linux/kernel/sys.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/smp_lock.h>
  12#include <linux/notifier.h>
  13#include <linux/reboot.h>
  14#include <linux/prctl.h>
  15#include <linux/highuid.h>
  16#include <linux/fs.h>
  17#include <linux/perf_event.h>
  18#include <linux/resource.h>
  19#include <linux/kernel.h>
  20#include <linux/kexec.h>
  21#include <linux/workqueue.h>
  22#include <linux/capability.h>
  23#include <linux/device.h>
  24#include <linux/key.h>
  25#include <linux/times.h>
  26#include <linux/posix-timers.h>
  27#include <linux/security.h>
  28#include <linux/dcookies.h>
  29#include <linux/suspend.h>
  30#include <linux/tty.h>
  31#include <linux/signal.h>
  32#include <linux/cn_proc.h>
  33#include <linux/getcpu.h>
  34#include <linux/task_io_accounting_ops.h>
  35#include <linux/seccomp.h>
  36#include <linux/cpu.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39
  40#include <linux/compat.h>
  41#include <linux/syscalls.h>
  42#include <linux/kprobes.h>
  43#include <linux/user_namespace.h>
  44
  45#include <asm/uaccess.h>
  46#include <asm/io.h>
  47#include <asm/unistd.h>
  48
  49#ifndef SET_UNALIGN_CTL
  50# define SET_UNALIGN_CTL(a,b)   (-EINVAL)
  51#endif
  52#ifndef GET_UNALIGN_CTL
  53# define GET_UNALIGN_CTL(a,b)   (-EINVAL)
  54#endif
  55#ifndef SET_FPEMU_CTL
  56# define SET_FPEMU_CTL(a,b)     (-EINVAL)
  57#endif
  58#ifndef GET_FPEMU_CTL
  59# define GET_FPEMU_CTL(a,b)     (-EINVAL)
  60#endif
  61#ifndef SET_FPEXC_CTL
  62# define SET_FPEXC_CTL(a,b)     (-EINVAL)
  63#endif
  64#ifndef GET_FPEXC_CTL
  65# define GET_FPEXC_CTL(a,b)     (-EINVAL)
  66#endif
  67#ifndef GET_ENDIAN
  68# define GET_ENDIAN(a,b)        (-EINVAL)
  69#endif
  70#ifndef SET_ENDIAN
  71# define SET_ENDIAN(a,b)        (-EINVAL)
  72#endif
  73#ifndef GET_TSC_CTL
  74# define GET_TSC_CTL(a)         (-EINVAL)
  75#endif
  76#ifndef SET_TSC_CTL
  77# define SET_TSC_CTL(a)         (-EINVAL)
  78#endif
  79
  80/*
  81 * this is where the system-wide overflow UID and GID are defined, for
  82 * architectures that now have 32-bit UID/GID but didn't in the past
  83 */
  84
  85int overflowuid = DEFAULT_OVERFLOWUID;
  86int overflowgid = DEFAULT_OVERFLOWGID;
  87
  88#ifdef CONFIG_UID16
  89EXPORT_SYMBOL(overflowuid);
  90EXPORT_SYMBOL(overflowgid);
  91#endif
  92
  93/*
  94 * the same as above, but for filesystems which can only store a 16-bit
  95 * UID and GID. as such, this is needed on all architectures
  96 */
  97
  98int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
  99int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 100
 101EXPORT_SYMBOL(fs_overflowuid);
 102EXPORT_SYMBOL(fs_overflowgid);
 103
 104/*
 105 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 106 */
 107
 108int C_A_D = 1;
 109struct pid *cad_pid;
 110EXPORT_SYMBOL(cad_pid);
 111
 112/*
 113 * If set, this is used for preparing the system to power off.
