linux/kernel/sched.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <linux/smp_lock.h>
  36#include <asm/mmu_context.h>
  37#include <linux/interrupt.h>
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/kthread.h>
  59#include <linux/proc_fs.h>
  60#include <linux/seq_file.h>
  61#include <linux/sysctl.h>
  62#include <linux/syscalls.h>
  63#include <linux/times.h>
  64#include <linux/tsacct_kern.h>
  65#include <linux/kprobes.h>
  66#include <linux/delayacct.h>
  67#include <linux/unistd.h>
  68#include <linux/pagemap.h>
  69#include <linux/hrtimer.h>
  70#include <linux/tick.h>
  71#include <linux/debugfs.h>
  72#include <linux/ctype.h>
  73#include <linux/ftrace.h>
  74
  75#include <asm/tlb.h>
  76#include <asm/irq_regs.h>
  77
  78#include "sched_cpupri.h"
  79
  80#define CREATE_TRACE_POINTS
  81#include <trace/events/sched.h>
  82
  83/*
  84 * Convert user-nice values [ -20 ... 0 ... 19 ]
  85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  86 * and back.
  87 */
  88#define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
  89#define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
  90#define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
  91
  92/*
  93 * 'User priority' is the nice value converted to something we
  94 * can work with better when scaling various scheduler parameters,
  95 * it's a [ 0 ... 39 ] range.
  96 */
  97#define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
  98#define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
  99#define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
 100
 101/*
 102 * Helpers for converting nanosecond timing to jiffy resolution
 103 */
 104#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 105
 106#define NICE_0_LOAD             SCHED_LOAD_SCALE
 107#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
 108
 109/*
 110 * These are the 'tuning knobs' of the scheduler:
 111 *
 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
 113 * Timeslices get refilled after they expire.
 114 */
 115#define DEF_TIMESLICE           (100 * HZ / 1000)
 116
 117/*
 118 * single value that denotes runtime == period, ie unlimited time.
 119 */
 120#define RUNTIME_INF     ((u64)~0ULL)
 121
 122static inline int rt_policy(int policy)
 123{
 124        if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
 125                return 1;
 126        return 0;
 127}
 128
 129static inline int task_has_rt_policy(struct task_struct *p)
 130{
 131        return rt_policy(p->policy);
 132}
 133
 134/*
 135 * This is the priority-queue data structure of the RT scheduling class:
 136 */
 137struct rt_prio_array {
 138        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 139        struct list_head queue[MAX_RT_PRIO];
 140};
 141
 142struct rt_bandwidth {
 143        /* nests inside the rq lock: */
 144        spinlock_t              rt_runtime_lock;
 145        ktime_t                 rt_period;
 146        u64                     rt_runtime;
 147        struct hrtimer          rt_period_timer;
 148};
 149
 150static struct rt_bandwidth def_rt_bandwidth;
 151
 152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
 153
 154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 155{
 156        struct rt_bandwidth *rt_b =
 157                container_of(timer, struct rt_bandwidth, rt_period_timer);
 158        ktime_t now;
 159        int overrun;
 160        int idle = 0;
 161
 162        for (;;) {
 163                now = hrtimer_cb_get_time(timer);
 164                overrun = hrtimer_forward(timer, now, rt_b->rt_period);
 165
 166                if (!overrun)
 167                        break;
 168
 169                idle = do_sched_rt_period_timer(rt_b, overrun);
 170        }
 171
 172        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 173}
 174
 175static
 176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 177{
 178        rt_b->rt_period = ns_to_ktime(period);
 179        rt_b->rt_runtime = runtime;
 180
 181        spin_lock_init(&rt_b->rt_runtime_lock);
 182
 183        hrtimer_init(&rt_b->rt_period_timer,
 184                        CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 185        rt_b->rt_period_timer.function = sched_rt_period_timer;
 186}
 187
 188static inline int rt_bandwidth_enabled(void)
 189{
 190        return sysctl_sched_rt_runtime >= 0;
 191}
 192
 193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 194{
 195        ktime_t now;
 196
 197        if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 198                return;
 199
 200        if (hrtimer_active(&rt_b->rt_period_timer))
 201                return;
 202
 203        spin_lock(&rt_b->rt_runtime_lock);
 204        for (;;) {
 205                unsigned long delta;
 206                ktime_t soft, hard;
 207
 208                if (hrtimer_active(&rt_b->rt_period_timer))
 209                        break;
 210
 211                now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
 212                hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
 213
 214                soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
 215                hard = hrtimer_get_expires(&rt_b->rt_period_timer);
 216                delta = ktime_to_ns(ktime_sub(hard, soft));
 217                __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
 218                                HRTIMER_MODE_ABS_PINNED, 0);
 219        }
 220        spin_unlock(&rt_b->rt_runtime_lock);
 221}
 222
 223#ifdef CONFIG_RT_GROUP_SCHED
 224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 225{
 226        hrtimer_cancel(&rt_b->rt_period_timer);
 227}
 228#endif
 229
 230/*
 231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 232 * detach_destroy_domains and partition_sched_domains.
 233 */
 234static DEFINE_MUTEX(sched_domains_mutex);
 235
 236#ifdef CONFIG_GROUP_SCHED
 237
 238#include <linux/cgroup.h>
 239
 240struct cfs_rq;
 241
 242static LIST_HEAD(task_groups);
 243
 244/* task group related information */
 245struct task_group {
 246#ifdef CONFIG_CGROUP_SCHED
 247        struct cgroup_subsys_state css;
 248#endif
 249
 250#ifdef CONFIG_USER_SCHED
 251        uid_t uid;
 252#endif
 253
 254#ifdef CONFIG_FAIR_GROUP_SCHED
 255        /* schedulable entities of this group on each cpu */
 256        struct sched_entity **se;
 257        /* runqueue "owned" by this group on each cpu */
 258        struct cfs_rq **cfs_rq;
 259        unsigned long shares;
 260#endif
 261
 262#ifdef CONFIG_RT_GROUP_SCHED
 263        struct sched_rt_entity **rt_se;
 264        struct rt_rq **rt_rq;
 265
 266        struct rt_bandwidth rt_bandwidth;
 267#endif
 268
 269        struct rcu_head rcu;
 270        struct list_head list;
 271
 272        struct task_group *parent;
 273        struct list_head siblings;
 274        struct list_head children;
 275};
 276
 277#ifdef CONFIG_USER_SCHED
 278
 279/* Helper function to pass uid information to create_sched_user() */
 280void set_tg_uid(struct user_struct *user)
 281{
 282        user->tg->uid = user->uid;
 283}
 284
 285/*
 286 * Root task group.
 287 *      Every UID task group (including init_task_group aka UID-0) will
 288 *      be a child to this group.
 289 */
 290struct task_group root_task_group;
 291
 292#ifdef CONFIG_FAIR_GROUP_SCHED
 293/* Default task group's sched entity on each cpu */
 294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
 295/* Default task group's cfs_rq on each cpu */
 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
 297#endif /* CONFIG_FAIR_GROUP_SCHED */
 298
 299#ifdef CONFIG_RT_GROUP_SCHED
 300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
 302#endif /* CONFIG_RT_GROUP_SCHED */
 303#else /* !CONFIG_USER_SCHED */
 304#define root_task_group init_task_group
 305#endif /* CONFIG_USER_SCHED */
 306
 307/* task_group_lock serializes add/remove of task groups and also changes to
 308 * a task group's cpu shares.
 309 */
 310static DEFINE_SPINLOCK(task_group_lock);
 311
 312#ifdef CONFIG_FAIR_GROUP_SCHED
 313
 314#ifdef CONFIG_SMP
 315static int root_task_group_empty(void)
 316{
 317        return list_empty(&root_task_group.children);
 318}
 319#endif
 320
 321#ifdef CONFIG_USER_SCHED
 322# define INIT_TASK_GROUP_LOAD   (2*NICE_0_LOAD)
 323#else /* !CONFIG_USER_SCHED */
 324# define INIT_TASK_GROUP_LOAD   NICE_0_LOAD
 325#endif /* CONFIG_USER_SCHED */
 326
 327/*
 328 * A weight of 0 or 1 can cause arithmetics problems.
 329 * A weight of a cfs_rq is the sum of weights of which entities
 330 * are queued on this cfs_rq, so a weight of a entity should not be
 331 * too large, so as the shares value of a task group.
 332 * (The default weight is 1024 - so there's no practical
 333 *  limitation from this.)
 334 */
 335#define MIN_SHARES      2
 336#define MAX_SHARES      (1UL << 18)
 337
 338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
 339#endif
 340
 341/* Default task group.
 342 *      Every task in system belong to this group at bootup.
 343 */
 344struct task_group init_task_group;
 345
 346/* return group to which a task belongs */
 347static inline struct task_group *task_group(struct task_struct *p)
 348{
 349        struct task_group *tg;
 350
 351#ifdef CONFIG_USER_SCHED
 352        rcu_read_lock();
 353        tg = __task_cred(p)->user->tg;
 354        rcu_read_unlock();
 355#elif defined(CONFIG_CGROUP_SCHED)
 356        tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
 357                                struct task_group, css);
 358#else
 359        tg = &init_task_group;
 360#endif
 361        return tg;
 362}
 363
 364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 366{
 367#ifdef CONFIG_FAIR_GROUP_SCHED
 368        p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
 369        p->se.parent = task_group(p)->se[cpu];
 370#endif
 371
 372#ifdef CONFIG_RT_GROUP_SCHED
 373        p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
 374        p->rt.parent = task_group(p)->rt_se[cpu];
 375#endif
 376}
 377
 378#else
 379
 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 381static inline struct task_group *task_group(struct task_struct *p)
 382{
 383        return NULL;
 384}
 385
 386#endif  /* CONFIG_GROUP_SCHED */
 387
 388/* CFS-related fields in a runqueue */
 389struct cfs_rq {
 390        struct load_weight load;
 391        unsigned long nr_running;
 392
 393        u64 exec_clock;
 394        u64 min_vruntime;
 395
 396        struct rb_root tasks_timeline;
 397        struct rb_node *rb_leftmost;
 398
 399        struct list_head tasks;
 400        struct list_head *balance_iterator;
 401
 402        /*
 403         * 'curr' points to currently running entity on this cfs_rq.
 404         * It is set to NULL otherwise (i.e when none are currently running).
 405         */
 406        struct sched_entity *curr, *next, *last;
 407
 408        unsigned int nr_spread_over;
 409
 410#ifdef CONFIG_FAIR_GROUP_SCHED
 411        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
 412
 413        /*
 414         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 415         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 416         * (like users, containers etc.)
 417         *
 418         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 419         * list is used during load balance.
 420         */
 421        struct list_head leaf_cfs_rq_list;
 422        struct task_group *tg;  /* group that "owns" this runqueue */
 423
 424#ifdef CONFIG_SMP
 425        /*
 426         * the part of load.weight contributed by tasks
 427         */
 428        unsigned long task_weight;
 429
 430        /*
 431         *   h_load = weight * f(tg)
 432         *
 433         * Where f(tg) is the recursive weight fraction assigned to
 434         * this group.
 435         */
 436        unsigned long h_load;
 437
 438        /*
 439         * this cpu's part of tg->shares
 440         */
 441        unsigned long shares;
 442
 443        /*
 444         * load.weight at the time we set shares
 445         */
 446        unsigned long rq_weight;
 447#endif
 448#endif
 449};
 450
 451/* Real-Time classes' related field in a runqueue: */
 452struct rt_rq {
 453        struct rt_prio_array active;
 454        unsigned long rt_nr_running;
 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 456        struct {
 457                int curr; /* highest queued rt task prio */
 458#ifdef CONFIG_SMP
 459                int next; /* next highest */
 460#endif
 461        } highest_prio;
 462#endif
 463#ifdef CONFIG_SMP
 464        unsigned long rt_nr_migratory;
 465        unsigned long rt_nr_total;
 466        int overloaded;
 467        struct plist_head pushable_tasks;
 468#endif
 469        int rt_throttled;
 470        u64 rt_time;
 471        u64 rt_runtime;
 472        /* Nests inside the rq lock: */
 473        spinlock_t rt_runtime_lock;
 474
 475#ifdef CONFIG_RT_GROUP_SCHED
 476        unsigned long rt_nr_boosted;
 477
 478        struct rq *rq;
 479        struct list_head leaf_rt_rq_list;
 480        struct task_group *tg;
 481        struct sched_rt_entity *rt_se;
 482#endif
 483};
 484
 485#ifdef CONFIG_SMP
 486
 487/*
 488 * We add the notion of a root-domain which will be used to define per-domain
 489 * variables. Each exclusive cpuset essentially defines an island domain by
 490 * fully partitioning the member cpus from any other cpuset. Whenever a new
 491 * exclusive cpuset is created, we also create and attach a new root-domain
 492 * object.
 493 *
 494 */
 495struct root_domain {
 496        atomic_t refcount;
 497        cpumask_var_t span;
 498        cpumask_var_t online;
 499
 500        /*
 501         * The "RT overload" flag: it gets set if a CPU has more than
 502         * one runnable RT task.
 503         */
 504        cpumask_var_t rto_mask;
 505        atomic_t rto_count;
 506#ifdef CONFIG_SMP
 507        struct cpupri cpupri;
 508#endif
 509};
 510
 511/*
 512 * By default the system creates a single root-domain with all cpus as
 513 * members (mimicking the global state we have today).
 514 */
 515static struct root_domain def_root_domain;
 516
 517#endif
 518
 519/*
 520 * This is the main, per-CPU runqueue data structure.
 521 *
 522 * Locking rule: those places that want to lock multiple runqueues
 523 * (such as the load balancing or the thread migration code), lock
 524 * acquire operations must be ordered by ascending &runqueue.
 525 */
 526struct rq {
 527        /* runqueue lock: */
 528        spinlock_t lock;
 529
 530        /*
 531         * nr_running and cpu_load should be in the same cacheline because
 532         * remote CPUs use both these fields when doing load calculation.
 533         */
 534        unsigned long nr_running;
 535        #define CPU_LOAD_IDX_MAX 5
 536        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 537#ifdef CONFIG_NO_HZ
 538        unsigned long last_tick_seen;
 539        unsigned char in_nohz_recently;
 540#endif
 541        /* capture load from *all* tasks on this cpu: */
 542        struct load_weight load;
 543        unsigned long nr_load_updates;
 544        u64 nr_switches;
 545        u64 nr_migrations_in;
 546
 547        struct cfs_rq cfs;
 548        struct rt_rq rt;
 549
 550#ifdef CONFIG_FAIR_GROUP_SCHED
 551        /* list of leaf cfs_rq on this cpu: */
 552        struct list_head leaf_cfs_rq_list;
 553#endif
 554#ifdef CONFIG_RT_GROUP_SCHED
 555        struct list_head leaf_rt_rq_list;
 556#endif
 557
 558        /*
 559         * This is part of a global counter where only the total sum
 560         * over all CPUs matters. A task can increase this counter on
 561         * one CPU and if it got migrated afterwards it may decrease
 562         * it on another CPU. Always updated under the runqueue lock:
 563         */
 564        unsigned long nr_uninterruptible;
 565
 566        struct task_struct *curr, *idle;
 567        unsigned long next_balance;
 568        struct mm_struct *prev_mm;
 569
 570        u64 clock;
 571
 572        atomic_t nr_iowait;
 573
 574#ifdef CONFIG_SMP
 575        struct root_domain *rd;
 576        struct sched_domain *sd;
 577
 578        unsigned char idle_at_tick;
 579        /* For active balancing */
 580        int post_schedule;
 581        int active_balance;
 582        int push_cpu;
 583        /* cpu of this runqueue: */
 584        int cpu;
 585        int online;
 586
 587        unsigned long avg_load_per_task;
 588
 589        struct task_struct *migration_thread;
 590        struct list_head migration_queue;
 591
 592        u64 rt_avg;
 593        u64 age_stamp;
 594#endif
 595
 596        /* calc_load related fields */
 597        unsigned long calc_load_update;
 598        long calc_load_active;
 599
 600#ifdef CONFIG_SCHED_HRTICK
 601#ifdef CONFIG_SMP
 602        int hrtick_csd_pending;
 603        struct call_single_data hrtick_csd;
 604#endif
 605        struct hrtimer hrtick_timer;
 606#endif
 607
 608#ifdef CONFIG_SCHEDSTATS
 609        /* latency stats */
 610        struct sched_info rq_sched_info;
 611        unsigned long long rq_cpu_time;
 612        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 613
 614        /* sys_sched_yield() stats */
 615        unsigned int yld_count;
 616
 617        /* schedule() stats */
 618        unsigned int sched_switch;
 619        unsigned int sched_count;
 620        unsigned int sched_goidle;
 621
 622        /* try_to_wake_up() stats */
 623        unsigned int ttwu_count;
 624        unsigned int ttwu_local;
 625
 626        /* BKL stats */
 627        unsigned int bkl_count;
 628#endif
 629};
 630
 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 632
 633static inline
 634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 635{
 636        rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 637}
 638
 639static inline int cpu_of(struct rq *rq)
 640{
 641#ifdef CONFIG_SMP
 642        return rq->cpu;
 643#else
 644        return 0;
 645#endif
 646}
 647
 648/*
 649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 650 * See detach_destroy_domains: synchronize_sched for details.
 651 *
 652 * The domain tree of any CPU may only be accessed from within
 653 * preempt-disabled sections.
 654 */
 655#define for_each_domain(cpu, __sd) \
 656        for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
 657
 658#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
 659#define this_rq()               (&__get_cpu_var(runqueues))
 660#define task_rq(p)              cpu_rq(task_cpu(p))
 661#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
 662#define raw_rq()                (&__raw_get_cpu_var(runqueues))
 663
 664inline void update_rq_clock(struct rq *rq)
 665{
 666        rq->clock = sched_clock_cpu(cpu_of(rq));
 667}
 668
 669/*
 670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 671 */
 672#ifdef CONFIG_SCHED_DEBUG
 673# define const_debug __read_mostly
 674#else
 675# define const_debug static const
 676#endif
 677
 678/**
 679 * runqueue_is_locked
 680 * @cpu: the processor in question.
 681 *
 682 * Returns true if the current cpu runqueue is locked.
 683 * This interface allows printk to be called with the runqueue lock
 684 * held and know whether or not it is OK to wake up the klogd.
 685 */
 686int runqueue_is_locked(int cpu)
 687{
 688        return spin_is_locked(&cpu_rq(cpu)->lock);
 689}
 690
 691/*
 692 * Debugging: various feature bits
 693 */
 694
 695#define SCHED_FEAT(name, enabled)       \
 696        __SCHED_FEAT_##name ,
 697
 698enum {
 699#include "sched_features.h"
 700};
 701
 702#undef SCHED_FEAT
 703
 704#define SCHED_FEAT(name, enabled)       \
 705        (1UL << __SCHED_FEAT_##name) * enabled |
 706
 707const_debug unsigned int sysctl_sched_features =
 708#include "sched_features.h"
 709        0;
 710
 711#undef SCHED_FEAT
 712
 713#ifdef CONFIG_SCHED_DEBUG
 714#define SCHED_FEAT(name, enabled)       \
 715        #name ,
 716
 717static __read_mostly char *sched_feat_names[] = {
 718#include "sched_features.h"
 719        NULL
 720};
 721
 722#undef SCHED_FEAT
 723
 724static int sched_feat_show(struct seq_file *m, void *v)
 725{
 726        int i;
 727
 728        for (i = 0; sched_feat_names[i]; i++) {
 729                if (!(sysctl_sched_features & (1UL << i)))
 730                        seq_puts(m, "NO_");
 731                seq_printf(m, "%s ", sched_feat_names[i]);
 732        }
 733        seq_puts(m, "\n");
 734
 735        return 0;
 736}
 737
 738static ssize_t
 739sched_feat_write(struct file *filp, const char __user *ubuf,
 740                size_t cnt, loff_t *ppos)
 741{
 742        char buf[64];
 743        char *cmp = buf;
 744        int neg = 0;
 745        int i;
 746
 747        if (cnt > 63)
 748                cnt = 63;
 749
 750        if (copy_from_user(&buf, ubuf, cnt))
 751                return -EFAULT;
 752
 753        buf[cnt] = 0;
 754
 755        if (strncmp(buf, "NO_", 3) == 0) {
 756                neg = 1;
 757                cmp += 3;
 758        }
 759
 760        for (i = 0; sched_feat_names[i]; i++) {
 761                int len = strlen(sched_feat_names[i]);
 762
 763                if (strncmp(cmp, sched_feat_names[i], len) == 0) {
 764                        if (neg)
 765                                sysctl_sched_features &= ~(1UL << i);
 766                        else
 767                                sysctl_sched_features |= (1UL << i);
 768                        break;
 769                }
 770        }
 771
 772        if (!sched_feat_names[i])
 773                return -EINVAL;
 774
 775        filp->f_pos += cnt;
 776
 777        return cnt;
 778}
 779
 780static int sched_feat_open(struct inode *inode, struct file *filp)
 781{
 782        return single_open(filp, sched_feat_show, NULL);
 783}
 784
 785static const struct file_operations sched_feat_fops = {
 786        .open           = sched_feat_open,
 787        .write          = sched_feat_write,
 788        .read           = seq_read,
 789        .llseek         = seq_lseek,
 790        .release        = single_release,
 791};
 792
 793static __init int sched_init_debug(void)
 794{
 795        debugfs_create_file("sched_features", 0644, NULL, NULL,
 796                        &sched_feat_fops);
 797
 798        return 0;
 799}
 800late_initcall(sched_init_debug);
 801
 802#endif
 803
 804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 805
 806/*
 807 * Number of tasks to iterate in a single balance run.
 808 * Limited because this is done with IRQs disabled.
 809 */
 810const_debug unsigned int sysctl_sched_nr_migrate = 32;
 811
 812/*
 813 * ratelimit for updating the group shares.
 814 * default: 0.25ms
 815 */
 816unsigned int sysctl_sched_shares_ratelimit = 250000;
 817
 818/*
 819 * Inject some fuzzyness into changing the per-cpu group shares
 820 * this avoids remote rq-locks at the expense of fairness.
 821 * default: 4
 822 */
 823unsigned int sysctl_sched_shares_thresh = 4;
 824
 825/*
 826 * period over which we average the RT time consumption, measured
 827 * in ms.
 828 *
 829 * default: 1s
 830 */
 831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 832
 833/*
 834 * period over which we measure -rt task cpu usage in us.
 835 * default: 1s
 836 */
 837unsigned int sysctl_sched_rt_period = 1000000;
 838
 839static __read_mostly int scheduler_running;
 840
 841/*
 842 * part of the period that we allow rt tasks to run in us.
 843 * default: 0.95s
 844 */
 845int sysctl_sched_rt_runtime = 950000;
 846
 847static inline u64 global_rt_period(void)
 848{
 849        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 850}
 851
 852static inline u64 global_rt_runtime(void)
 853{
 854        if (sysctl_sched_rt_runtime < 0)
 855                return RUNTIME_INF;
 856
 857        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 858}
 859
 860#ifndef prepare_arch_switch
 861# define prepare_arch_switch(next)      do { } while (0)
 862#endif
 863#ifndef finish_arch_switch
 864# define finish_arch_switch(prev)       do { } while (0)
 865#endif
 866
 867static inline int task_current(struct rq *rq, struct task_struct *p)
 868{
 869        return rq->curr == p;
 870}
 871
 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 873static inline int task_running(struct rq *rq, struct task_struct *p)
 874{
 875        return task_current(rq, p);
 876}
 877
 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 879{
 880}
 881
 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 883{
 884#ifdef CONFIG_DEBUG_SPINLOCK
 885        /* this is a valid case when another task releases the spinlock */
 886        rq->lock.owner = current;
 887#endif
 888        /*
 889         * If we are tracking spinlock dependencies then we have to
 890         * fix up the runqueue lock - which gets 'carried over' from
 891         * prev into current:
 892         */
 893        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 894
 895        spin_unlock_irq(&rq->lock);
 896}
 897
 898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
 899static inline int task_running(struct rq *rq, struct task_struct *p)
 900{
 901#ifdef CONFIG_SMP
 902        return p->oncpu;
 903#else
 904        return task_current(rq, p);
 905#endif
 906}
 907
 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 909{
 910#ifdef CONFIG_SMP
 911        /*
 912         * We can optimise this out completely for !SMP, because the
 913         * SMP rebalancing from interrupt is the only thing that cares
 914         * here.
 915         */
 916        next->oncpu = 1;
 917#endif
 918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 919        spin_unlock_irq(&rq->lock);
 920#else
 921        spin_unlock(&rq->lock);
 922#endif
 923}
 924
 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 926{
 927#ifdef CONFIG_SMP
 928        /*
 929         * After ->oncpu is cleared, the task can be moved to a different CPU.
 930         * We must ensure this doesn't happen until the switch is completely
 931         * finished.
 932         */
 933        smp_wmb();
 934        prev->oncpu = 0;
 935#endif
 936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 937        local_irq_enable();
 938#endif
 939}
 940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 941
 942/*
 943 * __task_rq_lock - lock the runqueue a given task resides on.
 944 * Must be called interrupts disabled.
 945 */
 946static inline struct rq *__task_rq_lock(struct task_struct *p)
 947        __acquires(rq->lock)
 948{
 949        for (;;) {
 950                struct rq *rq = task_rq(p);
 951                spin_lock(&rq->lock);
 952                if (likely(rq == task_rq(p)))
 953                        return rq;
 954                spin_unlock(&rq->lock);
 955        }
 956}
 957
 958/*
 959 * task_rq_lock - lock the runqueue a given task resides on and disable
 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
 961 * explicitly disabling preemption.
 962 */
 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 964        __acquires(rq->lock)
 965{
 966        struct rq *rq;
 967
 968        for (;;) {
 969                local_irq_save(*flags);
 970                rq = task_rq(p);
 971                spin_lock(&rq->lock);
 972                if (likely(rq == task_rq(p)))
 973                        return rq;
 974                spin_unlock_irqrestore(&rq->lock, *flags);
 975        }
 976}
 977
 978void task_rq_unlock_wait(struct task_struct *p)
 979{
 980        struct rq *rq = task_rq(p);
 981
 982        smp_mb(); /* spin-unlock-wait is not a full memory barrier */
 983        spin_unlock_wait(&rq->lock);
 984}
 985
 986static void __task_rq_unlock(struct rq *rq)
 987        __releases(rq->lock)
 988{
 989        spin_unlock(&rq->lock);
 990}
 991
 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
 993        __releases(rq->lock)
 994{
 995        spin_unlock_irqrestore(&rq->lock, *flags);
 996}
 997
 998/*
 999 * this_rq_lock - lock this runqueue and disable interrupts.
1000 */
1001static struct rq *this_rq_lock(void)
1002        __acquires(rq->lock)
1003{
1004        struct rq *rq;
1005
1006        local_irq_disable();
1007        rq = this_rq();
1008        spin_lock(&rq->lock);
1009
1010        return rq;
1011}
1012
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
1024
1025/*
1026 * Use hrtick when:
1027 *  - enabled by features
1028 *  - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032        if (!sched_feat(HRTICK))
1033                return 0;
1034        if (!cpu_active(cpu_of(rq)))
1035                return 0;
1036        return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
1039static void hrtick_clear(struct rq *rq)
1040{
1041        if (hrtimer_active(&rq->hrtick_timer))
1042                hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055        spin_lock(&rq->lock);
1056        update_rq_clock(rq);
1057        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058        spin_unlock(&rq->lock);
1059
1060        return HRTIMER_NORESTART;
1061}
1062
1063#ifdef CONFIG_SMP
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
1068{
1069        struct rq *rq = arg;
1070
1071        spin_lock(&rq->lock);
1072        hrtimer_restart(&rq->hrtick_timer);
1073        rq->hrtick_csd_pending = 0;
1074        spin_unlock(&rq->lock);
1075}
1076
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
1083{
1084        struct hrtimer *timer = &rq->hrtick_timer;
1085        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086
1087        hrtimer_set_expires(timer, time);
1088
1089        if (rq == this_rq()) {
1090                hrtimer_restart(timer);
1091        } else if (!rq->hrtick_csd_pending) {
1092                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1093                rq->hrtick_csd_pending = 1;
1094        }
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100        int cpu = (int)(long)hcpu;
1101
1102        switch (action) {
1103        case CPU_UP_CANCELED:
1104        case CPU_UP_CANCELED_FROZEN:
1105        case CPU_DOWN_PREPARE:
1106        case CPU_DOWN_PREPARE_FROZEN:
1107        case CPU_DEAD:
1108        case CPU_DEAD_FROZEN:
1109                hrtick_clear(cpu_rq(cpu));
1110                return NOTIFY_OK;
1111        }
1112
1113        return NOTIFY_DONE;
1114}
1115
1116static __init void init_hrtick(void)
1117{
1118        hotcpu_notifier(hotplug_hrtick, 0);
1119}
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
1128        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1129                        HRTIMER_MODE_REL_PINNED, 0);
1130}
1131
1132static inline void init_hrtick(void)
1133{
1134}
1135#endif /* CONFIG_SMP */
1136
1137static void init_rq_hrtick(struct rq *rq)
1138{
1139#ifdef CONFIG_SMP
1140        rq->hrtick_csd_pending = 0;
1141
1142        rq->hrtick_csd.flags = 0;
1143        rq->hrtick_csd.func = __hrtick_start;
1144        rq->hrtick_csd.info = rq;
1145#endif
1146
1147        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148        rq->hrtick_timer.function = hrtick;
1149}
1150#else   /* CONFIG_SCHED_HRTICK */
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
1159static inline void init_hrtick(void)
1160{
1161}
1162#endif  /* CONFIG_SCHED_HRTICK */
1163
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
1177static void resched_task(struct task_struct *p)
1178{
1179        int cpu;
1180
1181        assert_spin_locked(&task_rq(p)->lock);
1182
1183        if (test_tsk_need_resched(p))
1184                return;
1185
1186        set_tsk_need_resched(p);
1187
1188        cpu = task_cpu(p);
1189        if (cpu == smp_processor_id())
1190                return;
1191
1192        /* NEED_RESCHED must be visible before we test polling */
1193        smp_mb();
1194        if (!tsk_is_polling(p))
1195                smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200        struct rq *rq = cpu_rq(cpu);
1201        unsigned long flags;
1202
1203        if (!spin_trylock_irqsave(&rq->lock, flags))
1204                return;
1205        resched_task(cpu_curr(cpu));
1206        spin_unlock_irqrestore(&rq->lock, flags);
1207}
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222        struct rq *rq = cpu_rq(cpu);
1223
1224        if (cpu == smp_processor_id())
1225                return;
1226
1227        /*
1228         * This is safe, as this function is called with the timer
1229         * wheel base lock of (cpu) held. When the CPU is on the way
1230         * to idle and has not yet set rq->curr to idle then it will
1231         * be serialized on the timer wheel base lock and take the new
1232         * timer into account automatically.
1233         */
1234        if (rq->curr != rq->idle)
1235                return;
1236
1237        /*
1238         * We can set TIF_RESCHED on the idle task of the other CPU
1239         * lockless. The worst case is that the other CPU runs the
1240         * idle task through an additional NOOP schedule()
1241         */
1242        set_tsk_need_resched(rq->idle);
1243
1244        /* NEED_RESCHED must be visible before we test polling */
1245        smp_mb();
1246        if (!tsk_is_polling(rq->idle))
1247                smp_send_reschedule(cpu);
1248}
1249#endif /* CONFIG_NO_HZ */
1250
1251static u64 sched_avg_period(void)
1252{
1253        return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258        s64 period = sched_avg_period();
1259
1260        while ((s64)(rq->clock - rq->age_stamp) > period) {
1261                rq->age_stamp += period;
1262                rq->rt_avg /= 2;
1263        }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268        rq->rt_avg += rt_delta;
1269        sched_avg_update(rq);
1270}
1271
1272#else /* !CONFIG_SMP */
1273static void resched_task(struct task_struct *p)
1274{
1275        assert_spin_locked(&task_rq(p)->lock);
1276        set_tsk_need_resched(p);
1277}
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
1282#endif /* CONFIG_SMP */
1283
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST    (~0UL)
1286#else
1287# define WMULT_CONST    (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT     32
1291
1292/*
1293 * Shift right and round:
1294 */
1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1296
1297/*
1298 * delta *= weight / lw
1299 */
1300static unsigned long
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302                struct load_weight *lw)
1303{
1304        u64 tmp;
1305
1306        if (!lw->inv_weight) {
1307                if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308                        lw->inv_weight = 1;
1309                else
1310                        lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311                                / (lw->weight+1);
1312        }
1313
1314        tmp = (u64)delta_exec * weight;
1315        /*
1316         * Check whether we'd overflow the 64-bit multiplication:
1317         */
1318        if (unlikely(tmp > WMULT_CONST))
1319                tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1320                        WMULT_SHIFT/2);
1321        else
1322                tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323
1324        return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325}
1326
1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328{
1329        lw->weight += inc;
1330        lw->inv_weight = 0;
1331}
1332
1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334{
1335        lw->weight -= dec;
1336        lw->inv_weight = 0;
1337}
1338
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
1348#define WEIGHT_IDLEPRIO                3
1349#define WMULT_IDLEPRIO         1431655765
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
1362 */
1363static const int prio_to_weight[40] = {
1364 /* -20 */     88761,     71755,     56483,     46273,     36291,
1365 /* -15 */     29154,     23254,     18705,     14949,     11916,
1366 /* -10 */      9548,      7620,      6100,      4904,      3906,
1367 /*  -5 */      3121,      2501,      1991,      1586,      1277,
1368 /*   0 */      1024,       820,       655,       526,       423,
1369 /*   5 */       335,       272,       215,       172,       137,
1370 /*  10 */       110,        87,        70,        56,        45,
1371 /*  15 */        36,        29,        23,        18,        15,
1372};
1373
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
1381static const u32 prio_to_wmult[40] = {
1382 /* -20 */     48388,     59856,     76040,     92818,    118348,
1383 /* -15 */    147320,    184698,    229616,    287308,    360437,
1384 /* -10 */    449829,    563644,    704093,    875809,   1099582,
1385 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1386 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1387 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1388 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1389 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1390};
1391
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400        void *arg;
1401        struct task_struct *(*start)(void *);
1402        struct task_struct *(*next)(void *);
1403};
1404
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408              unsigned long max_load_move, struct sched_domain *sd,
1409              enum cpu_idle_type idle, int *all_pinned,
1410              int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414                   struct sched_domain *sd, enum cpu_idle_type idle,
1415                   struct rq_iterator *iterator);
1416#endif
1417
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420        CPUACCT_STAT_USER,      /* ... user mode */
1421        CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
1422
1423        CPUACCT_STAT_NSTATS,
1424};
1425
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429                enum cpuacct_stat_index idx, cputime_t val);
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433                enum cpuacct_stat_index idx, cputime_t val) {}
1434#endif
1435
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438        update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443        update_load_sub(&rq->load, load);
1444}
1445
1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1447typedef int (*tg_visitor)(struct task_group *, void *);
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454{
1455        struct task_group *parent, *child;
1456        int ret;
1457
1458        rcu_read_lock();
1459        parent = &root_task_group;
1460down:
1461        ret = (*down)(parent, data);
1462        if (ret)
1463                goto out_unlock;
1464        list_for_each_entry_rcu(child, &parent->children, siblings) {
1465                parent = child;
1466                goto down;
1467
1468up:
1469                continue;
1470        }
1471        ret = (*up)(parent, data);
1472        if (ret)
1473                goto out_unlock;
1474
1475        child = parent;
1476        parent = parent->parent;
1477        if (parent)
1478                goto up;
1479out_unlock:
1480        rcu_read_unlock();
1481
1482        return ret;
1483}
1484
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487        return 0;
1488}
1489#endif
1490
1491#ifdef CONFIG_SMP
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495        return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507        struct rq *rq = cpu_rq(cpu);
1508        unsigned long total = weighted_cpuload(cpu);
1509
1510        if (type == 0 || !sched_feat(LB_BIAS))
1511                return total;
1512
1513        return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522        struct rq *rq = cpu_rq(cpu);
1523        unsigned long total = weighted_cpuload(cpu);
1524
1525        if (type == 0 || !sched_feat(LB_BIAS))
1526                return total;
1527
1528        return max(rq->cpu_load[type-1], total);
1529}
1530
1531static struct sched_group *group_of(int cpu)
1532{
1533        struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535        if (!sd)
1536                return NULL;
1537
1538        return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543        struct sched_group *group = group_of(cpu);
1544
1545        if (!group)
1546                return SCHED_LOAD_SCALE;
1547
1548        return group->cpu_power;
1549}
1550
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555        struct rq *rq = cpu_rq(cpu);
1556        unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1557
1558        if (nr_running)
1559                rq->avg_load_per_task = rq->load.weight / nr_running;
1560        else
1561                rq->avg_load_per_task = 0;
1562
1563        return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
1567
1568static __read_mostly unsigned long *update_shares_data;
1569
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576                                    unsigned long sd_shares,
1577                                    unsigned long sd_rq_weight,
1578                                    unsigned long *usd_rq_weight)
1579{
1580        unsigned long shares, rq_weight;
1581        int boost = 0;
1582
1583        rq_weight = usd_rq_weight[cpu];
1584        if (!rq_weight) {
1585                boost = 1;
1586                rq_weight = NICE_0_LOAD;
1587        }
1588
1589        /*
1590         *             \Sum_j shares_j * rq_weight_i
1591         * shares_i =  -----------------------------
1592         *                  \Sum_j rq_weight_j
1593         */
1594        shares = (sd_shares * rq_weight) / sd_rq_weight;
1595        shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1596
1597        if (abs(shares - tg->se[cpu]->load.weight) >
1598                        sysctl_sched_shares_thresh) {
1599                struct rq *rq = cpu_rq(cpu);
1600                unsigned long flags;
1601
1602                spin_lock_irqsave(&rq->lock, flags);
1603                tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1604                tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1605                __set_se_shares(tg->se[cpu], shares);
1606                spin_unlock_irqrestore(&rq->lock, flags);
1607        }
1608}
1609
1610/*
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
1614 */
1615static int tg_shares_up(struct task_group *tg, void *data)
1616{
1617        unsigned long weight, rq_weight = 0, shares = 0;
1618        unsigned long *usd_rq_weight;
1619        struct sched_domain *sd = data;
1620        unsigned long flags;
1621        int i;
1622
1623        if (!tg->se[0])
1624                return 0;
1625
1626        local_irq_save(flags);
1627        usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1628
1629        for_each_cpu(i, sched_domain_span(sd)) {
1630                weight = tg->cfs_rq[i]->load.weight;
1631                usd_rq_weight[i] = weight;
1632
1633                /*
1634                 * If there are currently no tasks on the cpu pretend there
1635                 * is one of average load so that when a new task gets to
1636                 * run here it will not get delayed by group starvation.
