param(blimit, int, 0);
 129module_param(qhimark, int, 0);
 130module_param(qlowmark, int, 0);
 131
 132static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
 133static int rcu_pending(int cpu);
 134
 135/*
 136 * Return the number of RCU-sched batches processed thus far for debug & stats.
 137 */
 138long rcu_batches_completed_sched(void)
 139{
 140        return rcu_sched_state.completed;
 141}
 142EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 143
 144/*
 145 * Return the number of RCU BH batches processed thus far for debug & stats.
 146 */
 147long rcu_batches_completed_bh(void)
 148{
 149        return rcu_bh_state.completed;
 150}
 151EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 152
 153/*
 154 * Does the CPU have callbacks ready to be invoked?
 155 */
 156static int
 157cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 158{
 159        return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
 160}
 161
 162/*
 163 * Does the current CPU require a yet-as-unscheduled grace period?
 164 */
 165static int
 166cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 167{
 168        return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
 169}
 170
 171/*
 172 * Return the root node of the specified rcu_state structure.
 173 */
 174static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 175{
 176        return &rsp->node[0];
 177}
 178
 179#ifdef CONFIG_SMP
 180
 181/*
 182 * If the specified CPU is offline, tell the caller that it is in
 183 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 184 * Grace periods can end up waiting on an offline CPU when that
 185 * CPU is in the process of coming online -- it will be added to the
 186 * rcu_node bitmasks before it actually makes it online.  The same thing
 187 * can happen while a CPU is in the process of coming online.  Because this
 188 * race is quite rare, we check for it after detecting that the grace
 189 * period has been delayed rather than checking each and every CPU
 190 * each and every time we start a new grace period.
 191 */
 192static int rcu_implicit_offline_qs(struct rcu_data *rdp)
 193{
 194        /*
 195         * If the CPU is offline, it is in a quiescent state.  We can
 196         * trust its state not to change because interrupts are disabled.
 197         */
 198        if (cpu_is_offline(rdp->cpu)) {
 199                rdp->offline_fqs++;
 200                return 1;
 201        }
 202
 203        /* If preemptable RCU, no point in sending reschedule IPI. */
 204        if (rdp->preemptable)
 205                return 0;
 206
 207        /* The CPU is online, so send it a reschedule IPI. */
 208        if (rdp->cpu != smp_processor_id())
 209                smp_send_reschedule(rdp->cpu);
 210        else
 211                set_need_resched();
 212        rdp->resched_ipi++;
 213        return 0;
 214}
 215
 216#endif /* #ifdef CONFIG_SMP */
 217
 218#ifdef CONFIG_NO_HZ
 219
 220/**
 221 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 222 *
 223 * Enter nohz mode, in other words, -leave- the mode in which RCU
 224 * read-side critical sections can occur.  (Though RCU read-side
 225 * critical sections can occur in irq handlers in nohz mode, a possibility
 226 * handled by rcu_irq_enter() and rcu_irq_exit()).
 227 */
 228void rcu_enter_nohz(void)
 229{
 230        unsigned long flags;
 231        struct rcu_dynticks *rdtp;
 232
 233        smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
 234        local_irq_save(flags);
 235        rdtp = &__get_cpu_var(rcu_dynticks);
 236        rdtp->dynticks++;
 237        rdtp->dynticks_nesting--;
 238        WARN_ON_ONCE(rdtp->dynticks & 0x1);
 239        local_irq_restore(flags);
 240}
 241
 242/*
 243 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 244 *
 245 * Exit nohz mode, in other words, -enter- the mode in which RCU
 246 * read-side critical sections normally occur.
 247 */
 248void rcu_exit_nohz(void)
 249{
 250        unsigned long flags;
 251        struct rcu_dynticks *rdtp;
 252
 253        local_irq_save(flags);
 254        rdtp = &__get_cpu_var(rcu_dynticks);
 255        rdtp->dynticks++;
 256        rdtp->dynticks_nesting++;
 257        WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
 258        local_irq_restore(flags);
 259        smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
 260}
 261
 262/**
 263 * rcu_nmi_enter - inform RCU of entry to NMI context
 264 *
 265 * If the CPU was idle with dynamic ticks active, and there is no
 266 * irq handler running, this updates rdtp->dynticks_nmi to let the
 267 * RCU grace-period handling know that the CPU is active.
 268 */
 269void rcu_nmi_enter(void)
 270{
 271        struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 272
 273        if (rdtp->dynticks & 0x1)
 274                return;
 275        rdtp->dynticks_nmi++;
 276        WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
 277        smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
 278}
 279
 280/**
 281 * rcu_nmi_exit - inform RCU of exit from NMI context
 282 *
 283 * If the CPU was idle with dynamic ticks active, and there is no
 284 * irq handler running, this updates rdtp->dynticks_nmi to let the
 285 * RCU grace-period handling know that the CPU is no longer active.
 286 */
 287void rcu_nmi_exit(void)
 288{
 289        struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 290
 291        if (rdtp->dynticks & 0x1)
 292                return;
 293        smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
 294        rdtp->dynticks_nmi++;
 295        WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
 296}
 297
 298/**
 299 * rcu_irq_enter - inform RCU of entry to hard irq context
 300 *
 301 * If the CPU was idle with dynamic ticks active, this updates the
 302 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 303 */
 304void rcu_irq_enter(void)
 305{
 306        struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 307
 308        if (rdtp->dynticks_nesting++)
 309                return;
 310        rdtp->dynticks++;
 311        WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
 312        smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
 313}
 314
 315/**
 316 * rcu_irq_exit - inform RCU of exit from hard irq context
 317 *
 318 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 319 * to put let the RCU handling be aware that the CPU is going back to idle
 320 * with no ticks.
 321 */
 322void rcu_irq_exit(void)
 323{
 324        struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 325
 326        if (--rdtp->dynticks_nesting)
 327                return;
 328        smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
 329        rdtp->dynticks++;
 330        WARN_ON_ONCE(rdtp->dynticks & 0x1);
 331
 332        /* If the interrupt queued a callback, get out of dyntick mode. */
 333        if (__get_cpu_var(rcu_sched_data).nxtlist ||
 334            __get_cpu_var(rcu_bh_data).nxtlist)
 335                set_need_resched();
 336}
 337
 338/*
 339 * Record the specified "completed" value, which is later used to validate
 340 * dynticks counter manipulations.  Specify "rsp->completed - 1" to
 341 * unconditionally invalidate any future dynticks manipulations (which is
 342 * useful at the beginning of a grace period).
 343 */
 344static void dyntick_record_completed(struct rcu_state *rsp, long comp)
 345{
 346        rsp->dynticks_completed = comp;
 347}
 348
 349#ifdef CONFIG_SMP
 350
 351/*
 352 * Recall the previously recorded value of the completion for dynticks.