 114 */
 115
 116void (*pm_power_off_prepare)(void);
 117
 118/*
 119 * set the priority of a task
 120 * - the caller must hold the RCU read lock
 121 */
 122static int set_one_prio(struct task_struct *p, int niceval, int error)
 123{
 124        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 125        int no_nice;
 126
 127        if (pcred->uid  != cred->euid &&
 128            pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
 129                error = -EPERM;
 130                goto out;
 131        }
 132        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 133                error = -EACCES;
 134                goto out;
 135        }
 136        no_nice = security_task_setnice(p, niceval);
 137        if (no_nice) {
 138                error = no_nice;
 139                goto out;
 140        }
 141        if (error == -ESRCH)
 142                error = 0;
 143        set_user_nice(p, niceval);
 144out:
 145        return error;
 146}
 147
 148SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 149{
 150        struct task_struct *g, *p;
 151        struct user_struct *user;
 152        const struct cred *cred = current_cred();
 153        int error = -EINVAL;
 154        struct pid *pgrp;
 155
 156        if (which > PRIO_USER || which < PRIO_PROCESS)
 157                goto out;
 158
 159        /* normalize: avoid signed division (rounding problems) */
 160        error = -ESRCH;
 161        if (niceval < -20)
 162                niceval = -20;
 163        if (niceval > 19)
 164                niceval = 19;
 165
 166        read_lock(&tasklist_lock);
 167        switch (which) {
 168                case PRIO_PROCESS:
 169                        if (who)
 170                                p = find_task_by_vpid(who);
 171                        else
 172                                p = current;
 173                        if (p)
 174                                error = set_one_prio(p, niceval, error);
 175                        break;
 176                case PRIO_PGRP:
 177                        if (who)
 178                                pgrp = find_vpid(who);
 179                        else
 180                                pgrp = task_pgrp(current);
 181                        do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 182                                error = set_one_prio(p, niceval, error);
 183                        } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 184                        break;
 185                case PRIO_USER:
 186                        user = (struct user_struct *) cred->user;
 187                        if (!who)
 188                                who = cred->uid;
 189                        else if ((who != cred->uid) &&
 190                                 !(user = find_user(who)))
 191                                goto out_unlock;        /* No processes for this user */
 192
 193                        do_each_thread(g, p)
 194                                if (__task_cred(p)->uid == who)
 195                                        error = set_one_prio(p, niceval, error);
 196                        while_each_thread(g, p);
 197                        if (who != cred->uid)
 198                                free_uid(user);         /* For find_user() */
 199                        break;
 200        }
 201out_unlock:
 202        read_unlock(&tasklist_lock);
 203out:
 204        return error;
 205}
 206
 207/*
 208 * Ugh. To avoid negative return values, "getpriority()" will
 209 * not return the normal nice-value, but a negated value that
 210 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 211 * to stay compatible.
 212 */
 213SYSCALL_DEFINE2(getpriority, int, which, int, who)
 214{
 215        struct task_struct *g, *p;
 216        struct user_struct *user;
 217        const struct cred *cred = current_cred();
 218        long niceval, retval = -ESRCH;
 219        struct pid *pgrp;
 220
 221        if (which > PRIO_USER || which < PRIO_PROCESS)
 222                return -EINVAL;
 223
 224        read_lock(&tasklist_lock);
 225        switch (which) {
 226                case PRIO_PROCESS:
 227                        if (who)
 228                                p = find_task_by_vpid(who);
 229                        else
 230                                p = current;
 231                        if (p) {
 232                                niceval = 20 - task_nice(p);
 233                                if (niceval > retval)
 234                                        retval = niceval;
 235                        }
 236                        break;
 237                case PRIO_PGRP:
 238                        if (who)
 239                                pgrp = find_vpid(who);
 240                        else
 241                                pgrp = task_pgrp(current);
 242                        do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 243                                niceval = 20 - task_nice(p);
 244                                if (niceval > retval)
 245                                        retval = niceval;
 246                        } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 247                        break;
 248                case PRIO_USER:
 249                        user = (struct user_struct *) cred->user;
 250                        if (!who)
 251                                who = cred->uid;
 252                        else if ((who != cred->uid) &&
 253                                 !(user = find_user(who)))
 254                                goto out_unlock;        /* No processes for this user */
 255
 256                        do_each_thread(g, p)
 257                                if (__task_cred(p)->uid == who) {
 258                                        niceval = 20 - task_nice(p);
 259                                        if (niceval > retval)
 260                                                retval = niceval;
 261                                }
 262                        while_each_thread(g, p);
 263                        if (who != cred->uid)
 264                                free_uid(user);         /* for find_user() */
 265                        break;
 266        }
 267out_unlock:
 268        read_unlock(&tasklist_lock);
 269
 270        return retval;
 271}
 272
 273/**
 274 *      emergency_restart - reboot the system
 275 *
 276 *      Without shutting down any hardware or taking any locks
 277 *      reboot the system.  This is called when we know we are in
 278 *      trouble so this is our best effort to reboot.  This is
 279 *      safe to call in interrupt context.