1637                 */
1638                if (!weight)
1639                        weight = NICE_0_LOAD;
1640
1641                rq_weight += weight;
1642                shares += tg->cfs_rq[i]->shares;
1643        }
1644
1645        if ((!shares && rq_weight) || shares > tg->shares)
1646                shares = tg->shares;
1647
1648        if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649                shares = tg->shares;
1650
1651        for_each_cpu(i, sched_domain_span(sd))
1652                update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1653
1654        local_irq_restore(flags);
1655
1656        return 0;
1657}
1658
1659/*
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
1663 */
1664static int tg_load_down(struct task_group *tg, void *data)
1665{
1666        unsigned long load;
1667        long cpu = (long)data;
1668
1669        if (!tg->parent) {
1670                load = cpu_rq(cpu)->load.weight;
1671        } else {
1672                load = tg->parent->cfs_rq[cpu]->h_load;
1673                load *= tg->cfs_rq[cpu]->shares;
1674                load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675        }
1676
1677        tg->cfs_rq[cpu]->h_load = load;
1678
1679        return 0;
1680}
1681
1682static void update_shares(struct sched_domain *sd)
1683{
1684        s64 elapsed;
1685        u64 now;
1686
1687        if (root_task_group_empty())
1688                return;
1689
1690        now = cpu_clock(raw_smp_processor_id());
1691        elapsed = now - sd->last_update;
1692
1693        if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694                sd->last_update = now;
1695                walk_tg_tree(tg_nop, tg_shares_up, sd);
1696        }
1697}
1698
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
1701        if (root_task_group_empty())
1702                return;
1703
1704        spin_unlock(&rq->lock);
1705        update_shares(sd);
1706        spin_lock(&rq->lock);
1707}
1708
1709static void update_h_load(long cpu)
1710{
1711        if (root_task_group_empty())
1712                return;
1713
1714        walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1715}
1716
1717#else
1718
1719static inline void update_shares(struct sched_domain *sd)
1720{
1721}
1722
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
1727#endif
1728
1729#ifdef CONFIG_PREEMPT
1730
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
1733/*
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations.  This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below.  However, it
1739 * also adds more overhead and therefore may reduce throughput.
1740 */
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742        __releases(this_rq->lock)
1743        __acquires(busiest->lock)
1744        __acquires(this_rq->lock)
1745{
1746        spin_unlock(&this_rq->lock);
1747        double_rq_lock(this_rq, busiest);
1748
1749        return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry.  This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1761        __releases(this_rq->lock)
1762        __acquires(busiest->lock)
1763        __acquires(this_rq->lock)
1764{
1765        int ret = 0;
1766
1767        if (unlikely(!spin_trylock(&busiest->lock))) {
1768                if (busiest < this_rq) {
1769                        spin_unlock(&this_rq->lock);
1770                        spin_lock(&busiest->lock);
1771                        spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772                        ret = 1;
1773                } else
1774                        spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775        }
1776        return ret;
1777}
1778
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786        if (unlikely(!irqs_disabled())) {
1787                /* printk() doesn't work good under rq->lock */
1788                spin_unlock(&this_rq->lock);
1789                BUG_ON(1);
1790        }
1791
1792        return _double_lock_balance(this_rq, busiest);
1793}
1794
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796        __releases(busiest->lock)
1797{
1798        spin_unlock(&busiest->lock);
1799        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
1801#endif
1802
1803#ifdef CONFIG_FAIR_GROUP_SCHED
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
1806#ifdef CONFIG_SMP
1807        cfs_rq->shares = shares;
1808#endif
1809}
1810#endif
1811
1812static void calc_load_account_active(struct rq *this_rq);
1813
1814#include "sched_stats.h"
1815#include "sched_idletask.c"
1816#include "sched_fair.c"
1817#include "sched_rt.c"
1818#ifdef CONFIG_SCHED_DEBUG
1819# include "sched_debug.c"
1820#endif
1821
1822#define sched_class_highest (&rt_sched_class)
1823#define for_each_class(class) \
1824   for (class = sched_class_highest; class; class = class->next)
1825
1826static void inc_nr_running(struct rq *rq)
1827{
1828        rq->nr_running++;
1829}
1830
1831static void dec_nr_running(struct rq *rq)
1832{
1833        rq->nr_running--;
1834}
1835
1836static void set_load_weight(struct task_struct *p)
1837{
1838        if (task_has_rt_policy(p)) {
1839                p->se.load.weight = prio_to_weight[0] * 2;
1840                p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1841                return;
1842        }
1843
1844        /*
1845         * SCHED_IDLE tasks get minimal weight:
1846         */
1847        if (p->policy == SCHED_IDLE) {
1848                p->se.load.weight = WEIGHT_IDLEPRIO;
1849                p->se.load.inv_weight = WMULT_IDLEPRIO;
1850                return;
1851        }
1852
1853        p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1854        p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1855}
1856
1857static void update_avg(u64 *avg, u64 sample)
1858{
1859        s64 diff = sample - *avg;
1860        *avg += diff >> 3;
1861}
1862
1863static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1864{
1865        if (wakeup)
1866                p->se.start_runtime = p->se.sum_exec_runtime;
1867
1868        sched_info_queued(p);
1869        p->sched_class->enqueue_task(rq, p, wakeup);
1870        p->se.on_rq = 1;
1871}
1872
1873static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1874{
1875        if (sleep) {
1876                if (p->se.last_wakeup) {
1877                        update_avg(&p->se.avg_overlap,
1878                                p->se.sum_exec_runtime - p->se.last_wakeup);
1879                        p->se.last_wakeup = 0;
1880                } else {
1881                        update_avg(&p->se.avg_wakeup,
1882                                sysctl_sched_wakeup_granularity);
1883                }
1884        }
1885
1886        sched_info_dequeued(p);
1887        p->sched_class->dequeue_task(rq, p, sleep);
1888        p->se.on_rq = 0;
1889}
1890
1891/*
1892 * __normal_prio - return the priority that is based on the static prio
1893 */
1894static inline int __normal_prio(struct task_struct *p)
1895{
1896        return p->static_prio;
1897}
1898
1899/*
1900 * Calculate the expected normal priority: i.e. priority
1901 * without taking RT-inheritance into account. Might be
1902 * boosted by interactivity modifiers. Changes upon fork,
1903 * setprio syscalls, and whenever the interactivity
1904 * estimator recalculates.
1905 */
1906static inline int normal_prio(struct task_struct *p)
1907{
1908        int prio;
1909
1910        if (task_has_rt_policy(p))
1911                prio = MAX_RT_PRIO-1 - p->rt_priority;
1912        else
1913                prio = __normal_prio(p);
1914        return prio;
1915}
1916
1917/*
1918 * Calculate the current priority, i.e. the priority
1919 * taken into account by the scheduler. This value might
1920 * be boosted by RT tasks, or might be boosted by
1921 * interactivity modifiers. Will be RT if the task got
1922 * RT-boosted. If not then it returns p->normal_prio.
1923 */
1924static int effective_prio(struct task_struct *p)
1925{
1926        p->normal_prio = normal_prio(p);
1927        /*
1928         * If we are RT tasks or we were boosted to RT priority,
1929         * keep the priority unchanged. Otherwise, update priority
1930         * to the normal priority:
1931         */
1932        if (!rt_prio(p->prio))
1933                return p->normal_prio;
1934        return p->prio;
1935}
1936
1937/*
1938 * activate_task - move a task to the runqueue.
1939 */
1940static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1941{
1942        if (task_contributes_to_load(p))
1943                rq->nr_uninterruptible--;
1944
1945        enqueue_task(rq, p, wakeup);
1946        inc_nr_running(rq);
1947}
1948
1949/*
1950 * deactivate_task - remove a task from the runqueue.
1951 */
1952static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1953{
1954        if (task_contributes_to_load(p))
1955                rq->nr_uninterruptible++;
1956
1957        dequeue_task(rq, p, sleep);
1958        dec_nr_running(rq);
1959}
1960
1961/**
1962 * task_curr - is this task currently executing on a CPU?
1963 * @p: the task in question.
1964 */
1965inline int task_curr(const struct task_struct *p)
1966{
1967        return cpu_curr(task_cpu(p)) == p;
1968}
1969
1970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971{
1972        set_task_rq(p, cpu);
1973#ifdef CONFIG_SMP
1974        /*
1975         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976         * successfuly executed on another CPU. We must ensure that updates of
1977         * per-task data have been completed by this moment.
1978         */
1979        smp_wmb();
1980        task_thread_info(p)->cpu = cpu;
1981#endif
1982}
1983
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985                                       const struct sched_class *prev_class,
1986                                       int oldprio, int running)
1987{
1988        if (prev_class != p->sched_class) {
1989                if (prev_class->switched_from)
1990                        prev_class->switched_from(rq, p, running);
1991                p->sched_class->switched_to(rq, p, running);
1992        } else
1993                p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
1998 * @p: thread created by kthread_create().
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010        struct rq *rq = cpu_rq(cpu);
2011        unsigned long flags;
2012
2013        /* Must have done schedule() in kthread() before we set_task_cpu */
2014        if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015                WARN_ON(1);
2016                return;
2017        }
2018
2019        spin_lock_irqsave(&rq->lock, flags);
2020        set_task_cpu(p, cpu);
2021        p->cpus_allowed = cpumask_of_cpu(cpu);
2022        p->rt.nr_cpus_allowed = 1;
2023        p->flags |= PF_THREAD_BOUND;
2024        spin_unlock_irqrestore(&rq->lock, flags);
2025}
2026EXPORT_SYMBOL(kthread_bind);
2027
2028#ifdef CONFIG_SMP
2029/*
2030 * Is this task likely cache-hot:
2031 */
2032static int
2033task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2034{
2035        s64 delta;
2036
2037        /*
2038         * Buddy candidates are cache hot:
2039         */
2040        if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2041                        (&p->se == cfs_rq_of(&p->se)->next ||
2042                         &p->se == cfs_rq_of(&p->se)->last))
2043                return 1;
2044
2045        if (p->sched_class != &fair_sched_class)
2046                return 0;
2047
2048        if (sysctl_sched_migration_cost == -1)
2049                return 1;
2050        if (sysctl_sched_migration_cost == 0)
2051                return 0;
2052
2053        delta = now - p->se.exec_start;
2054
2055        return delta < (s64)sysctl_sched_migration_cost;
2056}
2057
2058
2059void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2060{
2061        int old_cpu = task_cpu(p);
2062        struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2063        struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2064                      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2065        u64 clock_offset;
2066
2067        clock_offset = old_rq->clock - new_rq->clock;
2068
2069        trace_sched_migrate_task(p, new_cpu);
2070
2071#ifdef CONFIG_SCHEDSTATS
2072        if (p->se.wait_start)
2073                p->se.wait_start -= clock_offset;
2074        if (p->se.sleep_start)
2075                p->se.sleep_start -= clock_offset;
2076        if (p->se.block_start)
2077                p->se.block_start -= clock_offset;
2078#endif
2079        if (old_cpu != new_cpu) {
2080                p->se.nr_migrations++;
2081                new_rq->nr_migrations_in++;
2082#ifdef CONFIG_SCHEDSTATS
2083                if (task_hot(p, old_rq->clock, NULL))
2084                        schedstat_inc(p, se.nr_forced2_migrations);
2085#endif
2086                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2087                                     1, 1, NULL, 0);
2088        }
2089        p->se.vruntime -= old_cfsrq->min_vruntime -
2090                                         new_cfsrq->min_vruntime;
2091
2092        __set_task_cpu(p, new_cpu);
2093}
2094
2095struct migration_req {
2096        struct list_head list;
2097
2098        struct task_struct *task;
2099        int dest_cpu;
2100
2101        struct completion done;
2102};
2103
2104/*
2105 * The task's runqueue lock must be held.
2106 * Returns true if you have to wait for migration thread.
2107 */
2108static int
2109migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2110{
2111        struct rq *rq = task_rq(p);
2112
2113        /*
2114         * If the task is not on a runqueue (and not running), then
2115         * it is sufficient to simply update the task's cpu field.
2116         */
2117        if (!p->se.on_rq && !task_running(rq, p)) {
2118                set_task_cpu(p, dest_cpu);
2119                return 0;
2120        }
2121
2122        init_completion(&req->done);
2123        req->task = p;
2124        req->dest_cpu = dest_cpu;
2125        list_add(&req->list, &rq->migration_queue);
2126
2127        return 1;
2128}
2129
2130/*
2131 * wait_task_context_switch -   wait for a thread to complete at least one
2132 *                              context switch.
2133 *
2134 * @p must not be current.
2135 */
2136void wait_task_context_switch(struct task_struct *p)
2137{
2138        unsigned long nvcsw, nivcsw, flags;
2139        int running;
2140        struct rq *rq;
2141
2142        nvcsw   = p->nvcsw;
2143        nivcsw  = p->nivcsw;
2144        for (;;) {
2145                /*
2146                 * The runqueue is assigned before the actual context
2147                 * switch. We need to take the runqueue lock.
2148                 *
2149                 * We could check initially without the lock but it is
2150                 * very likely that we need to take the lock in every
2151                 * iteration.
2152                 */
2153                rq = task_rq_lock(p, &flags);
2154                running = task_running(rq, p);
2155                task_rq_unlock(rq, &flags);
2156
2157                if (likely(!running))
2158                        break;
2159                /*
2160                 * The switch count is incremented before the actual
2161                 * context switch. We thus wait for two switches to be
2162                 * sure at least one completed.
2163                 */
2164                if ((p->nvcsw - nvcsw) > 1)
2165                        break;
2166                if ((p->nivcsw - nivcsw) > 1)
2167                        break;
2168
2169                cpu_relax();
2170        }
2171}
2172
2173/*
2174 * wait_task_inactive - wait for a thread to unschedule.
2175 *
2176 * If @match_state is nonzero, it's the @p->state value just checked and
2177 * not expected to change.  If it changes, i.e. @p might have woken up,
2178 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2179 * we return a positive number (its total switch count).  If a second call
2180 * a short while later returns the same number, the caller can be sure that
2181 * @p has remained unscheduled the whole time.
2182 *
2183 * The caller must ensure that the task *will* unschedule sometime soon,
2184 * else this function might spin for a *long* time. This function can't
2185 * be called with interrupts off, or it may introduce deadlock with
2186 * smp_call_function() if an IPI is sent by the same process we are
2187 * waiting to become inactive.
2188 */
2189unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2190{
2191        unsigned long flags;
2192        int running, on_rq;
2193        unsigned long ncsw;
2194        struct rq *rq;
2195
2196        for (;;) {
2197                /*
2198                 * We do the initial early heuristics without holding
2199                 * any task-queue locks at all. We'll only try to get
2200                 * the runqueue lock when things look like they will
2201                 * work out!
2202                 */
2203                rq = task_rq(p);
2204
2205                /*
2206                 * If the task is actively running on another CPU
2207                 * still, just relax and busy-wait without holding
2208                 * any locks.
2209                 *
2210                 * NOTE! Since we don't hold any locks, it's not
2211                 * even sure that "rq" stays as the right runqueue!
2212                 * But we don't care, since "task_running()" will
2213                 * return false if the runqueue has changed and p
2214                 * is actually now running somewhere else!
2215                 */
2216                while (task_running(rq, p)) {
2217                        if (match_state && unlikely(p->state != match_state))
2218                                return 0;
2219                        cpu_relax();
2220                }
2221
2222                /*
2223                 * Ok, time to look more closely! We need the rq
2224                 * lock now, to be *sure*. If we're wrong, we'll
2225                 * just go back and repeat.
2226                 */
2227                rq = task_rq_lock(p, &flags);
2228                trace_sched_wait_task(rq, p);
2229                running = task_running(rq, p);
2230                on_rq = p->se.on_rq;
2231                ncsw = 0;
2232                if (!match_state || p->state == match_state)
2233                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2234                task_rq_unlock(rq, &flags);
2235
2236                /*
2237                 * If it changed from the expected state, bail out now.
2238                 */
2239                if (unlikely(!ncsw))
2240                        break;
2241
2242                /*
2243                 * Was it really running after all now that we
2244                 * checked with the proper locks actually held?
2245                 *
2246                 * Oops. Go back and try again..
2247                 */
2248                if (unlikely(running)) {
2249                        cpu_relax();
2250                        continue;
2251                }
2252
2253                /*
2254                 * It's not enough that it's not actively running,
2255                 * it must be off the runqueue _entirely_, and not
2256                 * preempted!
2257                 *
2258                 * So if it was still runnable (but just not actively
2259                 * running right now), it's preempted, and we should
2260                 * yield - it could be a while.
2261                 */
2262                if (unlikely(on_rq)) {
2263                        schedule_timeout_uninterruptible(1);
2264                        continue;
2265                }
2266
2267                /*
2268                 * Ahh, all good. It wasn't running, and it wasn't
2269                 * runnable, which means that it will never become
2270                 * running in the future either. We're all done!
2271                 */
2272                break;
2273        }
2274
2275        return ncsw;
2276}
2277
2278/***
2279 * kick_process - kick a running thread to enter/exit the kernel
2280 * @p: the to-be-kicked thread
2281 *
2282 * Cause a process which is running on another CPU to enter
2283 * kernel-mode, without any delay. (to get signals handled.)
2284 *
2285 * NOTE: this function doesnt have to take the runqueue lock,
2286 * because all it wants to ensure is that the remote task enters
2287 * the kernel. If the IPI races and the task has been migrated
2288 * to another CPU then no harm is done and the purpose has been
2289 * achieved as well.
2290 */
2291void kick_process(struct task_struct *p)
2292{
2293        int cpu;
2294
2295        preempt_disable();
2296        cpu = task_cpu(p);
2297        if ((cpu != smp_processor_id()) && task_curr(p))
2298                smp_send_reschedule(cpu);
2299        preempt_enable();
2300}
2301EXPORT_SYMBOL_GPL(kick_process);
2302#endif /* CONFIG_SMP */
2303
2304/**
2305 * task_oncpu_function_call - call a function on the cpu on which a task runs
2306 * @p:          the task to evaluate
2307 * @func:       the function to be called
2308 * @info:       the function call argument
2309 *
2310 * Calls the function @func when the task is currently running. This might
2311 * be on the current CPU, which just calls the function directly
2312 */
2313void task_oncpu_function_call(struct task_struct *p,
2314                              void (*func) (void *info), void *info)
2315{
2316        int cpu;
2317
2318        preempt_disable();
2319        cpu = task_cpu(p);
2320        if (task_curr(p))
2321                smp_call_function_single(cpu, func, info, 1);
2322        preempt_enable();
2323}
2324
2325/***
2326 * try_to_wake_up - wake up a thread
2327 * @p: the to-be-woken-up thread
2328 * @state: the mask of task states that can be woken
2329 * @sync: do a synchronous wakeup?
2330 *
2331 * Put it on the run-queue if it's not already there. The "current"
2332 * thread is always on the run-queue (except when the actual
2333 * re-schedule is in progress), and as such you're allowed to do
2334 * the simpler "current->state = TASK_RUNNING" to mark yourself
2335 * runnable without the overhead of this.
2336 *
2337 * returns failure only if the task is already active.
2338 */
2339static int try_to_wake_up(struct task_struct *p, unsigned int state,
2340                          int wake_flags)
2341{
2342        int cpu, orig_cpu, this_cpu, success = 0;
2343        unsigned long flags;
2344        struct rq *rq, *orig_rq;
2345
2346        if (!sched_feat(SYNC_WAKEUPS))
2347                wake_flags &= ~WF_SYNC;
2348
2349        this_cpu = get_cpu();
2350
2351        smp_wmb();
2352        rq = orig_rq = task_rq_lock(p, &flags);
2353        update_rq_clock(rq);
2354        if (!(p->state & state))
2355                goto out;
2356
2357        if (p->se.on_rq)
2358                goto out_running;
2359
2360        cpu = task_cpu(p);
2361        orig_cpu = cpu;
2362
2363#ifdef CONFIG_SMP
2364        if (unlikely(task_running(rq, p)))
2365                goto out_activate;
2366
2367        /*
2368         * In order to handle concurrent wakeups and release the rq->lock
2369         * we put the task in TASK_WAKING state.
2370         *
2371         * First fix up the nr_uninterruptible count:
2372         */
2373        if (task_contributes_to_load(p))
2374                rq->nr_uninterruptible--;
2375        p->state = TASK_WAKING;
2376        task_rq_unlock(rq, &flags);
2377
2378        cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2379        if (cpu != orig_cpu)
2380                set_task_cpu(p, cpu);
2381
2382        rq = task_rq_lock(p, &flags);
2383
2384        if (rq != orig_rq)
2385                update_rq_clock(rq);
2386
2387        WARN_ON(p->state != TASK_WAKING);
2388        cpu = task_cpu(p);
2389
2390#ifdef CONFIG_SCHEDSTATS
2391        schedstat_inc(rq, ttwu_count);
2392        if (cpu == this_cpu)
2393                schedstat_inc(rq, ttwu_local);
2394        else {
2395                struct sched_domain *sd;
2396                for_each_domain(this_cpu, sd) {
2397                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398                                schedstat_inc(sd, ttwu_wake_remote);
2399                                break;
2400                        }
2401                }
2402        }
2403#endif /* CONFIG_SCHEDSTATS */
2404
2405out_activate:
2406#endif /* CONFIG_SMP */
2407        schedstat_inc(p, se.nr_wakeups);
2408        if (wake_flags & WF_SYNC)
2409                schedstat_inc(p, se.nr_wakeups_sync);
2410        if (orig_cpu != cpu)
2411                schedstat_inc(p, se.nr_wakeups_migrate);
2412        if (cpu == this_cpu)
2413                schedstat_inc(p, se.nr_wakeups_local);
2414        else
2415                schedstat_inc(p, se.nr_wakeups_remote);
2416        activate_task(rq, p, 1);
2417        success = 1;
2418
2419        /*
2420         * Only attribute actual wakeups done by this task.
2421         */
2422        if (!in_interrupt()) {
2423                struct sched_entity *se = &current->se;
2424                u64 sample = se->sum_exec_runtime;
2425
2426                if (se->last_wakeup)
2427                        sample -= se->last_wakeup;
2428                else
2429                        sample -= se->start_runtime;
2430                update_avg(&se->avg_wakeup, sample);
2431
2432                se->last_wakeup = se->sum_exec_runtime;
2433        }
2434
2435out_running:
2436        trace_sched_wakeup(rq, p, success);
2437        check_preempt_curr(rq, p, wake_flags);
2438
2439        p->state = TASK_RUNNING;
2440#ifdef CONFIG_SMP
2441        if (p->sched_class->task_wake_up)
2442                p->sched_class->task_wake_up(rq, p);
2443#endif
2444out:
2445        task_rq_unlock(rq, &flags);
2446        put_cpu();
2447
2448        return success;
2449}
2450
2451/**
2452 * wake_up_process - Wake up a specific process
2453 * @p: The process to be woken up.
2454 *
2455 * Attempt to wake up the nominated process and move it to the set of runnable
2456 * processes.  Returns 1 if the process was woken up, 0 if it was already
2457 * running.
2458 *
2459 * It may be assumed that this function implies a write memory barrier before
2460 * changing the task state if and only if any tasks are woken up.
2461 */
2462int wake_up_process(struct task_struct *p)
2463{
2464        return try_to_wake_up(p, TASK_ALL, 0);
2465}
2466EXPORT_SYMBOL(wake_up_process);
2467
2468int wake_up_state(struct task_struct *p, unsigned int state)
2469{
2470        return try_to_wake_up(p, state, 0);
2471}
2472
2473/*
2474 * Perform scheduler related setup for a newly forked process p.
2475 * p is forked by current.
2476 *
2477 * __sched_fork() is basic setup used by init_idle() too:
2478 */
2479static void __sched_fork(struct task_struct *p)
2480{
2481        p->se.exec_start                = 0;
2482        p->se.sum_exec_runtime          = 0;
2483        p->se.prev_sum_exec_runtime     = 0;
2484        p->se.nr_migrations             = 0;
2485        p->se.last_wakeup               = 0;
2486        p->se.avg_overlap               = 0;
2487        p->se.start_runtime             = 0;
2488        p->se.avg_wakeup                = sysctl_sched_wakeup_granularity;
2489        p->se.avg_running               = 0;
2490
2491#ifdef CONFIG_SCHEDSTATS
2492        p->se.wait_start                        = 0;
2493        p->se.wait_max                          = 0;
2494        p->se.wait_count                        = 0;
2495        p->se.wait_sum                          = 0;
2496
2497        p->se.sleep_start                       = 0;
2498        p->se.sleep_max                         = 0;
2499        p->se.sum_sleep_runtime                 = 0;
2500
2501        p->se.block_start                       = 0;
2502        p->se.block_max                         = 0;
2503        p->se.exec_max                          = 0;
2504        p->se.slice_max                         = 0;
2505
2506        p->se.nr_migrations_cold                = 0;
2507        p->se.nr_failed_migrations_affine       = 0;
2508        p->se.nr_failed_migrations_running      = 0;
2509        p->se.nr_failed_migrations_hot          = 0;
2510        p->se.nr_forced_migrations              = 0;
2511        p->se.nr_forced2_migrations             = 0;
2512
2513        p->se.nr_wakeups                        = 0;
2514        p->se.nr_wakeups_sync                   = 0;
2515        p->se.nr_wakeups_migrate                = 0;
2516        p->se.nr_wakeups_local                  = 0;
2517        p->se.nr_wakeups_remote                 = 0;
2518        p->se.nr_wakeups_affine                 = 0;
2519        p->se.nr_wakeups_affine_attempts        = 0;
2520        p->se.nr_wakeups_passive                = 0;
2521        p->se.nr_wakeups_idle                   = 0;
2522
2523#endif
2524
2525        INIT_LIST_HEAD(&p->rt.run_list);
2526        p->se.on_rq = 0;
2527        INIT_LIST_HEAD(&p->se.group_node);
2528
2529#ifdef CONFIG_PREEMPT_NOTIFIERS
2530        INIT_HLIST_HEAD(&p->preempt_notifiers);
2531#endif
2532
2533        /*
2534         * We mark the process as running here, but have not actually
2535         * inserted it onto the runqueue yet. This guarantees that
2536         * nobody will actually run it, and a signal or other external
2537         * event cannot wake it up and insert it on the runqueue either.
2538         */
2539        p->state = TASK_RUNNING;
2540}
2541
2542/*
2543 * fork()/clone()-time setup:
2544 */
2545void sched_fork(struct task_struct *p, int clone_flags)
2546{
2547        int cpu = get_cpu();
2548
2549        __sched_fork(p);
2550
2551        /*
2552         * Revert to default priority/policy on fork if requested.
2553         */
2554        if (unlikely(p->sched_reset_on_fork)) {
2555                if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2556                        p->policy = SCHED_NORMAL;
2557                        p->normal_prio = p->static_prio;
2558                }
2559
2560                if (PRIO_TO_NICE(p->static_prio) < 0) {
2561                        p->static_prio = NICE_TO_PRIO(0);
2562                        p->normal_prio = p->static_prio;
2563                        set_load_weight(p);
2564                }
2565
2566                /*
2567                 * We don't need the reset flag anymore after the fork. It has
2568                 * fulfilled its duty:
2569                 */
2570                p->sched_reset_on_fork = 0;
2571        }
2572
2573        /*
2574         * Make sure we do not leak PI boosting priority to the child.
2575         */
2576        p->prio = current->normal_prio;
2577
2578        if (!rt_prio(p->prio))
2579                p->sched_class = &fair_sched_class;
2580
2581#ifdef CONFIG_SMP
2582        cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2583#endif
2584        set_task_cpu(p, cpu);
2585
2586#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2587        if (likely(sched_info_on()))
2588                memset(&p->sched_info, 0, sizeof(p->sched_info));
2589#endif
2590#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2591        p->oncpu = 0;
2592#endif
2593#ifdef CONFIG_PREEMPT
2594        /* Want to start with kernel preemption disabled. */
2595        task_thread_info(p)->preempt_count = 1;
2596#endif
2597        plist_node_init(&p->pushable_tasks, MAX_PRIO);
2598
2599        put_cpu();
2600}
2601
2602/*
2603 * wake_up_new_task - wake up a newly created task for the first time.
2604 *
2605 * This function will do some initial scheduler statistics housekeeping
2606 * that must be done for every newly created context, then puts the task
2607 * on the runqueue and wakes it.
2608 */
2609void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2610{
2611        unsigned long flags;
2612        struct rq *rq;
2613
2614        rq = task_rq_lock(p, &flags);
2615        BUG_ON(p->state != TASK_RUNNING);
2616        update_rq_clock(rq);
2617
2618        if (!p->sched_class->task_new || !current->se.on_rq) {
2619                activate_task(rq, p, 0);
2620        } else {
2621                /*
2622                 * Let the scheduling class do new task startup
2623                 * management (if any):
2624                 */
2625                p->sched_class->task_new(rq, p);
2626                inc_nr_running(rq);
2627        }
2628        trace_sched_wakeup_new(rq, p, 1);
2629        check_preempt_curr(rq, p, WF_FORK);
2630#ifdef CONFIG_SMP
2631        if (p->sched_class->task_wake_up)
2632                p->sched_class->task_wake_up(rq, p);
2633#endif
2634        task_rq_unlock(rq, &flags);
2635}
2636
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639/**
2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2641 * @notifier: notifier struct to register
2642 */
2643void preempt_notifier_register(struct preempt_notifier *notifier)
2644{
2645        hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646}
2647EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649/**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
2651 * @notifier: notifier struct to unregister
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656{
2657        hlist_del(&notifier->link);
2658}
2659EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662{
2663        struct preempt_notifier *notifier;
2664        struct hlist_node *node;
2665
2666        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667                notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668}
2669
2670static void
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672                                 struct task_struct *next)
2673{
2674        struct preempt_notifier *notifier;
2675        struct hlist_node *node;
2676
2677        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678                notifier->ops->sched_out(notifier, next);
2679}
2680
2681#else /* !CONFIG_PREEMPT_NOTIFIERS */
2682
2683static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684{
2685}
2686
2687static void
2688fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689                                 struct task_struct *next)
2690{
2691}
2692
2693#endif /* CONFIG_PREEMPT_NOTIFIERS */
2694
2695/**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
2698 * @prev: the current task that is being switched out
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
2708static inline void
2709prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710                    struct task_struct *next)
2711{
2712        fire_sched_out_preempt_notifiers(prev, next);
2713        prepare_lock_switch(rq, next);
2714        prepare_arch_switch(next);
2715}
2716
2717/**
2718 * finish_task_switch - clean up after a task-switch
2719 * @rq: runqueue associated with task-switch
2720 * @prev: the thread we just switched away from.
2721 *
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
2728 * so, we finish that here outside of the runqueue lock. (Doing it
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
2732static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2733        __releases(rq->lock)
2734{
2735        struct mm_struct *mm = rq->prev_mm;
2736        long prev_state;
2737
2738        rq->prev_mm = NULL;
2739
2740        /*
2741         * A task struct has one reference for the use as "current".
2742         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2743         * schedule one last time. The schedule call will never return, and
2744         * the scheduled task must drop that reference.
2745         * The test for TASK_DEAD must occur while the runqueue locks are
2746         * still held, otherwise prev could be scheduled on another cpu, die
2747         * there before we look at prev->state, and then the reference would
2748         * be dropped twice.
2749         *              Manfred Spraul <manfred@colorfullife.com>
2750         */
2751        prev_state = prev->state;
2752        finish_arch_switch(prev);
2753        perf_event_task_sched_in(current, cpu_of(rq));
2754        finish_lock_switch(rq, prev);
2755
2756        fire_sched_in_preempt_notifiers(current);
2757        if (mm)
2758                mmdrop(mm);
2759        if (unlikely(prev_state == TASK_DEAD)) {
2760                /*
2761                 * Remove function-return probe instances associated with this
2762                 * task and put them back on the free list.
2763                 */
2764                kprobe_flush_task(prev);
2765                put_task_struct(prev);
2766        }
2767}
2768
2769#ifdef CONFIG_SMP
2770
2771/* assumes rq->lock is held */
2772static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773{
2774        if (prev->sched_class->pre_schedule)
2775                prev->sched_class->pre_schedule(rq, prev);
2776}
2777
2778/* rq->lock is NOT held, but preemption is disabled */
2779static inline void post_schedule(struct rq *rq)
2780{
2781        if (rq->post_schedule) {
2782                unsigned long flags;
2783
2784                spin_lock_irqsave(&rq->lock, flags);
2785                if (rq->curr->sched_class->post_schedule)
2786                        rq->curr->sched_class->post_schedule(rq);
2787                spin_unlock_irqrestore(&rq->lock, flags);
2788
2789                rq->post_schedule = 0;
2790        }
2791}
2792
2793#else
2794
2795static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796{
2797}
2798
2799static inline void post_schedule(struct rq *rq)
2800{
2801}
2802
2803#endif
2804
2805/**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
2809asmlinkage void schedule_tail(struct task_struct *prev)
2810        __releases(rq->lock)
2811{
2812        struct rq *rq = this_rq();
2813
2814        finish_task_switch(rq, prev);
2815
2816        /*
2817         * FIXME: do we need to worry about rq being invalidated by the
2818         * task_switch?
2819         */
2820        post_schedule(rq);
2821
2822#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823        /* In this case, finish_task_switch does not reenable preemption */
2824        preempt_enable();
2825#endif
2826        if (current->set_child_tid)
2827                put_user(task_pid_vnr(current), current->set_child_tid);
2828}
2829
2830/*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
2834static inline void
2835context_switch(struct rq *rq, struct task_struct *prev,
2836               struct task_struct *next)
2837{
2838        struct mm_struct *mm, *oldmm;
2839
2840        prepare_task_switch(rq, prev, next);
2841        trace_sched_switch(rq, prev, next);
2842        mm = next->mm;
2843        oldmm = prev->active_mm;
2844        /*
2845         * For paravirt, this is coupled with an exit in switch_to to
2846         * combine the page table reload and the switch backend into
2847         * one hypercall.
2848         */
2849        arch_start_context_switch(prev);
2850
2851        if (unlikely(!mm)) {
2852                next->active_mm = oldmm;
2853                atomic_inc(&oldmm->mm_count);
2854                enter_lazy_tlb(oldmm, next);
2855        } else
2856                switch_mm(oldmm, mm, next);
2857
2858        if (unlikely(!prev->mm)) {
2859                prev->active_mm = NULL;
2860                rq->prev_mm = oldmm;
2861        }
2862        /*
2863         * Since the runqueue lock will be released by the next
2864         * task (which is an invalid locking op but in the case
2865         * of the scheduler it's an obvious special-case), so we
2866         * do an early lockdep release here:
2867         */
2868#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870#endif
2871
2872        /* Here we just switch the register state and the stack. */
2873        switch_to(prev, next, prev);
2874
2875        barrier();
2876        /*
2877         * this_rq must be evaluated again because prev may have moved
2878         * CPUs since it called schedule(), thus the 'rq' on its stack
2879         * frame will be invalid.
2880         */
2881        finish_task_switch(this_rq(), prev);
2882}
2883
2884/*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891unsigned long nr_running(void)
2892{
2893        unsigned long i, sum = 0;
2894
2895        for_each_online_cpu(i)
2896                sum += cpu_rq(i)->nr_running;
2897
2898        return sum;
2899}
2900
2901unsigned long nr_uninterruptible(void)
2902{
2903        unsigned long i, sum = 0;
2904
2905        for_each_possible_cpu(i)
2906                sum += cpu_rq(i)->nr_uninterruptible;
2907
2908        /*
2909         * Since we read the counters lockless, it might be slightly
2910         * inaccurate. Do not allow it to go below zero though:
2911         */
2912        if (unlikely((long)sum < 0))
2913                sum = 0;
2914
2915        return sum;
2916}
2917
2918unsigned long long nr_context_switches(void)
2919{
2920        int i;
2921        unsigned long long sum = 0;
2922
2923        for_each_possible_cpu(i)
2924                sum += cpu_rq(i)->nr_switches;
2925
2926        return sum;
2927}
2928
2929unsigned long nr_iowait(void)
2930{
2931        unsigned long i, sum = 0;
2932
2933        for_each_possible_cpu(i)
2934                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936        return sum;
2937}
2938
2939unsigned long nr_iowait_cpu(void)
2940{
2941        struct rq *this = this_rq();
2942        return atomic_read(&this->nr_iowait);
2943}
2944
2945unsigned long this_cpu_load(void)
2946{
2947        struct rq *this = this_rq();
2948        return this->cpu_load[0];
2949}
2950
2951
2952/* Variables and functions for calc_load */
2953static atomic_long_t calc_load_tasks;
2954static unsigned long calc_load_update;
2955unsigned long avenrun[3];
2956EXPORT_SYMBOL(avenrun);
2957
2958/**
2959 * get_avenrun - get the load average array
2960 * @loads:      pointer to dest load array
2961 * @offset:     offset to add
2962 * @shift:      shift count to shift the result left
2963 *
2964 * These values are estimates at best, so no need for locking.
2965 */
2966void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967{
2968        loads[0] = (avenrun[0] + offset) << shift;
2969        loads[1] = (avenrun[1] + offset) << shift;
2970        loads[2] = (avenrun[2] + offset) << shift;
2971}
2972
2973static unsigned long
2974calc_load(unsigned long load, unsigned long exp, unsigned long active)
2975{
2976        load *= exp;
2977        load += active * (FIXED_1 - exp);
2978        return load >> FSHIFT;
2979}
2980
2981/*
2982 * calc_load - update the avenrun load estimates 10 ticks after the
2983 * CPUs have updated calc_load_tasks.
2984 */
2985void calc_global_load(void)
2986{
2987        unsigned long upd = calc_load_update + 10;
2988        long active;
2989
2990        if (time_before(jiffies, upd))
2991                return;
2992
2993        active = atomic_long_read(&calc_load_tasks);
2994        active = active > 0 ? active * FIXED_1 : 0;
2995
2996        avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2997        avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2998        avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999
3000        calc_load_update += LOAD_FREQ;
3001}
3002
3003/*
3004 * Either called from update_cpu_load() or from a cpu going idle
3005 */
3006static void calc_load_account_active(struct rq *this_rq)
3007{
3008        long nr_active, delta;
3009
3010        nr_active = this_rq->nr_running;
3011        nr_active += (long) this_rq->nr_uninterruptible;
3012
3013        if (nr_active != this_rq->calc_load_active) {
3014                delta = nr_active - this_rq->calc_load_active;
3015                this_rq->calc_load_active = nr_active;
3016                atomic_long_add(delta, &calc_load_tasks);
3017        }
3018}
3019
3020/*
3021 * Externally visible per-cpu scheduler statistics:
3022 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3023 */
3024u64 cpu_nr_migrations(int cpu)
3025{
3026        return cpu_rq(cpu)->nr_migrations_in;
3027}
3028
3029/*
3030 * Update rq->cpu_load[] statistics. This function is usually called every
3031 * scheduler tick (TICK_NSEC).
3032 */
3033static void update_cpu_load(struct rq *this_rq)
3034{
3035        unsigned long this_load = this_rq->load.weight;
3036        int i, scale;
3037
3038        this_rq->nr_load_updates++;
3039
3040        /* Update our load: */
3041        for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3042                unsigned long old_load, new_load;
3043
3044                /* scale is effectively 1 << i now, and >> i divides by scale */
3045
3046                old_load = this_rq->cpu_load[i];
3047                new_load = this_load;
3048                /*
3049                 * Round up the averaging division if load is increasing. This
3050                 * prevents us from getting stuck on 9 if the load is 10, for
3051                 * example.
3052                 */
3053                if (new_load > old_load)
3054                        new_load += scale-1;
3055                this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3056        }
3057
3058        if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3059                this_rq->calc_load_update += LOAD_FREQ;
3060                calc_load_account_active(this_rq);
3061        }
3062}
3063
3064#ifdef CONFIG_SMP
3065
3066/*
3067 * double_rq_lock - safely lock two runqueues
3068 *
3069 * Note this does not disable interrupts like task_rq_lock,
3070 * you need to do so manually before calling.