 353 */
 354static long dyntick_recall_completed(struct rcu_state *rsp)
 355{
 356        return rsp->dynticks_completed;
 357}
 358
 359/*
 360 * Snapshot the specified CPU's dynticks counter so that we can later
 361 * credit them with an implicit quiescent state.  Return 1 if this CPU
 362 * is in dynticks idle mode, which is an extended quiescent state.
 363 */
 364static int dyntick_save_progress_counter(struct rcu_data *rdp)
 365{
 366        int ret;
 367        int snap;
 368        int snap_nmi;
 369
 370        snap = rdp->dynticks->dynticks;
 371        snap_nmi = rdp->dynticks->dynticks_nmi;
 372        smp_mb();       /* Order sampling of snap with end of grace period. */
 373        rdp->dynticks_snap = snap;
 374        rdp->dynticks_nmi_snap = snap_nmi;
 375        ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
 376        if (ret)
 377                rdp->dynticks_fqs++;
 378        return ret;
 379}
 380
 381/*
 382 * Return true if the specified CPU has passed through a quiescent
 383 * state by virtue of being in or having passed through an dynticks
 384 * idle state since the last call to dyntick_save_progress_counter()
 385 * for this same CPU.
 386 */
 387static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 388{
 389        long curr;
 390        long curr_nmi;
 391        long snap;
 392        long snap_nmi;
 393
 394        curr = rdp->dynticks->dynticks;
 395        snap = rdp->dynticks_snap;
 396        curr_nmi = rdp->dynticks->dynticks_nmi;
 397        snap_nmi = rdp->dynticks_nmi_snap;
 398        smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
 399
 400        /*
 401         * If the CPU passed through or entered a dynticks idle phase with
 402         * no active irq/NMI handlers, then we can safely pretend that the CPU
 403         * already acknowledged the request to pass through a quiescent
 404         * state.  Either way, that CPU cannot possibly be in an RCU
 405         * read-side critical section that started before the beginning
 406         * of the current RCU grace period.
 407         */
 408        if ((curr != snap || (curr & 0x1) == 0) &&
 409            (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
 410                rdp->dynticks_fqs++;
 411                return 1;
 412        }
 413
 414        /* Go check for the CPU being offline. */
 415        return rcu_implicit_offline_qs(rdp);
 416}
 417
 418#endif /* #ifdef CONFIG_SMP */
 419
 420#else /* #ifdef CONFIG_NO_HZ */
 421
 422static void dyntick_record_completed(struct rcu_state *rsp, long comp)
 423{
 424}
 425
 426#ifdef CONFIG_SMP
 427
 428/*
 429 * If there are no dynticks, then the only way that a CPU can passively
 430 * be in a quiescent state is to be offline.  Unlike dynticks idle, which
 431 * is a point in time during the prior (already finished) grace period,
 432 * an offline CPU is always in a quiescent state, and thus can be
 433 * unconditionally applied.  So just return the current value of completed.
 434 */
 435static long dyntick_recall_completed(struct rcu_state *rsp)
 436{
 437        return rsp->completed;
 438}
 439
 440static int dyntick_save_progress_counter(struct rcu_data *rdp)
 441{
 442        return 0;
 443}
 444
 445static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 446{
 447        return rcu_implicit_offline_qs(rdp);
 448}
 449
 450#endif /* #ifdef CONFIG_SMP */
 451
 452#endif /* #else #ifdef CONFIG_NO_HZ */
 453
 454#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
 455
 456static void record_gp_stall_check_time(struct rcu_state *rsp)
 457{
 458        rsp->gp_start = jiffies;
 459        rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
 460}
 461
 462static void print_other_cpu_stall(struct rcu_state *rsp)
 463{
 464        int cpu;
 465        long delta;
 466        unsigned long flags;
 467        struct rcu_node *rnp = rcu_get_root(rsp);
 468
 469        /* Only let one CPU complain about others per time interval. */
 470
 471        spin_lock_irqsave(&rnp->lock, flags);
 472        delta = jiffies - rsp->jiffies_stall;
 473        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 474                spin_unlock_irqrestore(&rnp->lock, flags);
 475                return;
 476        }
 477        rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
 478
 479        /*
 480         * Now rat on any tasks that got kicked up to the root rcu_node
 481         * due to CPU offlining.
 482         */
 483        rcu_print_task_stall(rnp);
 484        spin_unlock_irqrestore(&rnp->lock, flags);
 485
 486        /* OK, time to rat on our buddy... */
 487
 488        printk(KERN_ERR "INFO: RCU detected CPU stalls:");
 489        rcu_for_each_leaf_node(rsp, rnp) {
 490                rcu_print_task_stall(rnp);
 491                if (rnp->qsmask == 0)
 492                        continue;
 493                for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 494                        if (rnp->qsmask & (1UL << cpu))
 495                                printk(" %d", rnp->grplo + cpu);
 496        }
 497        printk(" (detected by %d, t=%ld jiffies)\n",
 498               smp_processor_id(), (long)(jiffies - rsp->gp_start));
 499        trigger_all_cpu_backtrace();
 500
 501        force_quiescent_state(rsp, 0);  /* Kick them all. */
 502}
 503
 504static void print_cpu_stall(struct rcu_state *rsp)
 505{
 506        unsigned long flags;
 507        struct rcu_node *rnp = rcu_get_root(rsp);
 508
 509        printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
 510                        smp_processor_id(), jiffies - rsp->gp_start);
 511        trigger_all_cpu_backtrace();
 512
 513        spin_lock_irqsave(&rnp->lock, flags);
 514        if ((long)(jiffies - rsp->jiffies_stall) >= 0)
 515                rsp->jiffies_stall =
 516                        jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
 517        spin_unlock_irqrestore(&rnp->lock, flags);
 518
 519        set_need_resched();  /* kick ourselves to get things going. */
 520}
 521
 522static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 523{
 524        long delta;
 525        struct rcu_node *rnp;
 526
 527        delta = jiffies - rsp->jiffies_stall;
 528        rnp = rdp->mynode;
 529        if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
 530
 531                /* We haven't checked in, so go dump stack. */
 532                print_cpu_stall(rsp);
 533
 534        } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
 535
 536                /* They had two time units to dump stack, so complain. */
 537                print_other_cpu_stall(rsp);
 538        }
 539}
 540
 541#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 542
 543static void record_gp_stall_check_time(struct rcu_state *rsp)
 544{
 545}
 546
 547static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 548{
 549}
 550
 551#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 552
 553/*
 554 * Update CPU-local rcu_data state to record the newly noticed grace period.
 555 * This is used both when we started the grace period and when we notice
 556 * that someone else started the grace period.