 280 */
 281void emergency_restart(void)
 282{
 283        machine_emergency_restart();
 284}
 285EXPORT_SYMBOL_GPL(emergency_restart);
 286
 287void kernel_restart_prepare(char *cmd)
 288{
 289        blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 290        system_state = SYSTEM_RESTART;
 291        device_shutdown();
 292        sysdev_shutdown();
 293}
 294
 295/**
 296 *      kernel_restart - reboot the system
 297 *      @cmd: pointer to buffer containing command to execute for restart
 298 *              or %NULL
 299 *
 300 *      Shutdown everything and perform a clean reboot.
 301 *      This is not safe to call in interrupt context.
 302 */
 303void kernel_restart(char *cmd)
 304{
 305        kernel_restart_prepare(cmd);
 306        if (!cmd)
 307                printk(KERN_EMERG "Restarting system.\n");
 308        else
 309                printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 310        machine_restart(cmd);
 311}
 312EXPORT_SYMBOL_GPL(kernel_restart);
 313
 314static void kernel_shutdown_prepare(enum system_states state)
 315{
 316        blocking_notifier_call_chain(&reboot_notifier_list,
 317                (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 318        system_state = state;
 319        device_shutdown();
 320}
 321/**
 322 *      kernel_halt - halt the system
 323 *
 324 *      Shutdown everything and perform a clean system halt.
 325 */
 326void kernel_halt(void)
 327{
 328        kernel_shutdown_prepare(SYSTEM_HALT);
 329        sysdev_shutdown();
 330        printk(KERN_EMERG "System halted.\n");
 331        machine_halt();
 332}
 333
 334EXPORT_SYMBOL_GPL(kernel_halt);
 335
 336/**
 337 *      kernel_power_off - power_off the system
 338 *
 339 *      Shutdown everything and perform a clean system power_off.
 340 */
 341void kernel_power_off(void)
 342{
 343        kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 344        if (pm_power_off_prepare)
 345                pm_power_off_prepare();
 346        disable_nonboot_cpus();
 347        sysdev_shutdown();
 348        printk(KERN_EMERG "Power down.\n");
 349        machine_power_off();
 350}
 351EXPORT_SYMBOL_GPL(kernel_power_off);
 352/*
 353 * Reboot system call: for obvious reasons only root may call it,
 354 * and even root needs to set up some magic numbers in the registers
 355 * so that some mistake won't make this reboot the whole machine.
 356 * You can also set the meaning of the ctrl-alt-del-key here.
 357 *
 358 * reboot doesn't sync: do that yourself before calling this.
 359 */
 360SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
 361                void __user *, arg)
 362{
 363        char buffer[256];
 364        int ret = 0;
 365
 366        /* We only trust the superuser with rebooting the system. */
 367        if (!capable(CAP_SYS_BOOT))
 368                return -EPERM;
 369
 370        /* For safety, we require "magic" arguments. */
 371        if (magic1 != LINUX_REBOOT_MAGIC1 ||
 372            (magic2 != LINUX_REBOOT_MAGIC2 &&
 373                        magic2 != LINUX_REBOOT_MAGIC2A &&
 374                        magic2 != LINUX_REBOOT_MAGIC2B &&
 375                        magic2 != LINUX_REBOOT_MAGIC2C))
 376                return -EINVAL;
 377
 378        /* Instead of trying to make the power_off code look like
 379         * halt when pm_power_off is not set do it the easy way.
 380         */
 381        if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 382                cmd = LINUX_REBOOT_CMD_HALT;
 383
 384        lock_kernel();
 385        switch (cmd) {
 386        case LINUX_REBOOT_CMD_RESTART:
 387                kernel_restart(NULL);
 388                break;
 389
 390        case LINUX_REBOOT_CMD_CAD_ON:
 391                C_A_D = 1;
 392                break;
 393
 394        case LINUX_REBOOT_CMD_CAD_OFF:
 395                C_A_D = 0;
 396                break;
 397
 398        case LINUX_REBOOT_CMD_HALT:
 399                kernel_halt();
 400                unlock_kernel();
 401                do_exit(0);
 402                panic("cannot halt");
 403
 404        case LINUX_REBOOT_CMD_POWER_OFF:
 405                kernel_power_off();
 406                unlock_kernel();
 407                do_exit(0);
 408                break;
 409
 410        case LINUX_REBOOT_CMD_RESTART2:
 411                if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 412                        unlock_kernel();
 413                        return -EFAULT;
 414                }
 415                buffer[sizeof(buffer) - 1] = '\0';
 416
 417                kernel_restart(buffer);
 418                break;
 419
 420#ifdef CONFIG_KEXEC
 421        case LINUX_REBOOT_CMD_KEXEC:
 422                ret = kernel_kexec();
 423                break;
 424#endif
 425
 426#ifdef CONFIG_HIBERNATION
 427        case LINUX_REBOOT_CMD_SW_SUSPEND:
 428                ret = hibernate();
 429                break;
 430#endif
 431
 432        default:
 433                ret = -EINVAL;
 434                break;
 435        }
 436        unlock_kernel();
 437        return ret;
 438}
 439
 440static void deferred_cad(struct work_struct *dummy)
 441{
 442        kernel_restart(NULL);
 443}
 444
 445/*
 446 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 447 * As it's called within an interrupt, it may NOT sync: the only choice
 448 * is whether to reboot at once, or just ignore the ctrl-alt-del.