3071 */
3072static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3073        __acquires(rq1->lock)
3074        __acquires(rq2->lock)
3075{
3076        BUG_ON(!irqs_disabled());
3077        if (rq1 == rq2) {
3078                spin_lock(&rq1->lock);
3079                __acquire(rq2->lock);   /* Fake it out ;) */
3080        } else {
3081                if (rq1 < rq2) {
3082                        spin_lock(&rq1->lock);
3083                        spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3084                } else {
3085                        spin_lock(&rq2->lock);
3086                        spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3087                }
3088        }
3089        update_rq_clock(rq1);
3090        update_rq_clock(rq2);
3091}
3092
3093/*
3094 * double_rq_unlock - safely unlock two runqueues
3095 *
3096 * Note this does not restore interrupts like task_rq_unlock,
3097 * you need to do so manually after calling.
3098 */
3099static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3100        __releases(rq1->lock)
3101        __releases(rq2->lock)
3102{
3103        spin_unlock(&rq1->lock);
3104        if (rq1 != rq2)
3105                spin_unlock(&rq2->lock);
3106        else
3107                __release(rq2->lock);
3108}
3109
3110/*
3111 * If dest_cpu is allowed for this process, migrate the task to it.
3112 * This is accomplished by forcing the cpu_allowed mask to only
3113 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3114 * the cpu_allowed mask is restored.
3115 */
3116static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3117{
3118        struct migration_req req;
3119        unsigned long flags;
3120        struct rq *rq;
3121
3122        rq = task_rq_lock(p, &flags);
3123        if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3124            || unlikely(!cpu_active(dest_cpu)))
3125                goto out;
3126
3127        /* force the process onto the specified CPU */
3128        if (migrate_task(p, dest_cpu, &req)) {
3129                /* Need to wait for migration thread (might exit: take ref). */
3130                struct task_struct *mt = rq->migration_thread;
3131
3132                get_task_struct(mt);
3133                task_rq_unlock(rq, &flags);
3134                wake_up_process(mt);
3135                put_task_struct(mt);
3136                wait_for_completion(&req.done);
3137
3138                return;
3139        }
3140out:
3141        task_rq_unlock(rq, &flags);
3142}
3143
3144/*
3145 * sched_exec - execve() is a valuable balancing opportunity, because at
3146 * this point the task has the smallest effective memory and cache footprint.
3147 */
3148void sched_exec(void)
3149{
3150        int new_cpu, this_cpu = get_cpu();
3151        new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3152        put_cpu();
3153        if (new_cpu != this_cpu)
3154                sched_migrate_task(current, new_cpu);
3155}
3156
3157/*
3158 * pull_task - move a task from a remote runqueue to the local runqueue.
3159 * Both runqueues must be locked.
3160 */
3161static void pull_task(struct rq *src_rq, struct task_struct *p,
3162                      struct rq *this_rq, int this_cpu)
3163{
3164        deactivate_task(src_rq, p, 0);
3165        set_task_cpu(p, this_cpu);
3166        activate_task(this_rq, p, 0);
3167        /*
3168         * Note that idle threads have a prio of MAX_PRIO, for this test
3169         * to be always true for them.
3170         */
3171        check_preempt_curr(this_rq, p, 0);
3172}
3173
3174/*
3175 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3176 */
3177static
3178int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3179                     struct sched_domain *sd, enum cpu_idle_type idle,
3180                     int *all_pinned)
3181{
3182        int tsk_cache_hot = 0;
3183        /*
3184         * We do not migrate tasks that are:
3185         * 1) running (obviously), or
3186         * 2) cannot be migrated to this CPU due to cpus_allowed, or
3187         * 3) are cache-hot on their current CPU.
3188         */
3189        if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3190                schedstat_inc(p, se.nr_failed_migrations_affine);
3191                return 0;
3192        }
3193        *all_pinned = 0;
3194
3195        if (task_running(rq, p)) {
3196                schedstat_inc(p, se.nr_failed_migrations_running);
3197                return 0;
3198        }
3199
3200        /*
3201         * Aggressive migration if:
3202         * 1) task is cache cold, or
3203         * 2) too many balance attempts have failed.
3204         */
3205
3206        tsk_cache_hot = task_hot(p, rq->clock, sd);
3207        if (!tsk_cache_hot ||
3208                sd->nr_balance_failed > sd->cache_nice_tries) {
3209#ifdef CONFIG_SCHEDSTATS
3210                if (tsk_cache_hot) {
3211                        schedstat_inc(sd, lb_hot_gained[idle]);
3212                        schedstat_inc(p, se.nr_forced_migrations);
3213                }
3214#endif
3215                return 1;
3216        }
3217
3218        if (tsk_cache_hot) {
3219                schedstat_inc(p, se.nr_failed_migrations_hot);
3220                return 0;
3221        }
3222        return 1;
3223}
3224
3225static unsigned long
3226balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3227              unsigned long max_load_move, struct sched_domain *sd,
3228              enum cpu_idle_type idle, int *all_pinned,
3229              int *this_best_prio, struct rq_iterator *iterator)
3230{
3231        int loops = 0, pulled = 0, pinned = 0;
3232        struct task_struct *p;
3233        long rem_load_move = max_load_move;
3234
3235        if (max_load_move == 0)
3236                goto out;
3237
3238        pinned = 1;
3239
3240        /*
3241         * Start the load-balancing iterator:
3242         */
3243        p = iterator->start(iterator->arg);
3244next:
3245        if (!p || loops++ > sysctl_sched_nr_migrate)
3246                goto out;
3247
3248        if ((p->se.load.weight >> 1) > rem_load_move ||
3249            !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3250                p = iterator->next(iterator->arg);
3251                goto next;
3252        }
3253
3254        pull_task(busiest, p, this_rq, this_cpu);
3255        pulled++;
3256        rem_load_move -= p->se.load.weight;
3257
3258#ifdef CONFIG_PREEMPT
3259        /*
3260         * NEWIDLE balancing is a source of latency, so preemptible kernels
3261         * will stop after the first task is pulled to minimize the critical
3262         * section.
3263         */
3264        if (idle == CPU_NEWLY_IDLE)
3265                goto out;
3266#endif
3267
3268        /*
3269         * We only want to steal up to the prescribed amount of weighted load.
3270         */
3271        if (rem_load_move > 0) {
3272                if (p->prio < *this_best_prio)
3273                        *this_best_prio = p->prio;
3274                p = iterator->next(iterator->arg);
3275                goto next;
3276        }
3277out:
3278        /*
3279         * Right now, this is one of only two places pull_task() is called,
3280         * so we can safely collect pull_task() stats here rather than
3281         * inside pull_task().
3282         */
3283        schedstat_add(sd, lb_gained[idle], pulled);
3284
3285        if (all_pinned)
3286                *all_pinned = pinned;
3287
3288        return max_load_move - rem_load_move;
3289}
3290
3291/*
3292 * move_tasks tries to move up to max_load_move weighted load from busiest to
3293 * this_rq, as part of a balancing operation within domain "sd".
3294 * Returns 1 if successful and 0 otherwise.
3295 *
3296 * Called with both runqueues locked.
3297 */
3298static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3299                      unsigned long max_load_move,
3300                      struct sched_domain *sd, enum cpu_idle_type idle,
3301                      int *all_pinned)
3302{
3303        const struct sched_class *class = sched_class_highest;
3304        unsigned long total_load_moved = 0;
3305        int this_best_prio = this_rq->curr->prio;
3306
3307        do {
3308                total_load_moved +=
3309                        class->load_balance(this_rq, this_cpu, busiest,
3310                                max_load_move - total_load_moved,
3311                                sd, idle, all_pinned, &this_best_prio);
3312                class = class->next;
3313
3314#ifdef CONFIG_PREEMPT
3315                /*
3316                 * NEWIDLE balancing is a source of latency, so preemptible
3317                 * kernels will stop after the first task is pulled to minimize
3318                 * the critical section.
3319                 */
3320                if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3321                        break;
3322#endif
3323        } while (class && max_load_move > total_load_moved);
3324
3325        return total_load_moved > 0;
3326}
3327
3328static int
3329iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330                   struct sched_domain *sd, enum cpu_idle_type idle,
3331                   struct rq_iterator *iterator)
3332{
3333        struct task_struct *p = iterator->start(iterator->arg);
3334        int pinned = 0;
3335
3336        while (p) {
3337                if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3338                        pull_task(busiest, p, this_rq, this_cpu);
3339                        /*
3340                         * Right now, this is only the second place pull_task()
3341                         * is called, so we can safely collect pull_task()
3342                         * stats here rather than inside pull_task().
3343                         */
3344                        schedstat_inc(sd, lb_gained[idle]);
3345
3346                        return 1;
3347                }
3348                p = iterator->next(iterator->arg);
3349        }
3350
3351        return 0;
3352}
3353
3354/*
3355 * move_one_task tries to move exactly one task from busiest to this_rq, as
3356 * part of active balancing operations within "domain".
3357 * Returns 1 if successful and 0 otherwise.
3358 *
3359 * Called with both runqueues locked.
3360 */
3361static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362                         struct sched_domain *sd, enum cpu_idle_type idle)
3363{
3364        const struct sched_class *class;
3365
3366        for_each_class(class) {
3367                if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3368                        return 1;
3369        }
3370
3371        return 0;
3372}
3373/********** Helpers for find_busiest_group ************************/
3374/*
3375 * sd_lb_stats - Structure to store the statistics of a sched_domain
3376 *              during load balancing.
3377 */
3378struct sd_lb_stats {
3379        struct sched_group *busiest; /* Busiest group in this sd */
3380        struct sched_group *this;  /* Local group in this sd */
3381        unsigned long total_load;  /* Total load of all groups in sd */
3382        unsigned long total_pwr;   /*   Total power of all groups in sd */
3383        unsigned long avg_load;    /* Average load across all groups in sd */
3384
3385        /** Statistics of this group */
3386        unsigned long this_load;
3387        unsigned long this_load_per_task;
3388        unsigned long this_nr_running;
3389
3390        /* Statistics of the busiest group */
3391        unsigned long max_load;
3392        unsigned long busiest_load_per_task;
3393        unsigned long busiest_nr_running;
3394
3395        int group_imb; /* Is there imbalance in this sd */
3396#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3397        int power_savings_balance; /* Is powersave balance needed for this sd */
3398        struct sched_group *group_min; /* Least loaded group in sd */
3399        struct sched_group *group_leader; /* Group which relieves group_min */
3400        unsigned long min_load_per_task; /* load_per_task in group_min */
3401        unsigned long leader_nr_running; /* Nr running of group_leader */
3402        unsigned long min_nr_running; /* Nr running of group_min */
3403#endif
3404};
3405
3406/*
3407 * sg_lb_stats - stats of a sched_group required for load_balancing
3408 */
3409struct sg_lb_stats {
3410        unsigned long avg_load; /*Avg load across the CPUs of the group */
3411        unsigned long group_load; /* Total load over the CPUs of the group */
3412        unsigned long sum_nr_running; /* Nr tasks running in the group */
3413        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3414        unsigned long group_capacity;
3415        int group_imb; /* Is there an imbalance in the group ? */
3416};
3417
3418/**
3419 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3420 * @group: The group whose first cpu is to be returned.
3421 */
3422static inline unsigned int group_first_cpu(struct sched_group *group)
3423{
3424        return cpumask_first(sched_group_cpus(group));
3425}
3426
3427/**
3428 * get_sd_load_idx - Obtain the load index for a given sched domain.
3429 * @sd: The sched_domain whose load_idx is to be obtained.
3430 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3431 */
3432static inline int get_sd_load_idx(struct sched_domain *sd,
3433                                        enum cpu_idle_type idle)
3434{
3435        int load_idx;
3436
3437        switch (idle) {
3438        case CPU_NOT_IDLE:
3439                load_idx = sd->busy_idx;
3440                break;
3441
3442        case CPU_NEWLY_IDLE:
3443                load_idx = sd->newidle_idx;
3444                break;
3445        default:
3446                load_idx = sd->idle_idx;
3447                break;
3448        }
3449
3450        return load_idx;
3451}
3452
3453
3454#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3455/**
3456 * init_sd_power_savings_stats - Initialize power savings statistics for
3457 * the given sched_domain, during load balancing.
3458 *
3459 * @sd: Sched domain whose power-savings statistics are to be initialized.
3460 * @sds: Variable containing the statistics for sd.
3461 * @idle: Idle status of the CPU at which we're performing load-balancing.
3462 */
3463static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3464        struct sd_lb_stats *sds, enum cpu_idle_type idle)
3465{
3466        /*
3467         * Busy processors will not participate in power savings
3468         * balance.
3469         */
3470        if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3471                sds->power_savings_balance = 0;
3472        else {
3473                sds->power_savings_balance = 1;
3474                sds->min_nr_running = ULONG_MAX;
3475                sds->leader_nr_running = 0;
3476        }
3477}
3478
3479/**
3480 * update_sd_power_savings_stats - Update the power saving stats for a
3481 * sched_domain while performing load balancing.
3482 *
3483 * @group: sched_group belonging to the sched_domain under consideration.
3484 * @sds: Variable containing the statistics of the sched_domain
3485 * @local_group: Does group contain the CPU for which we're performing
3486 *              load balancing ?
3487 * @sgs: Variable containing the statistics of the group.
3488 */
3489static inline void update_sd_power_savings_stats(struct sched_group *group,
3490        struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3491{
3492
3493        if (!sds->power_savings_balance)
3494                return;
3495
3496        /*
3497         * If the local group is idle or completely loaded
3498         * no need to do power savings balance at this domain
3499         */
3500        if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3501                                !sds->this_nr_running))
3502                sds->power_savings_balance = 0;
3503
3504        /*
3505         * If a group is already running at full capacity or idle,
3506         * don't include that group in power savings calculations
3507         */
3508        if (!sds->power_savings_balance ||
3509                sgs->sum_nr_running >= sgs->group_capacity ||
3510                !sgs->sum_nr_running)
3511                return;
3512
3513        /*
3514         * Calculate the group which has the least non-idle load.
3515         * This is the group from where we need to pick up the load
3516         * for saving power
3517         */
3518        if ((sgs->sum_nr_running < sds->min_nr_running) ||
3519            (sgs->sum_nr_running == sds->min_nr_running &&
3520             group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3521                sds->group_min = group;
3522                sds->min_nr_running = sgs->sum_nr_running;
3523                sds->min_load_per_task = sgs->sum_weighted_load /
3524                                                sgs->sum_nr_running;
3525        }
3526
3527        /*
3528         * Calculate the group which is almost near its
3529         * capacity but still has some space to pick up some load
3530         * from other group and save more power
3531         */
3532        if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3533                return;
3534
3535        if (sgs->sum_nr_running > sds->leader_nr_running ||
3536            (sgs->sum_nr_running == sds->leader_nr_running &&
3537             group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3538                sds->group_leader = group;
3539                sds->leader_nr_running = sgs->sum_nr_running;
3540        }
3541}
3542
3543/**
3544 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3545 * @sds: Variable containing the statistics of the sched_domain
3546 *      under consideration.
3547 * @this_cpu: Cpu at which we're currently performing load-balancing.
3548 * @imbalance: Variable to store the imbalance.
3549 *
3550 * Description:
3551 * Check if we have potential to perform some power-savings balance.
3552 * If yes, set the busiest group to be the least loaded group in the
3553 * sched_domain, so that it's CPUs can be put to idle.
3554 *
3555 * Returns 1 if there is potential to perform power-savings balance.
3556 * Else returns 0.
3557 */
3558static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3559                                        int this_cpu, unsigned long *imbalance)
3560{
3561        if (!sds->power_savings_balance)
3562                return 0;
3563
3564        if (sds->this != sds->group_leader ||
3565                        sds->group_leader == sds->group_min)
3566                return 0;
3567
3568        *imbalance = sds->min_load_per_task;
3569        sds->busiest = sds->group_min;
3570
3571        return 1;
3572
3573}
3574#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3575static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3576        struct sd_lb_stats *sds, enum cpu_idle_type idle)
3577{
3578        return;
3579}
3580
3581static inline void update_sd_power_savings_stats(struct sched_group *group,
3582        struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3583{
3584        return;
3585}
3586
3587static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3588                                        int this_cpu, unsigned long *imbalance)
3589{
3590        return 0;
3591}
3592#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3593
3594
3595unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3596{
3597        return SCHED_LOAD_SCALE;
3598}
3599
3600unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3601{
3602        return default_scale_freq_power(sd, cpu);
3603}
3604
3605unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3606{
3607        unsigned long weight = cpumask_weight(sched_domain_span(sd));
3608        unsigned long smt_gain = sd->smt_gain;
3609
3610        smt_gain /= weight;
3611
3612        return smt_gain;
3613}
3614
3615unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3616{
3617        return default_scale_smt_power(sd, cpu);
3618}
3619
3620unsigned long scale_rt_power(int cpu)
3621{
3622        struct rq *rq = cpu_rq(cpu);
3623        u64 total, available;
3624
3625        sched_avg_update(rq);
3626
3627        total = sched_avg_period() + (rq->clock - rq->age_stamp);
3628        available = total - rq->rt_avg;
3629
3630        if (unlikely((s64)total < SCHED_LOAD_SCALE))
3631                total = SCHED_LOAD_SCALE;
3632
3633        total >>= SCHED_LOAD_SHIFT;
3634
3635        return div_u64(available, total);
3636}
3637
3638static void update_cpu_power(struct sched_domain *sd, int cpu)
3639{
3640        unsigned long weight = cpumask_weight(sched_domain_span(sd));
3641        unsigned long power = SCHED_LOAD_SCALE;
3642        struct sched_group *sdg = sd->groups;
3643
3644        if (sched_feat(ARCH_POWER))
3645                power *= arch_scale_freq_power(sd, cpu);
3646        else
3647                power *= default_scale_freq_power(sd, cpu);
3648
3649        power >>= SCHED_LOAD_SHIFT;
3650
3651        if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3652                if (sched_feat(ARCH_POWER))
3653                        power *= arch_scale_smt_power(sd, cpu);
3654                else
3655                        power *= default_scale_smt_power(sd, cpu);
3656
3657                power >>= SCHED_LOAD_SHIFT;
3658        }
3659
3660        power *= scale_rt_power(cpu);
3661        power >>= SCHED_LOAD_SHIFT;
3662
3663        if (!power)
3664                power = 1;
3665
3666        sdg->cpu_power = power;
3667}
3668
3669static void update_group_power(struct sched_domain *sd, int cpu)
3670{
3671        struct sched_domain *child = sd->child;
3672        struct sched_group *group, *sdg = sd->groups;
3673        unsigned long power;
3674
3675        if (!child) {
3676                update_cpu_power(sd, cpu);
3677                return;
3678        }
3679
3680        power = 0;
3681
3682        group = child->groups;
3683        do {
3684                power += group->cpu_power;
3685                group = group->next;
3686        } while (group != child->groups);
3687
3688        sdg->cpu_power = power;
3689}
3690
3691/**
3692 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3693 * @sd: The sched_domain whose statistics are to be updated.
3694 * @group: sched_group whose statistics are to be updated.
3695 * @this_cpu: Cpu for which load balance is currently performed.
3696 * @idle: Idle status of this_cpu
3697 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3698 * @sd_idle: Idle status of the sched_domain containing group.
3699 * @local_group: Does group contain this_cpu.
3700 * @cpus: Set of cpus considered for load balancing.
3701 * @balance: Should we balance.
3702 * @sgs: variable to hold the statistics for this group.
3703 */
3704static inline void update_sg_lb_stats(struct sched_domain *sd,
3705                        struct sched_group *group, int this_cpu,
3706                        enum cpu_idle_type idle, int load_idx, int *sd_idle,
3707                        int local_group, const struct cpumask *cpus,
3708                        int *balance, struct sg_lb_stats *sgs)
3709{
3710        unsigned long load, max_cpu_load, min_cpu_load;
3711        int i;
3712        unsigned int balance_cpu = -1, first_idle_cpu = 0;
3713        unsigned long sum_avg_load_per_task;
3714        unsigned long avg_load_per_task;
3715
3716        if (local_group) {
3717                balance_cpu = group_first_cpu(group);
3718                if (balance_cpu == this_cpu)
3719                        update_group_power(sd, this_cpu);
3720        }
3721
3722        /* Tally up the load of all CPUs in the group */
3723        sum_avg_load_per_task = avg_load_per_task = 0;
3724        max_cpu_load = 0;
3725        min_cpu_load = ~0UL;
3726
3727        for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3728                struct rq *rq = cpu_rq(i);
3729
3730                if (*sd_idle && rq->nr_running)
3731                        *sd_idle = 0;
3732
3733                /* Bias balancing toward cpus of our domain */
3734                if (local_group) {
3735                        if (idle_cpu(i) && !first_idle_cpu) {
3736                                first_idle_cpu = 1;
3737                                balance_cpu = i;
3738                        }
3739
3740                        load = target_load(i, load_idx);
3741                } else {
3742                        load = source_load(i, load_idx);
3743                        if (load > max_cpu_load)
3744                                max_cpu_load = load;
3745                        if (min_cpu_load > load)
3746                                min_cpu_load = load;
3747                }
3748
3749                sgs->group_load += load;
3750                sgs->sum_nr_running += rq->nr_running;
3751                sgs->sum_weighted_load += weighted_cpuload(i);
3752
3753                sum_avg_load_per_task += cpu_avg_load_per_task(i);
3754        }
3755
3756        /*
3757         * First idle cpu or the first cpu(busiest) in this sched group
3758         * is eligible for doing load balancing at this and above
3759         * domains. In the newly idle case, we will allow all the cpu's
3760         * to do the newly idle load balance.
3761         */
3762        if (idle != CPU_NEWLY_IDLE && local_group &&
3763            balance_cpu != this_cpu && balance) {
3764                *balance = 0;
3765                return;
3766        }
3767
3768        /* Adjust by relative CPU power of the group */
3769        sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3770
3771
3772        /*
3773         * Consider the group unbalanced when the imbalance is larger
3774         * than the average weight of two tasks.
3775         *
3776         * APZ: with cgroup the avg task weight can vary wildly and
3777         *      might not be a suitable number - should we keep a
3778         *      normalized nr_running number somewhere that negates
3779         *      the hierarchy?
3780         */
3781        avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3782                group->cpu_power;
3783
3784        if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3785                sgs->group_imb = 1;
3786
3787        sgs->group_capacity =
3788                DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3789}
3790
3791/**
3792 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3793 * @sd: sched_domain whose statistics are to be updated.
3794 * @this_cpu: Cpu for which load balance is currently performed.
3795 * @idle: Idle status of this_cpu
3796 * @sd_idle: Idle status of the sched_domain containing group.
3797 * @cpus: Set of cpus considered for load balancing.
3798 * @balance: Should we balance.
3799 * @sds: variable to hold the statistics for this sched_domain.
3800 */
3801static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3802                        enum cpu_idle_type idle, int *sd_idle,
3803                        const struct cpumask *cpus, int *balance,
3804                        struct sd_lb_stats *sds)
3805{
3806        struct sched_domain *child = sd->child;
3807        struct sched_group *group = sd->groups;
3808        struct sg_lb_stats sgs;
3809        int load_idx, prefer_sibling = 0;
3810
3811        if (child && child->flags & SD_PREFER_SIBLING)
3812                prefer_sibling = 1;
3813
3814        init_sd_power_savings_stats(sd, sds, idle);
3815        load_idx = get_sd_load_idx(sd, idle);
3816
3817        do {
3818                int local_group;
3819
3820                local_group = cpumask_test_cpu(this_cpu,
3821                                               sched_group_cpus(group));
3822                memset(&sgs, 0, sizeof(sgs));
3823                update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3824                                local_group, cpus, balance, &sgs);
3825
3826                if (local_group && balance && !(*balance))
3827                        return;
3828
3829                sds->total_load += sgs.group_load;
3830                sds->total_pwr += group->cpu_power;
3831
3832                /*
3833                 * In case the child domain prefers tasks go to siblings
3834                 * first, lower the group capacity to one so that we'll try
3835                 * and move all the excess tasks away.
3836                 */
3837                if (prefer_sibling)
3838                        sgs.group_capacity = min(sgs.group_capacity, 1UL);
3839
3840                if (local_group) {
3841                        sds->this_load = sgs.avg_load;
3842                        sds->this = group;
3843                        sds->this_nr_running = sgs.sum_nr_running;
3844                        sds->this_load_per_task = sgs.sum_weighted_load;
3845                } else if (sgs.avg_load > sds->max_load &&
3846                           (sgs.sum_nr_running > sgs.group_capacity ||
3847                                sgs.group_imb)) {
3848                        sds->max_load = sgs.avg_load;
3849                        sds->busiest = group;
3850                        sds->busiest_nr_running = sgs.sum_nr_running;
3851                        sds->busiest_load_per_task = sgs.sum_weighted_load;
3852                        sds->group_imb = sgs.group_imb;
3853                }
3854
3855                update_sd_power_savings_stats(group, sds, local_group, &sgs);
3856                group = group->next;
3857        } while (group != sd->groups);
3858}
3859
3860/**
3861 * fix_small_imbalance - Calculate the minor imbalance that exists
3862 *                      amongst the groups of a sched_domain, during
3863 *                      load balancing.
3864 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3865 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3866 * @imbalance: Variable to store the imbalance.
3867 */
3868static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3869                                int this_cpu, unsigned long *imbalance)
3870{
3871        unsigned long tmp, pwr_now = 0, pwr_move = 0;
3872        unsigned int imbn = 2;
3873
3874        if (sds->this_nr_running) {
3875                sds->this_load_per_task /= sds->this_nr_running;
3876                if (sds->busiest_load_per_task >
3877                                sds->this_load_per_task)
3878                        imbn = 1;
3879        } else
3880                sds->this_load_per_task =
3881                        cpu_avg_load_per_task(this_cpu);
3882
3883        if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3884                        sds->busiest_load_per_task * imbn) {
3885                *imbalance = sds->busiest_load_per_task;
3886                return;
3887        }
3888
3889        /*
3890         * OK, we don't have enough imbalance to justify moving tasks,
3891         * however we may be able to increase total CPU power used by
3892         * moving them.
3893         */
3894
3895        pwr_now += sds->busiest->cpu_power *
3896                        min(sds->busiest_load_per_task, sds->max_load);
3897        pwr_now += sds->this->cpu_power *
3898                        min(sds->this_load_per_task, sds->this_load);
3899        pwr_now /= SCHED_LOAD_SCALE;
3900
3901        /* Amount of load we'd subtract */
3902        tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3903                sds->busiest->cpu_power;
3904        if (sds->max_load > tmp)
3905                pwr_move += sds->busiest->cpu_power *
3906                        min(sds->busiest_load_per_task, sds->max_load - tmp);
3907
3908        /* Amount of load we'd add */
3909        if (sds->max_load * sds->busiest->cpu_power <
3910                sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3911                tmp = (sds->max_load * sds->busiest->cpu_power) /
3912                        sds->this->cpu_power;
3913        else
3914                tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3915                        sds->this->cpu_power;
3916        pwr_move += sds->this->cpu_power *
3917                        min(sds->this_load_per_task, sds->this_load + tmp);
3918        pwr_move /= SCHED_LOAD_SCALE;
3919
3920        /* Move if we gain throughput */
3921        if (pwr_move > pwr_now)
3922                *imbalance = sds->busiest_load_per_task;
3923}
3924
3925/**
3926 * calculate_imbalance - Calculate the amount of imbalance present within the
3927 *                       groups of a given sched_domain during load balance.
3928 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3929 * @this_cpu: Cpu for which currently load balance is being performed.
3930 * @imbalance: The variable to store the imbalance.
3931 */
3932static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3933                unsigned long *imbalance)
3934{
3935        unsigned long max_pull;
3936        /*
3937         * In the presence of smp nice balancing, certain scenarios can have
3938         * max load less than avg load(as we skip the groups at or below
3939         * its cpu_power, while calculating max_load..)
3940         */
3941        if (sds->max_load < sds->avg_load) {
3942                *imbalance = 0;
3943                return fix_small_imbalance(sds, this_cpu, imbalance);
3944        }
3945
3946        /* Don't want to pull so many tasks that a group would go idle */
3947        max_pull = min(sds->max_load - sds->avg_load,
3948                        sds->max_load - sds->busiest_load_per_task);
3949
3950        /* How much load to actually move to equalise the imbalance */
3951        *imbalance = min(max_pull * sds->busiest->cpu_power,
3952                (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3953                        / SCHED_LOAD_SCALE;
3954
3955        /*
3956         * if *imbalance is less than the average load per runnable task
3957         * there is no gaurantee that any tasks will be moved so we'll have
3958         * a think about bumping its value to force at least one task to be
3959         * moved
3960         */
3961        if (*imbalance < sds->busiest_load_per_task)
3962                return fix_small_imbalance(sds, this_cpu, imbalance);
3963
3964}
3965/******* find_busiest_group() helpers end here *********************/
3966
3967/**
3968 * find_busiest_group - Returns the busiest group within the sched_domain
3969 * if there is an imbalance. If there isn't an imbalance, and
3970 * the user has opted for power-savings, it returns a group whose
3971 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3972 * such a group exists.
3973 *
3974 * Also calculates the amount of weighted load which should be moved
3975 * to restore balance.
3976 *
3977 * @sd: The sched_domain whose busiest group is to be returned.
3978 * @this_cpu: The cpu for which load balancing is currently being performed.
3979 * @imbalance: Variable which stores amount of weighted load which should
3980 *              be moved to restore balance/put a group to idle.
3981 * @idle: The idle status of this_cpu.
3982 * @sd_idle: The idleness of sd
3983 * @cpus: The set of CPUs under consideration for load-balancing.
3984 * @balance: Pointer to a variable indicating if this_cpu
3985 *      is the appropriate cpu to perform load balancing at this_level.
3986 *
3987 * Returns:     - the busiest group if imbalance exists.
3988 *              - If no imbalance and user has opted for power-savings balance,
3989 *                 return the least loaded group whose CPUs can be
3990 *                 put to idle by rebalancing its tasks onto our group.
3991 */
3992static struct sched_group *
3993find_busiest_group(struct sched_domain *sd, int this_cpu,
3994                   unsigned long *imbalance, enum cpu_idle_type idle,
3995                   int *sd_idle, const struct cpumask *cpus, int *balance)
3996{
3997        struct sd_lb_stats sds;
3998
3999        memset(&sds, 0, sizeof(sds));
4000
4001        /*
4002         * Compute the various statistics relavent for load balancing at
4003         * this level.
4004         */
4005        update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4006                                        balance, &sds);
4007
4008        /* Cases where imbalance does not exist from POV of this_cpu */
4009        /* 1) this_cpu is not the appropriate cpu to perform load balancing
4010         *    at this level.
4011         * 2) There is no busy sibling group to pull from.
4012         * 3) This group is the busiest group.
4013         * 4) This group is more busy than the avg busieness at this
4014         *    sched_domain.
4015         * 5) The imbalance is within the specified limit.
4016         * 6) Any rebalance would lead to ping-pong
4017         */
4018        if (balance && !(*balance))
4019                goto ret;
4020
4021        if (!sds.busiest || sds.busiest_nr_running == 0)
4022                goto out_balanced;
4023
4024        if (sds.this_load >= sds.max_load)
4025                goto out_balanced;
4026
4027        sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4028
4029        if (sds.this_load >= sds.avg_load)
4030                goto out_balanced;
4031
4032        if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4033                goto out_balanced;
4034
4035        sds.busiest_load_per_task /= sds.busiest_nr_running;
4036        if (sds.group_imb)
4037                sds.busiest_load_per_task =
4038                        min(sds.busiest_load_per_task, sds.avg_load);
4039
4040        /*
4041         * We're trying to get all the cpus to the average_load, so we don't
4042         * want to push ourselves above the average load, nor do we wish to
4043         * reduce the max loaded cpu below the average load, as either of these
4044         * actions would just result in more rebalancing later, and ping-pong
4045         * tasks around. Thus we look for the minimum possible imbalance.
4046         * Negative imbalances (*we* are more loaded than anyone else) will
4047         * be counted as no imbalance for these purposes -- we can't fix that
4048         * by pulling tasks to us. Be careful of negative numbers as they'll
4049         * appear as very large values with unsigned longs.
4050         */
4051        if (sds.max_load <= sds.busiest_load_per_task)
4052                goto out_balanced;
4053
4054        /* Looks like there is an imbalance. Compute it */
4055        calculate_imbalance(&sds, this_cpu, imbalance);
4056        return sds.busiest;
4057
4058out_balanced:
4059        /*
4060         * There is no obvious imbalance. But check if we can do some balancing
4061         * to save power.
4062         */
4063        if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4064                return sds.busiest;
4065ret:
4066        *imbalance = 0;
4067        return NULL;
4068}
4069
4070/*
4071 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4072 */
4073static struct rq *
4074find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4075                   unsigned long imbalance, const struct cpumask *cpus)
4076{
4077        struct rq *busiest = NULL, *rq;
4078        unsigned long max_load = 0;
4079        int i;
4080
4081        for_each_cpu(i, sched_group_cpus(group)) {
4082                unsigned long power = power_of(i);
4083                unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4084                unsigned long wl;
4085
4086                if (!cpumask_test_cpu(i, cpus))
4087                        continue;
4088
4089                rq = cpu_rq(i);
4090                wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4091                wl /= power;
4092
4093                if (capacity && rq->nr_running == 1 && wl > imbalance)
4094                        continue;
4095
4096                if (wl > max_load) {
4097                        max_load = wl;
4098                        busiest = rq;
4099                }
4100        }
4101
4102        return busiest;
4103}
4104
4105/*
4106 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4107 * so long as it is large enough.
4108 */
4109#define MAX_PINNED_INTERVAL     512
4110
4111/* Working cpumask for load_balance and load_balance_newidle. */
4112static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4113
4114/*
4115 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4116 * tasks if there is an imbalance.
4117 */
4118static int load_balance(int this_cpu, struct rq *this_rq,
4119                        struct sched_domain *sd, enum cpu_idle_type idle,
4120                        int *balance)
4121{
4122        int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4123        struct sched_group *group;
4124        unsigned long imbalance;
4125        struct rq *busiest;
4126        unsigned long flags;
4127        struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4128
4129        cpumask_setall(cpus);
4130
4131        /*
4132         * When power savings policy is enabled for the parent domain, idle
4133         * sibling can pick up load irrespective of busy siblings. In this case,
4134         * let the state of idle sibling percolate up as CPU_IDLE, instead of
4135         * portraying it as CPU_NOT_IDLE.
4136         */
4137        if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4138            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4139                sd_idle = 1;
4140
4141        schedstat_inc(sd, lb_count[idle]);
4142
4143redo:
4144        update_shares(sd);
4145        group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4146                                   cpus, balance);
4147
4148        if (*balance == 0)
4149                goto out_balanced;
4150
4151        if (!group) {
4152                schedstat_inc(sd, lb_nobusyg[idle]);
4153                goto out_balanced;
4154        }
4155
4156        busiest = find_busiest_queue(group, idle, imbalance, cpus);
4157        if (!busiest) {
4158                schedstat_inc(sd, lb_nobusyq[idle]);
4159                goto out_balanced;
4160        }
4161
4162        BUG_ON(busiest == this_rq);
4163
4164        schedstat_add(sd, lb_imbalance[idle], imbalance);
4165
4166        ld_moved = 0;
4167        if (busiest->nr_running > 1) {
4168                /*
4169                 * Attempt to move tasks. If find_busiest_group has found
4170                 * an imbalance but busiest->nr_running <= 1, the group is
4171                 * still unbalanced. ld_moved simply stays zero, so it is
4172                 * correctly treated as an imbalance.
4173                 */
4174                local_irq_save(flags);
4175                double_rq_lock(this_rq, busiest);
4176                ld_moved = move_tasks(this_rq, this_cpu, busiest,
4177                                      imbalance, sd, idle, &all_pinned);
4178                double_rq_unlock(this_rq, busiest);
4179                local_irq_restore(flags);
4180
4181                /*
4182                 * some other cpu did the load balance for us.
4183                 */
4184                if (ld_moved && this_cpu != smp_processor_id())
4185                        resched_cpu(this_cpu);
4186
4187                /* All tasks on this runqueue were pinned by CPU affinity */
4188                if (unlikely(all_pinned)) {
4189                        cpumask_clear_cpu(cpu_of(busiest), cpus);
4190                        if (!cpumask_empty(cpus))
4191                                goto redo;
4192                        goto out_balanced;
4193                }
4194        }
4195
4196        if (!ld_moved) {
4197                schedstat_inc(sd, lb_failed[idle]);
4198                sd->nr_balance_failed++;
4199
4200                if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4201
4202                        spin_lock_irqsave(&busiest->lock, flags);
4203
4204                        /* don't kick the migration_thread, if the curr
4205                         * task on busiest cpu can't be moved to this_cpu
4206                         */
4207                        if (!cpumask_test_cpu(this_cpu,
4208                                              &busiest->curr->cpus_allowed)) {
4209                                spin_unlock_irqrestore(&busiest->lock, flags);
4210                                all_pinned = 1;
4211                                goto out_one_pinned;
4212                        }
4213
4214                        if (!busiest->active_balance) {
4215                                busiest->active_balance = 1;
4216                                busiest->push_cpu = this_cpu;
4217                                active_balance = 1;
4218                        }
4219                        spin_unlock_irqrestore(&busiest->lock, flags);
4220                        if (active_balance)
4221                                wake_up_process(busiest->migration_thread);
4222
4223                        /*
4224                         * We've kicked active balancing, reset the failure
4225                         * counter.
4226                         */
4227                        sd->nr_balance_failed = sd->cache_nice_tries+1;
4228                }
4229        } else
4230                sd->nr_balance_failed = 0;
4231
4232        if (likely(!active_balance)) {
4233                /* We were unbalanced, so reset the balancing interval */
4234                sd->balance_interval = sd->min_interval;
4235        } else {
4236                /*
4237                 * If we've begun active balancing, start to back off. This
4238                 * case may not be covered by the all_pinned logic if there
4239                 * is only 1 task on the busy runqueue (because we don't call
4240                 * move_tasks).
4241                 */
4242                if (sd->balance_interval < sd->max_interval)
4243                        sd->balance_interval *= 2;
4244        }
4245
4246        if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4247            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4248                ld_moved = -1;
4249
4250        goto out;
4251
4252out_balanced:
4253        schedstat_inc(sd, lb_balanced[idle]);
4254
4255        sd->nr_balance_failed = 0;
4256
4257out_one_pinned:
4258        /* tune up the balancing interval */
4259        if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4260                        (sd->balance_interval < sd->max_interval))
4261                sd->balance_interval *= 2;
4262
4263        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4264            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4265                ld_moved = -1;
4266        else
4267                ld_moved = 0;
4268out:
4269        if (ld_moved)
4270                update_shares(sd);
4271        return ld_moved;
4272}
4273
4274/*
4275 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4276 * tasks if there is an imbalance.
4277 *
4278 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4279 * this_rq is locked.
4280 */
4281static int
4282load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4283{
4284        struct sched_group *group;
4285        struct rq *busiest = NULL;
4286        unsigned long imbalance;
4287        int ld_moved = 0;
4288        int sd_idle = 0;
4289        int all_pinned = 0;
4290        struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4291
4292        cpumask_setall(cpus);
4293
4294        /*
4295         * When power savings policy is enabled for the parent domain, idle
4296         * sibling can pick up load irrespective of busy siblings. In this case,
4297         * let the state of idle sibling percolate up as IDLE, instead of
4298         * portraying it as CPU_NOT_IDLE.