 557 */
 558static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
 559{
 560        rdp->qs_pending = 1;
 561        rdp->passed_quiesc = 0;
 562        rdp->gpnum = rsp->gpnum;
 563}
 564
 565/*
 566 * Did someone else start a new RCU grace period start since we last
 567 * checked?  Update local state appropriately if so.  Must be called
 568 * on the CPU corresponding to rdp.
 569 */
 570static int
 571check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
 572{
 573        unsigned long flags;
 574        int ret = 0;
 575
 576        local_irq_save(flags);
 577        if (rdp->gpnum != rsp->gpnum) {
 578                note_new_gpnum(rsp, rdp);
 579                ret = 1;
 580        }
 581        local_irq_restore(flags);
 582        return ret;
 583}
 584
 585/*
 586 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 587 * in preparation for detecting the next grace period.  The caller must hold
 588 * the root node's ->lock, which is released before return.  Hard irqs must
 589 * be disabled.
 590 */
 591static void
 592rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
 593        __releases(rcu_get_root(rsp)->lock)
 594{
 595        struct rcu_data *rdp = rsp->rda[smp_processor_id()];
 596        struct rcu_node *rnp = rcu_get_root(rsp);
 597
 598        if (!cpu_needs_another_gp(rsp, rdp)) {
 599                spin_unlock_irqrestore(&rnp->lock, flags);
 600                return;
 601        }
 602
 603        /* Advance to a new grace period and initialize state. */
 604        rsp->gpnum++;
 605        WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
 606        rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
 607        rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
 608        record_gp_stall_check_time(rsp);
 609        dyntick_record_completed(rsp, rsp->completed - 1);
 610        note_new_gpnum(rsp, rdp);
 611
 612        /*
 613         * Because this CPU just now started the new grace period, we know
 614         * that all of its callbacks will be covered by this upcoming grace
 615         * period, even the ones that were registered arbitrarily recently.
 616         * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
 617         *
 618         * Other CPUs cannot be sure exactly when the grace period started.
 619         * Therefore, their recently registered callbacks must pass through
 620         * an additional RCU_NEXT_READY stage, so that they will be handled
 621         * by the next RCU grace period.
 622         */
 623        rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 624        rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 625
 626        /* Special-case the common single-level case. */
 627        if (NUM_RCU_NODES == 1) {
 628                rcu_preempt_check_blocked_tasks(rnp);
 629                rnp->qsmask = rnp->qsmaskinit;
 630                rnp->gpnum = rsp->gpnum;
 631                rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
 632                spin_unlock_irqrestore(&rnp->lock, flags);
 633                return;
 634        }
 635
 636        spin_unlock(&rnp->lock);  /* leave irqs disabled. */
 637
 638
 639        /* Exclude any concurrent CPU-hotplug operations. */
 640        spin_lock(&rsp->onofflock);  /* irqs already disabled. */
 641
 642        /*
 643         * Set the quiescent-state-needed bits in all the rcu_node
 644         * structures for all currently online CPUs in breadth-first
 645         * order, starting from the root rcu_node structure.  This
 646         * operation relies on the layout of the hierarchy within the
 647         * rsp->node[] array.  Note that other CPUs will access only
 648         * the leaves of the hierarchy, which still indicate that no
 649         * grace period is in progress, at least until the corresponding
 650         * leaf node has been initialized.  In addition, we have excluded
 651         * CPU-hotplug operations.
 652         *
 653         * Note that the grace period cannot complete until we finish
 654         * the initialization process, as there will be at least one
 655         * qsmask bit set in the root node until that time, namely the
 656         * one corresponding to this CPU, due to the fact that we have
 657         * irqs disabled.
 658         */
 659        rcu_for_each_node_breadth_first(rsp, rnp) {
 660                spin_lock(&rnp->lock);          /* irqs already disabled. */
 661                rcu_preempt_check_blocked_tasks(rnp);
 662                rnp->qsmask = rnp->qsmaskinit;
 663                rnp->gpnum = rsp->gpnum;
 664                spin_unlock(&rnp->lock);        /* irqs remain disabled. */
 665        }
 666
 667        rnp = rcu_get_root(rsp);
 668        spin_lock(&rnp->lock);                  /* irqs already disabled. */
 669        rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
 670        spin_unlock(&rnp->lock);                /* irqs remain disabled. */
 671        spin_unlock_irqrestore(&rsp->onofflock, flags);
 672}
 673
 674/*
 675 * Advance this CPU's callbacks, but only if the current grace period
 676 * has ended.  This may be called only from the CPU to whom the rdp
 677 * belongs.
 678 */
 679static void
 680rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
 681{
 682        long completed_snap;
 683        unsigned long flags;
 684
 685        local_irq_save(flags);
 686        completed_snap = ACCESS_ONCE(rsp->completed);  /* outside of lock. */
 687
 688        /* Did another grace period end? */
 689        if (rdp->completed != completed_snap) {
 690
 691                /* Advance callbacks.  No harm if list empty. */
 692                rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
 693                rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
 694                rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 695
 696                /* Remember that we saw this grace-period completion. */
 697                rdp->completed = completed_snap;
 698        }
 699        local_irq_restore(flags);
 700}
 701
 702/*
 703 * Clean up after the prior grace period and let rcu_start_gp() start up
 704 * the next grace period if one is needed.  Note that the caller must
 705 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
 706 */
 707static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
 708        __releases(rcu_get_root(rsp)->lock)
 709{
 710        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
 711        rsp->completed = rsp->gpnum;
 712        rsp->signaled = RCU_GP_IDLE;
 713        rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
 714        rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
 715}
 716
 717/*
 718 * Similar to cpu_quiet(), for which it is a helper function.  Allows
 719 * a group of CPUs to be quieted at one go, though all the CPUs in the
 720 * group must be represented by the same leaf rcu_node structure.
 721 * That structure's lock must be held upon entry, and it is released
 722 * before return.
 723 */
 724static void
 725cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
 726              unsigned long flags)
 727        __releases(rnp->lock)
 728{
 729        struct rcu_node *rnp_c;
 730
 731        /* Walk up the rcu_node hierarchy. */
 732        for (;;) {
 733                if (!(rnp->qsmask & mask)) {
 734
 735                        /* Our bit has already been cleared, so done. */
 736                        spin_unlock_irqrestore(&rnp->lock, flags);
 737                        return;
 738                }
 739                rnp->qsmask &= ~mask;
 740                if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
 741
 742                        /* Other bits still set at this level, so done. */
 743                        spin_unlock_irqrestore(&rnp->lock, flags);
 744                        return;
 745                }
 746                mask = rnp->grpmask;
 747                if (rnp->parent == NULL) {
 748
 749                        /* No more levels.  Exit loop holding root lock. */
 750
 751                        break;
 752                }
 753                spin_unlock_irqrestore(&rnp->lock, flags);
 754                rnp_c = rnp;
 755                rnp = rnp->parent;
 756                spin_lock_irqsave(&rnp->lock, flags);
 757                WARN_ON_ONCE(rnp_c->qsmask);
 758        }
 759
 760        /*
 761         * Get here if we are the last CPU to pass through a quiescent
 762         * state for this grace period.  Invoke cpu_quiet_msk_finish()
 763         * to clean up and start the next grace period if one is needed.