 449 */
 450void ctrl_alt_del(void)
 451{
 452        static DECLARE_WORK(cad_work, deferred_cad);
 453
 454        if (C_A_D)
 455                schedule_work(&cad_work);
 456        else
 457                kill_cad_pid(SIGINT, 1);
 458}
 459        
 460/*
 461 * Unprivileged users may change the real gid to the effective gid
 462 * or vice versa.  (BSD-style)
 463 *
 464 * If you set the real gid at all, or set the effective gid to a value not
 465 * equal to the real gid, then the saved gid is set to the new effective gid.
 466 *
 467 * This makes it possible for a setgid program to completely drop its
 468 * privileges, which is often a useful assertion to make when you are doing
 469 * a security audit over a program.
 470 *
 471 * The general idea is that a program which uses just setregid() will be
 472 * 100% compatible with BSD.  A program which uses just setgid() will be
 473 * 100% compatible with POSIX with saved IDs. 
 474 *
 475 * SMP: There are not races, the GIDs are checked only by filesystem
 476 *      operations (as far as semantic preservation is concerned).
 477 */
 478SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 479{
 480        const struct cred *old;
 481        struct cred *new;
 482        int retval;
 483
 484        new = prepare_creds();
 485        if (!new)
 486                return -ENOMEM;
 487        old = current_cred();
 488
 489        retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
 490        if (retval)
 491                goto error;
 492
 493        retval = -EPERM;
 494        if (rgid != (gid_t) -1) {
 495                if (old->gid == rgid ||
 496                    old->egid == rgid ||
 497                    capable(CAP_SETGID))
 498                        new->gid = rgid;
 499                else
 500                        goto error;
 501        }
 502        if (egid != (gid_t) -1) {
 503                if (old->gid == egid ||
 504                    old->egid == egid ||
 505                    old->sgid == egid ||
 506                    capable(CAP_SETGID))
 507                        new->egid = egid;
 508                else
 509                        goto error;
 510        }
 511
 512        if (rgid != (gid_t) -1 ||
 513            (egid != (gid_t) -1 && egid != old->gid))
 514                new->sgid = new->egid;
 515        new->fsgid = new->egid;
 516
 517        return commit_creds(new);
 518
 519error:
 520        abort_creds(new);
 521        return retval;
 522}
 523
 524/*
 525 * setgid() is implemented like SysV w/ SAVED_IDS 
 526 *
 527 * SMP: Same implicit races as above.
 528 */
 529SYSCALL_DEFINE1(setgid, gid_t, gid)
 530{
 531        const struct cred *old;
 532        struct cred *new;
 533        int retval;
 534
 535        new = prepare_creds();
 536        if (!new)
 537                return -ENOMEM;
 538        old = current_cred();
 539
 540        retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
 541        if (retval)
 542                goto error;
 543
 544        retval = -EPERM;
 545        if (capable(CAP_SETGID))
 546                new->gid = new->egid = new->sgid = new->fsgid = gid;
 547        else if (gid == old->gid || gid == old->sgid)
 548                new->egid = new->fsgid = gid;
 549        else
 550                goto error;
 551
 552        return commit_creds(new);
 553
 554error:
 555        abort_creds(new);
 556        return retval;
 557}
 558
 559/*
 560 * change the user struct in a credentials set to match the new UID
 561 */
 562static int set_user(struct cred *new)
 563{
 564        struct user_struct *new_user;
 565
 566        new_user = alloc_uid(current_user_ns(), new->uid);
 567        if (!new_user)
 568                return -EAGAIN;
 569
 570        if (!task_can_switch_user(new_user, current)) {
 571                free_uid(new_user);
 572                return -EINVAL;
 573        }
 574
 575        if (atomic_read(&new_user->processes) >=
 576                                current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
 577                        new_user != INIT_USER) {
 578                free_uid(new_user);
 579                return -EAGAIN;
 580        }
 581
 582        free_uid(new->user);
 583        new->user = new_user;
 584        return 0;
 585}
 586
 587/*
 588 * Unprivileged users may change the real uid to the effective uid
 589 * or vice versa.  (BSD-style)
 590 *
 591 * If you set the real uid at all, or set the effective uid to a value not
 592 * equal to the real uid, then the saved uid is set to the new effective uid.