4299         */
4300        if (sd->flags & SD_SHARE_CPUPOWER &&
4301            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4302                sd_idle = 1;
4303
4304        schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4305redo:
4306        update_shares_locked(this_rq, sd);
4307        group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4308                                   &sd_idle, cpus, NULL);
4309        if (!group) {
4310                schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4311                goto out_balanced;
4312        }
4313
4314        busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4315        if (!busiest) {
4316                schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4317                goto out_balanced;
4318        }
4319
4320        BUG_ON(busiest == this_rq);
4321
4322        schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4323
4324        ld_moved = 0;
4325        if (busiest->nr_running > 1) {
4326                /* Attempt to move tasks */
4327                double_lock_balance(this_rq, busiest);
4328                /* this_rq->clock is already updated */
4329                update_rq_clock(busiest);
4330                ld_moved = move_tasks(this_rq, this_cpu, busiest,
4331                                        imbalance, sd, CPU_NEWLY_IDLE,
4332                                        &all_pinned);
4333                double_unlock_balance(this_rq, busiest);
4334
4335                if (unlikely(all_pinned)) {
4336                        cpumask_clear_cpu(cpu_of(busiest), cpus);
4337                        if (!cpumask_empty(cpus))
4338                                goto redo;
4339                }
4340        }
4341
4342        if (!ld_moved) {
4343                int active_balance = 0;
4344
4345                schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4346                if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4347                    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4348                        return -1;
4349
4350                if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4351                        return -1;
4352
4353                if (sd->nr_balance_failed++ < 2)
4354                        return -1;
4355
4356                /*
4357                 * The only task running in a non-idle cpu can be moved to this
4358                 * cpu in an attempt to completely freeup the other CPU
4359                 * package. The same method used to move task in load_balance()
4360                 * have been extended for load_balance_newidle() to speedup
4361                 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4362                 *
4363                 * The package power saving logic comes from
4364                 * find_busiest_group().  If there are no imbalance, then
4365                 * f_b_g() will return NULL.  However when sched_mc={1,2} then
4366                 * f_b_g() will select a group from which a running task may be
4367                 * pulled to this cpu in order to make the other package idle.
4368                 * If there is no opportunity to make a package idle and if
4369                 * there are no imbalance, then f_b_g() will return NULL and no
4370                 * action will be taken in load_balance_newidle().
4371                 *
4372                 * Under normal task pull operation due to imbalance, there
4373                 * will be more than one task in the source run queue and
4374                 * move_tasks() will succeed.  ld_moved will be true and this
4375                 * active balance code will not be triggered.
4376                 */
4377
4378                /* Lock busiest in correct order while this_rq is held */
4379                double_lock_balance(this_rq, busiest);
4380
4381                /*
4382                 * don't kick the migration_thread, if the curr
4383                 * task on busiest cpu can't be moved to this_cpu
4384                 */
4385                if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4386                        double_unlock_balance(this_rq, busiest);
4387                        all_pinned = 1;
4388                        return ld_moved;
4389                }
4390
4391                if (!busiest->active_balance) {
4392                        busiest->active_balance = 1;
4393                        busiest->push_cpu = this_cpu;
4394                        active_balance = 1;
4395                }
4396
4397                double_unlock_balance(this_rq, busiest);
4398                /*
4399                 * Should not call ttwu while holding a rq->lock
4400                 */
4401                spin_unlock(&this_rq->lock);
4402                if (active_balance)
4403                        wake_up_process(busiest->migration_thread);
4404                spin_lock(&this_rq->lock);
4405
4406        } else
4407                sd->nr_balance_failed = 0;
4408
4409        update_shares_locked(this_rq, sd);
4410        return ld_moved;
4411
4412out_balanced:
4413        schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4414        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4415            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4416                return -1;
4417        sd->nr_balance_failed = 0;
4418
4419        return 0;
4420}
4421
4422/*
4423 * idle_balance is called by schedule() if this_cpu is about to become
4424 * idle. Attempts to pull tasks from other CPUs.
4425 */
4426static void idle_balance(int this_cpu, struct rq *this_rq)
4427{
4428        struct sched_domain *sd;
4429        int pulled_task = 0;
4430        unsigned long next_balance = jiffies + HZ;
4431
4432        for_each_domain(this_cpu, sd) {
4433                unsigned long interval;
4434
4435                if (!(sd->flags & SD_LOAD_BALANCE))
4436                        continue;
4437
4438                if (sd->flags & SD_BALANCE_NEWIDLE)
4439                        /* If we've pulled tasks over stop searching: */
4440                        pulled_task = load_balance_newidle(this_cpu, this_rq,
4441                                                           sd);
4442
4443                interval = msecs_to_jiffies(sd->balance_interval);
4444                if (time_after(next_balance, sd->last_balance + interval))
4445                        next_balance = sd->last_balance + interval;
4446                if (pulled_task)
4447                        break;
4448        }
4449        if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4450                /*
4451                 * We are going idle. next_balance may be set based on
4452                 * a busy processor. So reset next_balance.
4453                 */
4454                this_rq->next_balance = next_balance;
4455        }
4456}
4457
4458/*
4459 * active_load_balance is run by migration threads. It pushes running tasks
4460 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4461 * running on each physical CPU where possible, and avoids physical /
4462 * logical imbalances.
4463 *
4464 * Called with busiest_rq locked.
4465 */
4466static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4467{
4468        int target_cpu = busiest_rq->push_cpu;
4469        struct sched_domain *sd;
4470        struct rq *target_rq;
4471
4472        /* Is there any task to move? */
4473        if (busiest_rq->nr_running <= 1)
4474                return;
4475
4476        target_rq = cpu_rq(target_cpu);
4477
4478        /*
4479         * This condition is "impossible", if it occurs
4480         * we need to fix it. Originally reported by
4481         * Bjorn Helgaas on a 128-cpu setup.
4482         */
4483        BUG_ON(busiest_rq == target_rq);
4484
4485        /* move a task from busiest_rq to target_rq */
4486        double_lock_balance(busiest_rq, target_rq);
4487        update_rq_clock(busiest_rq);
4488        update_rq_clock(target_rq);
4489
4490        /* Search for an sd spanning us and the target CPU. */
4491        for_each_domain(target_cpu, sd) {
4492                if ((sd->flags & SD_LOAD_BALANCE) &&
4493                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4494                                break;
4495        }
4496
4497        if (likely(sd)) {
4498                schedstat_inc(sd, alb_count);
4499
4500                if (move_one_task(target_rq, target_cpu, busiest_rq,
4501                                  sd, CPU_IDLE))
4502                        schedstat_inc(sd, alb_pushed);
4503                else
4504                        schedstat_inc(sd, alb_failed);
4505        }
4506        double_unlock_balance(busiest_rq, target_rq);
4507}
4508
4509#ifdef CONFIG_NO_HZ
4510static struct {
4511        atomic_t load_balancer;
4512        cpumask_var_t cpu_mask;
4513        cpumask_var_t ilb_grp_nohz_mask;
4514} nohz ____cacheline_aligned = {
4515        .load_balancer = ATOMIC_INIT(-1),
4516};
4517
4518int get_nohz_load_balancer(void)
4519{
4520        return atomic_read(&nohz.load_balancer);
4521}
4522
4523#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4524/**
4525 * lowest_flag_domain - Return lowest sched_domain containing flag.
4526 * @cpu:        The cpu whose lowest level of sched domain is to
4527 *              be returned.
4528 * @flag:       The flag to check for the lowest sched_domain
4529 *              for the given cpu.
4530 *
4531 * Returns the lowest sched_domain of a cpu which contains the given flag.
4532 */
4533static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4534{
4535        struct sched_domain *sd;
4536
4537        for_each_domain(cpu, sd)
4538                if (sd && (sd->flags & flag))
4539                        break;
4540
4541        return sd;
4542}
4543
4544/**
4545 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4546 * @cpu:        The cpu whose domains we're iterating over.
4547 * @sd:         variable holding the value of the power_savings_sd
4548 *              for cpu.
4549 * @flag:       The flag to filter the sched_domains to be iterated.
4550 *
4551 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4552 * set, starting from the lowest sched_domain to the highest.
4553 */
4554#define for_each_flag_domain(cpu, sd, flag) \
4555        for (sd = lowest_flag_domain(cpu, flag); \
4556                (sd && (sd->flags & flag)); sd = sd->parent)
4557
4558/**
4559 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4560 * @ilb_group:  group to be checked for semi-idleness
4561 *
4562 * Returns:     1 if the group is semi-idle. 0 otherwise.
4563 *
4564 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4565 * and atleast one non-idle CPU. This helper function checks if the given
4566 * sched_group is semi-idle or not.
4567 */
4568static inline int is_semi_idle_group(struct sched_group *ilb_group)
4569{
4570        cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4571                                        sched_group_cpus(ilb_group));
4572
4573        /*
4574         * A sched_group is semi-idle when it has atleast one busy cpu
4575         * and atleast one idle cpu.
4576         */
4577        if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4578                return 0;
4579
4580        if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4581                return 0;
4582
4583        return 1;
4584}
4585/**
4586 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4587 * @cpu:        The cpu which is nominating a new idle_load_balancer.
4588 *
4589 * Returns:     Returns the id of the idle load balancer if it exists,
4590 *              Else, returns >= nr_cpu_ids.
4591 *
4592 * This algorithm picks the idle load balancer such that it belongs to a
4593 * semi-idle powersavings sched_domain. The idea is to try and avoid
4594 * completely idle packages/cores just for the purpose of idle load balancing
4595 * when there are other idle cpu's which are better suited for that job.
4596 */
4597static int find_new_ilb(int cpu)
4598{
4599        struct sched_domain *sd;
4600        struct sched_group *ilb_group;
4601
4602        /*
4603         * Have idle load balancer selection from semi-idle packages only
4604         * when power-aware load balancing is enabled
4605         */
4606        if (!(sched_smt_power_savings || sched_mc_power_savings))
4607                goto out_done;
4608
4609        /*
4610         * Optimize for the case when we have no idle CPUs or only one
4611         * idle CPU. Don't walk the sched_domain hierarchy in such cases
4612         */
4613        if (cpumask_weight(nohz.cpu_mask) < 2)
4614                goto out_done;
4615
4616        for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4617                ilb_group = sd->groups;
4618
4619                do {
4620                        if (is_semi_idle_group(ilb_group))
4621                                return cpumask_first(nohz.ilb_grp_nohz_mask);
4622
4623                        ilb_group = ilb_group->next;
4624
4625                } while (ilb_group != sd->groups);
4626        }
4627
4628out_done:
4629        return cpumask_first(nohz.cpu_mask);
4630}
4631#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4632static inline int find_new_ilb(int call_cpu)
4633{
4634        return cpumask_first(nohz.cpu_mask);
4635}
4636#endif
4637
4638/*
4639 * This routine will try to nominate the ilb (idle load balancing)
4640 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4641 * load balancing on behalf of all those cpus. If all the cpus in the system
4642 * go into this tickless mode, then there will be no ilb owner (as there is
4643 * no need for one) and all the cpus will sleep till the next wakeup event
4644 * arrives...
4645 *
4646 * For the ilb owner, tick is not stopped. And this tick will be used
4647 * for idle load balancing. ilb owner will still be part of
4648 * nohz.cpu_mask..
4649 *
4650 * While stopping the tick, this cpu will become the ilb owner if there
4651 * is no other owner. And will be the owner till that cpu becomes busy
4652 * or if all cpus in the system stop their ticks at which point
4653 * there is no need for ilb owner.
4654 *
4655 * When the ilb owner becomes busy, it nominates another owner, during the
4656 * next busy scheduler_tick()
4657 */
4658int select_nohz_load_balancer(int stop_tick)
4659{
4660        int cpu = smp_processor_id();
4661
4662        if (stop_tick) {
4663                cpu_rq(cpu)->in_nohz_recently = 1;
4664
4665                if (!cpu_active(cpu)) {
4666                        if (atomic_read(&nohz.load_balancer) != cpu)
4667                                return 0;
4668
4669                        /*
4670                         * If we are going offline and still the leader,
4671                         * give up!
4672                         */
4673                        if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4674                                BUG();
4675
4676                        return 0;
4677                }
4678
4679                cpumask_set_cpu(cpu, nohz.cpu_mask);
4680
4681                /* time for ilb owner also to sleep */
4682                if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4683                        if (atomic_read(&nohz.load_balancer) == cpu)
4684                                atomic_set(&nohz.load_balancer, -1);
4685                        return 0;
4686                }
4687
4688                if (atomic_read(&nohz.load_balancer) == -1) {
4689                        /* make me the ilb owner */
4690                        if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4691                                return 1;
4692                } else if (atomic_read(&nohz.load_balancer) == cpu) {
4693                        int new_ilb;
4694
4695                        if (!(sched_smt_power_savings ||
4696                                                sched_mc_power_savings))
4697                                return 1;
4698                        /*
4699                         * Check to see if there is a more power-efficient
4700                         * ilb.
4701                         */
4702                        new_ilb = find_new_ilb(cpu);
4703                        if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4704                                atomic_set(&nohz.load_balancer, -1);
4705                                resched_cpu(new_ilb);
4706                                return 0;
4707                        }
4708                        return 1;
4709                }
4710        } else {
4711                if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4712                        return 0;
4713
4714                cpumask_clear_cpu(cpu, nohz.cpu_mask);
4715
4716                if (atomic_read(&nohz.load_balancer) == cpu)
4717                        if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4718                                BUG();
4719        }
4720        return 0;
4721}
4722#endif
4723
4724static DEFINE_SPINLOCK(balancing);
4725
4726/*
4727 * It checks each scheduling domain to see if it is due to be balanced,
4728 * and initiates a balancing operation if so.
4729 *
4730 * Balancing parameters are set up in arch_init_sched_domains.
4731 */
4732static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4733{
4734        int balance = 1;
4735        struct rq *rq = cpu_rq(cpu);
4736        unsigned long interval;
4737        struct sched_domain *sd;
4738        /* Earliest time when we have to do rebalance again */
4739        unsigned long next_balance = jiffies + 60*HZ;
4740        int update_next_balance = 0;
4741        int need_serialize;
4742
4743        for_each_domain(cpu, sd) {
4744                if (!(sd->flags & SD_LOAD_BALANCE))
4745                        continue;
4746
4747                interval = sd->balance_interval;
4748                if (idle != CPU_IDLE)
4749                        interval *= sd->busy_factor;
4750
4751                /* scale ms to jiffies */
4752                interval = msecs_to_jiffies(interval);
4753                if (unlikely(!interval))
4754                        interval = 1;
4755                if (interval > HZ*NR_CPUS/10)
4756                        interval = HZ*NR_CPUS/10;
4757
4758                need_serialize = sd->flags & SD_SERIALIZE;
4759
4760                if (need_serialize) {
4761                        if (!spin_trylock(&balancing))
4762                                goto out;
4763                }
4764
4765                if (time_after_eq(jiffies, sd->last_balance + interval)) {
4766                        if (load_balance(cpu, rq, sd, idle, &balance)) {
4767                                /*
4768                                 * We've pulled tasks over so either we're no
4769                                 * longer idle, or one of our SMT siblings is
4770                                 * not idle.
4771                                 */
4772                                idle = CPU_NOT_IDLE;
4773                        }
4774                        sd->last_balance = jiffies;
4775                }
4776                if (need_serialize)
4777                        spin_unlock(&balancing);
4778out:
4779                if (time_after(next_balance, sd->last_balance + interval)) {
4780                        next_balance = sd->last_balance + interval;
4781                        update_next_balance = 1;
4782                }
4783
4784                /*
4785                 * Stop the load balance at this level. There is another
4786                 * CPU in our sched group which is doing load balancing more
4787                 * actively.
4788                 */
4789                if (!balance)
4790                        break;
4791        }
4792
4793        /*
4794         * next_balance will be updated only when there is a need.
4795         * When the cpu is attached to null domain for ex, it will not be
4796         * updated.
4797         */
4798        if (likely(update_next_balance))
4799                rq->next_balance = next_balance;
4800}
4801
4802/*
4803 * run_rebalance_domains is triggered when needed from the scheduler tick.
4804 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4805 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4806 */
4807static void run_rebalance_domains(struct softirq_action *h)
4808{
4809        int this_cpu = smp_processor_id();
4810        struct rq *this_rq = cpu_rq(this_cpu);
4811        enum cpu_idle_type idle = this_rq->idle_at_tick ?
4812                                                CPU_IDLE : CPU_NOT_IDLE;
4813
4814        rebalance_domains(this_cpu, idle);
4815
4816#ifdef CONFIG_NO_HZ
4817        /*
4818         * If this cpu is the owner for idle load balancing, then do the
4819         * balancing on behalf of the other idle cpus whose ticks are
4820         * stopped.
4821         */
4822        if (this_rq->idle_at_tick &&
4823            atomic_read(&nohz.load_balancer) == this_cpu) {
4824                struct rq *rq;
4825                int balance_cpu;
4826
4827                for_each_cpu(balance_cpu, nohz.cpu_mask) {
4828                        if (balance_cpu == this_cpu)
4829                                continue;
4830
4831                        /*
4832                         * If this cpu gets work to do, stop the load balancing
4833                         * work being done for other cpus. Next load
4834                         * balancing owner will pick it up.
4835                         */
4836                        if (need_resched())
4837                                break;
4838
4839                        rebalance_domains(balance_cpu, CPU_IDLE);
4840
4841                        rq = cpu_rq(balance_cpu);
4842                        if (time_after(this_rq->next_balance, rq->next_balance))
4843                                this_rq->next_balance = rq->next_balance;
4844                }
4845        }
4846#endif
4847}
4848
4849static inline int on_null_domain(int cpu)
4850{
4851        return !rcu_dereference(cpu_rq(cpu)->sd);
4852}
4853
4854/*
4855 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4856 *
4857 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4858 * idle load balancing owner or decide to stop the periodic load balancing,
4859 * if the whole system is idle.
4860 */
4861static inline void trigger_load_balance(struct rq *rq, int cpu)
4862{
4863#ifdef CONFIG_NO_HZ
4864        /*
4865         * If we were in the nohz mode recently and busy at the current
4866         * scheduler tick, then check if we need to nominate new idle
4867         * load balancer.
4868         */
4869        if (rq->in_nohz_recently && !rq->idle_at_tick) {
4870                rq->in_nohz_recently = 0;
4871
4872                if (atomic_read(&nohz.load_balancer) == cpu) {
4873                        cpumask_clear_cpu(cpu, nohz.cpu_mask);
4874                        atomic_set(&nohz.load_balancer, -1);
4875                }
4876
4877                if (atomic_read(&nohz.load_balancer) == -1) {
4878                        int ilb = find_new_ilb(cpu);
4879
4880                        if (ilb < nr_cpu_ids)
4881                                resched_cpu(ilb);
4882                }
4883        }
4884
4885        /*
4886         * If this cpu is idle and doing idle load balancing for all the
4887         * cpus with ticks stopped, is it time for that to stop?
4888         */
4889        if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4890            cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4891                resched_cpu(cpu);
4892                return;
4893        }
4894
4895        /*
4896         * If this cpu is idle and the idle load balancing is done by
4897         * someone else, then no need raise the SCHED_SOFTIRQ
4898         */
4899        if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4900            cpumask_test_cpu(cpu, nohz.cpu_mask))
4901                return;
4902#endif
4903        /* Don't need to rebalance while attached to NULL domain */
4904        if (time_after_eq(jiffies, rq->next_balance) &&
4905            likely(!on_null_domain(cpu)))
4906                raise_softirq(SCHED_SOFTIRQ);
4907}
4908
4909#else   /* CONFIG_SMP */
4910
4911/*
4912 * on UP we do not need to balance between CPUs:
4913 */
4914static inline void idle_balance(int cpu, struct rq *rq)
4915{
4916}
4917
4918#endif
4919
4920DEFINE_PER_CPU(struct kernel_stat, kstat);
4921
4922EXPORT_PER_CPU_SYMBOL(kstat);
4923
4924/*
4925 * Return any ns on the sched_clock that have not yet been accounted in
4926 * @p in case that task is currently running.
4927 *
4928 * Called with task_rq_lock() held on @rq.
4929 */
4930static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4931{
4932        u64 ns = 0;
4933
4934        if (task_current(rq, p)) {
4935                update_rq_clock(rq);
4936                ns = rq->clock - p->se.exec_start;
4937                if ((s64)ns < 0)
4938                        ns = 0;
4939        }
4940
4941        return ns;
4942}
4943
4944unsigned long long task_delta_exec(struct task_struct *p)
4945{
4946        unsigned long flags;
4947        struct rq *rq;
4948        u64 ns = 0;
4949
4950        rq = task_rq_lock(p, &flags);
4951        ns = do_task_delta_exec(p, rq);
4952        task_rq_unlock(rq, &flags);
4953
4954        return ns;
4955}
4956
4957/*
4958 * Return accounted runtime for the task.
4959 * In case the task is currently running, return the runtime plus current's
4960 * pending runtime that have not been accounted yet.
4961 */
4962unsigned long long task_sched_runtime(struct task_struct *p)
4963{
4964        unsigned long flags;
4965        struct rq *rq;
4966        u64 ns = 0;
4967
4968        rq = task_rq_lock(p, &flags);
4969        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4970        task_rq_unlock(rq, &flags);
4971
4972        return ns;
4973}
4974
4975/*
4976 * Return sum_exec_runtime for the thread group.
4977 * In case the task is currently running, return the sum plus current's
4978 * pending runtime that have not been accounted yet.
4979 *
4980 * Note that the thread group might have other running tasks as well,
4981 * so the return value not includes other pending runtime that other
4982 * running tasks might have.
4983 */
4984unsigned long long thread_group_sched_runtime(struct task_struct *p)
4985{
4986        struct task_cputime totals;
4987        unsigned long flags;
4988        struct rq *rq;
4989        u64 ns;
4990
4991        rq = task_rq_lock(p, &flags);
4992        thread_group_cputime(p, &totals);
4993        ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4994        task_rq_unlock(rq, &flags);
4995
4996        return ns;
4997}
4998
4999/*
5000 * Account user cpu time to a process.
5001 * @p: the process that the cpu time gets accounted to
5002 * @cputime: the cpu time spent in user space since the last update
5003 * @cputime_scaled: cputime scaled by cpu frequency
5004 */
5005void account_user_time(struct task_struct *p, cputime_t cputime,
5006                       cputime_t cputime_scaled)
5007{
5008        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5009        cputime64_t tmp;
5010
5011        /* Add user time to process. */
5012        p->utime = cputime_add(p->utime, cputime);
5013        p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5014        account_group_user_time(p, cputime);
5015
5016        /* Add user time to cpustat. */
5017        tmp = cputime_to_cputime64(cputime);
5018        if (TASK_NICE(p) > 0)
5019                cpustat->nice = cputime64_add(cpustat->nice, tmp);
5020        else
5021                cpustat->user = cputime64_add(cpustat->user, tmp);
5022
5023        cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5024        /* Account for user time used */
5025        acct_update_integrals(p);
5026}
5027
5028/*
5029 * Account guest cpu time to a process.
5030 * @p: the process that the cpu time gets accounted to
5031 * @cputime: the cpu time spent in virtual machine since the last update
5032 * @cputime_scaled: cputime scaled by cpu frequency
5033 */
5034static void account_guest_time(struct task_struct *p, cputime_t cputime,
5035                               cputime_t cputime_scaled)
5036{
5037        cputime64_t tmp;
5038        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5039
5040        tmp = cputime_to_cputime64(cputime);
5041
5042        /* Add guest time to process. */
5043        p->utime = cputime_add(p->utime, cputime);
5044        p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5045        account_group_user_time(p, cputime);
5046        p->gtime = cputime_add(p->gtime, cputime);
5047
5048        /* Add guest time to cpustat. */
5049        cpustat->user = cputime64_add(cpustat->user, tmp);
5050        cpustat->guest = cputime64_add(cpustat->guest, tmp);
5051}
5052
5053/*
5054 * Account system cpu time to a process.
5055 * @p: the process that the cpu time gets accounted to
5056 * @hardirq_offset: the offset to subtract from hardirq_count()
5057 * @cputime: the cpu time spent in kernel space since the last update
5058 * @cputime_scaled: cputime scaled by cpu frequency
5059 */
5060void account_system_time(struct task_struct *p, int hardirq_offset,
5061                         cputime_t cputime, cputime_t cputime_scaled)
5062{
5063        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5064        cputime64_t tmp;
5065
5066        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5067                account_guest_time(p, cputime, cputime_scaled);
5068                return;
5069        }
5070
5071        /* Add system time to process. */
5072        p->stime = cputime_add(p->stime, cputime);
5073        p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5074        account_group_system_time(p, cputime);
5075
5076        /* Add system time to cpustat. */
5077        tmp = cputime_to_cputime64(cputime);
5078        if (hardirq_count() - hardirq_offset)
5079                cpustat->irq = cputime64_add(cpustat->irq, tmp);
5080        else if (softirq_count())
5081                cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5082        else
5083                cpustat->system = cputime64_add(cpustat->system, tmp);
5084
5085        cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5086
5087        /* Account for system time used */
5088        acct_update_integrals(p);
5089}
5090
5091/*
5092 * Account for involuntary wait time.
5093 * @steal: the cpu time spent in involuntary wait
5094 */
5095void account_steal_time(cputime_t cputime)
5096{
5097        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5098        cputime64_t cputime64 = cputime_to_cputime64(cputime);
5099
5100        cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5101}
5102
5103/*
5104 * Account for idle time.
5105 * @cputime: the cpu time spent in idle wait
5106 */
5107void account_idle_time(cputime_t cputime)
5108{
5109        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5110        cputime64_t cputime64 = cputime_to_cputime64(cputime);
5111        struct rq *rq = this_rq();
5112
5113        if (atomic_read(&rq->nr_iowait) > 0)
5114                cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5115        else
5116                cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5117}
5118
5119#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5120
5121/*
5122 * Account a single tick of cpu time.
5123 * @p: the process that the cpu time gets accounted to
5124 * @user_tick: indicates if the tick is a user or a system tick
5125 */
5126void account_process_tick(struct task_struct *p, int user_tick)
5127{
5128        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5129        struct rq *rq = this_rq();
5130
5131        if (user_tick)
5132                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5133        else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5134                account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5135                                    one_jiffy_scaled);
5136        else
5137                account_idle_time(cputime_one_jiffy);
5138}
5139
5140/*
5141 * Account multiple ticks of steal time.
5142 * @p: the process from which the cpu time has been stolen
5143 * @ticks: number of stolen ticks
5144 */
5145void account_steal_ticks(unsigned long ticks)
5146{
5147        account_steal_time(jiffies_to_cputime(ticks));
5148}
5149
5150/*
5151 * Account multiple ticks of idle time.
5152 * @ticks: number of stolen ticks
5153 */
5154void account_idle_ticks(unsigned long ticks)
5155{
5156        account_idle_time(jiffies_to_cputime(ticks));
5157}
5158
5159#endif
5160
5161/*
5162 * Use precise platform statistics if available:
5163 */
5164#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5165cputime_t task_utime(struct task_struct *p)
5166{
5167        return p->utime;
5168}
5169
5170cputime_t task_stime(struct task_struct *p)
5171{
5172        return p->stime;
5173}
5174#else
5175cputime_t task_utime(struct task_struct *p)
5176{
5177        clock_t utime = cputime_to_clock_t(p->utime),
5178                total = utime + cputime_to_clock_t(p->stime);
5179        u64 temp;
5180
5181        /*
5182         * Use CFS's precise accounting:
5183         */
5184        temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5185
5186        if (total) {
5187                temp *= utime;
5188                do_div(temp, total);
5189        }
5190        utime = (clock_t)temp;
5191
5192        p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5193        return p->prev_utime;
5194}
5195
5196cputime_t task_stime(struct task_struct *p)
5197{
5198        clock_t stime;
5199
5200        /*
5201         * Use CFS's precise accounting. (we subtract utime from
5202         * the total, to make sure the total observed by userspace
5203         * grows monotonically - apps rely on that):
5204         */
5205        stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5206                        cputime_to_clock_t(task_utime(p));
5207
5208        if (stime >= 0)
5209                p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5210
5211        return p->prev_stime;
5212}
5213#endif
5214
5215inline cputime_t task_gtime(struct task_struct *p)
5216{
5217        return p->gtime;
5218}
5219
5220/*
5221 * This function gets called by the timer code, with HZ frequency.
5222 * We call it with interrupts disabled.
5223 *
5224 * It also gets called by the fork code, when changing the parent's
5225 * timeslices.
5226 */
5227void scheduler_tick(void)
5228{
5229        int cpu = smp_processor_id();
5230        struct rq *rq = cpu_rq(cpu);
5231        struct task_struct *curr = rq->curr;
5232
5233        sched_clock_tick();
5234
5235        spin_lock(&rq->lock);
5236        update_rq_clock(rq);
5237        update_cpu_load(rq);
5238        curr->sched_class->task_tick(rq, curr, 0);
5239        spin_unlock(&rq->lock);
5240
5241        perf_event_task_tick(curr, cpu);
5242
5243#ifdef CONFIG_SMP
5244        rq->idle_at_tick = idle_cpu(cpu);
5245        trigger_load_balance(rq, cpu);
5246#endif
5247}
5248
5249notrace unsigned long get_parent_ip(unsigned long addr)
5250{
5251        if (in_lock_functions(addr)) {
5252                addr = CALLER_ADDR2;
5253                if (in_lock_functions(addr))
5254                        addr = CALLER_ADDR3;
5255        }
5256        return addr;
5257}
5258
5259#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5260                                defined(CONFIG_PREEMPT_TRACER))
5261
5262void __kprobes add_preempt_count(int val)
5263{
5264#ifdef CONFIG_DEBUG_PREEMPT
5265        /*
5266         * Underflow?
5267         */
5268        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5269                return;
5270#endif
5271        preempt_count() += val;
5272#ifdef CONFIG_DEBUG_PREEMPT
5273        /*
5274         * Spinlock count overflowing soon?
5275         */
5276        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5277                                PREEMPT_MASK - 10);
5278#endif
5279        if (preempt_count() == val)
5280                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5281}
5282EXPORT_SYMBOL(add_preempt_count);
5283
5284void __kprobes sub_preempt_count(int val)
5285{
5286#ifdef CONFIG_DEBUG_PREEMPT
5287        /*
5288         * Underflow?
5289         */
5290        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5291                return;
5292        /*
5293         * Is the spinlock portion underflowing?
5294         */
5295        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5296                        !(preempt_count() & PREEMPT_MASK)))
5297                return;
5298#endif
5299
5300        if (preempt_count() == val)
5301                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5302        preempt_count() -= val;
5303}
5304EXPORT_SYMBOL(sub_preempt_count);
5305
5306#endif
5307
5308/*
5309 * Print scheduling while atomic bug:
5310 */
5311static noinline void __schedule_bug(struct task_struct *prev)
5312{
5313        struct pt_regs *regs = get_irq_regs();
5314
5315        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5316                prev->comm, prev->pid, preempt_count());
5317
5318        debug_show_held_locks(prev);
5319        print_modules();
5320        if (irqs_disabled())
5321                print_irqtrace_events(prev);
5322
5323        if (regs)
5324                show_regs(regs);
5325        else
5326                dump_stack();
5327}
5328
5329/*
5330 * Various schedule()-time debugging checks and statistics:
5331 */
5332static inline void schedule_debug(struct task_struct *prev)
5333{
5334        /*
5335         * Test if we are atomic. Since do_exit() needs to call into
5336         * schedule() atomically, we ignore that path for now.
5337         * Otherwise, whine if we are scheduling when we should not be.
5338         */
5339        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5340                __schedule_bug(prev);
5341
5342        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5343
5344        schedstat_inc(this_rq(), sched_count);
5345#ifdef CONFIG_SCHEDSTATS
5346        if (unlikely(prev->lock_depth >= 0)) {
5347                schedstat_inc(this_rq(), bkl_count);
5348                schedstat_inc(prev, sched_info.bkl_count);
5349        }
5350#endif
5351}
5352
5353static void put_prev_task(struct rq *rq, struct task_struct *p)
5354{
5355        u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5356
5357        update_avg(&p->se.avg_running, runtime);
5358
5359        if (p->state == TASK_RUNNING) {
5360                /*
5361                 * In order to avoid avg_overlap growing stale when we are
5362                 * indeed overlapping and hence not getting put to sleep, grow
5363                 * the avg_overlap on preemption.
5364                 *
5365                 * We use the average preemption runtime because that
5366                 * correlates to the amount of cache footprint a task can
5367                 * build up.
5368                 */
5369                runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5370                update_avg(&p->se.avg_overlap, runtime);
5371        } else {
5372                update_avg(&p->se.avg_running, 0);
5373        }
5374        p->sched_class->put_prev_task(rq, p);
5375}
5376
5377/*
5378 * Pick up the highest-prio task:
5379 */
5380static inline struct task_struct *
5381pick_next_task(struct rq *rq)
5382{
5383        const struct sched_class *class;
5384        struct task_struct *p;
5385
5386        /*
5387         * Optimization: we know that if all tasks are in
5388         * the fair class we can call that function directly:
5389         */
5390        if (likely(rq->nr_running == rq->cfs.nr_running)) {
5391                p = fair_sched_class.pick_next_task(rq);
5392                if (likely(p))
5393                        return p;
5394        }
5395
5396        class = sched_class_highest;
5397        for ( ; ; ) {
5398                p = class->pick_next_task(rq);
5399                if (p)
5400                        return p;
5401                /*
5402                 * Will never be NULL as the idle class always
5403                 * returns a non-NULL p:
5404                 */
5405                class = class->next;
5406        }
5407}
5408
5409/*
5410 * schedule() is the main scheduler function.
5411 */
5412asmlinkage void __sched schedule(void)
5413{
5414        struct task_struct *prev, *next;
5415        unsigned long *switch_count;
5416        struct rq *rq;
5417        int cpu;
5418
5419need_resched:
5420        preempt_disable();
5421        cpu = smp_processor_id();
5422        rq = cpu_rq(cpu);
5423        rcu_sched_qs(cpu);
5424        prev = rq->curr;
5425        switch_count = &prev->nivcsw;
5426
5427        release_kernel_lock(prev);
5428need_resched_nonpreemptible:
5429
5430        schedule_debug(prev);
5431
5432        if (sched_feat(HRTICK))
5433                hrtick_clear(rq);
5434
5435        spin_lock_irq(&rq->lock);
5436        update_rq_clock(rq);
5437        clear_tsk_need_resched(prev);
5438
5439        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5440                if (unlikely(signal_pending_state(prev->state, prev)))
5441                        prev->state = TASK_RUNNING;
5442                else
5443                        deactivate_task(rq, prev, 1);
5444                switch_count = &prev->nvcsw;
5445        }
5446
5447        pre_schedule(rq, prev);
5448
5449        if (unlikely(!rq->nr_running))
5450                idle_balance(cpu, rq);
5451
5452        put_prev_task(rq, prev);
5453        next = pick_next_task(rq);
5454
5455        if (likely(prev != next)) {
5456                sched_info_switch(prev, next);
5457                perf_event_task_sched_out(prev, next, cpu);
5458
5459                rq->nr_switches++;
5460                rq->curr = next;
5461                ++*switch_count;
5462
5463                context_switch(rq, prev, next); /* unlocks the rq */
5464                /*
5465                 * the context switch might have flipped the stack from under
5466                 * us, hence refresh the local variables.
5467                 */
5468                cpu = smp_processor_id();
5469                rq = cpu_rq(cpu);
5470        } else
5471                spin_unlock_irq(&rq->lock);
5472
5473        post_schedule(rq);
5474
5475        if (unlikely(reacquire_kernel_lock(current) < 0))
5476                goto need_resched_nonpreemptible;
5477
5478        preempt_enable_no_resched();
5479        if (need_resched())
5480                goto need_resched;
5481}
5482EXPORT_SYMBOL(schedule);
5483
5484#ifdef CONFIG_SMP
5485/*
5486 * Look out! "owner" is an entirely speculative pointer
5487 * access and not reliable.
5488 */
5489int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5490{
5491        unsigned int cpu;
5492        struct rq *rq;
5493
5494        if (!sched_feat(OWNER_SPIN))
5495                return 0;
5496
5497#ifdef CONFIG_DEBUG_PAGEALLOC
5498        /*
5499         * Need to access the cpu field knowing that
5500         * DEBUG_PAGEALLOC could have unmapped it if
5501         * the mutex owner just released it and exited.
5502         */
5503        if (probe_kernel_address(&owner->cpu, cpu))
5504                goto out;
5505#else
5506        cpu = owner->cpu;
5507#endif
5508
5509        /*
5510         * Even if the access succeeded (likely case),
5511         * the cpu field may no longer be valid.
5512         */
5513        if (cpu >= nr_cpumask_bits)
5514                goto out;
5515
5516        /*
5517         * We need to validate that we can do a
5518         * get_cpu() and that we have the percpu area.
5519         */
5520        if (!cpu_online(cpu))
5521                goto out;
5522
5523        rq = cpu_rq(cpu);
5524
5525        for (;;) {
5526                /*
5527                 * Owner changed, break to re-assess state.
5528                 */
5529                if (lock->owner != owner)
5530                        break;
5531
5532                /*
5533                 * Is that owner really running on that cpu?
5534                 */
5535                if (task_thread_info(rq->curr) != owner || need_resched())
5536                        return 0;
5537
5538                cpu_relax();
5539        }
5540out:
5541        return 1;
5542}
5543#endif
5544
5545#ifdef CONFIG_PREEMPT
5546/*
5547 * this is the entry point to schedule() from in-kernel preemption
5548 * off of preempt_enable. Kernel preemptions off return from interrupt
5549 * occur there and call schedule directly.
5550 */
5551asmlinkage void __sched preempt_schedule(void)
5552{
5553        struct thread_info *ti = current_thread_info();
5554
5555        /*
5556         * If there is a non-zero preempt_count or interrupts are disabled,
5557         * we do not want to preempt the current task. Just return..
5558         */
5559        if (likely(ti->preempt_count || irqs_disabled()))
5560                return;
5561
5562        do {
5563                add_preempt_count(PREEMPT_ACTIVE);
5564                schedule();
5565                sub_preempt_count(PREEMPT_ACTIVE);
5566
5567                /*
5568                 * Check again in case we missed a preemption opportunity
5569                 * between schedule and now.
5570                 */
5571                barrier();
5572        } while (need_resched());
5573}
5574EXPORT_SYMBOL(preempt_schedule);
5575
5576/*
5577 * this is the entry point to schedule() from kernel preemption
5578 * off of irq context.
5579 * Note, that this is called and return with irqs disabled. This will
5580 * protect us against recursive calling from irq.
5581 */
5582asmlinkage void __sched preempt_schedule_irq(void)
5583{
5584        struct thread_info *ti = current_thread_info();
5585
5586        /* Catch callers which need to be fixed */
5587        BUG_ON(ti->preempt_count || !irqs_disabled());
5588
5589        do {
5590                add_preempt_count(PREEMPT_ACTIVE);
5591                local_irq_enable();
5592                schedule();
5593                local_irq_disable();
5594                sub_preempt_count(PREEMPT_ACTIVE);
5595
5596                /*
5597                 * Check again in case we missed a preemption opportunity
5598                 * between schedule and now.