 764         */
 765        cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
 766}
 767
 768/*
 769 * Record a quiescent state for the specified CPU, which must either be
 770 * the current CPU.  The lastcomp argument is used to make sure we are
 771 * still in the grace period of interest.  We don't want to end the current
 772 * grace period based on quiescent states detected in an earlier grace
 773 * period!
 774 */
 775static void
 776cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
 777{
 778        unsigned long flags;
 779        unsigned long mask;
 780        struct rcu_node *rnp;
 781
 782        rnp = rdp->mynode;
 783        spin_lock_irqsave(&rnp->lock, flags);
 784        if (lastcomp != ACCESS_ONCE(rsp->completed)) {
 785
 786                /*
 787                 * Someone beat us to it for this grace period, so leave.
 788                 * The race with GP start is resolved by the fact that we
 789                 * hold the leaf rcu_node lock, so that the per-CPU bits
 790                 * cannot yet be initialized -- so we would simply find our
 791                 * CPU's bit already cleared in cpu_quiet_msk() if this race
 792                 * occurred.
 793                 */
 794                rdp->passed_quiesc = 0; /* try again later! */
 795                spin_unlock_irqrestore(&rnp->lock, flags);
 796                return;
 797        }
 798        mask = rdp->grpmask;
 799        if ((rnp->qsmask & mask) == 0) {
 800                spin_unlock_irqrestore(&rnp->lock, flags);
 801        } else {
 802                rdp->qs_pending = 0;
 803
 804                /*
 805                 * This GP can't end until cpu checks in, so all of our
 806                 * callbacks can be processed during the next GP.
 807                 */
 808                rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 809
 810                cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
 811        }
 812}
 813
 814/*
 815 * Check to see if there is a new grace period of which this CPU
 816 * is not yet aware, and if so, set up local rcu_data state for it.
 817 * Otherwise, see if this CPU has just passed through its first
 818 * quiescent state for this grace period, and record that fact if so.
 819 */
 820static void
 821rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
 822{
 823        /* If there is now a new grace period, record and return. */
 824        if (check_for_new_grace_period(rsp, rdp))
 825                return;
 826
 827        /*
 828         * Does this CPU still need to do its part for current grace period?
 829         * If no, return and let the other CPUs do their part as well.
 830         */
 831        if (!rdp->qs_pending)
 832                return;
 833
 834        /*
 835         * Was there a quiescent state since the beginning of the grace
 836         * period? If no, then exit and wait for the next call.
 837         */
 838        if (!rdp->passed_quiesc)
 839                return;
 840
 841        /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
 842        cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
 843}
 844
 845#ifdef CONFIG_HOTPLUG_CPU
 846
 847/*
 848 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
 849 * specified flavor of RCU.  The callbacks will be adopted by the next
 850 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
 851 * comes first.  Because this is invoked from the CPU_DYING notifier,
 852 * irqs are already disabled.
 853 */
 854static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
 855{
 856        int i;
 857        struct rcu_data *rdp = rsp->rda[smp_processor_id()];
 858
 859        if (rdp->nxtlist == NULL)
 860                return;  /* irqs disabled, so comparison is stable. */
 861        spin_lock(&rsp->onofflock);  /* irqs already disabled. */
 862        *rsp->orphan_cbs_tail = rdp->nxtlist;
 863        rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
 864        rdp->nxtlist = NULL;
 865        for (i = 0; i < RCU_NEXT_SIZE; i++)
 866                rdp->nxttail[i] = &rdp->nxtlist;
 867        rsp->orphan_qlen += rdp->qlen;
 868        rdp->qlen = 0;
 869        spin_unlock(&rsp->onofflock);  /* irqs remain disabled. */
 870}
 871
 872/*
 873 * Adopt previously orphaned RCU callbacks.
 874 */
 875static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
 876{
 877        unsigned long flags;
 878        struct rcu_data *rdp;
 879
 880        spin_lock_irqsave(&rsp->onofflock, flags);
 881        rdp = rsp->rda[smp_processor_id()];
 882        if (rsp->orphan_cbs_list == NULL) {
 883                spin_unlock_irqrestore(&rsp->onofflock, flags);
 884                return;
 885        }
 886        *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
 887        rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
 888        rdp->qlen += rsp->orphan_qlen;
 889        rsp->orphan_cbs_list = NULL;
 890        rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
 891        rsp->orphan_qlen = 0;
 892        spin_unlock_irqrestore(&rsp->onofflock, flags);
 893}
 894
 895/*
 896 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 897 * and move all callbacks from the outgoing CPU to the current one.
 898 */
 899static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
 900{
 901        unsigned long flags;
 902        long lastcomp;
 903        unsigned long mask;
 904        struct rcu_data *rdp = rsp->rda[cpu];
 905        struct rcu_node *rnp;
 906
 907        /* Exclude any attempts to start a new grace period. */
 908        spin_lock_irqsave(&rsp->onofflock, flags);
 909
 910        /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
 911        rnp = rdp->mynode;      /* this is the outgoing CPU's rnp. */
 912        mask = rdp->grpmask;    /* rnp->grplo is constant. */
 913        do {
 914                spin_lock(&rnp->lock);          /* irqs already disabled. */
 915                rnp->qsmaskinit &= ~mask;
 916                if (rnp->qsmaskinit != 0) {
 917                        spin_unlock(&rnp->lock); /* irqs remain disabled. */
 918                        break;
 919                }
 920
 921                /*
 922                 * If there was a task blocking the current grace period,
 923                 * and if all CPUs have checked in, we need to propagate
 924                 * the quiescent state up the rcu_node hierarchy.  But that
 925                 * is inconvenient at the moment due to deadlock issues if
 926                 * this should end the current grace period.  So set the
 927                 * offlined CPU's bit in ->qsmask in order to force the
 928                 * next force_quiescent_state() invocation to clean up this
 929                 * mess in a deadlock-free manner.
 930                 */
 931                if (rcu_preempt_offline_tasks(rsp, rnp, rdp) && !rnp->qsmask)
 932                        rnp->qsmask |= mask;
 933
 934                mask = rnp->grpmask;
 935                spin_unlock(&rnp->lock);        /* irqs remain disabled. */
 936                rnp = rnp->parent;
 937        } while (rnp != NULL);
 938        lastcomp = rsp->completed;
 939
 940        spin_unlock_irqrestore(&rsp->onofflock, flags);
 941
 942        rcu_adopt_orphan_cbs(rsp);
 943}
 944
 945/*
 946 * Remove the specified CPU from the RCU hierarchy and move any pending
 947 * callbacks that it might have to the current CPU.  This code assumes
 948 * that at least one CPU in the system will remain running at all times.