 593 *
 594 * This makes it possible for a setuid program to completely drop its
 595 * privileges, which is often a useful assertion to make when you are doing
 596 * a security audit over a program.
 597 *
 598 * The general idea is that a program which uses just setreuid() will be
 599 * 100% compatible with BSD.  A program which uses just setuid() will be
 600 * 100% compatible with POSIX with saved IDs. 
 601 */
 602SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 603{
 604        const struct cred *old;
 605        struct cred *new;
 606        int retval;
 607
 608        new = prepare_creds();
 609        if (!new)
 610                return -ENOMEM;
 611        old = current_cred();
 612
 613        retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
 614        if (retval)
 615                goto error;
 616
 617        retval = -EPERM;
 618        if (ruid != (uid_t) -1) {
 619                new->uid = ruid;
 620                if (old->uid != ruid &&
 621                    old->euid != ruid &&
 622                    !capable(CAP_SETUID))
 623                        goto error;
 624        }
 625
 626        if (euid != (uid_t) -1) {
 627                new->euid = euid;
 628                if (old->uid != euid &&
 629                    old->euid != euid &&
 630                    old->suid != euid &&
 631                    !capable(CAP_SETUID))
 632                        goto error;
 633        }
 634
 635        if (new->uid != old->uid) {
 636                retval = set_user(new);
 637                if (retval < 0)
 638                        goto error;
 639        }
 640        if (ruid != (uid_t) -1 ||
 641            (euid != (uid_t) -1 && euid != old->uid))
 642                new->suid = new->euid;
 643        new->fsuid = new->euid;
 644
 645        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 646        if (retval < 0)
 647                goto error;
 648
 649        return commit_creds(new);
 650
 651error:
 652        abort_creds(new);
 653        return retval;
 654}
 655                
 656/*
 657 * setuid() is implemented like SysV with SAVED_IDS 
 658 * 
 659 * Note that SAVED_ID's is deficient in that a setuid root program
 660 * like sendmail, for example, cannot set its uid to be a normal 
 661 * user and then switch back, because if you're root, setuid() sets
 662 * the saved uid too.  If you don't like this, blame the bright people
 663 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 664 * will allow a root program to temporarily drop privileges and be able to
 665 * regain them by swapping the real and effective uid.  