5599                 */
5600                barrier();
5601        } while (need_resched());
5602}
5603
5604#endif /* CONFIG_PREEMPT */
5605
5606int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5607                          void *key)
5608{
5609        return try_to_wake_up(curr->private, mode, wake_flags);
5610}
5611EXPORT_SYMBOL(default_wake_function);
5612
5613/*
5614 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5615 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5616 * number) then we wake all the non-exclusive tasks and one exclusive task.
5617 *
5618 * There are circumstances in which we can try to wake a task which has already
5619 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5620 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5621 */
5622static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5623                        int nr_exclusive, int wake_flags, void *key)
5624{
5625        wait_queue_t *curr, *next;
5626
5627        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5628                unsigned flags = curr->flags;
5629
5630                if (curr->func(curr, mode, wake_flags, key) &&
5631                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5632                        break;
5633        }
5634}
5635
5636/**
5637 * __wake_up - wake up threads blocked on a waitqueue.
5638 * @q: the waitqueue
5639 * @mode: which threads
5640 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5641 * @key: is directly passed to the wakeup function
5642 *
5643 * It may be assumed that this function implies a write memory barrier before
5644 * changing the task state if and only if any tasks are woken up.
5645 */
5646void __wake_up(wait_queue_head_t *q, unsigned int mode,
5647                        int nr_exclusive, void *key)
5648{
5649        unsigned long flags;
5650
5651        spin_lock_irqsave(&q->lock, flags);
5652        __wake_up_common(q, mode, nr_exclusive, 0, key);
5653        spin_unlock_irqrestore(&q->lock, flags);
5654}
5655EXPORT_SYMBOL(__wake_up);
5656
5657/*
5658 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5659 */
5660void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5661{
5662        __wake_up_common(q, mode, 1, 0, NULL);
5663}
5664
5665void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5666{
5667        __wake_up_common(q, mode, 1, 0, key);
5668}
5669
5670/**
5671 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5672 * @q: the waitqueue
5673 * @mode: which threads
5674 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5675 * @key: opaque value to be passed to wakeup targets
5676 *
5677 * The sync wakeup differs that the waker knows that it will schedule
5678 * away soon, so while the target thread will be woken up, it will not
5679 * be migrated to another CPU - ie. the two threads are 'synchronized'
5680 * with each other. This can prevent needless bouncing between CPUs.
5681 *
5682 * On UP it can prevent extra preemption.
5683 *
5684 * It may be assumed that this function implies a write memory barrier before
5685 * changing the task state if and only if any tasks are woken up.
5686 */
5687void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5688                        int nr_exclusive, void *key)
5689{
5690        unsigned long flags;
5691        int wake_flags = WF_SYNC;
5692
5693        if (unlikely(!q))
5694                return;
5695
5696        if (unlikely(!nr_exclusive))
5697                wake_flags = 0;
5698
5699        spin_lock_irqsave(&q->lock, flags);
5700        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5701        spin_unlock_irqrestore(&q->lock, flags);
5702}
5703EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5704
5705/*
5706 * __wake_up_sync - see __wake_up_sync_key()
5707 */
5708void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5709{
5710        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5711}
5712EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
5713
5714/**
5715 * complete: - signals a single thread waiting on this completion
5716 * @x:  holds the state of this particular completion
5717 *
5718 * This will wake up a single thread waiting on this completion. Threads will be
5719 * awakened in the same order in which they were queued.
5720 *
5721 * See also complete_all(), wait_for_completion() and related routines.
5722 *
5723 * It may be assumed that this function implies a write memory barrier before
5724 * changing the task state if and only if any tasks are woken up.
5725 */
5726void complete(struct completion *x)
5727{
5728        unsigned long flags;
5729
5730        spin_lock_irqsave(&x->wait.lock, flags);
5731        x->done++;
5732        __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5733        spin_unlock_irqrestore(&x->wait.lock, flags);
5734}
5735EXPORT_SYMBOL(complete);
5736
5737/**
5738 * complete_all: - signals all threads waiting on this completion
5739 * @x:  holds the state of this particular completion
5740 *
5741 * This will wake up all threads waiting on this particular completion event.
5742 *
5743 * It may be assumed that this function implies a write memory barrier before
5744 * changing the task state if and only if any tasks are woken up.
5745 */
5746void complete_all(struct completion *x)
5747{
5748        unsigned long flags;
5749
5750        spin_lock_irqsave(&x->wait.lock, flags);
5751        x->done += UINT_MAX/2;
5752        __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5753        spin_unlock_irqrestore(&x->wait.lock, flags);
5754}
5755EXPORT_SYMBOL(complete_all);
5756
5757static inline long __sched
5758do_wait_for_common(struct completion *x, long timeout, int state)
5759{
5760        if (!x->done) {
5761                DECLARE_WAITQUEUE(wait, current);
5762
5763                wait.flags |= WQ_FLAG_EXCLUSIVE;
5764                __add_wait_queue_tail(&x->wait, &wait);
5765                do {
5766                        if (signal_pending_state(state, current)) {
5767                                timeout = -ERESTARTSYS;
5768                                break;
5769                        }
5770                        __set_current_state(state);
5771                        spin_unlock_irq(&x->wait.lock);
5772                        timeout = schedule_timeout(timeout);
5773                        spin_lock_irq(&x->wait.lock);
5774                } while (!x->done && timeout);
5775                __remove_wait_queue(&x->wait, &wait);
5776                if (!x->done)
5777                        return timeout;
5778        }
5779        x->done--;
5780        return timeout ?: 1;
5781}
5782
5783static long __sched
5784wait_for_common(struct completion *x, long timeout, int state)
5785{
5786        might_sleep();
5787
5788        spin_lock_irq(&x->wait.lock);
5789        timeout = do_wait_for_common(x, timeout, state);
5790        spin_unlock_irq(&x->wait.lock);
5791        return timeout;
5792}
5793
5794/**
5795 * wait_for_completion: - waits for completion of a task
5796 * @x:  holds the state of this particular completion
5797 *
5798 * This waits to be signaled for completion of a specific task. It is NOT
5799 * interruptible and there is no timeout.
5800 *
5801 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5802 * and interrupt capability. Also see complete().
5803 */
5804void __sched wait_for_completion(struct completion *x)
5805{
5806        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5807}
5808EXPORT_SYMBOL(wait_for_completion);
5809
5810/**
5811 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5812 * @x:  holds the state of this particular completion
5813 * @timeout:  timeout value in jiffies
5814 *
5815 * This waits for either a completion of a specific task to be signaled or for a
5816 * specified timeout to expire. The timeout is in jiffies. It is not
5817 * interruptible.
5818 */
5819unsigned long __sched
5820wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5821{
5822        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5823}
5824EXPORT_SYMBOL(wait_for_completion_timeout);
5825
5826/**
5827 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5828 * @x:  holds the state of this particular completion
5829 *
5830 * This waits for completion of a specific task to be signaled. It is
5831 * interruptible.
5832 */
5833int __sched wait_for_completion_interruptible(struct completion *x)
5834{
5835        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5836        if (t == -ERESTARTSYS)
5837                return t;
5838        return 0;
5839}
5840EXPORT_SYMBOL(wait_for_completion_interruptible);
5841
5842/**
5843 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5844 * @x:  holds the state of this particular completion
5845 * @timeout:  timeout value in jiffies
5846 *
5847 * This waits for either a completion of a specific task to be signaled or for a
5848 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5849 */
5850unsigned long __sched
5851wait_for_completion_interruptible_timeout(struct completion *x,
5852                                          unsigned long timeout)
5853{
5854        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5855}
5856EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5857
5858/**
5859 * wait_for_completion_killable: - waits for completion of a task (killable)
5860 * @x:  holds the state of this particular completion
5861 *
5862 * This waits to be signaled for completion of a specific task. It can be
5863 * interrupted by a kill signal.
5864 */
5865int __sched wait_for_completion_killable(struct completion *x)
5866{
5867        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5868        if (t == -ERESTARTSYS)
5869                return t;
5870        return 0;
5871}
5872EXPORT_SYMBOL(wait_for_completion_killable);
5873
5874/**
5875 *      try_wait_for_completion - try to decrement a completion without blocking
5876 *      @x:     completion structure
5877 *
5878 *      Returns: 0 if a decrement cannot be done without blocking
5879 *               1 if a decrement succeeded.
5880 *
5881 *      If a completion is being used as a counting completion,
5882 *      attempt to decrement the counter without blocking. This
5883 *      enables us to avoid waiting if the resource the completion
5884 *      is protecting is not available.
5885 */
5886bool try_wait_for_completion(struct completion *x)
5887{
5888        int ret = 1;
5889
5890        spin_lock_irq(&x->wait.lock);
5891        if (!x->done)
5892                ret = 0;
5893        else
5894                x->done--;
5895        spin_unlock_irq(&x->wait.lock);
5896        return ret;
5897}
5898EXPORT_SYMBOL(try_wait_for_completion);
5899
5900/**
5901 *      completion_done - Test to see if a completion has any waiters
5902 *      @x:     completion structure
5903 *
5904 *      Returns: 0 if there are waiters (wait_for_completion() in progress)
5905 *               1 if there are no waiters.
5906 *
5907 */
5908bool completion_done(struct completion *x)
5909{
5910        int ret = 1;
5911
5912        spin_lock_irq(&x->wait.lock);
5913        if (!x->done)
5914                ret = 0;
5915        spin_unlock_irq(&x->wait.lock);
5916        return ret;
5917}
5918EXPORT_SYMBOL(completion_done);
5919
5920static long __sched
5921sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5922{
5923        unsigned long flags;
5924        wait_queue_t wait;
5925
5926        init_waitqueue_entry(&wait, current);
5927
5928        __set_current_state(state);
5929
5930        spin_lock_irqsave(&q->lock, flags);
5931        __add_wait_queue(q, &wait);
5932        spin_unlock(&q->lock);
5933        timeout = schedule_timeout(timeout);
5934        spin_lock_irq(&q->lock);
5935        __remove_wait_queue(q, &wait);
5936        spin_unlock_irqrestore(&q->lock, flags);
5937
5938        return timeout;
5939}
5940
5941void __sched interruptible_sleep_on(wait_queue_head_t *q)
5942{
5943        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5944}
5945EXPORT_SYMBOL(interruptible_sleep_on);
5946
5947long __sched
5948interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5949{
5950        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5951}
5952EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5953
5954void __sched sleep_on(wait_queue_head_t *q)
5955{
5956        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5957}
5958EXPORT_SYMBOL(sleep_on);
5959
5960long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5961{
5962        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5963}
5964EXPORT_SYMBOL(sleep_on_timeout);
5965
5966#ifdef CONFIG_RT_MUTEXES
5967
5968/*
5969 * rt_mutex_setprio - set the current priority of a task
5970 * @p: task
5971 * @prio: prio value (kernel-internal form)
5972 *
5973 * This function changes the 'effective' priority of a task. It does
5974 * not touch ->normal_prio like __setscheduler().
5975 *
5976 * Used by the rt_mutex code to implement priority inheritance logic.
5977 */
5978void rt_mutex_setprio(struct task_struct *p, int prio)
5979{
5980        unsigned long flags;
5981        int oldprio, on_rq, running;
5982        struct rq *rq;
5983        const struct sched_class *prev_class = p->sched_class;
5984
5985        BUG_ON(prio < 0 || prio > MAX_PRIO);
5986
5987        rq = task_rq_lock(p, &flags);
5988        update_rq_clock(rq);
5989
5990        oldprio = p->prio;
5991        on_rq = p->se.on_rq;
5992        running = task_current(rq, p);
5993        if (on_rq)
5994                dequeue_task(rq, p, 0);
5995        if (running)
5996                p->sched_class->put_prev_task(rq, p);
5997
5998        if (rt_prio(prio))
5999                p->sched_class = &rt_sched_class;
6000        else
6001                p->sched_class = &fair_sched_class;
6002
6003        p->prio = prio;
6004
6005        if (running)
6006                p->sched_class->set_curr_task(rq);
6007        if (on_rq) {
6008                enqueue_task(rq, p, 0);
6009
6010                check_class_changed(rq, p, prev_class, oldprio, running);
6011        }
6012        task_rq_unlock(rq, &flags);
6013}
6014
6015#endif
6016
6017void set_user_nice(struct task_struct *p, long nice)
6018{
6019        int old_prio, delta, on_rq;
6020        unsigned long flags;
6021        struct rq *rq;
6022
6023        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6024                return;
6025        /*
6026         * We have to be careful, if called from sys_setpriority(),
6027         * the task might be in the middle of scheduling on another CPU.
6028         */
6029        rq = task_rq_lock(p, &flags);
6030        update_rq_clock(rq);
6031        /*
6032         * The RT priorities are set via sched_setscheduler(), but we still
6033         * allow the 'normal' nice value to be set - but as expected
6034         * it wont have any effect on scheduling until the task is
6035         * SCHED_FIFO/SCHED_RR:
6036         */
6037        if (task_has_rt_policy(p)) {
6038                p->static_prio = NICE_TO_PRIO(nice);
6039                goto out_unlock;
6040        }
6041        on_rq = p->se.on_rq;
6042        if (on_rq)
6043                dequeue_task(rq, p, 0);
6044
6045        p->static_prio = NICE_TO_PRIO(nice);
6046        set_load_weight(p);
6047        old_prio = p->prio;
6048        p->prio = effective_prio(p);
6049        delta = p->prio - old_prio;
6050
6051        if (on_rq) {
6052                enqueue_task(rq, p, 0);
6053                /*
6054                 * If the task increased its priority or is running and
6055                 * lowered its priority, then reschedule its CPU:
6056                 */
6057                if (delta < 0 || (delta > 0 && task_running(rq, p)))
6058                        resched_task(rq->curr);
6059        }
6060out_unlock:
6061        task_rq_unlock(rq, &flags);
6062}
6063EXPORT_SYMBOL(set_user_nice);
6064
6065/*
6066 * can_nice - check if a task can reduce its nice value
6067 * @p: task
6068 * @nice: nice value
6069 */
6070int can_nice(const struct task_struct *p, const int nice)
6071{
6072        /* convert nice value [19,-20] to rlimit style value [1,40] */
6073        int nice_rlim = 20 - nice;
6074
6075        return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6076                capable(CAP_SYS_NICE));
6077}
6078
6079#ifdef __ARCH_WANT_SYS_NICE
6080
6081/*
6082 * sys_nice - change the priority of the current process.
6083 * @increment: priority increment
6084 *
6085 * sys_setpriority is a more generic, but much slower function that
6086 * does similar things.
6087 */
6088SYSCALL_DEFINE1(nice, int, increment)
6089{
6090        long nice, retval;
6091
6092        /*
6093         * Setpriority might change our priority at the same moment.
6094         * We don't have to worry. Conceptually one call occurs first
6095         * and we have a single winner.
6096         */
6097        if (increment < -40)
6098                increment = -40;
6099        if (increment > 40)
6100                increment = 40;
6101
6102        nice = TASK_NICE(current) + increment;
6103        if (nice < -20)
6104                nice = -20;
6105        if (nice > 19)
6106                nice = 19;
6107
6108        if (increment < 0 && !can_nice(current, nice))
6109                return -EPERM;
6110
6111        retval = security_task_setnice(current, nice);
6112        if (retval)
6113                return retval;
6114
6115        set_user_nice(current, nice);
6116        return 0;
6117}
6118
6119#endif
6120
6121/**
6122 * task_prio - return the priority value of a given task.
6123 * @p: the task in question.
6124 *
6125 * This is the priority value as seen by users in /proc.
6126 * RT tasks are offset by -200. Normal tasks are centered
6127 * around 0, value goes from -16 to +15.
6128 */
6129int task_prio(const struct task_struct *p)
6130{
6131        return p->prio - MAX_RT_PRIO;
6132}
6133
6134/**
6135 * task_nice - return the nice value of a given task.
6136 * @p: the task in question.
6137 */
6138int task_nice(const struct task_struct *p)
6139{
6140        return TASK_NICE(p);
6141}
6142EXPORT_SYMBOL(task_nice);
6143
6144/**
6145 * idle_cpu - is a given cpu idle currently?
6146 * @cpu: the processor in question.
6147 */
6148int idle_cpu(int cpu)
6149{
6150        return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6151}
6152
6153/**
6154 * idle_task - return the idle task for a given cpu.
6155 * @cpu: the processor in question.
6156 */
6157struct task_struct *idle_task(int cpu)
6158{
6159        return cpu_rq(cpu)->idle;
6160}
6161
6162/**
6163 * find_process_by_pid - find a process with a matching PID value.
6164 * @pid: the pid in question.
6165 */
6166static struct task_struct *find_process_by_pid(pid_t pid)
6167{
6168        return pid ? find_task_by_vpid(pid) : current;
6169}
6170
6171/* Actually do priority change: must hold rq lock. */
6172static void
6173__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6174{
6175        BUG_ON(p->se.on_rq);
6176
6177        p->policy = policy;
6178        switch (p->policy) {
6179        case SCHED_NORMAL:
6180        case SCHED_BATCH:
6181        case SCHED_IDLE:
6182                p->sched_class = &fair_sched_class;
6183                break;
6184        case SCHED_FIFO:
6185        case SCHED_RR:
6186                p->sched_class = &rt_sched_class;
6187                break;
6188        }
6189
6190        p->rt_priority = prio;
6191        p->normal_prio = normal_prio(p);
6192        /* we are holding p->pi_lock already */
6193        p->prio = rt_mutex_getprio(p);
6194        set_load_weight(p);
6195}
6196
6197/*
6198 * check the target process has a UID that matches the current process's
6199 */
6200static bool check_same_owner(struct task_struct *p)
6201{
6202        const struct cred *cred = current_cred(), *pcred;
6203        bool match;
6204
6205        rcu_read_lock();
6206        pcred = __task_cred(p);
6207        match = (cred->euid == pcred->euid ||
6208                 cred->euid == pcred->uid);
6209        rcu_read_unlock();
6210        return match;
6211}
6212
6213static int __sched_setscheduler(struct task_struct *p, int policy,
6214                                struct sched_param *param, bool user)
6215{
6216        int retval, oldprio, oldpolicy = -1, on_rq, running;
6217        unsigned long flags;
6218        const struct sched_class *prev_class = p->sched_class;
6219        struct rq *rq;
6220        int reset_on_fork;
6221
6222        /* may grab non-irq protected spin_locks */
6223        BUG_ON(in_interrupt());
6224recheck:
6225        /* double check policy once rq lock held */
6226        if (policy < 0) {
6227                reset_on_fork = p->sched_reset_on_fork;
6228                policy = oldpolicy = p->policy;
6229        } else {
6230                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6231                policy &= ~SCHED_RESET_ON_FORK;
6232
6233                if (policy != SCHED_FIFO && policy != SCHED_RR &&
6234                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6235                                policy != SCHED_IDLE)
6236                        return -EINVAL;
6237        }
6238
6239        /*
6240         * Valid priorities for SCHED_FIFO and SCHED_RR are
6241         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6242         * SCHED_BATCH and SCHED_IDLE is 0.
6243         */
6244        if (param->sched_priority < 0 ||
6245            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6246            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6247                return -EINVAL;
6248        if (rt_policy(policy) != (param->sched_priority != 0))
6249                return -EINVAL;
6250
6251        /*
6252         * Allow unprivileged RT tasks to decrease priority:
6253         */
6254        if (user && !capable(CAP_SYS_NICE)) {
6255                if (rt_policy(policy)) {
6256                        unsigned long rlim_rtprio;
6257
6258                        if (!lock_task_sighand(p, &flags))
6259                                return -ESRCH;
6260                        rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6261                        unlock_task_sighand(p, &flags);
6262
6263                        /* can't set/change the rt policy */
6264                        if (policy != p->policy && !rlim_rtprio)
6265                                return -EPERM;
6266
6267                        /* can't increase priority */
6268                        if (param->sched_priority > p->rt_priority &&
6269                            param->sched_priority > rlim_rtprio)
6270                                return -EPERM;
6271                }
6272                /*
6273                 * Like positive nice levels, dont allow tasks to
6274                 * move out of SCHED_IDLE either:
6275                 */
6276                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6277                        return -EPERM;
6278
6279                /* can't change other user's priorities */
6280                if (!check_same_owner(p))
6281                        return -EPERM;
6282
6283                /* Normal users shall not reset the sched_reset_on_fork flag */
6284                if (p->sched_reset_on_fork && !reset_on_fork)
6285                        return -EPERM;
6286        }
6287
6288        if (user) {
6289#ifdef CONFIG_RT_GROUP_SCHED
6290                /*
6291                 * Do not allow realtime tasks into groups that have no runtime
6292                 * assigned.
6293                 */
6294                if (rt_bandwidth_enabled() && rt_policy(policy) &&
6295                                task_group(p)->rt_bandwidth.rt_runtime == 0)
6296                        return -EPERM;
6297#endif
6298
6299                retval = security_task_setscheduler(p, policy, param);
6300                if (retval)
6301                        return retval;
6302        }
6303
6304        /*
6305         * make sure no PI-waiters arrive (or leave) while we are
6306         * changing the priority of the task:
6307         */
6308        spin_lock_irqsave(&p->pi_lock, flags);
6309        /*
6310         * To be able to change p->policy safely, the apropriate
6311         * runqueue lock must be held.
6312         */
6313        rq = __task_rq_lock(p);
6314        /* recheck policy now with rq lock held */
6315        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6316                policy = oldpolicy = -1;
6317                __task_rq_unlock(rq);
6318                spin_unlock_irqrestore(&p->pi_lock, flags);
6319                goto recheck;
6320        }
6321        update_rq_clock(rq);
6322        on_rq = p->se.on_rq;
6323        running = task_current(rq, p);
6324        if (on_rq)
6325                deactivate_task(rq, p, 0);
6326        if (running)
6327                p->sched_class->put_prev_task(rq, p);
6328
6329        p->sched_reset_on_fork = reset_on_fork;
6330
6331        oldprio = p->prio;
6332        __setscheduler(rq, p, policy, param->sched_priority);
6333
6334        if (running)
6335                p->sched_class->set_curr_task(rq);
6336        if (on_rq) {
6337                activate_task(rq, p, 0);
6338
6339                check_class_changed(rq, p, prev_class, oldprio, running);
6340        }
6341        __task_rq_unlock(rq);
6342        spin_unlock_irqrestore(&p->pi_lock, flags);
6343
6344        rt_mutex_adjust_pi(p);
6345
6346        return 0;
6347}
6348
6349/**
6350 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6351 * @p: the task in question.
6352 * @policy: new policy.
6353 * @param: structure containing the new RT priority.
6354 *
6355 * NOTE that the task may be already dead.
6356 */
6357int sched_setscheduler(struct task_struct *p, int policy,
6358                       struct sched_param *param)
6359{
6360        return __sched_setscheduler(p, policy, param, true);
6361}
6362EXPORT_SYMBOL_GPL(sched_setscheduler);
6363
6364/**
6365 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6366 * @p: the task in question.
6367 * @policy: new policy.
6368 * @param: structure containing the new RT priority.
6369 *
6370 * Just like sched_setscheduler, only don't bother checking if the
6371 * current context has permission.  For example, this is needed in
6372 * stop_machine(): we create temporary high priority worker threads,
6373 * but our caller might not have that capability.
6374 */
6375int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6376                               struct sched_param *param)
6377{
6378        return __sched_setscheduler(p, policy, param, false);
6379}
6380
6381static int
6382do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6383{
6384        struct sched_param lparam;
6385        struct task_struct *p;
6386        int retval;
6387
6388        if (!param || pid < 0)
6389                return -EINVAL;
6390        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6391                return -EFAULT;
6392
6393        rcu_read_lock();
6394        retval = -ESRCH;
6395        p = find_process_by_pid(pid);
6396        if (p != NULL)
6397                retval = sched_setscheduler(p, policy, &lparam);
6398        rcu_read_unlock();
6399
6400        return retval;
6401}
6402
6403/**
6404 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6405 * @pid: the pid in question.
6406 * @policy: new policy.
6407 * @param: structure containing the new RT priority.
6408 */
6409SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6410                struct sched_param __user *, param)
6411{
6412        /* negative values for policy are not valid */
6413        if (policy < 0)
6414                return -EINVAL;
6415
6416        return do_sched_setscheduler(pid, policy, param);
6417}
6418
6419/**
6420 * sys_sched_setparam - set/change the RT priority of a thread
6421 * @pid: the pid in question.
6422 * @param: structure containing the new RT priority.
6423 */
6424SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6425{
6426        return do_sched_setscheduler(pid, -1, param);
6427}
6428
6429/**
6430 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6431 * @pid: the pid in question.
6432 */
6433SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6434{
6435        struct task_struct *p;
6436        int retval;
6437
6438        if (pid < 0)
6439                return -EINVAL;
6440
6441        retval = -ESRCH;
6442        read_lock(&tasklist_lock);
6443        p = find_process_by_pid(pid);
6444        if (p) {
6445                retval = security_task_getscheduler(p);
6446                if (!retval)
6447                        retval = p->policy
6448                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6449        }
6450        read_unlock(&tasklist_lock);
6451        return retval;
6452}
6453
6454/**
6455 * sys_sched_getparam - get the RT priority of a thread
6456 * @pid: the pid in question.
6457 * @param: structure containing the RT priority.
6458 */
6459SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6460{
6461        struct sched_param lp;
6462        struct task_struct *p;
6463        int retval;
6464
6465        if (!param || pid < 0)
6466                return -EINVAL;
6467
6468        read_lock(&tasklist_lock);
6469        p = find_process_by_pid(pid);
6470        retval = -ESRCH;
6471        if (!p)
6472                goto out_unlock;
6473
6474        retval = security_task_getscheduler(p);
6475        if (retval)
6476                goto out_unlock;
6477
6478        lp.sched_priority = p->rt_priority;
6479        read_unlock(&tasklist_lock);
6480
6481        /*
6482         * This one might sleep, we cannot do it with a spinlock held ...
6483         */
6484        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6485
6486        return retval;
6487
6488out_unlock:
6489        read_unlock(&tasklist_lock);
6490        return retval;
6491}
6492
6493long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6494{
6495        cpumask_var_t cpus_allowed, new_mask;
6496        struct task_struct *p;
6497        int retval;
6498
6499        get_online_cpus();
6500        read_lock(&tasklist_lock);
6501
6502        p = find_process_by_pid(pid);
6503        if (!p) {
6504                read_unlock(&tasklist_lock);
6505                put_online_cpus();
6506                return -ESRCH;
6507        }
6508
6509        /*
6510         * It is not safe to call set_cpus_allowed with the
6511         * tasklist_lock held. We will bump the task_struct's
6512         * usage count and then drop tasklist_lock.
6513         */
6514        get_task_struct(p);
6515        read_unlock(&tasklist_lock);
6516
6517        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6518                retval = -ENOMEM;
6519                goto out_put_task;
6520        }
6521        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6522                retval = -ENOMEM;
6523                goto out_free_cpus_allowed;
6524        }
6525        retval = -EPERM;
6526        if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6527                goto out_unlock;
6528
6529        retval = security_task_setscheduler(p, 0, NULL);
6530        if (retval)
6531                goto out_unlock;
6532
6533        cpuset_cpus_allowed(p, cpus_allowed);
6534        cpumask_and(new_mask, in_mask, cpus_allowed);
6535 again:
6536        retval = set_cpus_allowed_ptr(p, new_mask);
6537
6538        if (!retval) {
6539                cpuset_cpus_allowed(p, cpus_allowed);
6540                if (!cpumask_subset(new_mask, cpus_allowed)) {
6541                        /*
6542                         * We must have raced with a concurrent cpuset
6543                         * update. Just reset the cpus_allowed to the
6544                         * cpuset's cpus_allowed
6545                         */
6546                        cpumask_copy(new_mask, cpus_allowed);
6547                        goto again;
6548                }
6549        }
6550out_unlock:
6551        free_cpumask_var(new_mask);
6552out_free_cpus_allowed:
6553        free_cpumask_var(cpus_allowed);
6554out_put_task:
6555        put_task_struct(p);
6556        put_online_cpus();
6557        return retval;
6558}
6559
6560static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6561                             struct cpumask *new_mask)
6562{
6563        if (len < cpumask_size())
6564                cpumask_clear(new_mask);
6565        else if (len > cpumask_size())
6566                len = cpumask_size();
6567
6568        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6569}
6570
6571/**
6572 * sys_sched_setaffinity - set the cpu affinity of a process
6573 * @pid: pid of the process
6574 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6575 * @user_mask_ptr: user-space pointer to the new cpu mask
6576 */
6577SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6578                unsigned long __user *, user_mask_ptr)
6579{
6580        cpumask_var_t new_mask;
6581        int retval;
6582
6583        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6584                return -ENOMEM;
6585
6586        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6587        if (retval == 0)
6588                retval = sched_setaffinity(pid, new_mask);
6589        free_cpumask_var(new_mask);
6590        return retval;
6591}
6592
6593long sched_getaffinity(pid_t pid, struct cpumask *mask)
6594{
6595        struct task_struct *p;
6596        int retval;
6597
6598        get_online_cpus();
6599        read_lock(&tasklist_lock);
6600
6601        retval = -ESRCH;
6602        p = find_process_by_pid(pid);
6603        if (!p)
6604                goto out_unlock;
6605
6606        retval = security_task_getscheduler(p);
6607        if (retval)
6608                goto out_unlock;
6609
6610        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6611
6612out_unlock:
6613        read_unlock(&tasklist_lock);
6614        put_online_cpus();
6615
6616        return retval;
6617}
6618
6619/**
6620 * sys_sched_getaffinity - get the cpu affinity of a process
6621 * @pid: pid of the process
6622 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6623 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6624 */
6625SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6626                unsigned long __user *, user_mask_ptr)
6627{
6628        int ret;
6629        cpumask_var_t mask;
6630
6631        if (len < cpumask_size())
6632                return -EINVAL;
6633
6634        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6635                return -ENOMEM;
6636
6637        ret = sched_getaffinity(pid, mask);
6638        if (ret == 0) {
6639                if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6640                        ret = -EFAULT;
6641                else
6642                        ret = cpumask_size();
6643        }
6644        free_cpumask_var(mask);
6645
6646        return ret;
6647}
6648
6649/**
6650 * sys_sched_yield - yield the current processor to other threads.
6651 *
6652 * This function yields the current CPU to other tasks. If there are no
6653 * other threads running on this CPU then this function will return.
6654 */
6655SYSCALL_DEFINE0(sched_yield)
6656{
6657        struct rq *rq = this_rq_lock();
6658
6659        schedstat_inc(rq, yld_count);
6660        current->sched_class->yield_task(rq);
6661
6662        /*
6663         * Since we are going to call schedule() anyway, there's
6664         * no need to preempt or enable interrupts:
6665         */
6666        __release(rq->lock);
6667        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6668        _raw_spin_unlock(&rq->lock);
6669        preempt_enable_no_resched();
6670
6671        schedule();
6672
6673        return 0;
6674}
6675
6676static inline int should_resched(void)
6677{
6678        return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6679}
6680
6681static void __cond_resched(void)
6682{
6683        add_preempt_count(PREEMPT_ACTIVE);
6684        schedule();
6685        sub_preempt_count(PREEMPT_ACTIVE);
6686}
6687
6688int __sched _cond_resched(void)
6689{
6690        if (should_resched()) {
6691                __cond_resched();
6692                return 1;
6693        }
6694        return 0;
6695}
6696EXPORT_SYMBOL(_cond_resched);
6697
6698/*
6699 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6700 * call schedule, and on return reacquire the lock.
6701 *
6702 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6703 * operations here to prevent schedule() from being called twice (once via
6704 * spin_unlock(), once by hand).
6705 */
6706int __cond_resched_lock(spinlock_t *lock)
6707{
6708        int resched = should_resched();
6709        int ret = 0;
6710
6711        lockdep_assert_held(lock);
6712
6713        if (spin_needbreak(lock) || resched) {
6714                spin_unlock(lock);
6715                if (resched)
6716                        __cond_resched();
6717                else
6718                        cpu_relax();
6719                ret = 1;
6720                spin_lock(lock);
6721        }
6722        return ret;
6723}
6724EXPORT_SYMBOL(__cond_resched_lock);
6725
6726int __sched __cond_resched_softirq(void)
6727{
6728        BUG_ON(!in_softirq());
6729
6730        if (should_resched()) {
6731                local_bh_enable();
6732                __cond_resched();
6733                local_bh_disable();
6734                return 1;
6735        }
6736        return 0;
6737}
6738EXPORT_SYMBOL(__cond_resched_softirq);
6739
6740/**
6741 * yield - yield the current processor to other threads.
6742 *
6743 * This is a shortcut for kernel-space yielding - it marks the
6744 * thread runnable and calls sys_sched_yield().
6745 */
6746void __sched yield(void)
6747{
6748        set_current_state(TASK_RUNNING);
6749        sys_sched_yield();
6750}
6751EXPORT_SYMBOL(yield);
6752
6753/*
6754 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6755 * that process accounting knows that this is a task in IO wait state.
6756 */
6757void __sched io_schedule(void)
6758{
6759        struct rq *rq = raw_rq();
6760
6761        delayacct_blkio_start();
6762        atomic_inc(&rq->nr_iowait);
6763        current->in_iowait = 1;
6764        schedule();
6765        current->in_iowait = 0;
6766        atomic_dec(&rq->nr_iowait);
6767        delayacct_blkio_end();
6768}
6769EXPORT_SYMBOL(io_schedule);
6770
6771long __sched io_schedule_timeout(long timeout)
6772{
6773        struct rq *rq = raw_rq();
6774        long ret;
6775
6776        delayacct_blkio_start();
6777        atomic_inc(&rq->nr_iowait);
6778        current->in_iowait = 1;
6779        ret = schedule_timeout(timeout);
6780        current->in_iowait = 0;
6781        atomic_dec(&rq->nr_iowait);
6782        delayacct_blkio_end();
6783        return ret;
6784}
6785
6786/**
6787 * sys_sched_get_priority_max - return maximum RT priority.
6788 * @policy: scheduling class.
6789 *
6790 * this syscall returns the maximum rt_priority that can be used
6791 * by a given scheduling class.
6792 */
6793SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6794{
6795        int ret = -EINVAL;
6796
6797        switch (policy) {
6798        case SCHED_FIFO:
6799        case SCHED_RR:
6800                ret = MAX_USER_RT_PRIO-1;
6801                break;
6802        case SCHED_NORMAL:
6803        case SCHED_BATCH:
6804        case SCHED_IDLE:
6805                ret = 0;
6806                break;
6807        }
6808        return ret;
6809}
6810
6811/**
6812 * sys_sched_get_priority_min - return minimum RT priority.
6813 * @policy: scheduling class.
6814 *
6815 * this syscall returns the minimum rt_priority that can be used
6816 * by a given scheduling class.
6817 */
6818SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6819{
6820        int ret = -EINVAL;
6821
6822        switch (policy) {
6823        case SCHED_FIFO:
6824        case SCHED_RR:
6825                ret = 1;
6826                break;
6827        case SCHED_NORMAL:
6828        case SCHED_BATCH:
6829        case SCHED_IDLE:
6830                ret = 0;
6831        }
6832        return ret;
6833}
6834
6835/**
6836 * sys_sched_rr_get_interval - return the default timeslice of a process.
6837 * @pid: pid of the process.
6838 * @interval: userspace pointer to the timeslice value.
6839 *
6840 * this syscall writes the default timeslice value of a given process
6841 * into the user-space timespec buffer. A value of '0' means infinity.
6842 */
6843SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6844                struct timespec __user *, interval)
6845{
6846        struct task_struct *p;
6847        unsigned int time_slice;
6848        int retval;
6849        struct timespec t;
6850
6851        if (pid < 0)
6852                return -EINVAL;
6853
6854        retval = -ESRCH;
6855        read_lock(&tasklist_lock);
6856        p = find_process_by_pid(pid);
6857        if (!p)
6858                goto out_unlock;
6859
6860        retval = security_task_getscheduler(p);
6861        if (retval)
6862                goto out_unlock;
6863
6864        time_slice = p->sched_class->get_rr_interval(p);
6865
6866        read_unlock(&tasklist_lock);
6867        jiffies_to_timespec(time_slice, &t);
6868        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6869        return retval;
6870
6871out_unlock:
6872        read_unlock(&tasklist_lock);
6873        return retval;
6874}
6875
6876static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6877
6878void sched_show_task(struct task_struct *p)
6879{
6880        unsigned long free = 0;
6881        unsigned state;
6882
6883        state = p->state ? __ffs(p->state) + 1 : 0;
6884        printk(KERN_INFO "%-13.13s %c", p->comm,
6885                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6886#if BITS_PER_LONG == 32
6887        if (state == TASK_RUNNING)
6888                printk(KERN_CONT " running  ");
6889        else
6890                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6891#else
6892        if (state == TASK_RUNNING)
6893                printk(KERN_CONT "  running task    ");
6894        else
6895                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6896#endif
6897#ifdef CONFIG_DEBUG_STACK_USAGE
6898        free = stack_not_used(p);
6899#endif
6900        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6901                task_pid_nr(p), task_pid_nr(p->real_parent),
6902                (unsigned long)task_thread_info(p)->flags);
6903
6904        show_stack(p, NULL);
6905}
6906
6907void show_state_filter(unsigned long state_filter)
6908{
6909        struct task_struct *g, *p;
6910
6911#if BITS_PER_LONG == 32
6912        printk(KERN_INFO
6913                "  task                PC stack   pid father\n");
6914#else
6915        printk(KERN_INFO
6916                "  task                        PC stack   pid father\n");
6917#endif
6918        read_lock(&tasklist_lock);
6919        do_each_thread(g, p) {
6920                /*
6921                 * reset the NMI-timeout, listing all files on a slow
6922                 * console might take alot of time:
6923                 */
6924                touch_nmi_watchdog();
6925                if (!state_filter || (p->state & state_filter))
6926                        sched_show_task(p);
6927        } while_each_thread(g, p);
6928
6929        touch_all_softlockup_watchdogs();
6930
6931#ifdef CONFIG_SCHED_DEBUG
6932        sysrq_sched_debug_show();
6933#endif
6934        read_unlock(&tasklist_lock);
6935        /*
6936         * Only show locks if all tasks are dumped:
6937         */
6938        if (state_filter == -1)
6939                debug_show_all_locks();
6940}
6941
6942void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6943{
6944        idle->sched_class = &idle_sched_class;
6945}
6946
6947/**
6948 * init_idle - set up an idle thread for a given CPU
6949 * @idle: task in question
6950 * @cpu: cpu the idle task belongs to
6951 *
6952 * NOTE: this function does not set the idle thread's NEED_RESCHED
6953 * flag, to make booting more robust.
6954 */
6955void __cpuinit init_idle(struct task_struct *idle, int cpu)
6956{
6957        struct rq *rq = cpu_rq(cpu);
6958        unsigned long flags;
6959
6960        spin_lock_irqsave(&rq->lock, flags);
6961
6962        __sched_fork(idle);
6963        idle->se.exec_start = sched_clock();
6964
6965        idle->prio = idle->normal_prio = MAX_PRIO;
6966        cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6967        __set_task_cpu(idle, cpu);
6968
6969        rq->curr = rq->idle = idle;
6970#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6971        idle->oncpu = 1;
6972#endif
6973        spin_unlock_irqrestore(&rq->lock, flags);
6974
6975        /* Set the preempt count _outside_ the spinlocks! */
6976#if defined(CONFIG_PREEMPT)
6977        task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6978#else
6979        task_thread_info(idle)->preempt_count = 0;
6980#endif
6981        /*
6982         * The idle tasks have their own, simple scheduling class:
6983         */
6984        idle->sched_class = &idle_sched_class;
6985        ftrace_graph_init_task(idle);
6986}
6987
6988/*
6989 * In a system that switches off the HZ timer nohz_cpu_mask
6990 * indicates which cpus entered this state. This is used
6991 * in the rcu update to wait only for active cpus. For system
6992 * which do not switch off the HZ timer nohz_cpu_mask should
6993 * always be CPU_BITS_NONE.