 949 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 950 */
 951static void rcu_offline_cpu(int cpu)
 952{
 953        __rcu_offline_cpu(cpu, &rcu_sched_state);
 954        __rcu_offline_cpu(cpu, &rcu_bh_state);
 955        rcu_preempt_offline_cpu(cpu);
 956}
 957
 958#else /* #ifdef CONFIG_HOTPLUG_CPU */
 959
 960static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
 961{
 962}
 963
 964static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
 965{
 966}
 967
 968static void rcu_offline_cpu(int cpu)
 969{
 970}
 971
 972#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
 973
 974/*
 975 * Invoke any RCU callbacks that have made it to the end of their grace
 976 * period.  Thottle as specified by rdp->blimit.
 977 */
 978static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
 979{
 980        unsigned long flags;
 981        struct rcu_head *next, *list, **tail;
 982        int count;
 983
 984        /* If no callbacks are ready, just return.*/
 985        if (!cpu_has_callbacks_ready_to_invoke(rdp))
 986                return;
 987
 988        /*
 989         * Extract the list of ready callbacks, disabling to prevent
 990         * races with call_rcu() from interrupt handlers.
 991         */
 992        local_irq_save(flags);
 993        list = rdp->nxtlist;
 994        rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
 995        *rdp->nxttail[RCU_DONE_TAIL] = NULL;
 996        tail = rdp->nxttail[RCU_DONE_TAIL];
 997        for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
 998                if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
 999                        rdp->nxttail[count] = &rdp->nxtlist;
1000        local_irq_restore(flags);
1001
1002        /* Invoke callbacks. */
1003        count = 0;
1004        while (list) {
1005                next = list->next;
1006                prefetch(next);
1007                list->func(list);
1008                list = next;
1009                if (++count >= rdp->blimit)
1010                        break;
1011        }
1012
1013        local_irq_save(flags);
1014
1015        /* Update count, and requeue any remaining callbacks. */
1016        rdp->qlen -= count;
1017        if (list != NULL) {
1018                *tail = rdp->nxtlist;
1019                rdp->nxtlist = list;
1020                for (count = 0; count < RCU_NEXT_SIZE; count++)
1021                        if (&rdp->nxtlist == rdp->nxttail[count])
1022                                rdp->nxttail[count] = tail;
1023                        else
1024                                break;
1025        }
1026
1027        /* Reinstate batch limit if we have worked down the excess. */
1028        if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1029                rdp->blimit = blimit;
1030
1031        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1032        if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1033                rdp->qlen_last_fqs_check = 0;
1034                rdp->n_force_qs_snap = rsp->n_force_qs;
1035        } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1036                rdp->qlen_last_fqs_check = rdp->qlen;
1037
1038        local_irq_restore(flags);
1039
1040        /* Re-raise the RCU softirq if there are callbacks remaining. */
1041        if (cpu_has_callbacks_ready_to_invoke(rdp))
1042                raise_softirq(RCU_SOFTIRQ);
1043}
1044
1045/*
1046 * Check to see if this CPU is in a non-context-switch quiescent state
1047 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1048 * Also schedule the RCU softirq handler.
1049 *
1050 * This function must be called with hardirqs disabled.  It is normally
1051 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
1052 * false, there is no point in invoking rcu_check_callbacks().
1053 */
1054void rcu_check_callbacks(int cpu, int user)
1055{
1056        if (!rcu_pending(cpu))
1057                return; /* if nothing for RCU to do. */
1058        if (user ||
1059            (idle_cpu(cpu) && rcu_scheduler_active &&
1060             !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1061
1062                /*
1063                 * Get here if this CPU took its interrupt from user
1064                 * mode or from the idle loop, and if this is not a
1065                 * nested interrupt.  In this case, the CPU is in
1066                 * a quiescent state, so note it.
1067                 *
1068                 * No memory barrier is required here because both
1069                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1070                 * variables that other CPUs neither access nor modify,
1071                 * at least not while the corresponding CPU is online.
1072                 */
1073
1074                rcu_sched_qs(cpu);
1075                rcu_bh_qs(cpu);
1076
1077        } else if (!in_softirq()) {
1078
1079                /*
1080                 * Get here if this CPU did not take its interrupt from
1081                 * softirq, in other words, if it is not interrupting
1082                 * a rcu_bh read-side critical section.  This is an _bh
1083                 * critical section, so note it.
1084                 */
1085
1086                rcu_bh_qs(cpu);
1087        }
1088        rcu_preempt_check_callbacks(cpu);
1089        raise_softirq(RCU_SOFTIRQ);
1090}
1091
1092#ifdef CONFIG_SMP
1093
1094/*
1095 * Scan the leaf rcu_node structures, processing dyntick state for any that
1096 * have not yet encountered a quiescent state, using the function specified.
1097 * Returns 1 if the current grace period ends while scanning (possibly
1098 * because we made it end).
1099 */
1100static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1101                               int (*f)(struct rcu_data *))
1102{
1103        unsigned long bit;
1104        int cpu;
1105        unsigned long flags;
1106        unsigned long mask;
1107        struct rcu_node *rnp;
1108
1109        rcu_for_each_leaf_node(rsp, rnp) {
1110                mask = 0;
1111                spin_lock_irqsave(&rnp->lock, flags);
1112                if (rsp->completed != lastcomp) {
1113                        spin_unlock_irqrestore(&rnp->lock, flags);
1114                        return 1;
1115                }
1116                if (rnp->qsmask == 0) {
1117                        spin_unlock_irqrestore(&rnp->lock, flags);
1118                        continue;
1119                }
1120                cpu = rnp->grplo;
1121                bit = 1;
1122                for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1123                        if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1124                                mask |= bit;
1125                }
1126                if (mask != 0 && rsp->completed == lastcomp) {
1127
1128                        /* cpu_quiet_msk() releases rnp->lock. */
1129                        cpu_quiet_msk(mask, rsp, rnp, flags);
1130                        continue;
1131                }
1132                spin_unlock_irqrestore(&rnp->lock, flags);
1133        }
1134        return 0;
1135}
1136
1137/*
1138 * Force quiescent states on reluctant CPUs, and also detect which
1139 * CPUs are in dyntick-idle mode.
