linux/kernel/sched_clock.c
<<
>>
Prefs
   1/*
   2 * sched_clock for unstable cpu clocks
   3 *
   4 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   5 *
   6 *  Updates and enhancements:
   7 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
   8 *
   9 * Based on code by:
  10 *   Ingo Molnar <mingo@redhat.com>
  11 *   Guillaume Chazarain <guichaz@gmail.com>
  12 *
  13 * Create a semi stable clock from a mixture of other events, including:
  14 *  - gtod
  15 *  - sched_clock()
  16 *  - explicit idle events
  17 *
  18 * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19 * making it monotonic and keeping it within an expected window.
  20 *
  21 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22 * that is otherwise invisible (TSC gets stopped).
  23 *
  24 * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25 * consistent between cpus (never more than 2 jiffies difference).
  26 */
  27#include <linux/spinlock.h>
  28#include <linux/hardirq.h>
  29#include <linux/module.h>
  30#include <linux/percpu.h>
  31#include <linux/ktime.h>
  32#include <linux/sched.h>
  33
  34/*
  35 * Scheduler clock - returns current time in nanosec units.
  36 * This is default implementation.
  37 * Architectures and sub-architectures can override this.
  38 */
  39unsigned long long __attribute__((weak)) sched_clock(void)
  40{
  41        return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  42                                        * (NSEC_PER_SEC / HZ);
  43}
  44
  45static __read_mostly int sched_clock_running;
  46
  47#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  48__read_mostly int sched_clock_stable;
  49
  50struct sched_clock_data {
  51        u64                     tick_raw;
  52        u64                     tick_gtod;
  53        u64                     clock;
  54};
  55
  56static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  57
  58static inline struct sched_clock_data *this_scd(void)
  59{
  60        return &__get_cpu_var(sched_clock_data);
  61}
  62
  63static inline struct sched_clock_data *cpu_sdc(int cpu)
  64{
  65        return &per_cpu(sched_clock_data, cpu);
  66}
  67
  68void sched_clock_init(void)
  69{
  70        u64 ktime_now = ktime_to_ns(ktime_get());
  71        int cpu;
  72
  73        for_each_possible_cpu(cpu) {
  74                struct sched_clock_data *scd = cpu_sdc(cpu);
  75
  76                scd->tick_raw = 0;
  77                scd->tick_gtod = ktime_now;
  78                scd->clock = ktime_now;
  79        }
  80
  81        sched_clock_running = 1;
  82}
  83
  84/*
  85 * min, max except they take wrapping into account
  86 */
  87
  88static inline u64 wrap_min(u64 x, u64 y)
  89{
  90        return (s64)(x - y) < 0 ? x : y;
  91}
  92
  93static inline u64 wrap_max(u64 x, u64 y)
  94{
  95        return (s64)(x - y) > 0 ? x : y;
  96}
  97
  98/*
  99 * update the percpu scd from the raw @now value
 100 *
 101 *  - filter out backward motion
 102 *  - use the GTOD tick value to create a window to filter crazy TSC values
 103 */
 104static u64 sched_clock_local(struct sched_clock_data *scd)
 105{
 106        u64 now, clock, old_clock, min_clock, max_clock;
 107        s64 delta;
 108
 109again:
 110        now = sched_clock();
 111        delta = now - scd->tick_raw;
 112        if (unlikely(delta < 0))
 113                delta = 0;
 114
 115        old_clock = scd->clock;
 116
 117        /*
 118         * scd->clock = clamp(scd->tick_gtod + delta,
 119         *                    max(scd->tick_gtod, scd->clock),
 120         *                    scd->tick_gtod + TICK_NSEC);
 121         */
 122
 123        clock = scd->tick_gtod + delta;
 124        min_clock = wrap_max(scd->tick_gtod, old_clock);
 125        max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
 126
 127        clock = wrap_max(clock, min_clock);
 128        clock = wrap_min(clock, max_clock);
 129
 130        if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
 131                goto again;
 132
 133        return clock;
 134}
 135
 136static u64 sched_clock_remote(struct sched_clock_data *scd)
 137{
 138        struct sched_clock_data *my_scd = this_scd();
 139        u64 this_clock, remote_clock;
 140        u64 *ptr, old_val, val;
 141
 142        sched_clock_local(my_scd);
 143again:
 144        this_clock = my_scd->clock;
 145        remote_clock = scd->clock;
 146
 147        /*
 148         * Use the opportunity that we have both locks
 149         * taken to couple the two clocks: we take the
 150         * larger time as the latest time for both
 151         * runqueues. (this creates monotonic movement)
 152         */
 153        if (likely((s64)(remote_clock - this_clock) < 0)) {
 154                ptr = &scd->clock;
 155                old_val = remote_clock;
 156                val = this_clock;
 157        } else {
 158                /*
 159                 * Should be rare, but possible:
 160                 */
 161                ptr = &my_scd->clock;
 162                old_val = this_clock;
 163                val = remote_clock;
 164        }
 165
 166        if (cmpxchg64(ptr, old_val, val) != old_val)
 167                goto again;
 168
 169        return val;
 170}
 171
 172u64 sched_clock_cpu(int cpu)
 173{
 174        struct sched_clock_data *scd;
 175        u64 clock;
 176
 177        WARN_ON_ONCE(!irqs_disabled());
 178
 179        if (sched_clock_stable)
 180                return sched_clock();
 181
 182        if (unlikely(!sched_clock_running))
 183                return 0ull;
 184
 185        scd = cpu_sdc(cpu);
 186
 187        if (cpu != smp_processor_id())
 188                clock = sched_clock_remote(scd);
 189        else
 190                clock = sched_clock_local(scd);
 191
 192        return clock;
 193}
 194
 195void sched_clock_tick(void)
 196{
 197        struct sched_clock_data *scd;
 198        u64 now, now_gtod;
 199
 200        if (sched_clock_stable)
 201                return;
 202
 203        if (unlikely(!sched_clock_running))
 204                return;
 205
 206        WARN_ON_ONCE(!irqs_disabled());
 207
 208        scd = this_scd();
 209        now_gtod = ktime_to_ns(ktime_get());
 210        now = sched_clock();
 211
 212        scd->tick_raw = now;
 213        scd->tick_gtod = now_gtod;
 214        sched_clock_local(scd);
 215}
 216
 217/*
 218 * We are going deep-idle (irqs are disabled):
 219 */
 220void sched_clock_idle_sleep_event(void)
 221{
 222        sched_clock_cpu(smp_processor_id());
 223}
 224EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 225
 226/*
 227 * We just idled delta nanoseconds (called with irqs disabled):
 228 */
 229void sched_clock_idle_wakeup_event(u64 delta_ns)
 230{
 231        if (timekeeping_suspended)
 232                return;
 233
 234        sched_clock_tick();
 235        touch_softlockup_watchdog();
 236}
 237EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 238
 239#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 240
 241void sched_clock_init(void)
 242{
 243        sched_clock_running = 1;
 244}
 245
 246u64 sched_clock_cpu(int cpu)
 247{
 248        if (unlikely(!sched_clock_running))
 249                return 0;
 250
 251        return sched_clock();
 252}
 253
 254#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 255
 256unsigned long long cpu_clock(int cpu)
 257{
 258        unsigned long long clock;
 259        unsigned long flags;
 260
 261        local_irq_save(flags);
 262        clock = sched_clock_cpu(cpu);
 263        local_irq_restore(flags);
 264
 265        return clock;
 266}
 267EXPORT_SYMBOL_GPL(cpu_clock);
 268