6994 */
6995cpumask_var_t nohz_cpu_mask;
6996
6997/*
6998 * Increase the granularity value when there are more CPUs,
6999 * because with more CPUs the 'effective latency' as visible
7000 * to users decreases. But the relationship is not linear,
7001 * so pick a second-best guess by going with the log2 of the
7002 * number of CPUs.
7003 *
7004 * This idea comes from the SD scheduler of Con Kolivas:
7005 */
7006static inline void sched_init_granularity(void)
7007{
7008        unsigned int factor = 1 + ilog2(num_online_cpus());
7009        const unsigned long limit = 200000000;
7010
7011        sysctl_sched_min_granularity *= factor;
7012        if (sysctl_sched_min_granularity > limit)
7013                sysctl_sched_min_granularity = limit;
7014
7015        sysctl_sched_latency *= factor;
7016        if (sysctl_sched_latency > limit)
7017                sysctl_sched_latency = limit;
7018
7019        sysctl_sched_wakeup_granularity *= factor;
7020
7021        sysctl_sched_shares_ratelimit *= factor;
7022}
7023
7024#ifdef CONFIG_SMP
7025/*
7026 * This is how migration works:
7027 *
7028 * 1) we queue a struct migration_req structure in the source CPU's
7029 *    runqueue and wake up that CPU's migration thread.
7030 * 2) we down() the locked semaphore => thread blocks.
7031 * 3) migration thread wakes up (implicitly it forces the migrated
7032 *    thread off the CPU)
7033 * 4) it gets the migration request and checks whether the migrated
7034 *    task is still in the wrong runqueue.
7035 * 5) if it's in the wrong runqueue then the migration thread removes
7036 *    it and puts it into the right queue.
7037 * 6) migration thread up()s the semaphore.
7038 * 7) we wake up and the migration is done.
7039 */
7040
7041/*
7042 * Change a given task's CPU affinity. Migrate the thread to a
7043 * proper CPU and schedule it away if the CPU it's executing on
7044 * is removed from the allowed bitmask.
7045 *
7046 * NOTE: the caller must have a valid reference to the task, the
7047 * task must not exit() & deallocate itself prematurely. The
7048 * call is not atomic; no spinlocks may be held.
7049 */
7050int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7051{
7052        struct migration_req req;
7053        unsigned long flags;
7054        struct rq *rq;
7055        int ret = 0;
7056
7057        rq = task_rq_lock(p, &flags);
7058        if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7059                ret = -EINVAL;
7060                goto out;
7061        }
7062
7063        if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7064                     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7065                ret = -EINVAL;
7066                goto out;
7067        }
7068
7069        if (p->sched_class->set_cpus_allowed)
7070                p->sched_class->set_cpus_allowed(p, new_mask);
7071        else {
7072                cpumask_copy(&p->cpus_allowed, new_mask);
7073                p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7074        }
7075
7076        /* Can the task run on the task's current CPU? If so, we're done */
7077        if (cpumask_test_cpu(task_cpu(p), new_mask))
7078                goto out;
7079
7080        if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7081                /* Need help from migration thread: drop lock and wait. */
7082                struct task_struct *mt = rq->migration_thread;
7083
7084                get_task_struct(mt);
7085                task_rq_unlock(rq, &flags);
7086                wake_up_process(rq->migration_thread);
7087                put_task_struct(mt);
7088                wait_for_completion(&req.done);
7089                tlb_migrate_finish(p->mm);
7090                return 0;
7091        }
7092out:
7093        task_rq_unlock(rq, &flags);
7094
7095        return ret;
7096}
7097EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7098
7099/*
7100 * Move (not current) task off this cpu, onto dest cpu. We're doing
7101 * this because either it can't run here any more (set_cpus_allowed()
7102 * away from this CPU, or CPU going down), or because we're
7103 * attempting to rebalance this task on exec (sched_exec).
7104 *
7105 * So we race with normal scheduler movements, but that's OK, as long
7106 * as the task is no longer on this CPU.
7107 *
7108 * Returns non-zero if task was successfully migrated.
7109 */
7110static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7111{
7112        struct rq *rq_dest, *rq_src;
7113        int ret = 0, on_rq;
7114
7115        if (unlikely(!cpu_active(dest_cpu)))
7116                return ret;
7117
7118        rq_src = cpu_rq(src_cpu);
7119        rq_dest = cpu_rq(dest_cpu);
7120
7121        double_rq_lock(rq_src, rq_dest);
7122        /* Already moved. */
7123        if (task_cpu(p) != src_cpu)
7124                goto done;
7125        /* Affinity changed (again). */
7126        if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7127                goto fail;
7128
7129        on_rq = p->se.on_rq;
7130        if (on_rq)
7131                deactivate_task(rq_src, p, 0);
7132
7133        set_task_cpu(p, dest_cpu);
7134        if (on_rq) {
7135                activate_task(rq_dest, p, 0);
7136                check_preempt_curr(rq_dest, p, 0);
7137        }
7138done:
7139        ret = 1;
7140fail:
7141        double_rq_unlock(rq_src, rq_dest);
7142        return ret;
7143}
7144
7145#define RCU_MIGRATION_IDLE      0
7146#define RCU_MIGRATION_NEED_QS   1
7147#define RCU_MIGRATION_GOT_QS    2
7148#define RCU_MIGRATION_MUST_SYNC 3
7149
7150/*
7151 * migration_thread - this is a highprio system thread that performs
7152 * thread migration by bumping thread off CPU then 'pushing' onto
7153 * another runqueue.
7154 */
7155static int migration_thread(void *data)
7156{
7157        int badcpu;
7158        int cpu = (long)data;
7159        struct rq *rq;
7160
7161        rq = cpu_rq(cpu);
7162        BUG_ON(rq->migration_thread != current);
7163
7164        set_current_state(TASK_INTERRUPTIBLE);
7165        while (!kthread_should_stop()) {
7166                struct migration_req *req;
7167                struct list_head *head;
7168
7169                spin_lock_irq(&rq->lock);
7170
7171                if (cpu_is_offline(cpu)) {
7172                        spin_unlock_irq(&rq->lock);
7173                        break;
7174                }
7175
7176                if (rq->active_balance) {
7177                        active_load_balance(rq, cpu);
7178                        rq->active_balance = 0;
7179                }
7180
7181                head = &rq->migration_queue;
7182
7183                if (list_empty(head)) {
7184                        spin_unlock_irq(&rq->lock);
7185                        schedule();
7186                        set_current_state(TASK_INTERRUPTIBLE);
7187                        continue;
7188                }
7189                req = list_entry(head->next, struct migration_req, list);
7190                list_del_init(head->next);
7191
7192                if (req->task != NULL) {
7193                        spin_unlock(&rq->lock);
7194                        __migrate_task(req->task, cpu, req->dest_cpu);
7195                } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7196                        req->dest_cpu = RCU_MIGRATION_GOT_QS;
7197                        spin_unlock(&rq->lock);
7198                } else {
7199                        req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7200                        spin_unlock(&rq->lock);
7201                        WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7202                }
7203                local_irq_enable();
7204
7205                complete(&req->done);
7206        }
7207        __set_current_state(TASK_RUNNING);
7208
7209        return 0;
7210}
7211
7212#ifdef CONFIG_HOTPLUG_CPU
7213
7214static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7215{
7216        int ret;
7217
7218        local_irq_disable();
7219        ret = __migrate_task(p, src_cpu, dest_cpu);
7220        local_irq_enable();
7221        return ret;
7222}
7223
7224/*
7225 * Figure out where task on dead CPU should go, use force if necessary.
7226 */
7227static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7228{
7229        int dest_cpu;
7230        const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7231
7232again:
7233        /* Look for allowed, online CPU in same node. */
7234        for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7235                if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7236                        goto move;
7237
7238        /* Any allowed, online CPU? */
7239        dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7240        if (dest_cpu < nr_cpu_ids)
7241                goto move;
7242
7243        /* No more Mr. Nice Guy. */
7244        if (dest_cpu >= nr_cpu_ids) {
7245                cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7246                dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7247
7248                /*
7249                 * Don't tell them about moving exiting tasks or
7250                 * kernel threads (both mm NULL), since they never
7251                 * leave kernel.
7252                 */
7253                if (p->mm && printk_ratelimit()) {
7254                        printk(KERN_INFO "process %d (%s) no "
7255                               "longer affine to cpu%d\n",
7256                               task_pid_nr(p), p->comm, dead_cpu);
7257                }
7258        }
7259
7260move:
7261        /* It can have affinity changed while we were choosing. */
7262        if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7263                goto again;
7264}
7265
7266/*
7267 * While a dead CPU has no uninterruptible tasks queued at this point,
7268 * it might still have a nonzero ->nr_uninterruptible counter, because
7269 * for performance reasons the counter is not stricly tracking tasks to
7270 * their home CPUs. So we just add the counter to another CPU's counter,
7271 * to keep the global sum constant after CPU-down:
7272 */
7273static void migrate_nr_uninterruptible(struct rq *rq_src)
7274{
7275        struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7276        unsigned long flags;
7277
7278        local_irq_save(flags);
7279        double_rq_lock(rq_src, rq_dest);
7280        rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7281        rq_src->nr_uninterruptible = 0;
7282        double_rq_unlock(rq_src, rq_dest);
7283        local_irq_restore(flags);
7284}
7285
7286/* Run through task list and migrate tasks from the dead cpu. */
7287static void migrate_live_tasks(int src_cpu)
7288{
7289        struct task_struct *p, *t;
7290
7291        read_lock(&tasklist_lock);
7292
7293        do_each_thread(t, p) {
7294                if (p == current)
7295                        continue;
7296
7297                if (task_cpu(p) == src_cpu)
7298                        move_task_off_dead_cpu(src_cpu, p);
7299        } while_each_thread(t, p);
7300
7301        read_unlock(&tasklist_lock);
7302}
7303
7304/*
7305 * Schedules idle task to be the next runnable task on current CPU.
7306 * It does so by boosting its priority to highest possible.
7307 * Used by CPU offline code.
7308 */
7309void sched_idle_next(void)
7310{
7311        int this_cpu = smp_processor_id();
7312        struct rq *rq = cpu_rq(this_cpu);
7313        struct task_struct *p = rq->idle;
7314        unsigned long flags;
7315
7316        /* cpu has to be offline */
7317        BUG_ON(cpu_online(this_cpu));
7318
7319        /*
7320         * Strictly not necessary since rest of the CPUs are stopped by now
7321         * and interrupts disabled on the current cpu.
7322         */
7323        spin_lock_irqsave(&rq->lock, flags);
7324
7325        __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7326
7327        update_rq_clock(rq);
7328        activate_task(rq, p, 0);
7329
7330        spin_unlock_irqrestore(&rq->lock, flags);
7331}
7332
7333/*
7334 * Ensures that the idle task is using init_mm right before its cpu goes
7335 * offline.
7336 */
7337void idle_task_exit(void)
7338{
7339        struct mm_struct *mm = current->active_mm;
7340
7341        BUG_ON(cpu_online(smp_processor_id()));
7342
7343        if (mm != &init_mm)
7344                switch_mm(mm, &init_mm, current);
7345        mmdrop(mm);
7346}
7347
7348/* called under rq->lock with disabled interrupts */
7349static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7350{
7351        struct rq *rq = cpu_rq(dead_cpu);
7352
7353        /* Must be exiting, otherwise would be on tasklist. */
7354        BUG_ON(!p->exit_state);
7355
7356        /* Cannot have done final schedule yet: would have vanished. */
7357        BUG_ON(p->state == TASK_DEAD);
7358
7359        get_task_struct(p);
7360
7361        /*
7362         * Drop lock around migration; if someone else moves it,
7363         * that's OK. No task can be added to this CPU, so iteration is
7364         * fine.
7365         */
7366        spin_unlock_irq(&rq->lock);
7367        move_task_off_dead_cpu(dead_cpu, p);
7368        spin_lock_irq(&rq->lock);
7369
7370        put_task_struct(p);
7371}
7372
7373/* release_task() removes task from tasklist, so we won't find dead tasks. */
7374static void migrate_dead_tasks(unsigned int dead_cpu)
7375{
7376        struct rq *rq = cpu_rq(dead_cpu);
7377        struct task_struct *next;
7378
7379        for ( ; ; ) {
7380                if (!rq->nr_running)
7381                        break;
7382                update_rq_clock(rq);
7383                next = pick_next_task(rq);
7384                if (!next)
7385                        break;
7386                next->sched_class->put_prev_task(rq, next);
7387                migrate_dead(dead_cpu, next);
7388
7389        }
7390}
7391
7392/*
7393 * remove the tasks which were accounted by rq from calc_load_tasks.
7394 */
7395static void calc_global_load_remove(struct rq *rq)
7396{
7397        atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7398        rq->calc_load_active = 0;
7399}
7400#endif /* CONFIG_HOTPLUG_CPU */
7401
7402#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7403
7404static struct ctl_table sd_ctl_dir[] = {
7405        {
7406                .procname       = "sched_domain",
7407                .mode           = 0555,
7408        },
7409        {0, },
7410};
7411
7412static struct ctl_table sd_ctl_root[] = {
7413        {
7414                .ctl_name       = CTL_KERN,
7415                .procname       = "kernel",
7416                .mode           = 0555,
7417                .child          = sd_ctl_dir,
7418        },
7419        {0, },
7420};
7421
7422static struct ctl_table *sd_alloc_ctl_entry(int n)
7423{
7424        struct ctl_table *entry =
7425                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7426
7427        return entry;
7428}
7429
7430static void sd_free_ctl_entry(struct ctl_table **tablep)
7431{
7432        struct ctl_table *entry;
7433
7434        /*
7435         * In the intermediate directories, both the child directory and
7436         * procname are dynamically allocated and could fail but the mode
7437         * will always be set. In the lowest directory the names are
7438         * static strings and all have proc handlers.
7439         */
7440        for (entry = *tablep; entry->mode; entry++) {
7441                if (entry->child)
7442                        sd_free_ctl_entry(&entry->child);
7443                if (entry->proc_handler == NULL)
7444                        kfree(entry->procname);
7445        }
7446
7447        kfree(*tablep);
7448        *tablep = NULL;
7449}
7450
7451static void
7452set_table_entry(struct ctl_table *entry,
7453                const char *procname, void *data, int maxlen,
7454                mode_t mode, proc_handler *proc_handler)
7455{
7456        entry->procname = procname;
7457        entry->data = data;
7458        entry->maxlen = maxlen;
7459        entry->mode = mode;
7460        entry->proc_handler = proc_handler;
7461}
7462
7463static struct ctl_table *
7464sd_alloc_ctl_domain_table(struct sched_domain *sd)
7465{
7466        struct ctl_table *table = sd_alloc_ctl_entry(13);
7467
7468        if (table == NULL)
7469                return NULL;
7470
7471        set_table_entry(&table[0], "min_interval", &sd->min_interval,
7472                sizeof(long), 0644, proc_doulongvec_minmax);
7473        set_table_entry(&table[1], "max_interval", &sd->max_interval,
7474                sizeof(long), 0644, proc_doulongvec_minmax);
7475        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7476                sizeof(int), 0644, proc_dointvec_minmax);
7477        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7478                sizeof(int), 0644, proc_dointvec_minmax);
7479        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7480                sizeof(int), 0644, proc_dointvec_minmax);
7481        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7482                sizeof(int), 0644, proc_dointvec_minmax);
7483        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7484                sizeof(int), 0644, proc_dointvec_minmax);
7485        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7486                sizeof(int), 0644, proc_dointvec_minmax);
7487        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7488                sizeof(int), 0644, proc_dointvec_minmax);
7489        set_table_entry(&table[9], "cache_nice_tries",
7490                &sd->cache_nice_tries,
7491                sizeof(int), 0644, proc_dointvec_minmax);
7492        set_table_entry(&table[10], "flags", &sd->flags,
7493                sizeof(int), 0644, proc_dointvec_minmax);
7494        set_table_entry(&table[11], "name", sd->name,
7495                CORENAME_MAX_SIZE, 0444, proc_dostring);
7496        /* &table[12] is terminator */
7497
7498        return table;
7499}
7500
7501static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7502{
7503        struct ctl_table *entry, *table;
7504        struct sched_domain *sd;
7505        int domain_num = 0, i;
7506        char buf[32];
7507
7508        for_each_domain(cpu, sd)
7509                domain_num++;
7510        entry = table = sd_alloc_ctl_entry(domain_num + 1);
7511        if (table == NULL)
7512                return NULL;
7513
7514        i = 0;
7515        for_each_domain(cpu, sd) {
7516                snprintf(buf, 32, "domain%d", i);
7517                entry->procname = kstrdup(buf, GFP_KERNEL);
7518                entry->mode = 0555;
7519                entry->child = sd_alloc_ctl_domain_table(sd);
7520                entry++;
7521                i++;
7522        }
7523        return table;
7524}
7525
7526static struct ctl_table_header *sd_sysctl_header;
7527static void register_sched_domain_sysctl(void)
7528{
7529        int i, cpu_num = num_online_cpus();
7530        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7531        char buf[32];
7532
7533        WARN_ON(sd_ctl_dir[0].child);
7534        sd_ctl_dir[0].child = entry;
7535
7536        if (entry == NULL)
7537                return;
7538
7539        for_each_online_cpu(i) {
7540                snprintf(buf, 32, "cpu%d", i);
7541                entry->procname = kstrdup(buf, GFP_KERNEL);
7542                entry->mode = 0555;
7543                entry->child = sd_alloc_ctl_cpu_table(i);
7544                entry++;
7545        }
7546
7547        WARN_ON(sd_sysctl_header);
7548        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7549}
7550
7551/* may be called multiple times per register */
7552static void unregister_sched_domain_sysctl(void)
7553{
7554        if (sd_sysctl_header)
7555                unregister_sysctl_table(sd_sysctl_header);
7556        sd_sysctl_header = NULL;
7557        if (sd_ctl_dir[0].child)
7558                sd_free_ctl_entry(&sd_ctl_dir[0].child);
7559}
7560#else
7561static void register_sched_domain_sysctl(void)
7562{
7563}
7564static void unregister_sched_domain_sysctl(void)
7565{
7566}
7567#endif
7568
7569static void set_rq_online(struct rq *rq)
7570{
7571        if (!rq->online) {
7572                const struct sched_class *class;
7573
7574                cpumask_set_cpu(rq->cpu, rq->rd->online);
7575                rq->online = 1;
7576
7577                for_each_class(class) {
7578                        if (class->rq_online)
7579                                class->rq_online(rq);
7580                }
7581        }
7582}
7583
7584static void set_rq_offline(struct rq *rq)
7585{
7586        if (rq->online) {
7587                const struct sched_class *class;
7588
7589                for_each_class(class) {
7590                        if (class->rq_offline)
7591                                class->rq_offline(rq);
7592                }
7593
7594                cpumask_clear_cpu(rq->cpu, rq->rd->online);
7595                rq->online = 0;
7596        }
7597}
7598
7599/*
7600 * migration_call - callback that gets triggered when a CPU is added.
7601 * Here we can start up the necessary migration thread for the new CPU.
7602 */
7603static int __cpuinit
7604migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7605{
7606        struct task_struct *p;
7607        int cpu = (long)hcpu;
7608        unsigned long flags;
7609        struct rq *rq;
7610
7611        switch (action) {
7612
7613        case CPU_UP_PREPARE:
7614        case CPU_UP_PREPARE_FROZEN:
7615                p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7616                if (IS_ERR(p))
7617                        return NOTIFY_BAD;
7618                kthread_bind(p, cpu);
7619                /* Must be high prio: stop_machine expects to yield to it. */
7620                rq = task_rq_lock(p, &flags);
7621                __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7622                task_rq_unlock(rq, &flags);
7623                get_task_struct(p);
7624                cpu_rq(cpu)->migration_thread = p;
7625                rq->calc_load_update = calc_load_update;
7626                break;
7627
7628        case CPU_ONLINE:
7629        case CPU_ONLINE_FROZEN:
7630                /* Strictly unnecessary, as first user will wake it. */
7631                wake_up_process(cpu_rq(cpu)->migration_thread);
7632
7633                /* Update our root-domain */
7634                rq = cpu_rq(cpu);
7635                spin_lock_irqsave(&rq->lock, flags);
7636                if (rq->rd) {
7637                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7638
7639                        set_rq_online(rq);
7640                }
7641                spin_unlock_irqrestore(&rq->lock, flags);
7642                break;
7643
7644#ifdef CONFIG_HOTPLUG_CPU
7645        case CPU_UP_CANCELED:
7646        case CPU_UP_CANCELED_FROZEN:
7647                if (!cpu_rq(cpu)->migration_thread)
7648                        break;
7649                /* Unbind it from offline cpu so it can run. Fall thru. */
7650                kthread_bind(cpu_rq(cpu)->migration_thread,
7651                             cpumask_any(cpu_online_mask));
7652                kthread_stop(cpu_rq(cpu)->migration_thread);
7653                put_task_struct(cpu_rq(cpu)->migration_thread);
7654                cpu_rq(cpu)->migration_thread = NULL;
7655                break;
7656
7657        case CPU_DEAD:
7658        case CPU_DEAD_FROZEN:
7659                cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7660                migrate_live_tasks(cpu);
7661                rq = cpu_rq(cpu);
7662                kthread_stop(rq->migration_thread);
7663                put_task_struct(rq->migration_thread);
7664                rq->migration_thread = NULL;
7665                /* Idle task back to normal (off runqueue, low prio) */
7666                spin_lock_irq(&rq->lock);
7667                update_rq_clock(rq);
7668                deactivate_task(rq, rq->idle, 0);
7669                rq->idle->static_prio = MAX_PRIO;
7670                __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7671                rq->idle->sched_class = &idle_sched_class;
7672                migrate_dead_tasks(cpu);
7673                spin_unlock_irq(&rq->lock);
7674                cpuset_unlock();
7675                migrate_nr_uninterruptible(rq);
7676                BUG_ON(rq->nr_running != 0);
7677                calc_global_load_remove(rq);
7678                /*
7679                 * No need to migrate the tasks: it was best-effort if
7680                 * they didn't take sched_hotcpu_mutex. Just wake up
7681                 * the requestors.
7682                 */
7683                spin_lock_irq(&rq->lock);
7684                while (!list_empty(&rq->migration_queue)) {
7685                        struct migration_req *req;
7686
7687                        req = list_entry(rq->migration_queue.next,
7688                                         struct migration_req, list);
7689                        list_del_init(&req->list);
7690                        spin_unlock_irq(&rq->lock);
7691                        complete(&req->done);
7692                        spin_lock_irq(&rq->lock);
7693                }
7694                spin_unlock_irq(&rq->lock);
7695                break;
7696
7697        case CPU_DYING:
7698        case CPU_DYING_FROZEN:
7699                /* Update our root-domain */
7700                rq = cpu_rq(cpu);
7701                spin_lock_irqsave(&rq->lock, flags);
7702                if (rq->rd) {
7703                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7704                        set_rq_offline(rq);
7705                }
7706                spin_unlock_irqrestore(&rq->lock, flags);
7707                break;
7708#endif
7709        }
7710        return NOTIFY_OK;
7711}
7712
7713/*
7714 * Register at high priority so that task migration (migrate_all_tasks)
7715 * happens before everything else.  This has to be lower priority than
7716 * the notifier in the perf_event subsystem, though.
7717 */
7718static struct notifier_block __cpuinitdata migration_notifier = {
7719        .notifier_call = migration_call,
7720        .priority = 10
7721};
7722
7723static int __init migration_init(void)
7724{
7725        void *cpu = (void *)(long)smp_processor_id();
7726        int err;
7727
7728        /* Start one for the boot CPU: */
7729        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7730        BUG_ON(err == NOTIFY_BAD);
7731        migration_call(&migration_notifier, CPU_ONLINE, cpu);
7732        register_cpu_notifier(&migration_notifier);
7733
7734        return 0;
7735}
7736early_initcall(migration_init);
7737#endif
7738
7739#ifdef CONFIG_SMP
7740
7741#ifdef CONFIG_SCHED_DEBUG
7742
7743static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7744                                  struct cpumask *groupmask)
7745{
7746        struct sched_group *group = sd->groups;
7747        char str[256];
7748
7749        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7750        cpumask_clear(groupmask);
7751
7752        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7753
7754        if (!(sd->flags & SD_LOAD_BALANCE)) {
7755                printk("does not load-balance\n");
7756                if (sd->parent)
7757                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7758                                        " has parent");
7759                return -1;
7760        }
7761
7762        printk(KERN_CONT "span %s level %s\n", str, sd->name);
7763
7764        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7765                printk(KERN_ERR "ERROR: domain->span does not contain "
7766                                "CPU%d\n", cpu);
7767        }
7768        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7769                printk(KERN_ERR "ERROR: domain->groups does not contain"
7770                                " CPU%d\n", cpu);
7771        }
7772
7773        printk(KERN_DEBUG "%*s groups:", level + 1, "");
7774        do {
7775                if (!group) {
7776                        printk("\n");
7777                        printk(KERN_ERR "ERROR: group is NULL\n");
7778                        break;
7779                }
7780
7781                if (!group->cpu_power) {
7782                        printk(KERN_CONT "\n");
7783                        printk(KERN_ERR "ERROR: domain->cpu_power not "
7784                                        "set\n");
7785                        break;
7786                }
7787
7788                if (!cpumask_weight(sched_group_cpus(group))) {
7789                        printk(KERN_CONT "\n");
7790                        printk(KERN_ERR "ERROR: empty group\n");
7791                        break;
7792                }
7793
7794                if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7795                        printk(KERN_CONT "\n");
7796                        printk(KERN_ERR "ERROR: repeated CPUs\n");
7797                        break;
7798                }
7799
7800                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7801
7802                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7803
7804                printk(KERN_CONT " %s", str);
7805                if (group->cpu_power != SCHED_LOAD_SCALE) {
7806                        printk(KERN_CONT " (cpu_power = %d)",
7807                                group->cpu_power);
7808                }
7809
7810                group = group->next;
7811        } while (group != sd->groups);
7812        printk(KERN_CONT "\n");
7813
7814        if (!cpumask_equal(sched_domain_span(sd), groupmask))
7815                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7816
7817        if (sd->parent &&
7818            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7819                printk(KERN_ERR "ERROR: parent span is not a superset "
7820                        "of domain->span\n");
7821        return 0;
7822}
7823
7824static void sched_domain_debug(struct sched_domain *sd, int cpu)
7825{
7826        cpumask_var_t groupmask;
7827        int level = 0;
7828
7829        if (!sd) {
7830                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7831                return;
7832        }
7833
7834        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7835
7836        if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7837                printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7838                return;
7839        }
7840
7841        for (;;) {
7842                if (sched_domain_debug_one(sd, cpu, level, groupmask))
7843                        break;
7844                level++;
7845                sd = sd->parent;
7846                if (!sd)
7847                        break;
7848        }
7849        free_cpumask_var(groupmask);
7850}
7851#else /* !CONFIG_SCHED_DEBUG */
7852# define sched_domain_debug(sd, cpu) do { } while (0)
7853#endif /* CONFIG_SCHED_DEBUG */
7854
7855static int sd_degenerate(struct sched_domain *sd)
7856{
7857        if (cpumask_weight(sched_domain_span(sd)) == 1)
7858                return 1;
7859
7860        /* Following flags need at least 2 groups */
7861        if (sd->flags & (SD_LOAD_BALANCE |
7862                         SD_BALANCE_NEWIDLE |
7863                         SD_BALANCE_FORK |
7864                         SD_BALANCE_EXEC |
7865                         SD_SHARE_CPUPOWER |
7866                         SD_SHARE_PKG_RESOURCES)) {
7867                if (sd->groups != sd->groups->next)
7868                        return 0;
7869        }
7870
7871        /* Following flags don't use groups */
7872        if (sd->flags & (SD_WAKE_AFFINE))
7873                return 0;
7874
7875        return 1;
7876}
7877
7878static int
7879sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7880{
7881        unsigned long cflags = sd->flags, pflags = parent->flags;
7882
7883        if (sd_degenerate(parent))
7884                return 1;
7885
7886        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7887                return 0;
7888
7889        /* Flags needing groups don't count if only 1 group in parent */
7890        if (parent->groups == parent->groups->next) {
7891                pflags &= ~(SD_LOAD_BALANCE |
7892                                SD_BALANCE_NEWIDLE |
7893                                SD_BALANCE_FORK |
7894                                SD_BALANCE_EXEC |
7895                                SD_SHARE_CPUPOWER |
7896                                SD_SHARE_PKG_RESOURCES);
7897                if (nr_node_ids == 1)
7898                        pflags &= ~SD_SERIALIZE;
7899        }
7900        if (~cflags & pflags)
7901                return 0;
7902
7903        return 1;
7904}
7905
7906static void free_rootdomain(struct root_domain *rd)
7907{
7908        cpupri_cleanup(&rd->cpupri);
7909
7910        free_cpumask_var(rd->rto_mask);
7911        free_cpumask_var(rd->online);
7912        free_cpumask_var(rd->span);
7913        kfree(rd);
7914}
7915
7916static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7917{
7918        struct root_domain *old_rd = NULL;
7919        unsigned long flags;
7920
7921        spin_lock_irqsave(&rq->lock, flags);
7922
7923        if (rq->rd) {
7924                old_rd = rq->rd;
7925
7926                if (cpumask_test_cpu(rq->cpu, old_rd->online))
7927                        set_rq_offline(rq);
7928
7929                cpumask_clear_cpu(rq->cpu, old_rd->span);
7930
7931                /*
7932                 * If we dont want to free the old_rt yet then
7933                 * set old_rd to NULL to skip the freeing later
7934                 * in this function:
7935                 */
7936                if (!atomic_dec_and_test(&old_rd->refcount))
7937                        old_rd = NULL;
7938        }
7939
7940        atomic_inc(&rd->refcount);
7941        rq->rd = rd;
7942
7943        cpumask_set_cpu(rq->cpu, rd->span);
7944        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7945                set_rq_online(rq);
7946
7947        spin_unlock_irqrestore(&rq->lock, flags);
7948
7949        if (old_rd)
7950                free_rootdomain(old_rd);
7951}
7952
7953static int init_rootdomain(struct root_domain *rd, bool bootmem)
7954{
7955        gfp_t gfp = GFP_KERNEL;
7956
7957        memset(rd, 0, sizeof(*rd));
7958
7959        if (bootmem)
7960                gfp = GFP_NOWAIT;
7961
7962        if (!alloc_cpumask_var(&rd->span, gfp))
7963                goto out;
7964        if (!alloc_cpumask_var(&rd->online, gfp))
7965                goto free_span;
7966        if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7967                goto free_online;
7968
7969        if (cpupri_init(&rd->cpupri, bootmem) != 0)
7970                goto free_rto_mask;
7971        return 0;
7972
7973free_rto_mask:
7974        free_cpumask_var(rd->rto_mask);
7975free_online:
7976        free_cpumask_var(rd->online);
7977free_span:
7978        free_cpumask_var(rd->span);
7979out:
7980        return -ENOMEM;
7981}
7982
7983static void init_defrootdomain(void)
7984{
7985        init_rootdomain(&def_root_domain, true);
7986
7987        atomic_set(&def_root_domain.refcount, 1);
7988}
7989
7990static struct root_domain *alloc_rootdomain(void)
7991{
7992        struct root_domain *rd;
7993
7994        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7995        if (!rd)
7996                return NULL;
7997
7998        if (init_rootdomain(rd, false) != 0) {
7999                kfree(rd);
8000                return NULL;
8001        }
8002
8003        return rd;
8004}
8005
8006/*
8007 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8008 * hold the hotplug lock.
8009 */
8010static void
8011cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8012{
8013        struct rq *rq = cpu_rq(cpu);
8014        struct sched_domain *tmp;
8015
8016        /* Remove the sched domains which do not contribute to scheduling. */
8017        for (tmp = sd; tmp; ) {
8018                struct sched_domain *parent = tmp->parent;
8019                if (!parent)
8020                        break;
8021
8022                if (sd_parent_degenerate(tmp, parent)) {
8023                        tmp->parent = parent->parent;
8024                        if (parent->parent)
8025                                parent->parent->child = tmp;
8026                } else
8027                        tmp = tmp->parent;
8028        }
8029
8030        if (sd && sd_degenerate(sd)) {
8031                sd = sd->parent;
8032                if (sd)
8033                        sd->child = NULL;
8034        }
8035
8036        sched_domain_debug(sd, cpu);
8037
8038        rq_attach_root(rq, rd);
8039        rcu_assign_pointer(rq->sd, sd);
8040}
8041
8042/* cpus with isolated domains */
8043static cpumask_var_t cpu_isolated_map;
8044
8045/* Setup the mask of cpus configured for isolated domains */
8046static int __init isolated_cpu_setup(char *str)
8047{
8048        cpulist_parse(str, cpu_isolated_map);
8049        return 1;
8050}
8051
8052__setup("isolcpus=", isolated_cpu_setup);
8053
8054/*
8055 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8056 * to a function which identifies what group(along with sched group) a CPU
8057 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8058 * (due to the fact that we keep track of groups covered with a struct cpumask).
8059 *
8060 * init_sched_build_groups will build a circular linked list of the groups
8061 * covered by the given span, and will set each group's ->cpumask correctly,
8062 * and ->cpu_power to 0.
8063 */
8064static void
8065init_sched_build_groups(const struct cpumask *span,
8066                        const struct cpumask *cpu_map,
8067                        int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8068                                        struct sched_group **sg,
8069                                        struct cpumask *tmpmask),
8070                        struct cpumask *covered, struct cpumask *tmpmask)
8071{
8072        struct sched_group *first = NULL, *last = NULL;
8073        int i;
8074
8075        cpumask_clear(covered);
8076
8077        for_each_cpu(i, span) {
8078                struct sched_group *sg;
8079                int group = group_fn(i, cpu_map, &sg, tmpmask);
8080                int j;
8081
8082                if (cpumask_test_cpu(i, covered))
8083                        continue;
8084
8085                cpumask_clear(sched_group_cpus(sg));
8086                sg->cpu_power = 0;
8087
8088                for_each_cpu(j, span) {
8089                        if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8090                                continue;
8091
8092                        cpumask_set_cpu(j, covered);
8093                        cpumask_set_cpu(j, sched_group_cpus(sg));
8094                }
8095                if (!first)
8096                        first = sg;
8097                if (last)
8098                        last->next = sg;
8099                last = sg;
8100        }
8101        last->next = first;
8102}
8103
8104#define SD_NODES_PER_DOMAIN 16
8105
8106#ifdef CONFIG_NUMA
8107
8108/**
8109 * find_next_best_node - find the next node to include in a sched_domain
8110 * @node: node whose sched_domain we're building
8111 * @used_nodes: nodes already in the sched_domain
8112 *
8113 * Find the next node to include in a given scheduling domain. Simply
8114 * finds the closest node not already in the @used_nodes map.
8115 *
8116 * Should use nodemask_t.
8117 */
8118static int find_next_best_node(int node, nodemask_t *used_nodes)
8119{
8120        int i, n, val, min_val, best_node = 0;
8121
8122        min_val = INT_MAX;
8123
8124        for (i = 0; i < nr_node_ids; i++) {
8125                /* Start at @node */
8126                n = (node + i) % nr_node_ids;
8127
8128                if (!nr_cpus_node(n))
8129                        continue;
8130
8131                /* Skip already used nodes */
8132                if (node_isset(n, *used_nodes))
8133                        continue;
8134
8135                /* Simple min distance search */
8136                val = node_distance(node, n);
8137
8138                if (val < min_val) {
8139                        min_val = val;
8140                        best_node = n;
8141                }
8142        }
8143
8144        node_set(best_node, *used_nodes);
8145        return best_node;
8146}
8147
8148/**
8149 * sched_domain_node_span - get a cpumask for a node's sched_domain
8150 * @node: node whose cpumask we're constructing
8151 * @span: resulting cpumask
8152 *
8153 * Given a node, construct a good cpumask for its sched_domain to span. It
8154 * should be one that prevents unnecessary balancing, but also spreads tasks
8155 * out optimally.
8156 */
8157static void sched_domain_node_span(int node, struct cpumask *span)
8158{
8159        nodemask_t used_nodes;
8160        int i;
8161
8162        cpumask_clear(span);
8163        nodes_clear(used_nodes);
8164
8165        cpumask_or(span, span, cpumask_of_node(node));
8166        node_set(node, used_nodes);
8167
8168        for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8169                int next_node = find_next_best_node(node, &used_nodes);
8170
8171                cpumask_or(span, span, cpumask_of_node(next_node));
8172        }
8173}
8174#endif /* CONFIG_NUMA */
8175
8176int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8177
8178/*
8179 * The cpus mask in sched_group and sched_domain hangs off the end.
8180 *
8181 * ( See the the comments in include/linux/sched.h:struct sched_group
8182 *   and struct sched_domain. )
8183 */
8184struct static_sched_group {
8185        struct sched_group sg;
8186        DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8187};
8188
8189struct static_sched_domain {
8190        struct sched_domain sd;
8191        DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8192};
8193
8194struct s_data {
8195#ifdef CONFIG_NUMA
8196        int                     sd_allnodes;
8197        cpumask_var_t           domainspan;
8198        cpumask_var_t           covered;
8199        cpumask_var_t           notcovered;
8200#endif
8201        cpumask_var_t           nodemask;
8202        cpumask_var_t           this_sibling_map;
8203        cpumask_var_t           this_core_map;
8204        cpumask_var_t           send_covered;
8205        cpumask_var_t           tmpmask;
8206        struct sched_group      **sched_group_nodes;
8207        struct root_domain      *rd;
8208};
8209
8210enum s_alloc {
8211        sa_sched_groups = 0,
8212        sa_rootdomain,
8213        sa_tmpmask,
8214        sa_send_covered,
8215        sa_this_core_map,
8216        sa_this_sibling_map,
8217        sa_nodemask,
8218        sa_sched_group_nodes,
8219#ifdef CONFIG_NUMA
8220        sa_notcovered,
8221        sa_covered,
8222        sa_domainspan,
8223#endif
8224        sa_none,
8225};
8226
8227/*
8228 * SMT sched-domains:
8229 */
8230#ifdef CONFIG_SCHED_SMT
8231static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8232static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8233
8234static int
8235cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8236                 struct sched_group **sg, struct cpumask *unused)
8237{
8238        if (sg)
8239                *sg = &per_cpu(sched_group_cpus, cpu).sg;
8240        return cpu;
8241}
8242#endif /* CONFIG_SCHED_SMT */
8243
8244/*
8245 * multi-core sched-domains:
8246 */
8247#ifdef CONFIG_SCHED_MC
8248static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8249static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8250#endif /* CONFIG_SCHED_MC */
8251
8252#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8253static int
8254cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8255                  struct sched_group **sg, struct cpumask *mask)
8256{
8257        int group;
8258
8259        cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8260        group = cpumask_first(mask);
8261        if (sg)
8262                *sg = &per_cpu(sched_group_core, group).sg;
8263        return group;
8264}
8265#elif defined(CONFIG_SCHED_MC)
8266static int
8267cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8268                  struct sched_group **sg, struct cpumask *unused)
8269{
8270        if (sg)
8271                *sg = &per_cpu(sched_group_core, cpu).sg;
8272        return cpu;
8273}
8274#endif
8275
8276static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8277static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8278
8279static int
8280cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8281                  struct sched_group **sg, struct cpumask *mask)
8282{
8283        int group;
8284#ifdef CONFIG_SCHED_MC
8285        cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8286        group = cpumask_first(mask);
8287#elif defined(CONFIG_SCHED_SMT)
8288        cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8289        group = cpumask_first(mask);
8290#else
8291        group = cpu;
8292#endif
8293        if (sg)
8294                *sg = &per_cpu(sched_group_phys, group).sg;
8295        return group;
8296}
8297
8298#ifdef CONFIG_NUMA
8299/*
8300 * The init_sched_build_groups can't handle what we want to do with node
8301 * groups, so roll our own. Now each node has its own list of groups which
8302 * gets dynamically allocated.