1140 */
1141static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1142{
1143        unsigned long flags;
1144        long lastcomp;
1145        struct rcu_node *rnp = rcu_get_root(rsp);
1146        u8 signaled;
1147
1148        if (!rcu_gp_in_progress(rsp))
1149                return;  /* No grace period in progress, nothing to force. */
1150        if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1151                rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1152                return; /* Someone else is already on the job. */
1153        }
1154        if (relaxed &&
1155            (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1156                goto unlock_ret; /* no emergency and done recently. */
1157        rsp->n_force_qs++;
1158        spin_lock(&rnp->lock);
1159        lastcomp = rsp->completed;
1160        signaled = rsp->signaled;
1161        rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1162        if (lastcomp == rsp->gpnum) {
1163                rsp->n_force_qs_ngp++;
1164                spin_unlock(&rnp->lock);
1165                goto unlock_ret;  /* no GP in progress, time updated. */
1166        }
1167        spin_unlock(&rnp->lock);
1168        switch (signaled) {
1169        case RCU_GP_IDLE:
1170        case RCU_GP_INIT:
1171
1172                break; /* grace period idle or initializing, ignore. */
1173
1174        case RCU_SAVE_DYNTICK:
1175
1176                if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1177                        break; /* So gcc recognizes the dead code. */
1178
1179                /* Record dyntick-idle state. */
1180                if (rcu_process_dyntick(rsp, lastcomp,
1181                                        dyntick_save_progress_counter))
1182                        goto unlock_ret;
1183
1184                /* Update state, record completion counter. */
1185                spin_lock(&rnp->lock);
1186                if (lastcomp == rsp->completed &&
1187                    rsp->signaled == RCU_SAVE_DYNTICK) {
1188                        rsp->signaled = RCU_FORCE_QS;
1189                        dyntick_record_completed(rsp, lastcomp);
1190                }
1191                spin_unlock(&rnp->lock);
1192                break;
1193
1194        case RCU_FORCE_QS:
1195
1196                /* Check dyntick-idle state, send IPI to laggarts. */
1197                if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1198                                        rcu_implicit_dynticks_qs))
1199                        goto unlock_ret;
1200
1201                /* Leave state in case more forcing is required. */
1202
1203                break;
1204        }
1205unlock_ret:
1206        spin_unlock_irqrestore(&rsp->fqslock, flags);
1207}
1208
1209#else /* #ifdef CONFIG_SMP */
1210
1211static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1212{
1213        set_need_resched();
1214}
1215
1216#endif /* #else #ifdef CONFIG_SMP */
1217
1218/*
1219 * This does the RCU processing work from softirq context for the
1220 * specified rcu_state and rcu_data structures.  This may be called
1221 * only from the CPU to whom the rdp belongs.
1222 */
1223static void
1224__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1225{
1226        unsigned long flags;
1227
1228        WARN_ON_ONCE(rdp->beenonline == 0);
1229
1230        /*
1231         * If an RCU GP has gone long enough, go check for dyntick
1232         * idle CPUs and, if needed, send resched IPIs.
1233         */
1234        if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1235                force_quiescent_state(rsp, 1);
1236
1237        /*
1238         * Advance callbacks in response to end of earlier grace
1239         * period that some other CPU ended.
1240         */
1241        rcu_process_gp_end(rsp, rdp);
1242
1243        /* Update RCU state based on any recent quiescent states. */
1244        rcu_check_quiescent_state(rsp, rdp);
1245
1246        /* Does this CPU require a not-yet-started grace period? */
1247        if (cpu_needs_another_gp(rsp, rdp)) {
1248                spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1249                rcu_start_gp(rsp, flags);  /* releases above lock */
1250        }
1251
1252        /* If there are callbacks ready, invoke them. */
1253        rcu_do_batch(rsp, rdp);
1254}
1255
1256/*
1257 * Do softirq processing for the current CPU.
1258 */
1259static void rcu_process_callbacks(struct softirq_action *unused)
1260{
1261        /*
1262         * Memory references from any prior RCU read-side critical sections
1263         * executed by the interrupted code must be seen before any RCU
1264         * grace-period manipulations below.
1265         */
1266        smp_mb(); /* See above block comment. */
1267
1268        __rcu_process_callbacks(&rcu_sched_state,
1269                                &__get_cpu_var(rcu_sched_data));
1270        __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1271        rcu_preempt_process_callbacks();
1272
1273        /*
1274         * Memory references from any later RCU read-side critical sections
1275         * executed by the interrupted code must be seen after any RCU
1276         * grace-period manipulations above.
1277         */
1278        smp_mb(); /* See above block comment. */
1279}
1280
1281static void
1282__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1283           struct rcu_state *rsp)
1284{
1285        unsigned long flags;
1286        struct rcu_data *rdp;
1287
1288        head->func = func;
1289        head->next = NULL;
1290
1291        smp_mb(); /* Ensure RCU update seen before callback registry. */
1292
1293        /*
1294         * Opportunistically note grace-period endings and beginnings.
1295         * Note that we might see a beginning right after we see an
1296         * end, but never vice versa, since this CPU has to pass through
1297         * a quiescent state betweentimes.
1298         */
1299        local_irq_save(flags);
1300        rdp = rsp->rda[smp_processor_id()];
1301        rcu_process_gp_end(rsp, rdp);
1302        check_for_new_grace_period(rsp, rdp);
1303
1304        /* Add the callback to our list. */
1305        *rdp->nxttail[RCU_NEXT_TAIL] = head;
1306        rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1307
1308        /* Start a new grace period if one not already started. */
1309        if (!rcu_gp_in_progress(rsp)) {
1310                unsigned long nestflag;
1311                struct rcu_node *rnp_root = rcu_get_root(rsp);
1312
1313                spin_lock_irqsave(&rnp_root->lock, nestflag);
1314                rcu_start_gp(rsp, nestflag);  /* releases rnp_root->lock. */
1315        }
1316
1317        /*
1318         * Force the grace period if too many callbacks or too long waiting.
1319         * Enforce hysteresis, and don't invoke force_quiescent_state()
1320         * if some other CPU has recently done so.  Also, don't bother
1321         * invoking force_quiescent_state() if the newly enqueued callback
1322         * is the only one waiting for a grace period to complete.
1323         */
1324        if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1325                rdp->blimit = LONG_MAX;
1326                if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1327                    *rdp->nxttail[RCU_DONE_TAIL] != head)
1328                        force_quiescent_state(rsp, 0);
1329                rdp->n_force_qs_snap = rsp->n_force_qs;
1330                rdp->qlen_last_fqs_check = rdp->qlen;
1331        } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1332                force_quiescent_state(rsp, 1);
1333        local_irq_restore(flags);
1334}
1335
1336/*
1337 * Queue an RCU-sched callback for invocation after a grace period.
1338 */
1339void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1340{
1341        __call_rcu(head, func, &rcu_sched_state);
1342}
1343EXPORT_SYMBOL_GPL(call_rcu_sched);
1344
1345/*
1346 * Queue an RCU for invocation after a quicker grace period.