8303 */
8304static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8305static struct sched_group ***sched_group_nodes_bycpu;
8306
8307static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8308static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8309
8310static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8311                                 struct sched_group **sg,
8312                                 struct cpumask *nodemask)
8313{
8314        int group;
8315
8316        cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8317        group = cpumask_first(nodemask);
8318
8319        if (sg)
8320                *sg = &per_cpu(sched_group_allnodes, group).sg;
8321        return group;
8322}
8323
8324static void init_numa_sched_groups_power(struct sched_group *group_head)
8325{
8326        struct sched_group *sg = group_head;
8327        int j;
8328
8329        if (!sg)
8330                return;
8331        do {
8332                for_each_cpu(j, sched_group_cpus(sg)) {
8333                        struct sched_domain *sd;
8334
8335                        sd = &per_cpu(phys_domains, j).sd;
8336                        if (j != group_first_cpu(sd->groups)) {
8337                                /*
8338                                 * Only add "power" once for each
8339                                 * physical package.
8340                                 */
8341                                continue;
8342                        }
8343
8344                        sg->cpu_power += sd->groups->cpu_power;
8345                }
8346                sg = sg->next;
8347        } while (sg != group_head);
8348}
8349
8350static int build_numa_sched_groups(struct s_data *d,
8351                                   const struct cpumask *cpu_map, int num)
8352{
8353        struct sched_domain *sd;
8354        struct sched_group *sg, *prev;
8355        int n, j;
8356
8357        cpumask_clear(d->covered);
8358        cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8359        if (cpumask_empty(d->nodemask)) {
8360                d->sched_group_nodes[num] = NULL;
8361                goto out;
8362        }
8363
8364        sched_domain_node_span(num, d->domainspan);
8365        cpumask_and(d->domainspan, d->domainspan, cpu_map);
8366
8367        sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8368                          GFP_KERNEL, num);
8369        if (!sg) {
8370                printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8371                       num);
8372                return -ENOMEM;
8373        }
8374        d->sched_group_nodes[num] = sg;
8375
8376        for_each_cpu(j, d->nodemask) {
8377                sd = &per_cpu(node_domains, j).sd;
8378                sd->groups = sg;
8379        }
8380
8381        sg->cpu_power = 0;
8382        cpumask_copy(sched_group_cpus(sg), d->nodemask);
8383        sg->next = sg;
8384        cpumask_or(d->covered, d->covered, d->nodemask);
8385
8386        prev = sg;
8387        for (j = 0; j < nr_node_ids; j++) {
8388                n = (num + j) % nr_node_ids;
8389                cpumask_complement(d->notcovered, d->covered);
8390                cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8391                cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8392                if (cpumask_empty(d->tmpmask))
8393                        break;
8394                cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8395                if (cpumask_empty(d->tmpmask))
8396                        continue;
8397                sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8398                                  GFP_KERNEL, num);
8399                if (!sg) {
8400                        printk(KERN_WARNING
8401                               "Can not alloc domain group for node %d\n", j);
8402                        return -ENOMEM;
8403                }
8404                sg->cpu_power = 0;
8405                cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8406                sg->next = prev->next;
8407                cpumask_or(d->covered, d->covered, d->tmpmask);
8408                prev->next = sg;
8409                prev = sg;
8410        }
8411out:
8412        return 0;
8413}
8414#endif /* CONFIG_NUMA */
8415
8416#ifdef CONFIG_NUMA
8417/* Free memory allocated for various sched_group structures */
8418static void free_sched_groups(const struct cpumask *cpu_map,
8419                              struct cpumask *nodemask)
8420{
8421        int cpu, i;
8422
8423        for_each_cpu(cpu, cpu_map) {
8424                struct sched_group **sched_group_nodes
8425                        = sched_group_nodes_bycpu[cpu];
8426
8427                if (!sched_group_nodes)
8428                        continue;
8429
8430                for (i = 0; i < nr_node_ids; i++) {
8431                        struct sched_group *oldsg, *sg = sched_group_nodes[i];
8432
8433                        cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8434                        if (cpumask_empty(nodemask))
8435                                continue;
8436
8437                        if (sg == NULL)
8438                                continue;
8439                        sg = sg->next;
8440next_sg:
8441                        oldsg = sg;
8442                        sg = sg->next;
8443                        kfree(oldsg);
8444                        if (oldsg != sched_group_nodes[i])
8445                                goto next_sg;
8446                }
8447                kfree(sched_group_nodes);
8448                sched_group_nodes_bycpu[cpu] = NULL;
8449        }
8450}
8451#else /* !CONFIG_NUMA */
8452static void free_sched_groups(const struct cpumask *cpu_map,
8453                              struct cpumask *nodemask)
8454{
8455}
8456#endif /* CONFIG_NUMA */
8457
8458/*
8459 * Initialize sched groups cpu_power.
8460 *
8461 * cpu_power indicates the capacity of sched group, which is used while
8462 * distributing the load between different sched groups in a sched domain.
8463 * Typically cpu_power for all the groups in a sched domain will be same unless
8464 * there are asymmetries in the topology. If there are asymmetries, group
8465 * having more cpu_power will pickup more load compared to the group having
8466 * less cpu_power.
8467 */
8468static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8469{
8470        struct sched_domain *child;
8471        struct sched_group *group;
8472        long power;
8473        int weight;
8474
8475        WARN_ON(!sd || !sd->groups);
8476
8477        if (cpu != group_first_cpu(sd->groups))
8478                return;
8479
8480        child = sd->child;
8481
8482        sd->groups->cpu_power = 0;
8483
8484        if (!child) {
8485                power = SCHED_LOAD_SCALE;
8486                weight = cpumask_weight(sched_domain_span(sd));
8487                /*
8488                 * SMT siblings share the power of a single core.
8489                 * Usually multiple threads get a better yield out of
8490                 * that one core than a single thread would have,
8491                 * reflect that in sd->smt_gain.
8492                 */
8493                if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8494                        power *= sd->smt_gain;
8495                        power /= weight;
8496                        power >>= SCHED_LOAD_SHIFT;
8497                }
8498                sd->groups->cpu_power += power;
8499                return;
8500        }
8501
8502        /*
8503         * Add cpu_power of each child group to this groups cpu_power.
8504         */
8505        group = child->groups;
8506        do {
8507                sd->groups->cpu_power += group->cpu_power;
8508                group = group->next;
8509        } while (group != child->groups);
8510}
8511
8512/*
8513 * Initializers for schedule domains
8514 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8515 */
8516
8517#ifdef CONFIG_SCHED_DEBUG
8518# define SD_INIT_NAME(sd, type)         sd->name = #type
8519#else
8520# define SD_INIT_NAME(sd, type)         do { } while (0)
8521#endif
8522
8523#define SD_INIT(sd, type)       sd_init_##type(sd)
8524
8525#define SD_INIT_FUNC(type)      \
8526static noinline void sd_init_##type(struct sched_domain *sd)    \
8527{                                                               \
8528        memset(sd, 0, sizeof(*sd));                             \
8529        *sd = SD_##type##_INIT;                                 \
8530        sd->level = SD_LV_##type;                               \
8531        SD_INIT_NAME(sd, type);                                 \
8532}
8533
8534SD_INIT_FUNC(CPU)
8535#ifdef CONFIG_NUMA
8536 SD_INIT_FUNC(ALLNODES)
8537 SD_INIT_FUNC(NODE)
8538#endif
8539#ifdef CONFIG_SCHED_SMT
8540 SD_INIT_FUNC(SIBLING)
8541#endif
8542#ifdef CONFIG_SCHED_MC
8543 SD_INIT_FUNC(MC)
8544#endif
8545
8546static int default_relax_domain_level = -1;
8547
8548static int __init setup_relax_domain_level(char *str)
8549{
8550        unsigned long val;
8551
8552        val = simple_strtoul(str, NULL, 0);
8553        if (val < SD_LV_MAX)
8554                default_relax_domain_level = val;
8555
8556        return 1;
8557}
8558__setup("relax_domain_level=", setup_relax_domain_level);
8559
8560static void set_domain_attribute(struct sched_domain *sd,
8561                                 struct sched_domain_attr *attr)
8562{
8563        int request;
8564
8565        if (!attr || attr->relax_domain_level < 0) {
8566                if (default_relax_domain_level < 0)
8567                        return;
8568                else
8569                        request = default_relax_domain_level;
8570        } else
8571                request = attr->relax_domain_level;
8572        if (request < sd->level) {
8573                /* turn off idle balance on this domain */
8574                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8575        } else {
8576                /* turn on idle balance on this domain */
8577                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8578        }
8579}
8580
8581static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8582                                 const struct cpumask *cpu_map)
8583{
8584        switch (what) {
8585        case sa_sched_groups:
8586                free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8587                d->sched_group_nodes = NULL;
8588        case sa_rootdomain:
8589                free_rootdomain(d->rd); /* fall through */
8590        case sa_tmpmask:
8591                free_cpumask_var(d->tmpmask); /* fall through */
8592        case sa_send_covered:
8593                free_cpumask_var(d->send_covered); /* fall through */
8594        case sa_this_core_map:
8595                free_cpumask_var(d->this_core_map); /* fall through */
8596        case sa_this_sibling_map:
8597                free_cpumask_var(d->this_sibling_map); /* fall through */
8598        case sa_nodemask:
8599                free_cpumask_var(d->nodemask); /* fall through */
8600        case sa_sched_group_nodes:
8601#ifdef CONFIG_NUMA
8602                kfree(d->sched_group_nodes); /* fall through */
8603        case sa_notcovered:
8604                free_cpumask_var(d->notcovered); /* fall through */
8605        case sa_covered:
8606                free_cpumask_var(d->covered); /* fall through */
8607        case sa_domainspan:
8608                free_cpumask_var(d->domainspan); /* fall through */
8609#endif
8610        case sa_none:
8611                break;
8612        }
8613}
8614
8615static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8616                                                   const struct cpumask *cpu_map)
8617{
8618#ifdef CONFIG_NUMA
8619        if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8620                return sa_none;
8621        if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8622                return sa_domainspan;
8623        if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8624                return sa_covered;
8625        /* Allocate the per-node list of sched groups */
8626        d->sched_group_nodes = kcalloc(nr_node_ids,
8627                                      sizeof(struct sched_group *), GFP_KERNEL);
8628        if (!d->sched_group_nodes) {
8629                printk(KERN_WARNING "Can not alloc sched group node list\n");
8630                return sa_notcovered;
8631        }
8632        sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8633#endif
8634        if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8635                return sa_sched_group_nodes;
8636        if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8637                return sa_nodemask;
8638        if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8639                return sa_this_sibling_map;
8640        if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8641                return sa_this_core_map;
8642        if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8643                return sa_send_covered;
8644        d->rd = alloc_rootdomain();
8645        if (!d->rd) {
8646                printk(KERN_WARNING "Cannot alloc root domain\n");
8647                return sa_tmpmask;
8648        }
8649        return sa_rootdomain;
8650}
8651
8652static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8653        const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8654{
8655        struct sched_domain *sd = NULL;
8656#ifdef CONFIG_NUMA
8657        struct sched_domain *parent;
8658
8659        d->sd_allnodes = 0;
8660        if (cpumask_weight(cpu_map) >
8661            SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8662                sd = &per_cpu(allnodes_domains, i).sd;
8663                SD_INIT(sd, ALLNODES);
8664                set_domain_attribute(sd, attr);
8665                cpumask_copy(sched_domain_span(sd), cpu_map);
8666                cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8667                d->sd_allnodes = 1;
8668        }
8669        parent = sd;
8670
8671        sd = &per_cpu(node_domains, i).sd;
8672        SD_INIT(sd, NODE);
8673        set_domain_attribute(sd, attr);
8674        sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8675        sd->parent = parent;
8676        if (parent)
8677                parent->child = sd;
8678        cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8679#endif
8680        return sd;
8681}
8682
8683static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8684        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8685        struct sched_domain *parent, int i)
8686{
8687        struct sched_domain *sd;
8688        sd = &per_cpu(phys_domains, i).sd;
8689        SD_INIT(sd, CPU);
8690        set_domain_attribute(sd, attr);
8691        cpumask_copy(sched_domain_span(sd), d->nodemask);
8692        sd->parent = parent;
8693        if (parent)
8694                parent->child = sd;
8695        cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8696        return sd;
8697}
8698
8699static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8700        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8701        struct sched_domain *parent, int i)
8702{
8703        struct sched_domain *sd = parent;
8704#ifdef CONFIG_SCHED_MC
8705        sd = &per_cpu(core_domains, i).sd;
8706        SD_INIT(sd, MC);
8707        set_domain_attribute(sd, attr);
8708        cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8709        sd->parent = parent;
8710        parent->child = sd;
8711        cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8712#endif
8713        return sd;
8714}
8715
8716static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8717        const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8718        struct sched_domain *parent, int i)
8719{
8720        struct sched_domain *sd = parent;
8721#ifdef CONFIG_SCHED_SMT
8722        sd = &per_cpu(cpu_domains, i).sd;
8723        SD_INIT(sd, SIBLING);
8724        set_domain_attribute(sd, attr);
8725        cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8726        sd->parent = parent;
8727        parent->child = sd;
8728        cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8729#endif
8730        return sd;
8731}
8732
8733static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8734                               const struct cpumask *cpu_map, int cpu)
8735{
8736        switch (l) {
8737#ifdef CONFIG_SCHED_SMT
8738        case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8739                cpumask_and(d->this_sibling_map, cpu_map,
8740                            topology_thread_cpumask(cpu));
8741                if (cpu == cpumask_first(d->this_sibling_map))
8742                        init_sched_build_groups(d->this_sibling_map, cpu_map,
8743                                                &cpu_to_cpu_group,
8744                                                d->send_covered, d->tmpmask);
8745                break;
8746#endif
8747#ifdef CONFIG_SCHED_MC
8748        case SD_LV_MC: /* set up multi-core groups */
8749                cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8750                if (cpu == cpumask_first(d->this_core_map))
8751                        init_sched_build_groups(d->this_core_map, cpu_map,
8752                                                &cpu_to_core_group,
8753                                                d->send_covered, d->tmpmask);
8754                break;
8755#endif
8756        case SD_LV_CPU: /* set up physical groups */
8757                cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8758                if (!cpumask_empty(d->nodemask))
8759                        init_sched_build_groups(d->nodemask, cpu_map,
8760                                                &cpu_to_phys_group,
8761                                                d->send_covered, d->tmpmask);
8762                break;
8763#ifdef CONFIG_NUMA
8764        case SD_LV_ALLNODES:
8765                init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8766                                        d->send_covered, d->tmpmask);
8767                break;
8768#endif
8769        default:
8770                break;
8771        }
8772}
8773
8774/*
8775 * Build sched domains for a given set of cpus and attach the sched domains
8776 * to the individual cpus
8777 */
8778static int __build_sched_domains(const struct cpumask *cpu_map,
8779                                 struct sched_domain_attr *attr)
8780{
8781        enum s_alloc alloc_state = sa_none;
8782        struct s_data d;
8783        struct sched_domain *sd;
8784        int i;
8785#ifdef CONFIG_NUMA
8786        d.sd_allnodes = 0;
8787#endif
8788
8789        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8790        if (alloc_state != sa_rootdomain)
8791                goto error;
8792        alloc_state = sa_sched_groups;
8793
8794        /*
8795         * Set up domains for cpus specified by the cpu_map.
8796         */
8797        for_each_cpu(i, cpu_map) {
8798                cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8799                            cpu_map);
8800
8801                sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8802                sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8803                sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8804                sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8805        }
8806
8807        for_each_cpu(i, cpu_map) {
8808                build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8809                build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8810        }
8811
8812        /* Set up physical groups */
8813        for (i = 0; i < nr_node_ids; i++)
8814                build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8815
8816#ifdef CONFIG_NUMA
8817        /* Set up node groups */
8818        if (d.sd_allnodes)
8819                build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8820
8821        for (i = 0; i < nr_node_ids; i++)
8822                if (build_numa_sched_groups(&d, cpu_map, i))
8823                        goto error;
8824#endif
8825
8826        /* Calculate CPU power for physical packages and nodes */
8827#ifdef CONFIG_SCHED_SMT
8828        for_each_cpu(i, cpu_map) {
8829                sd = &per_cpu(cpu_domains, i).sd;
8830                init_sched_groups_power(i, sd);
8831        }
8832#endif
8833#ifdef CONFIG_SCHED_MC
8834        for_each_cpu(i, cpu_map) {
8835                sd = &per_cpu(core_domains, i).sd;
8836                init_sched_groups_power(i, sd);
8837        }
8838#endif
8839
8840        for_each_cpu(i, cpu_map) {
8841                sd = &per_cpu(phys_domains, i).sd;
8842                init_sched_groups_power(i, sd);
8843        }
8844
8845#ifdef CONFIG_NUMA
8846        for (i = 0; i < nr_node_ids; i++)
8847                init_numa_sched_groups_power(d.sched_group_nodes[i]);
8848
8849        if (d.sd_allnodes) {
8850                struct sched_group *sg;
8851
8852                cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8853                                                                d.tmpmask);
8854                init_numa_sched_groups_power(sg);
8855        }
8856#endif
8857
8858        /* Attach the domains */
8859        for_each_cpu(i, cpu_map) {
8860#ifdef CONFIG_SCHED_SMT
8861                sd = &per_cpu(cpu_domains, i).sd;
8862#elif defined(CONFIG_SCHED_MC)
8863                sd = &per_cpu(core_domains, i).sd;
8864#else
8865                sd = &per_cpu(phys_domains, i).sd;
8866#endif
8867                cpu_attach_domain(sd, d.rd, i);
8868        }
8869
8870        d.sched_group_nodes = NULL; /* don't free this we still need it */
8871        __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8872        return 0;
8873
8874error:
8875        __free_domain_allocs(&d, alloc_state, cpu_map);
8876        return -ENOMEM;
8877}
8878
8879static int build_sched_domains(const struct cpumask *cpu_map)
8880{
8881        return __build_sched_domains(cpu_map, NULL);
8882}
8883
8884static struct cpumask *doms_cur;        /* current sched domains */
8885static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
8886static struct sched_domain_attr *dattr_cur;
8887                                /* attribues of custom domains in 'doms_cur' */
8888
8889/*
8890 * Special case: If a kmalloc of a doms_cur partition (array of
8891 * cpumask) fails, then fallback to a single sched domain,
8892 * as determined by the single cpumask fallback_doms.
8893 */
8894static cpumask_var_t fallback_doms;
8895
8896/*
8897 * arch_update_cpu_topology lets virtualized architectures update the
8898 * cpu core maps. It is supposed to return 1 if the topology changed
8899 * or 0 if it stayed the same.
8900 */
8901int __attribute__((weak)) arch_update_cpu_topology(void)
8902{
8903        return 0;
8904}
8905
8906/*
8907 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8908 * For now this just excludes isolated cpus, but could be used to
8909 * exclude other special cases in the future.
8910 */
8911static int arch_init_sched_domains(const struct cpumask *cpu_map)
8912{
8913        int err;
8914
8915        arch_update_cpu_topology();
8916        ndoms_cur = 1;
8917        doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8918        if (!doms_cur)
8919                doms_cur = fallback_doms;
8920        cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8921        dattr_cur = NULL;
8922        err = build_sched_domains(doms_cur);
8923        register_sched_domain_sysctl();
8924
8925        return err;
8926}
8927
8928static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8929                                       struct cpumask *tmpmask)
8930{
8931        free_sched_groups(cpu_map, tmpmask);
8932}
8933
8934/*
8935 * Detach sched domains from a group of cpus specified in cpu_map
8936 * These cpus will now be attached to the NULL domain
8937 */
8938static void detach_destroy_domains(const struct cpumask *cpu_map)
8939{
8940        /* Save because hotplug lock held. */
8941        static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8942        int i;
8943
8944        for_each_cpu(i, cpu_map)
8945                cpu_attach_domain(NULL, &def_root_domain, i);
8946        synchronize_sched();
8947        arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8948}
8949
8950/* handle null as "default" */
8951static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8952                        struct sched_domain_attr *new, int idx_new)
8953{
8954        struct sched_domain_attr tmp;
8955
8956        /* fast path */
8957        if (!new && !cur)
8958                return 1;
8959
8960        tmp = SD_ATTR_INIT;
8961        return !memcmp(cur ? (cur + idx_cur) : &tmp,
8962                        new ? (new + idx_new) : &tmp,
8963                        sizeof(struct sched_domain_attr));
8964}
8965
8966/*
8967 * Partition sched domains as specified by the 'ndoms_new'
8968 * cpumasks in the array doms_new[] of cpumasks. This compares
8969 * doms_new[] to the current sched domain partitioning, doms_cur[].
8970 * It destroys each deleted domain and builds each new domain.
8971 *
8972 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8973 * The masks don't intersect (don't overlap.) We should setup one
8974 * sched domain for each mask. CPUs not in any of the cpumasks will
8975 * not be load balanced. If the same cpumask appears both in the
8976 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8977 * it as it is.
8978 *
8979 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8980 * ownership of it and will kfree it when done with it. If the caller
8981 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8982 * ndoms_new == 1, and partition_sched_domains() will fallback to
8983 * the single partition 'fallback_doms', it also forces the domains
8984 * to be rebuilt.
8985 *
8986 * If doms_new == NULL it will be replaced with cpu_online_mask.
8987 * ndoms_new == 0 is a special case for destroying existing domains,
8988 * and it will not create the default domain.
8989 *
8990 * Call with hotplug lock held
8991 */
8992/* FIXME: Change to struct cpumask *doms_new[] */
8993void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8994                             struct sched_domain_attr *dattr_new)
8995{
8996        int i, j, n;
8997        int new_topology;
8998
8999        mutex_lock(&sched_domains_mutex);
9000
9001        /* always unregister in case we don't destroy any domains */
9002        unregister_sched_domain_sysctl();
9003
9004        /* Let architecture update cpu core mappings. */
9005        new_topology = arch_update_cpu_topology();
9006
9007        n = doms_new ? ndoms_new : 0;
9008
9009        /* Destroy deleted domains */
9010        for (i = 0; i < ndoms_cur; i++) {
9011                for (j = 0; j < n && !new_topology; j++) {
9012                        if (cpumask_equal(&doms_cur[i], &doms_new[j])
9013                            && dattrs_equal(dattr_cur, i, dattr_new, j))
9014                                goto match1;
9015                }
9016                /* no match - a current sched domain not in new doms_new[] */
9017                detach_destroy_domains(doms_cur + i);
9018match1:
9019                ;
9020        }
9021
9022        if (doms_new == NULL) {
9023                ndoms_cur = 0;
9024                doms_new = fallback_doms;
9025                cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9026                WARN_ON_ONCE(dattr_new);
9027        }
9028
9029        /* Build new domains */
9030        for (i = 0; i < ndoms_new; i++) {
9031                for (j = 0; j < ndoms_cur && !new_topology; j++) {
9032                        if (cpumask_equal(&doms_new[i], &doms_cur[j])
9033                            && dattrs_equal(dattr_new, i, dattr_cur, j))
9034                                goto match2;
9035                }
9036                /* no match - add a new doms_new */
9037                __build_sched_domains(doms_new + i,
9038                                        dattr_new ? dattr_new + i : NULL);
9039match2:
9040                ;
9041        }
9042
9043        /* Remember the new sched domains */
9044        if (doms_cur != fallback_doms)
9045                kfree(doms_cur);
9046        kfree(dattr_cur);       /* kfree(NULL) is safe */
9047        doms_cur = doms_new;
9048        dattr_cur = dattr_new;
9049        ndoms_cur = ndoms_new;
9050
9051        register_sched_domain_sysctl();
9052
9053        mutex_unlock(&sched_domains_mutex);
9054}
9055
9056#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9057static void arch_reinit_sched_domains(void)
9058{
9059        get_online_cpus();
9060
9061        /* Destroy domains first to force the rebuild */
9062        partition_sched_domains(0, NULL, NULL);
9063
9064        rebuild_sched_domains();
9065        put_online_cpus();
9066}
9067
9068static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9069{
9070        unsigned int level = 0;
9071
9072        if (sscanf(buf, "%u", &level) != 1)
9073                return -EINVAL;
9074
9075        /*
9076         * level is always be positive so don't check for
9077         * level < POWERSAVINGS_BALANCE_NONE which is 0
9078         * What happens on 0 or 1 byte write,
9079         * need to check for count as well?
9080         */
9081
9082        if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9083                return -EINVAL;
9084
9085        if (smt)
9086                sched_smt_power_savings = level;
9087        else
9088                sched_mc_power_savings = level;
9089
9090        arch_reinit_sched_domains();
9091
9092        return count;
9093}
9094
9095#ifdef CONFIG_SCHED_MC
9096static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9097                                           char *page)
9098{
9099        return sprintf(page, "%u\n", sched_mc_power_savings);
9100}
9101static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9102                                            const char *buf, size_t count)
9103{
9104        return sched_power_savings_store(buf, count, 0);
9105}
9106static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9107                         sched_mc_power_savings_show,
9108                         sched_mc_power_savings_store);
9109#endif
9110
9111#ifdef CONFIG_SCHED_SMT
9112static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9113                                            char *page)
9114{
9115        return sprintf(page, "%u\n", sched_smt_power_savings);
9116}
9117static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9118                                             const char *buf, size_t count)
9119{
9120        return sched_power_savings_store(buf, count, 1);
9121}
9122static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9123                   sched_smt_power_savings_show,
9124                   sched_smt_power_savings_store);
9125#endif
9126
9127int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9128{
9129        int err = 0;
9130
9131#ifdef CONFIG_SCHED_SMT
9132        if (smt_capable())
9133                err = sysfs_create_file(&cls->kset.kobj,
9134                                        &attr_sched_smt_power_savings.attr);
9135#endif
9136#ifdef CONFIG_SCHED_MC
9137        if (!err && mc_capable())
9138                err = sysfs_create_file(&cls->kset.kobj,
9139                                        &attr_sched_mc_power_savings.attr);
9140#endif
9141        return err;
9142}
9143#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9144
9145#ifndef CONFIG_CPUSETS
9146/*
9147 * Add online and remove offline CPUs from the scheduler domains.
9148 * When cpusets are enabled they take over this function.
9149 */
9150static int update_sched_domains(struct notifier_block *nfb,
9151                                unsigned long action, void *hcpu)
9152{
9153        switch (action) {
9154        case CPU_ONLINE:
9155        case CPU_ONLINE_FROZEN:
9156        case CPU_DEAD:
9157        case CPU_DEAD_FROZEN:
9158                partition_sched_domains(1, NULL, NULL);
9159                return NOTIFY_OK;
9160
9161        default:
9162                return NOTIFY_DONE;
9163        }
9164}
9165#endif
9166
9167static int update_runtime(struct notifier_block *nfb,
9168                                unsigned long action, void *hcpu)
9169{
9170        int cpu = (int)(long)hcpu;
9171
9172        switch (action) {
9173        case CPU_DOWN_PREPARE:
9174        case CPU_DOWN_PREPARE_FROZEN:
9175                disable_runtime(cpu_rq(cpu));
9176                return NOTIFY_OK;
9177
9178        case CPU_DOWN_FAILED:
9179        case CPU_DOWN_FAILED_FROZEN:
9180        case CPU_ONLINE:
9181        case CPU_ONLINE_FROZEN:
9182                enable_runtime(cpu_rq(cpu));
9183                return NOTIFY_OK;
9184
9185        default:
9186                return NOTIFY_DONE;
9187        }
9188}
9189
9190void __init sched_init_smp(void)
9191{
9192        cpumask_var_t non_isolated_cpus;
9193
9194        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9195        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9196
9197#if defined(CONFIG_NUMA)
9198        sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9199                                                                GFP_KERNEL);
9200        BUG_ON(sched_group_nodes_bycpu == NULL);
9201#endif
9202        get_online_cpus();
9203        mutex_lock(&sched_domains_mutex);
9204        arch_init_sched_domains(cpu_online_mask);
9205        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9206        if (cpumask_empty(non_isolated_cpus))
9207                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9208        mutex_unlock(&sched_domains_mutex);
9209        put_online_cpus();
9210
9211#ifndef CONFIG_CPUSETS
9212        /* XXX: Theoretical race here - CPU may be hotplugged now */
9213        hotcpu_notifier(update_sched_domains, 0);
9214#endif
9215
9216        /* RT runtime code needs to handle some hotplug events */
9217        hotcpu_notifier(update_runtime, 0);
9218
9219        init_hrtick();
9220
9221        /* Move init over to a non-isolated CPU */
9222        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9223                BUG();
9224        sched_init_granularity();
9225        free_cpumask_var(non_isolated_cpus);
9226
9227        init_sched_rt_class();
9228}
9229#else
9230void __init sched_init_smp(void)
9231{
9232        sched_init_granularity();
9233}
9234#endif /* CONFIG_SMP */
9235
9236const_debug unsigned int sysctl_timer_migration = 1;
9237
9238int in_sched_functions(unsigned long addr)
9239{
9240        return in_lock_functions(addr) ||
9241                (addr >= (unsigned long)__sched_text_start
9242                && addr < (unsigned long)__sched_text_end);
9243}
9244
9245static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9246{
9247        cfs_rq->tasks_timeline = RB_ROOT;
9248        INIT_LIST_HEAD(&cfs_rq->tasks);
9249#ifdef CONFIG_FAIR_GROUP_SCHED
9250        cfs_rq->rq = rq;
9251#endif
9252        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9253}
9254
9255static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9256{
9257        struct rt_prio_array *array;
9258        int i;
9259
9260        array = &rt_rq->active;
9261        for (i = 0; i < MAX_RT_PRIO; i++) {
9262                INIT_LIST_HEAD(array->queue + i);
9263                __clear_bit(i, array->bitmap);
9264        }
9265        /* delimiter for bitsearch: */
9266        __set_bit(MAX_RT_PRIO, array->bitmap);
9267
9268#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9269        rt_rq->highest_prio.curr = MAX_RT_PRIO;
9270#ifdef CONFIG_SMP
9271        rt_rq->highest_prio.next = MAX_RT_PRIO;
9272#endif
9273#endif
9274#ifdef CONFIG_SMP
9275        rt_rq->rt_nr_migratory = 0;
9276        rt_rq->overloaded = 0;
9277        plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9278#endif
9279
9280        rt_rq->rt_time = 0;
9281        rt_rq->rt_throttled = 0;
9282        rt_rq->rt_runtime = 0;
9283        spin_lock_init(&rt_rq->rt_runtime_lock);
9284
9285#ifdef CONFIG_RT_GROUP_SCHED
9286        rt_rq->rt_nr_boosted = 0;
9287        rt_rq->rq = rq;
9288#endif
9289}
9290
9291#ifdef CONFIG_FAIR_GROUP_SCHED
9292static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9293                                struct sched_entity *se, int cpu, int add,
9294                                struct sched_entity *parent)
9295{
9296        struct rq *rq = cpu_rq(cpu);
9297        tg->cfs_rq[cpu] = cfs_rq;
9298        init_cfs_rq(cfs_rq, rq);
9299        cfs_rq->tg = tg;
9300        if (add)
9301                list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9302
9303        tg->se[cpu] = se;
9304        /* se could be NULL for init_task_group */
9305        if (!se)
9306                return;
9307
9308        if (!parent)
9309                se->cfs_rq = &rq->cfs;
9310        else
9311                se->cfs_rq = parent->my_q;
9312
9313        se->my_q = cfs_rq;
9314        se->load.weight = tg->shares;
9315        se->load.inv_weight = 0;
9316        se->parent = parent;
9317}
9318#endif
9319
9320#ifdef CONFIG_RT_GROUP_SCHED
9321static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9322                struct sched_rt_entity *rt_se, int cpu, int add,
9323                struct sched_rt_entity *parent)
9324{
9325        struct rq *rq = cpu_rq(cpu);
9326
9327        tg->rt_rq[cpu] = rt_rq;
9328        init_rt_rq(rt_rq, rq);
9329        rt_rq->tg = tg;
9330        rt_rq->rt_se = rt_se;
9331        rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9332        if (add)
9333                list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9334
9335        tg->rt_se[cpu] = rt_se;
9336        if (!rt_se)
9337                return;
9338
9339        if (!parent)
9340                rt_se->rt_rq = &rq->rt;
9341        else
9342                rt_se->rt_rq = parent->my_q;
9343
9344        rt_se->my_q = rt_rq;
9345        rt_se->parent = parent;
9346        INIT_LIST_HEAD(&rt_se->run_list);
9347}
9348#endif
9349
9350void __init sched_init(void)
9351{
9352        int i, j;
9353        unsigned long alloc_size = 0, ptr;
9354
9355#ifdef CONFIG_FAIR_GROUP_SCHED
9356        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9357#endif
9358#ifdef CONFIG_RT_GROUP_SCHED
9359        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9360#endif
9361#ifdef CONFIG_USER_SCHED
9362        alloc_size *= 2;
9363#endif
9364#ifdef CONFIG_CPUMASK_OFFSTACK
9365        alloc_size += num_possible_cpus() * cpumask_size();
9366#endif
9367        /*
9368         * As sched_init() is called before page_alloc is setup,
9369         * we use alloc_bootmem().
9370         */
9371        if (alloc_size) {
9372                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9373
9374#ifdef CONFIG_FAIR_GROUP_SCHED
9375                init_task_group.se = (struct sched_entity **)ptr;
9376                ptr += nr_cpu_ids * sizeof(void **);
9377
9378                init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9379                ptr += nr_cpu_ids * sizeof(void **);
9380
9381#ifdef CONFIG_USER_SCHED
9382                root_task_group.se = (struct sched_entity **)ptr;
9383                ptr += nr_cpu_ids * sizeof(void **);
9384
9385                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9386                ptr += nr_cpu_ids * sizeof(void **);
9387#endif /* CONFIG_USER_SCHED */
9388#endif /* CONFIG_FAIR_GROUP_SCHED */
9389#ifdef CONFIG_RT_GROUP_SCHED
9390                init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9391                ptr += nr_cpu_ids * sizeof(void **);
9392
9393                init_task_group.rt_rq = (struct rt_rq **)ptr;
9394                ptr += nr_cpu_ids * sizeof(void **);
9395
9396#ifdef CONFIG_USER_SCHED
9397                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9398                ptr += nr_cpu_ids * sizeof(void **);
9399
9400                root_task_group.rt_rq = (struct rt_rq **)ptr;
9401                ptr += nr_cpu_ids * sizeof(void **);
9402#endif /* CONFIG_USER_SCHED */
9403#endif /* CONFIG_RT_GROUP_SCHED */
9404#ifdef CONFIG_CPUMASK_OFFSTACK
9405                for_each_possible_cpu(i) {
9406                        per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9407                        ptr += cpumask_size();
9408                }
9409#endif /* CONFIG_CPUMASK_OFFSTACK */
9410        }
9411
9412#ifdef CONFIG_SMP
9413        init_defrootdomain();
9414#endif
9415
9416        init_rt_bandwidth(&def_rt_bandwidth,
9417                        global_rt_period(), global_rt_runtime());
9418
9419#ifdef CONFIG_RT_GROUP_SCHED
9420        init_rt_bandwidth(&init_task_group.rt_bandwidth,
9421                        global_rt_period(), global_rt_runtime());
9422#ifdef CONFIG_USER_SCHED
9423        init_rt_bandwidth(&root_task_group.rt_bandwidth,
9424                        global_rt_period(), RUNTIME_INF);
9425#endif /* CONFIG_USER_SCHED */
9426#endif /* CONFIG_RT_GROUP_SCHED */
9427
9428#ifdef CONFIG_GROUP_SCHED
9429        list_add(&init_task_group.list, &task_groups);
9430        INIT_LIST_HEAD(&init_task_group.children);
9431
9432#ifdef CONFIG_USER_SCHED
9433        INIT_LIST_HEAD(&root_task_group.children);
9434        init_task_group.parent = &root_task_group;
9435        list_add(&init_task_group.siblings, &root_task_group.children);
9436#endif /* CONFIG_USER_SCHED */
9437#endif /* CONFIG_GROUP_SCHED */
9438
9439#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9440        update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9441                                            __alignof__(unsigned long));
9442#endif
9443        for_each_possible_cpu(i) {
9444                struct rq *rq;
9445
9446                rq = cpu_rq(i);
9447                spin_lock_init(&rq->lock);
9448                rq->nr_running = 0;
9449                rq->calc_load_active = 0;
9450                rq->calc_load_update = jiffies + LOAD_FREQ;
9451                init_cfs_rq(&rq->cfs, rq);
9452                init_rt_rq(&rq->rt, rq);
9453#ifdef CONFIG_FAIR_GROUP_SCHED
9454                init_task_group.shares = init_task_group_load;
9455                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9456#ifdef CONFIG_CGROUP_SCHED
9457                /*
9458                 * How much cpu bandwidth does init_task_group get?
9459                 *
9460                 * In case of task-groups formed thr' the cgroup filesystem, it
9461                 * gets 100% of the cpu resources in the system. This overall
9462                 * system cpu resource is divided among the tasks of
9463                 * init_task_group and its child task-groups in a fair manner,
9464                 * based on each entity's (task or task-group's) weight
9465                 * (se->load.weight).
9466                 *
9467                 * In other words, if init_task_group has 10 tasks of weight
9468                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9469                 * then A0's share of the cpu resource is:
9470                 *
9471                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9472                 *
9473                 * We achieve this by letting init_task_group's tasks sit
9474                 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9475                 */
9476                init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9477#elif defined CONFIG_USER_SCHED
9478                root_task_group.shares = NICE_0_LOAD;
9479                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9480                /*
9481                 * In case of task-groups formed thr' the user id of tasks,
9482                 * init_task_group represents tasks belonging to root user.
9483                 * Hence it forms a sibling of all subsequent groups formed.
9484                 * In this case, init_task_group gets only a fraction of overall
9485                 * system cpu resource, based on the weight assigned to root
9486                 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9487                 * by letting tasks of init_task_group sit in a separate cfs_rq
9488                 * (init_tg_cfs_rq) and having one entity represent this group of
9489                 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9490                 */
9491                init_tg_cfs_entry(&init_task_group,
9492                                &per_cpu(init_tg_cfs_rq, i),
9493                                &per_cpu(init_sched_entity, i), i, 1,
9494                                root_task_group.se[i]);
9495
9496#endif
9497#endif /* CONFIG_FAIR_GROUP_SCHED */
9498
9499                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9500#ifdef CONFIG_RT_GROUP_SCHED
9501                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9502#ifdef CONFIG_CGROUP_SCHED
9503                init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9504#elif defined CONFIG_USER_SCHED
9505                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9506                init_tg_rt_entry(&init_task_group,
9507                                &per_cpu(init_rt_rq, i),
9508                                &per_cpu(init_sched_rt_entity, i), i, 1,
9509                                root_task_group.rt_se[i]);
9510#endif
9511#endif
9512
9513                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9514                        rq->cpu_load[j] = 0;
9515#ifdef CONFIG_SMP
9516                rq->sd = NULL;
9517                rq->rd = NULL;
9518                rq->post_schedule = 0;
9519                rq->active_balance = 0;
9520                rq->next_balance = jiffies;
9521                rq->push_cpu = 0;
9522                rq->cpu = i;
9523                rq->online = 0;
9524                rq->migration_thread = NULL;
9525                INIT_LIST_HEAD(&rq->migration_queue);
9526                rq_attach_root(rq, &def_root_domain);
9527#endif
9528                init_rq_hrtick(rq);
9529                atomic_set(&rq->nr_iowait, 0);
9530        }
9531
9532        set_load_weight(&init_task);
9533
9534#ifdef CONFIG_PREEMPT_NOTIFIERS
9535        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9536#endif
9537
9538#ifdef CONFIG_SMP
9539        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9540#endif
9541
9542#ifdef CONFIG_RT_MUTEXES
9543        plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9544#endif
9545
9546        /*
9547         * The boot idle thread does lazy MMU switching as well:
9548         */
9549        atomic_inc(&init_mm.mm_count);
9550        enter_lazy_tlb(&init_mm, current);
9551
9552        /*
9553         * Make us the idle thread. Technically, schedule() should not be
9554         * called from this thread, however somewhere below it might be,
9555         * but because we are the idle thread, we just pick up running again
9556         * when this runqueue becomes "idle".
9557         */
9558        init_idle(current, smp_processor_id());
9559
9560        calc_load_update = jiffies + LOAD_FREQ;
9561
9562        /*
9563         * During early bootup we pretend to be a normal task:
9564         */
9565        current->sched_class = &fair_sched_class;
9566
9567        /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9568        zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9569#ifdef CONFIG_SMP
9570#ifdef CONFIG_NO_HZ
9571        zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9572        alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9573#endif
9574        zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9575#endif /* SMP */
9576
9577        perf_event_init();
9578
9579        scheduler_running = 1;
9580}
9581
9582#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9583static inline int preempt_count_equals(int preempt_offset)
9584{
9585        int nested = preempt_count() & ~PREEMPT_ACTIVE;
9586
9587        return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9588}
9589
9590void __might_sleep(char *file, int line, int preempt_offset)
9591{
9592#ifdef in_atomic
9593        static unsigned long prev_jiffy;        /* ratelimiting */
9594
9595        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9596            system_state != SYSTEM_RUNNING || oops_in_progress)
9597                return;
9598        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9599                return;
9600        prev_jiffy = jiffies;
9601
9602        printk(KERN_ERR
9603                "BUG: sleeping function called from invalid context at %s:%d\n",
9604                        file, line);
9605        printk(KERN_ERR
9606                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9607                        in_atomic(), irqs_disabled(),
9608                        current->pid, current->comm);
9609
9610        debug_show_held_locks(current);
9611        if (irqs_disabled())
9612                print_irqtrace_events(current);
9613        dump_stack();
9614#endif
9615}
9616EXPORT_SYMBOL(__might_sleep);
9617#endif
9618
9619#ifdef CONFIG_MAGIC_SYSRQ
9620static void normalize_task(struct rq *rq, struct task_struct *p)
9621{
9622        int on_rq;
9623
9624        update_rq_clock(rq);
9625        on_rq = p->se.on_rq;
9626        if (on_rq)
9627                deactivate_task(rq, p, 0);
9628        __setscheduler(rq, p, SCHED_NORMAL, 0);
9629        if (on_rq) {
9630                activate_task(rq, p, 0);
9631                resched_task(rq->curr);
9632        }
9633}
9634
9635void normalize_rt_tasks(void)
9636{
9637        struct task_struct *g, *p;
9638        unsigned long flags;
9639        struct rq *rq;
9640
9641        read_lock_irqsave(&tasklist_lock, flags);
9642        do_each_thread(g, p) {
9643                /*
9644                 * Only normalize user tasks:
9645                 */
9646                if (!p->mm)
9647                        continue;
9648
9649                p->se.exec_start                = 0;
9650#ifdef CONFIG_SCHEDSTATS
9651                p->se.wait_start                = 0;
9652                p->se.sleep_start               = 0;
9653                p->se.block_start               = 0;
9654#endif
9655
9656                if (!rt_task(p)) {
9657                        /*
9658                         * Renice negative nice level userspace
9659                         * tasks back to 0:
9660                         */
9661                        if (TASK_NICE(p) < 0 && p->mm)
9662                                set_user_nice(p, 0);
9663                        continue;
9664                }
9665
9666                spin_lock(&p->pi_lock);
9667                rq = __task_rq_lock(p);
9668
9669                normalize_task(rq, p);
9670
9671                __task_rq_unlock(rq);
9672                spin_unlock(&p->pi_lock);
9673        } while_each_thread(g, p);
9674
9675        read_unlock_irqrestore(&tasklist_lock, flags);
9676}
9677
9678#endif /* CONFIG_MAGIC_SYSRQ */
9679
9680#ifdef CONFIG_IA64
9681/*
9682 * These functions are only useful for the IA64 MCA handling.
9683 *
9684 * They can only be called when the whole system has been
9685 * stopped - every CPU needs to be quiescent, and no scheduling
9686 * activity can take place. Using them for anything else would
9687 * be a serious bug, and as a result, they aren't even visible
9688 * under any other configuration.
9689 */
9690
9691/**
9692 * curr_task - return the current task for a given cpu.
9693 * @cpu: the processor in question.
9694 *
9695 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9696 */
9697struct task_struct *curr_task(int cpu)
9698{
9699        return cpu_curr(cpu);
9700}
9701
9702/**
9703 * set_curr_task - set the current task for a given cpu.
9704 * @cpu: the processor in question.
9705 * @p: the task pointer to set.
9706 *
9707 * Description: This function must only be used when non-maskable interrupts
9708 * are serviced on a separate stack. It allows the architecture to switch the
9709 * notion of the current task on a cpu in a non-blocking manner. This function
9710 * must be called with all CPU's synchronized, and interrupts disabled, the
9711 * and caller must save the original value of the current task (see
9712 * curr_task() above) and restore that value before reenabling interrupts and
9713 * re-starting the system.
9714 *
9715 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9716 */
9717void set_curr_task(int cpu, struct task_struct *p)
9718{
9719        cpu_curr(cpu) = p;
9720}
9721
9722#endif
9723
9724#ifdef CONFIG_FAIR_GROUP_SCHED
9725static void free_fair_sched_group(struct task_group *tg)
9726{
9727        int i;
9728
9729        for_each_possible_cpu(i) {
9730                if (tg->cfs_rq)
9731                        kfree(tg->cfs_rq[i]);
9732                if (tg->se)
9733                        kfree(tg->se[i]);
9734        }
9735
9736        kfree(tg->cfs_rq);
9737        kfree(tg->se);
9738}
9739
9740static
9741int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9742{
9743        struct cfs_rq *cfs_rq;
9744        struct sched_entity *se;
9745        struct rq *rq;
9746        int i;
9747
9748        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9749        if (!tg->cfs_rq)
9750                goto err;
9751        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9752        if (!tg->se)
9753                goto err;
9754
9755        tg->shares = NICE_0_LOAD;
9756
9757        for_each_possible_cpu(i) {
9758                rq = cpu_rq(i);
9759
9760                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9761                                      GFP_KERNEL, cpu_to_node(i));
9762                if (!cfs_rq)
9763                        goto err;
9764
9765                se = kzalloc_node(sizeof(struct sched_entity),
9766                                  GFP_KERNEL, cpu_to_node(i));
9767                if (!se)
9768                        goto err;
9769
9770                init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9771        }
9772
9773        return 1;
9774
9775 err:
9776        return 0;
9777}
9778
9779static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9780{
9781        list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9782                        &cpu_rq(cpu)->leaf_cfs_rq_list);
9783}
9784
9785static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9786{
9787        list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9788}
9789#else /* !CONFG_FAIR_GROUP_SCHED */
9790static inline void free_fair_sched_group(struct task_group *tg)
9791{
9792}
9793
9794static inline
9795int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9796{
9797        return 1;
9798}
9799
9800static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9801{
9802}
9803
9804static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9805{
9806}
9807#endif /* CONFIG_FAIR_GROUP_SCHED */
9808
9809#ifdef CONFIG_RT_GROUP_SCHED
9810static void free_rt_sched_group(struct task_group *tg)
9811{
9812        int i;
9813
9814        destroy_rt_bandwidth(&tg->rt_bandwidth);
9815
9816        for_each_possible_cpu(i) {
9817                if (tg->rt_rq)
9818                        kfree(tg->rt_rq[i]);
9819                if (tg->rt_se)
9820                        kfree(tg->rt_se[i]);
9821        }
9822
9823        kfree(tg->rt_rq);
9824        kfree(tg->rt_se);
9825}
9826
9827static
9828int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9829{
9830        struct rt_rq *rt_rq;
9831        struct sched_rt_entity *rt_se;
9832        struct rq *rq;
9833        int i;
9834
9835        tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9836        if (!tg->rt_rq)
9837                goto err;
9838        tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9839        if (!tg->rt_se)
9840                goto err;
9841
9842        init_rt_bandwidth(&tg->rt_bandwidth,
9843                        ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9844
9845        for_each_possible_cpu(i) {
9846                rq = cpu_rq(i);
9847
9848                rt_rq = kzalloc_node(sizeof(struct rt_rq),
9849                                     GFP_KERNEL, cpu_to_node(i));
9850                if (!rt_rq)
9851                        goto err;
9852
9853                rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9854                                     GFP_KERNEL, cpu_to_node(i));
9855                if (!rt_se)
9856                        goto err;
9857
9858                init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9859        }
9860
9861        return 1;
9862
9863 err:
9864        return 0;
9865}
9866
9867static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9868{
9869        list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9870                        &cpu_rq(cpu)->leaf_rt_rq_list);
9871}
9872
9873static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9874{
9875        list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9876}
9877#else /* !CONFIG_RT_GROUP_SCHED */
9878static inline void free_rt_sched_group(struct task_group *tg)
9879{
9880}
9881
9882static inline
9883int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9884{
9885        return 1;
9886}
9887
9888static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9889{
9890}
9891
9892static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9893{
9894}
9895#endif /* CONFIG_RT_GROUP_SCHED */
9896
9897#ifdef CONFIG_GROUP_SCHED
9898static void free_sched_group(struct task_group *tg)
9899{
9900        free_fair_sched_group(tg);
9901        free_rt_sched_group(tg);
9902        kfree(tg);
9903}
9904
9905/* allocate runqueue etc for a new task group */
9906struct task_group *sched_create_group(struct task_group *parent)
9907{
9908        struct task_group *tg;
9909        unsigned long flags;
9910        int i;
9911
9912        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9913        if (!tg)
9914                return ERR_PTR(-ENOMEM);
9915
9916        if (!alloc_fair_sched_group(tg, parent))
9917                goto err;
9918
9919        if (!alloc_rt_sched_group(tg, parent))
9920                goto err;
9921
9922        spin_lock_irqsave(&task_group_lock, flags);
9923        for_each_possible_cpu(i) {
9924                register_fair_sched_group(tg, i);
9925                register_rt_sched_group(tg, i);
9926        }
9927        list_add_rcu(&tg->list, &task_groups);
9928
9929        WARN_ON(!parent); /* root should already exist */
9930
9931        tg->parent = parent;
9932        INIT_LIST_HEAD(&tg->children);
9933        list_add_rcu(&tg->siblings, &parent->children);
9934        spin_unlock_irqrestore(&task_group_lock, flags);
9935
9936        return tg;
9937
9938err:
9939        free_sched_group(tg);
9940        return ERR_PTR(-ENOMEM);
9941}
9942
9943/* rcu callback to free various structures associated with a task group */
9944static void free_sched_group_rcu(struct rcu_head *rhp)
9945{
9946        /* now it should be safe to free those cfs_rqs */
9947        free_sched_group(container_of(rhp, struct task_group, rcu));
9948}
9949
9950/* Destroy runqueue etc associated with a task group */
9951void sched_destroy_group(struct task_group *tg)
9952{
9953        unsigned long flags;
9954        int i;
9955
9956        spin_lock_irqsave(&task_group_lock, flags);
9957        for_each_possible_cpu(i) {
9958                unregister_fair_sched_group(tg, i);
9959                unregister_rt_sched_group(tg, i);
9960        }
9961        list_del_rcu(&tg->list);
9962        list_del_rcu(&tg->siblings);
9963        spin_unlock_irqrestore(&task_group_lock, flags);
9964
9965        /* wait for possible concurrent references to cfs_rqs complete */
9966        call_rcu(&tg->rcu, free_sched_group_rcu);
9967}
9968
9969/* change task's runqueue when it moves between groups.
9970 *      The caller of this function should have put the task in its new group
9971 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9972 *      reflect its new group.
9973 */
9974void sched_move_task(struct task_struct *tsk)
9975{
9976        int on_rq, running;
9977        unsigned long flags;
9978        struct rq *rq;
9979
9980        rq = task_rq_lock(tsk, &flags);
9981
9982        update_rq_clock(rq);
9983
9984        running = task_current(rq, tsk);
9985        on_rq = tsk->se.on_rq;
9986
9987        if (on_rq)
9988                dequeue_task(rq, tsk, 0);
9989        if (unlikely(running))
9990                tsk->sched_class->put_prev_task(rq, tsk);
9991
9992        set_task_rq(tsk, task_cpu(tsk));
9993
9994#ifdef CONFIG_FAIR_GROUP_SCHED
9995        if (tsk->sched_class->moved_group)
9996                tsk->sched_class->moved_group(tsk);
9997#endif
9998
9999        if (unlikely(running))
10000                tsk->sched_class->set_curr_task(rq);
10001        if (on_rq)
10002                enqueue_task(rq, tsk, 0);
10003
10004        task_rq_unlock(rq, &flags);
10005}
10006#endif /* CONFIG_GROUP_SCHED */
10007
10008#ifdef CONFIG_FAIR_GROUP_SCHED
10009static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10010{
10011        struct cfs_rq *cfs_rq = se->cfs_rq;
10012        int on_rq;
10013
10014        on_rq = se->on_rq;
10015        if (on_rq)
10016                dequeue_entity(cfs_rq, se, 0);
10017
10018        se->load.weight = shares;
10019        se->load.inv_weight = 0;
10020
10021        if (on_rq)
10022                enqueue_entity(cfs_rq, se, 0);
10023}
10024
10025static void set_se_shares(struct sched_entity *se, unsigned long shares)
10026{
10027        struct cfs_rq *cfs_rq = se->cfs_rq;
10028        struct rq *rq = cfs_rq->rq;
10029        unsigned long flags;
10030
10031        spin_lock_irqsave(&rq->lock, flags);
10032        __set_se_shares(se, shares);
10033        spin_unlock_irqrestore(&rq->lock, flags);
10034}
10035
10036static DEFINE_MUTEX(shares_mutex);
10037
10038int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10039{
10040        int i;
10041        unsigned long flags;
10042
10043        /*
10044         * We can't change the weight of the root cgroup.
10045         */
10046        if (!tg->se[0])
10047                return -EINVAL;
10048
10049        if (shares < MIN_SHARES)
10050                shares = MIN_SHARES;
10051        else if (shares > MAX_SHARES)
10052                shares = MAX_SHARES;
10053
10054        mutex_lock(&shares_mutex);
10055        if (tg->shares == shares)
10056                goto done;
10057
10058        spin_lock_irqsave(&task_group_lock, flags);
10059        for_each_possible_cpu(i)
10060                unregister_fair_sched_group(tg, i);
10061        list_del_rcu(&tg->siblings);
10062        spin_unlock_irqrestore(&task_group_lock, flags);
10063
10064        /* wait for any ongoing reference to this group to finish */
10065        synchronize_sched();
10066
10067        /*
10068         * Now we are free to modify the group's share on each cpu
10069         * w/o tripping rebalance_share or load_balance_fair.
10070         */
10071        tg->shares = shares;
10072        for_each_possible_cpu(i) {
10073                /*
10074                 * force a rebalance
10075                 */
10076                cfs_rq_set_shares(tg->cfs_rq[i], 0);
10077                set_se_shares(tg->se[i], shares);
10078        }
10079
10080        /*
10081         * Enable load balance activity on this group, by inserting it back on
10082         * each cpu's rq->leaf_cfs_rq_list.
10083         */
10084        spin_lock_irqsave(&task_group_lock, flags);
10085        for_each_possible_cpu(i)
10086                register_fair_sched_group(tg, i);
10087        list_add_rcu(&tg->siblings, &tg->parent->children);
10088        spin_unlock_irqrestore(&task_group_lock, flags);
10089done:
10090        mutex_unlock(&shares_mutex);
10091        return 0;
10092}
10093
10094unsigned long sched_group_shares(struct task_group *tg)
10095{
10096        return tg->shares;
10097}
10098#endif
10099
10100#ifdef CONFIG_RT_GROUP_SCHED
10101/*
10102 * Ensure that the real time constraints are schedulable.
10103 */
10104static DEFINE_MUTEX(rt_constraints_mutex);
10105
10106static unsigned long to_ratio(u64 period, u64 runtime)
10107{
10108        if (runtime == RUNTIME_INF)
10109                return 1ULL << 20;
10110
10111        return div64_u64(runtime << 20, period);
10112}
10113
10114/* Must be called with tasklist_lock held */
10115static inline int tg_has_rt_tasks(struct task_group *tg)
10116{
10117        struct task_struct *g, *p;
10118
10119        do_each_thread(g, p) {
10120                if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10121                        return 1;
10122        } while_each_thread(g, p);
10123
10124        return 0;
10125}
10126
10127struct rt_schedulable_data {
10128        struct task_group *tg;
10129        u64 rt_period;
10130        u64 rt_runtime;
10131};
10132
10133static int tg_schedulable(struct task_group *tg, void *data)
10134{
10135        struct rt_schedulable_data *d = data;
10136        struct task_group *child;
10137        unsigned long total, sum = 0;
10138        u64 period, runtime;
10139
10140        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10141        runtime = tg->rt_bandwidth.rt_runtime;
10142
10143        if (tg == d->tg) {
10144                period = d->rt_period;
10145                runtime = d->rt_runtime;
10146        }
10147
10148#ifdef CONFIG_USER_SCHED
10149        if (tg == &root_task_group) {
10150                period = global_rt_period();
10151                runtime = global_rt_runtime();
10152        }
10153#endif
10154
10155        /*
10156         * Cannot have more runtime than the period.
10157         */
10158        if (runtime > period && runtime != RUNTIME_INF)
10159                return -EINVAL;
10160
10161        /*
10162         * Ensure we don't starve existing RT tasks.
10163         */
10164        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10165                return -EBUSY;
10166
10167        total = to_ratio(period, runtime);
10168
10169        /*
10170         * Nobody can have more than the global setting allows.
10171         */
10172        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10173                return -EINVAL;
10174
10175        /*
10176         * The sum of our children's runtime should not exceed our own.
10177         */
10178        list_for_each_entry_rcu(child, &tg->children, siblings) {
10179                period = ktime_to_ns(child->rt_bandwidth.rt_period);
10180                runtime = child->rt_bandwidth.rt_runtime;
10181
10182                if (child == d->tg) {
10183                        period = d->rt_period;
10184                        runtime = d->rt_runtime;
10185                }
10186
10187                sum += to_ratio(period, runtime);
10188        }
10189
10190        if (sum > total)
10191                return -EINVAL;
10192
10193        return 0;
10194}
10195
10196static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10197{
10198        struct rt_schedulable_data data = {
10199                .tg = tg,
10200                .rt_period = period,
10201                .rt_runtime = runtime,
10202        };
10203
10204        return walk_tg_tree(tg_schedulable, tg_nop, &data);
10205}
10206
10207static int tg_set_bandwidth(struct task_group *tg,
10208                u64 rt_period, u64 rt_runtime)
10209{
10210        int i, err = 0;
10211
10212        mutex_lock(&rt_constraints_mutex);
10213        read_lock(&tasklist_lock);
10214        err = __rt_schedulable(tg, rt_period, rt_runtime);
10215        if (err)
10216                goto unlock;
10217
10218        spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10219        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10220        tg->rt_bandwidth.rt_runtime = rt_runtime;
10221
10222        for_each_possible_cpu(i) {
10223                struct rt_rq *rt_rq = tg->rt_rq[i];
10224
10225                spin_lock(&rt_rq->rt_runtime_lock);
10226                rt_rq->rt_runtime = rt_runtime;
10227                spin_unlock(&rt_rq->rt_runtime_lock);
10228        }
10229        spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10230 unlock:
10231        read_unlock(&tasklist_lock);
10232        mutex_unlock(&rt_constraints_mutex);
10233
10234        return err;
10235}
10236
10237int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10238{
10239        u64 rt_runtime, rt_period;
10240
10241        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10242        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10243        if (rt_runtime_us < 0)
10244                rt_runtime = RUNTIME_INF;
10245
10246        return tg_set_bandwidth(tg, rt_period, rt_runtime);
10247}
10248
10249long sched_group_rt_runtime(struct task_group *tg)
10250{
10251        u64 rt_runtime_us;
10252
10253        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10254                return -1;
10255
10256        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10257        do_div(rt_runtime_us, NSEC_PER_USEC);
10258        return rt_runtime_us;
10259}
10260
10261int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10262{
10263        u64 rt_runtime, rt_period;
10264
10265        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10266        rt_runtime = tg->rt_bandwidth.rt_runtime;
10267
10268        if (rt_period == 0)
10269                return -EINVAL;
10270
10271        return tg_set_bandwidth(tg, rt_period, rt_runtime);
10272}
10273
10274long sched_group_rt_period(struct task_group *tg)
10275{
10276        u64 rt_period_us;
10277
10278        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10279        do_div(rt_period_us, NSEC_PER_USEC);
10280        return rt_period_us;
10281}
10282
10283static int sched_rt_global_constraints(void)
10284{
10285        u64 runtime, period;
10286        int ret = 0;
10287
10288        if (sysctl_sched_rt_period <= 0)
10289                return -EINVAL;
10290
10291        runtime = global_rt_runtime();
10292        period = global_rt_period();
10293
10294        /*
10295         * Sanity check on the sysctl variables.
10296         */
10297        if (runtime > period && runtime != RUNTIME_INF)
10298                return -EINVAL;
10299
10300        mutex_lock(&rt_constraints_mutex);
10301        read_lock(&tasklist_lock);
10302        ret = __rt_schedulable(NULL, 0, 0);
10303        read_unlock(&tasklist_lock);
10304        mutex_unlock(&rt_constraints_mutex);
10305
10306        return ret;
10307}
10308
10309int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10310{
10311        /* Don't accept realtime tasks when there is no way for them to run */
10312        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10313                return 0;
10314
10315        return 1;
10316}
10317
10318#else /* !CONFIG_RT_GROUP_SCHED */
10319static int sched_rt_global_constraints(void)
10320{
10321        unsigned long flags;
10322        int i;
10323
10324        if (sysctl_sched_rt_period <= 0)
10325                return -EINVAL;
10326
10327        /*
10328         * There's always some RT tasks in the root group
10329         * -- migration, kstopmachine etc..
10330         */
10331        if (sysctl_sched_rt_runtime == 0)
10332                return -EBUSY;
10333
10334        spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10335        for_each_possible_cpu(i) {
10336                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10337
10338                spin_lock(&rt_rq->rt_runtime_lock);
10339                rt_rq->rt_runtime = global_rt_runtime();
10340                spin_unlock(&rt_rq->rt_runtime_lock);
10341        }
10342        spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10343
10344        return 0;
10345}
10346#endif /* CONFIG_RT_GROUP_SCHED */
10347
10348int sched_rt_handler(struct ctl_table *table, int write,
10349                void __user *buffer, size_t *lenp,
10350                loff_t *ppos)
10351{
10352        int ret;
10353        int old_period, old_runtime;
10354        static DEFINE_MUTEX(mutex);
10355
10356        mutex_lock(&mutex);
10357        old_period = sysctl_sched_rt_period;
10358        old_runtime = sysctl_sched_rt_runtime;
10359
10360        ret = proc_dointvec(table, write, buffer, lenp, ppos);
10361
10362        if (!ret && write) {
10363                ret = sched_rt_global_constraints();
10364                if (ret) {
10365                        sysctl_sched_rt_period = old_period;
10366                        sysctl_sched_rt_runtime = old_runtime;
10367                } else {
10368                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
10369                        def_rt_bandwidth.rt_period =
10370                                ns_to_ktime(global_rt_period());
10371                }
10372        }
10373        mutex_unlock(&mutex);
10374
10375        return ret;
10376}
10377
10378#ifdef CONFIG_CGROUP_SCHED
10379
10380/* return corresponding task_group object of a cgroup */
10381static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10382{
10383        return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10384                            struct task_group, css);
10385}
10386
10387static struct cgroup_subsys_state *
10388cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10389{
10390        struct task_group *tg, *parent;
10391
10392        if (!cgrp->parent) {
10393                /* This is early initialization for the top cgroup */
10394                return &init_task_group.css;
10395        }
10396
10397        parent = cgroup_tg(cgrp->parent);
10398        tg = sched_create_group(parent);
10399        if (IS_ERR(tg))
10400                return ERR_PTR(-ENOMEM);
10401
10402        return &tg->css;
10403}
10404
10405static void
10406cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10407{
10408        struct task_group *tg = cgroup_tg(cgrp);
10409
10410        sched_destroy_group(tg);
10411}
10412
10413static int
10414cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10415{
10416#ifdef CONFIG_RT_GROUP_SCHED
10417        if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10418                return -EINVAL;
10419#else
10420        /* We don't support RT-tasks being in separate groups */
10421        if (tsk->sched_class != &fair_sched_class)
10422                return -EINVAL;
10423#endif
10424        return 0;
10425}
10426
10427static int
10428cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10429                      struct task_struct *tsk, bool threadgroup)
10430{
10431        int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10432        if (retval)
10433                return retval;
10434        if (threadgroup) {
10435                struct task_struct *c;
10436                rcu_read_lock();
10437                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10438                        retval = cpu_cgroup_can_attach_task(cgrp, c);
10439                        if (retval) {
10440                                rcu_read_unlock();
10441                                return retval;
10442                        }
10443                }
10444                rcu_read_unlock();
10445        }
10446        return 0;
10447}
10448
10449static void
10450cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10451                  struct cgroup *old_cont, struct task_struct *tsk,
10452                  bool threadgroup)
10453{
10454        sched_move_task(tsk);
10455        if (threadgroup) {
10456                struct task_struct *c;
10457                rcu_read_lock();
10458                list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10459                        sched_move_task(c);
10460                }
10461                rcu_read_unlock();
10462        }
10463}
10464
10465#ifdef CONFIG_FAIR_GROUP_SCHED
10466static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10467                                u64 shareval)
10468{
10469        return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10470}
10471
10472static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10473{
10474        struct task_group *tg = cgroup_tg(cgrp);
10475
10476        return (u64) tg->shares;
10477}
10478#endif /* CONFIG_FAIR_GROUP_SCHED */
10479
10480#ifdef CONFIG_RT_GROUP_SCHED
10481static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10482                                s64 val)
10483{
10484        return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10485}
10486
10487static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10488{
10489        return sched_group_rt_runtime(cgroup_tg(cgrp));
10490}
10491
10492static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10493                u64 rt_period_us)
10494{
10495        return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10496}
10497
10498static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10499{
10500        return sched_group_rt_period(cgroup_tg(cgrp));
10501}
10502#endif /* CONFIG_RT_GROUP_SCHED */
10503
10504static struct cftype cpu_files[] = {
10505#ifdef CONFIG_FAIR_GROUP_SCHED
10506        {
10507                .name = "shares",
10508                .read_u64 = cpu_shares_read_u64,
10509                .write_u64 = cpu_shares_write_u64,
10510        },
10511#endif
10512#ifdef CONFIG_RT_GROUP_SCHED
10513        {
10514                .name = "rt_runtime_us",
10515                .read_s64 = cpu_rt_runtime_read,
10516                .write_s64 = cpu_rt_runtime_write,
10517        },
10518        {
10519                .name = "rt_period_us",
10520                .read_u64 = cpu_rt_period_read_uint,
10521                .write_u64 = cpu_rt_period_write_uint,
10522        },
10523#endif
10524};
10525
10526static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10527{
10528        return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10529}
10530
10531struct cgroup_subsys cpu_cgroup_subsys = {
10532        .name           = "cpu",
10533        .create         = cpu_cgroup_create,
10534        .destroy        = cpu_cgroup_destroy,
10535        .can_attach     = cpu_cgroup_can_attach,
10536        .attach         = cpu_cgroup_attach,
10537        .populate       = cpu_cgroup_populate,
10538        .subsys_id      = cpu_cgroup_subsys_id,
10539        .early_init     = 1,
10540};
10541
10542#endif  /* CONFIG_CGROUP_SCHED */
10543
10544#ifdef CONFIG_CGROUP_CPUACCT
10545
10546/*
10547 * CPU accounting code for task groups.
10548 *
10549 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10550 * (balbir@in.ibm.com).
10551 */
10552
10553/* track cpu usage of a group of tasks and its child groups */
10554struct cpuacct {
10555        struct cgroup_subsys_state css;
10556        /* cpuusage holds pointer to a u64-type object on every cpu */
10557        u64 *cpuusage;
10558        struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10559        struct cpuacct *parent;
10560};
10561
10562struct cgroup_subsys cpuacct_subsys;
10563
10564/* return cpu accounting group corresponding to this container */
10565static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10566{
10567        return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10568                            struct cpuacct, css);
10569}
10570
10571/* return cpu accounting group to which this task belongs */
10572static inline struct cpuacct *task_ca(struct task_struct *tsk)
10573{
10574        return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10575                            struct cpuacct, css);
10576}
10577
10578/* create a new cpu accounting group */
10579static struct cgroup_subsys_state *cpuacct_create(
10580        struct cgroup_subsys *ss, struct cgroup *cgrp)
10581{
10582        struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10583        int i;
10584
10585        if (!ca)
10586                goto out;
10587
10588        ca->cpuusage = alloc_percpu(u64);
10589        if (!ca->cpuusage)
10590                goto out_free_ca;
10591
10592        for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10593                if (percpu_counter_init(&ca->cpustat[i], 0))
10594                        goto out_free_counters;
10595
10596        if (cgrp->parent)
10597                ca->parent = cgroup_ca(cgrp->parent);
10598
10599        return &ca->css;
10600
10601out_free_counters:
10602        while (--i >= 0)
10603                percpu_counter_destroy(&ca->cpustat[i]);
10604        free_percpu(ca->cpuusage);
10605out_free_ca:
10606        kfree(ca);
10607out:
10608        return ERR_PTR(-ENOMEM);
10609}
10610
10611/* destroy an existing cpu accounting group */
10612static void
10613cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10614{
10615        struct cpuacct *ca = cgroup_ca(cgrp);
10616        int i;
10617
10618        for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10619                percpu_counter_destroy(&ca->cpustat[i]);
10620        free_percpu(ca->cpuusage);
10621        kfree(ca);
10622}
10623
10624static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10625{
10626        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10627        u64 data;
10628
10629#ifndef CONFIG_64BIT
10630        /*
10631         * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10632         */
10633        spin_lock_irq(&cpu_rq(cpu)->lock);
10634        data = *cpuusage;
10635        spin_unlock_irq(&cpu_rq(cpu)->lock);
10636#else
10637        data = *cpuusage;
10638#endif
10639
10640        return data;
10641}
10642
10643static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10644{
10645        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10646
10647#ifndef CONFIG_64BIT
10648        /*
10649         * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10650         */
10651        spin_lock_irq(&cpu_rq(cpu)->lock);
10652        *cpuusage = val;
10653        spin_unlock_irq(&cpu_rq(cpu)->lock);
10654#else
10655        *cpuusage = val;
10656#endif
10657}
10658
10659/* return total cpu usage (in nanoseconds) of a group */
10660static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10661{
10662        struct cpuacct *ca = cgroup_ca(cgrp);
10663        u64 totalcpuusage = 0;
10664        int i;
10665
10666        for_each_present_cpu(i)
10667                totalcpuusage += cpuacct_cpuusage_read(ca, i);
10668
10669        return totalcpuusage;
10670}
10671
10672static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10673                                                                u64 reset)
10674{
10675        struct cpuacct *ca = cgroup_ca(cgrp);
10676        int err = 0;
10677        int i;
10678
10679        if (reset) {
10680                err = -EINVAL;
10681                goto out;
10682        }
10683
10684        for_each_present_cpu(i)
10685                cpuacct_cpuusage_write(ca, i, 0);
10686
10687out:
10688        return err;
10689}
10690
10691static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10692                                   struct seq_file *m)
10693{
10694        struct cpuacct *ca = cgroup_ca(cgroup);
10695        u64 percpu;
10696        int i;
10697
10698        for_each_present_cpu(i) {
10699                percpu = cpuacct_cpuusage_read(ca, i);
10700                seq_printf(m, "%llu ", (unsigned long long) percpu);
10701        }
10702        seq_printf(m, "\n");
10703        return 0;
10704}
10705
10706static const char *cpuacct_stat_desc[] = {
10707        [CPUACCT_STAT_USER] = "user",
10708        [CPUACCT_STAT_SYSTEM] = "system",
10709};
10710
10711static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10712                struct cgroup_map_cb *cb)
10713{
10714        struct cpuacct *ca = cgroup_ca(cgrp);
10715        int i;
10716
10717        for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10718                s64 val = percpu_counter_read(&ca->cpustat[i]);
10719                val = cputime64_to_clock_t(val);
10720                cb->fill(cb, cpuacct_stat_desc[i], val);
10721        }
10722        return 0;
10723}
10724
10725static struct cftype files[] = {
10726        {
10727                .name = "usage",
10728                .read_u64 = cpuusage_read,
10729                .write_u64 = cpuusage_write,
10730        },
10731        {
10732                .name = "usage_percpu",
10733                .read_seq_string = cpuacct_percpu_seq_read,
10734        },
10735        {
10736                .name = "stat",
10737                .read_map = cpuacct_stats_show,
10738        },
10739};
10740
10741static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10742{
10743        return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10744}
10745
10746/*
10747 * charge this task's execution time to its accounting group.
10748 *
10749 * called with rq->lock held.
10750 */
10751static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10752{
10753        struct cpuacct *ca;
10754        int cpu;
10755
10756        if (unlikely(!cpuacct_subsys.active))
10757                return;
10758
10759        cpu = task_cpu(tsk);
10760
10761        rcu_read_lock();
10762
10763        ca = task_ca(tsk);
10764
10765        for (; ca; ca = ca->parent) {
10766                u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10767                *cpuusage += cputime;
10768        }
10769
10770        rcu_read_unlock();
10771}
10772
10773/*
10774 * Charge the system/user time to the task's accounting group.
10775 */
10776static void cpuacct_update_stats(struct task_struct *tsk,
10777                enum cpuacct_stat_index idx, cputime_t val)
10778{
10779        struct cpuacct *ca;
10780
10781        if (unlikely(!cpuacct_subsys.active))
10782                return;
10783
10784        rcu_read_lock();
10785        ca = task_ca(tsk);
10786
10787        do {
10788                percpu_counter_add(&ca->cpustat[idx], val);
10789                ca = ca->parent;
10790        } while (ca);
10791        rcu_read_unlock();
10792}
10793
10794struct cgroup_subsys cpuacct_subsys = {
10795        .name = "cpuacct",
10796        .create = cpuacct_create,
10797        .destroy = cpuacct_destroy,
10798        .populate = cpuacct_populate,
10799        .subsys_id = cpuacct_subsys_id,
10800};
10801#endif  /* CONFIG_CGROUP_CPUACCT */
10802
10803#ifndef CONFIG_SMP
10804
10805int rcu_expedited_torture_stats(char *page)
10806{
10807        return 0;
10808}
10809EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10810
10811void synchronize_sched_expedited(void)
10812{
10813}
10814EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10815
10816#else /* #ifndef CONFIG_SMP */
10817
10818static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10819static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10820
10821#define RCU_EXPEDITED_STATE_POST -2
10822#define RCU_EXPEDITED_STATE_IDLE -1
10823
10824static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10825
10826int rcu_expedited_torture_stats(char *page)
10827{
10828        int cnt = 0;
10829        int cpu;
10830
10831        cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10832        for_each_online_cpu(cpu) {
10833                 cnt += sprintf(&page[cnt], " %d:%d",
10834                                cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10835        }
10836        cnt += sprintf(&page[cnt], "\n");
10837        return cnt;
10838}
10839EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10840
10841static long synchronize_sched_expedited_count;
10842
10843/*
10844 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10845 * approach to force grace period to end quickly.  This consumes
10846 * significant time on all CPUs, and is thus not recommended for
10847 * any sort of common-case code.
10848 *
10849 * Note that it is illegal to call this function while holding any
10850 * lock that is acquired by a CPU-hotplug notifier.  Failing to
10851 * observe this restriction will result in deadlock.
10852 */
10853void synchronize_sched_expedited(void)
10854{
10855        int cpu;
10856        unsigned long flags;
10857        bool need_full_sync = 0;
10858        struct rq *rq;
10859        struct migration_req *req;
10860        long snap;
10861        int trycount = 0;
10862
10863        smp_mb();  /* ensure prior mod happens before capturing snap. */
10864        snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10865        get_online_cpus();
10866        while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10867                put_online_cpus();
10868                if (trycount++ < 10)
10869                        udelay(trycount * num_online_cpus());
10870                else {
10871                        synchronize_sched();
10872                        return;
10873                }
10874                if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10875                        smp_mb(); /* ensure test happens before caller kfree */
10876                        return;
10877                }
10878                get_online_cpus();
10879        }
10880        rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10881        for_each_online_cpu(cpu) {
10882                rq = cpu_rq(cpu);
10883                req = &per_cpu(rcu_migration_req, cpu);
10884                init_completion(&req->done);
10885                req->task = NULL;
10886                req->dest_cpu = RCU_MIGRATION_NEED_QS;
10887                spin_lock_irqsave(&rq->lock, flags);
10888                list_add(&req->list, &rq->migration_queue);
10889                spin_unlock_irqrestore(&rq->lock, flags);
10890                wake_up_process(rq->migration_thread);
10891        }
10892        for_each_online_cpu(cpu) {
10893                rcu_expedited_state = cpu;
10894                req = &per_cpu(rcu_migration_req, cpu);
10895                rq = cpu_rq(cpu);
10896                wait_for_completion(&req->done);
10897                spin_lock_irqsave(&rq->lock, flags);
10898                if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10899                        need_full_sync = 1;
10900                req->dest_cpu = RCU_MIGRATION_IDLE;
10901                spin_unlock_irqrestore(&rq->lock, flags);
10902        }
10903        rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10904        mutex_unlock(&rcu_sched_expedited_mutex);
10905        put_online_cpus();
10906        if (need_full_sync)
10907                synchronize_sched();
10908}
10909EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10910
10911#endif /* #else #ifndef CONFIG_SMP */
10912