1347 */
1348void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1349{
1350        __call_rcu(head, func, &rcu_bh_state);
1351}
1352EXPORT_SYMBOL_GPL(call_rcu_bh);
1353
1354/*
1355 * Check to see if there is any immediate RCU-related work to be done
1356 * by the current CPU, for the specified type of RCU, returning 1 if so.
1357 * The checks are in order of increasing expense: checks that can be
1358 * carried out against CPU-local state are performed first.  However,
1359 * we must check for CPU stalls first, else we might not get a chance.
1360 */
1361static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1362{
1363        rdp->n_rcu_pending++;
1364
1365        /* Check for CPU stalls, if enabled. */
1366        check_cpu_stall(rsp, rdp);
1367
1368        /* Is the RCU core waiting for a quiescent state from this CPU? */
1369        if (rdp->qs_pending) {
1370                rdp->n_rp_qs_pending++;
1371                return 1;
1372        }
1373
1374        /* Does this CPU have callbacks ready to invoke? */
1375        if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1376                rdp->n_rp_cb_ready++;
1377                return 1;
1378        }
1379
1380        /* Has RCU gone idle with this CPU needing another grace period? */
1381        if (cpu_needs_another_gp(rsp, rdp)) {
1382                rdp->n_rp_cpu_needs_gp++;
1383                return 1;
1384        }
1385
1386        /* Has another RCU grace period completed?  */
1387        if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1388                rdp->n_rp_gp_completed++;
1389                return 1;
1390        }
1391
1392        /* Has a new RCU grace period started? */
1393        if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1394                rdp->n_rp_gp_started++;
1395                return 1;
1396        }
1397
1398        /* Has an RCU GP gone long enough to send resched IPIs &c? */
1399        if (rcu_gp_in_progress(rsp) &&
1400            ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1401                rdp->n_rp_need_fqs++;
1402                return 1;
1403        }
1404
1405        /* nothing to do */
1406        rdp->n_rp_need_nothing++;
1407        return 0;
1408}
1409
1410/*
1411 * Check to see if there is any immediate RCU-related work to be done
1412 * by the current CPU, returning 1 if so.  This function is part of the
1413 * RCU implementation; it is -not- an exported member of the RCU API.
1414 */
1415static int rcu_pending(int cpu)
1416{
1417        return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1418               __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1419               rcu_preempt_pending(cpu);
1420}
1421
1422/*
1423 * Check to see if any future RCU-related work will need to be done
1424 * by the current CPU, even if none need be done immediately, returning
1425 * 1 if so.  This function is part of the RCU implementation; it is -not-
1426 * an exported member of the RCU API.
1427 */
1428int rcu_needs_cpu(int cpu)
1429{
1430        /* RCU callbacks either ready or pending? */
1431        return per_cpu(rcu_sched_data, cpu).nxtlist ||
1432               per_cpu(rcu_bh_data, cpu).nxtlist ||
1433               rcu_preempt_needs_cpu(cpu);
1434}
1435
1436static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1437static atomic_t rcu_barrier_cpu_count;
1438static DEFINE_MUTEX(rcu_barrier_mutex);
1439static struct completion rcu_barrier_completion;
1440
1441static void rcu_barrier_callback(struct rcu_head *notused)
1442{
1443        if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1444                complete(&rcu_barrier_completion);
1445}
1446
1447/*
1448 * Called with preemption disabled, and from cross-cpu IRQ context.
1449 */
1450static void rcu_barrier_func(void *type)
1451{
1452        int cpu = smp_processor_id();
1453        struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1454        void (*call_rcu_func)(struct rcu_head *head,
1455                              void (*func)(struct rcu_head *head));
1456
1457        atomic_inc(&rcu_barrier_cpu_count);
1458        call_rcu_func = type;
1459        call_rcu_func(head, rcu_barrier_callback);
1460}
1461
1462/*
1463 * Orchestrate the specified type of RCU barrier, waiting for all
1464 * RCU callbacks of the specified type to complete.
1465 */
1466static void _rcu_barrier(struct rcu_state *rsp,
1467                         void (*call_rcu_func)(struct rcu_head *head,
1468                                               void (*func)(struct rcu_head *head)))
1469{
1470        BUG_ON(in_interrupt());
1471        /* Take mutex to serialize concurrent rcu_barrier() requests. */
1472        mutex_lock(&rcu_barrier_mutex);
1473        init_completion(&rcu_barrier_completion);
1474        /*
1475         * Initialize rcu_barrier_cpu_count to 1, then invoke
1476         * rcu_barrier_func() on each CPU, so that each CPU also has
1477         * incremented rcu_barrier_cpu_count.  Only then is it safe to
1478         * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1479         * might complete its grace period before all of the other CPUs
1480         * did their increment, causing this function to return too
1481         * early.
1482         */
1483        atomic_set(&rcu_barrier_cpu_count, 1);
1484        preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1485        rcu_adopt_orphan_cbs(rsp);
1486        on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1487        preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1488        if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1489                complete(&rcu_barrier_completion);
1490        wait_for_completion(&rcu_barrier_completion);
1491        mutex_unlock(&rcu_barrier_mutex);
1492}
1493
1494/**
1495 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1496 */
1497void rcu_barrier_bh(void)
1498{
1499        _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1500}
1501EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1502
1503/**
1504 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1505 */
1506void rcu_barrier_sched(void)
1507{
1508        _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1509}
1510EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1511
1512/*
1513 * Do boot-time initialization of a CPU's per-CPU RCU data.
1514 */
1515static void __init
1516rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1517{
1518        unsigned long flags;
1519        int i;
1520        struct rcu_data *rdp = rsp->rda[cpu];
1521        struct rcu_node *rnp = rcu_get_root(rsp);
1522
1523        /* Set up local state, ensuring consistent view of global state. */
1524        spin_lock_irqsave(&rnp->lock, flags);
1525        rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1526        rdp->nxtlist = NULL;
1527        for (i = 0; i < RCU_NEXT_SIZE; i++)
1528                rdp->nxttail[i] = &rdp->nxtlist;
1529        rdp->qlen = 0;
1530#ifdef CONFIG_NO_HZ
1531        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1532#endif /* #ifdef CONFIG_NO_HZ */
1533        rdp->cpu = cpu;
1534        spin_unlock_irqrestore(&rnp->lock, flags);
1535}
1536
1537/*
1538 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
1539 * offline event can be happening at a given time.  Note also that we
1540 * can accept some slop in the rsp->completed access due to the fact
1541 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1542 */
1543static void __cpuinit
1544rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1545{
1546        unsigned long flags;
1547        long lastcomp;
1548        unsigned long mask;
1549        struct rcu_data *rdp = rsp->rda[cpu];
1550        struct rcu_node *rnp = rcu_get_root(rsp);
1551
1552        /* Set up local state, ensuring consistent view of global state. */
1553        spin_lock_irqsave(&rnp->lock, flags);
1554        lastcomp = rsp->completed;
1555        rdp->completed = lastcomp;
1556        rdp->gpnum = lastcomp;
1557        rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
1558        rdp->qs_pending = 1;     /*  so set up to respond to current GP. */
1559        rdp->beenonline = 1;     /* We have now been online. */
1560        rdp->preemptable = preemptable;
1561        rdp->passed_quiesc_completed = lastcomp - 1;
1562        rdp->qlen_last_fqs_check = 0;
1563        rdp->n_force_qs_snap = rsp->n_force_qs;
1564        rdp->blimit = blimit;
1565        spin_unlock(&rnp->lock);                /* irqs remain disabled. */
1566
1567        /*
1568         * A new grace period might start here.  If so, we won't be part
1569         * of it, but that is OK, as we are currently in a quiescent state.
1570         */
1571
1572        /* Exclude any attempts to start a new GP on large systems. */
1573        spin_lock(&rsp->onofflock);             /* irqs already disabled. */
1574
1575        /* Add CPU to rcu_node bitmasks. */
1576        rnp = rdp->mynode;
1577        mask = rdp->grpmask;
1578        do {
1579                /* Exclude any attempts to start a new GP on small systems. */
1580                spin_lock(&rnp->lock);  /* irqs already disabled. */
1581                rnp->qsmaskinit |= mask;
1582                mask = rnp->grpmask;
1583                spin_unlock(&rnp->lock); /* irqs already disabled. */
1584                rnp = rnp->parent;
1585        } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1586
1587        spin_unlock_irqrestore(&rsp->onofflock, flags);
1588}
1589
1590static void __cpuinit rcu_online_cpu(int cpu)
1591{
1592        rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1593        rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1594        rcu_preempt_init_percpu_data(cpu);
1595}
1596
1597/*
1598 * Handle CPU online/offline notification events.
1599 */
1600int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1601                             unsigned long action, void *hcpu)
1602{
1603        long cpu = (long)hcpu;
1604
1605        switch (action) {
1606        case CPU_UP_PREPARE:
1607        case CPU_UP_PREPARE_FROZEN:
1608                rcu_online_cpu(cpu);
1609                break;
1610        case CPU_DYING:
1611        case CPU_DYING_FROZEN:
1612                /*
1613                 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1614                 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1615                 * returns, all online cpus have queued rcu_barrier_func().
1616                 * The dying CPU clears its cpu_online_mask bit and
1617                 * moves all of its RCU callbacks to ->orphan_cbs_list
1618                 * in the context of stop_machine(), so subsequent calls
1619                 * to _rcu_barrier() will adopt these callbacks and only
1620                 * then queue rcu_barrier_func() on all remaining CPUs.
1621                 */
1622                rcu_send_cbs_to_orphanage(&rcu_bh_state);
1623                rcu_send_cbs_to_orphanage(&rcu_sched_state);
1624                rcu_preempt_send_cbs_to_orphanage();
1625                break;
1626        case CPU_DEAD:
1627        case CPU_DEAD_FROZEN:
1628        case CPU_UP_CANCELED:
1629        case CPU_UP_CANCELED_FROZEN:
1630                rcu_offline_cpu(cpu);
1631                break;
1632        default:
1633                break;
1634        }
1635        return NOTIFY_OK;
1636}
1637
1638/*
1639 * Compute the per-level fanout, either using the exact fanout specified
1640 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1641 */
1642#ifdef CONFIG_RCU_FANOUT_EXACT
1643static void __init rcu_init_levelspread(struct rcu_state *rsp)
1644{
1645        int i;
1646
1647        for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1648                rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1649}
1650#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1651static void __init rcu_init_levelspread(struct rcu_state *rsp)
1652{
1653        int ccur;
1654        int cprv;
1655        int i;
1656
1657        cprv = NR_CPUS;
1658        for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1659                ccur = rsp->levelcnt[i];
1660                rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1661                cprv = ccur;
1662        }
1663}
1664#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1665
1666/*
1667 * Helper function for rcu_init() that initializes one rcu_state structure.
1668 */
1669static void __init rcu_init_one(struct rcu_state *rsp)
1670{
1671        int cpustride = 1;
1672        int i;
1673        int j;
1674        struct rcu_node *rnp;
1675
1676        /* Initialize the level-tracking arrays. */
1677
1678        for (i = 1; i < NUM_RCU_LVLS; i++)
1679                rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1680        rcu_init_levelspread(rsp);
1681
1682        /* Initialize the elements themselves, starting from the leaves. */
1683
1684        for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1685                cpustride *= rsp->levelspread[i];
1686                rnp = rsp->level[i];
1687                for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1688                        if (rnp != rcu_get_root(rsp))
1689                                spin_lock_init(&rnp->lock);
1690                        rnp->gpnum = 0;
1691                        rnp->qsmask = 0;
1692                        rnp->qsmaskinit = 0;
1693                        rnp->grplo = j * cpustride;
1694                        rnp->grphi = (j + 1) * cpustride - 1;
1695                        if (rnp->grphi >= NR_CPUS)
1696                                rnp->grphi = NR_CPUS - 1;
1697                        if (i == 0) {
1698                                rnp->grpnum = 0;
1699                                rnp->grpmask = 0;
1700                                rnp->parent = NULL;
1701                        } else {
1702                                rnp->grpnum = j % rsp->levelspread[i - 1];
1703                                rnp->grpmask = 1UL << rnp->grpnum;
1704                                rnp->parent = rsp->level[i - 1] +
1705                                              j / rsp->levelspread[i - 1];
1706                        }
1707                        rnp->level = i;
1708                        INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1709                        INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1710                }
1711        }
1712        spin_lock_init(&rcu_get_root(rsp)->lock);
1713}
1714
1715/*
1716 * Helper macro for __rcu_init() and __rcu_init_preempt().  To be used
1717 * nowhere else!  Assigns leaf node pointers into each CPU's rcu_data
1718 * structure.
1719 */
1720#define RCU_INIT_FLAVOR(rsp, rcu_data) \
1721do { \
1722        int i; \
1723        int j; \
1724        struct rcu_node *rnp; \
1725        \
1726        rcu_init_one(rsp); \
1727        rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1728        j = 0; \
1729        for_each_possible_cpu(i) { \
1730                if (i > rnp[j].grphi) \
1731                        j++; \
1732                per_cpu(rcu_data, i).mynode = &rnp[j]; \
1733                (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1734                rcu_boot_init_percpu_data(i, rsp); \
1735        } \
1736} while (0)
1737
1738void __init __rcu_init(void)
1739{
1740        rcu_bootup_announce();
1741#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1742        printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1743#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1744        RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1745        RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1746        __rcu_init_preempt();
1747        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1748}
1749
1750#include "rcutree_plugin.h"
1751