 666 */
 667SYSCALL_DEFINE1(setuid, uid_t, uid)
 668{
 669        const struct cred *old;
 670        struct cred *new;
 671        int retval;
 672
 673        new = prepare_creds();
 674        if (!new)
 675                return -ENOMEM;
 676        old = current_cred();
 677
 678        retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
 679        if (retval)
 680                goto error;
 681
 682        retval = -EPERM;
 683        if (capable(CAP_SETUID)) {
 684                new->suid = new->uid = uid;
 685                if (uid != old->uid) {
 686                        retval = set_user(new);
 687                        if (retval < 0)
 688                                goto error;
 689                }
 690        } else if (uid != old->uid && uid != new->suid) {
 691                goto error;
 692        }
 693
 694        new->fsuid = new->euid = uid;
 695
 696        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 697        if (retval < 0)
 698                goto error;
 699
 700        return commit_creds(new);
 701
 702error:
 703        abort_creds(new);
 704        return retval;
 705}
 706
 707
 708/*
 709 * This function implements a generic ability to update ruid, euid,
 710 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 711 */
 712SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 713{
 714        const struct cred *old;
 715        struct cred *new;
 716        int retval;
 717
 718        new = prepare_creds();
 719        if (!new)
 720                return -ENOMEM;
 721
 722        retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
 723        if (retval)
 724                goto error;
 725        old = current_cred();
 726
 727        retval = -EPERM;
 728        if (!capable(CAP_SETUID)) {
 729                if (ruid != (uid_t) -1 && ruid != old->uid &&
 730                    ruid != old->euid  && ruid != old->suid)
 731                        goto error;
 732                if (euid != (uid_t) -1 && euid != old->uid &&
 733                    euid != old->euid  && euid != old->suid)
 734                        goto error;
 735                if (suid != (uid_t) -1 && suid != old->uid &&
 736                    suid != old->euid  && suid != old->suid)
 737                        goto error;
 738        }
 739
 740        if (ruid != (uid_t) -1) {
 741                new->uid = ruid;
 742                if (ruid != old->uid) {
 743                        retval = set_user(new);
 744                        if (retval < 0)
 745                                goto error;
 746                }
 747        }
 748        if (euid != (uid_t) -1)
 749                new->euid = euid;
 750        if (suid != (uid_t) -1)
 751                new->suid = suid;
 752        new->fsuid = new->euid;
 753
 754        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 755        if (retval < 0)
 756                goto error;
 757
 758        return commit_creds(new);
 759
 760error:
 761        abort_creds(new);
 762        return retval;
 763}
 764
 765SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
 766{
 767        const struct cred *cred = current_cred();
 768        int retval;
 769
 770        if (!(retval   = put_user(cred->uid,  ruid)) &&
 771            !(retval   = put_user(cred->euid, euid)))
 772                retval = put_user(cred->suid, suid);
 773
 774        return retval;
 775}
 776
 777/*
 778 * Same as above, but for rgid, egid, sgid.
 779 */
 780SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 781{
 782        const struct cred *old;
 783        struct cred *new;
 784        int retval;
 785
 786        new = prepare_creds();
 787        if (!new)
 788                return -ENOMEM;
 789        old = current_cred();
 790
 791        retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
 792        if (retval)
 793                goto error;
 794
 795        retval = -EPERM;
 796        if (!capable(CAP_SETGID)) {
 797                if (rgid != (gid_t) -1 && rgid != old->gid &&
 798                    rgid != old->egid  && rgid != old->sgid)
 799                        goto error;
 800                if (egid != (gid_t) -1 && egid != old->gid &&
 801                    egid != old->egid  && egid != old->sgid)
 802                        goto error;
 803                if (sgid != (gid_t) -1 && sgid != old->gid &&
 804                    sgid != old->egid  && sgid != old->sgid)
 805                        goto error;
 806        }
 807
 808        if (rgid != (gid_t) -1)
 809                new->gid = rgid;
 810        if (egid != (gid_t) -1)
 811                new->egid = egid;
 812        if (sgid != (gid_t) -1)
 813                new->sgid = sgid;
 814        new->fsgid = new->egid;
 815
 816        return commit_creds(new);
 817
 818error:
 819        abort_creds(new);
 820        return retval;
 821}
 822
 823SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
 824{
 825        const struct cred *cred = current_cred();
 826        int retval;
 827
 828        if (!(retval   = put_user(cred->gid,  rgid)) &&
 829            !(retval   = put_user(cred->egid, egid)))
 830                retval = put_user(cred->sgid, sgid);
 831
 832        return retval;
 833}
 834
 835
 836/*
 837 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 838 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 839 * whatever uid it wants to). It normally shadows "euid", except when
 840 * explicitly set by setfsuid() or for access..
 841 */
 842SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 843{
 844        const struct cred *old;
 845        struct cred *new;
 846        uid_t old_fsuid;
 847
 848        new = prepare_creds();
 849        if (!new)
 850                return current_fsuid();
 851        old = current_cred();
 852        old_fsuid = old->fsuid;
 853
 854        if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
 855                goto error;
 856
 857        if (uid == old->uid  || uid == old->euid  ||
 858            uid == old->suid || uid == old->fsuid ||
 859            capable(CAP_SETUID)) {
 860                if (uid != old_fsuid) {
 861                        new->fsuid = uid;
 862                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 863                                goto change_okay;
 864                }
 865        }
 866
 867error:
 868        abort_creds(new);
 869        return old_fsuid;
 870
 871change_okay:
 872        commit_creds(new);
 873        return old_fsuid;
 874}
 875
 876/*
 877 * Samma på svenska..
 878 */
 879SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 880{
 881        const struct cred *old;
 882        struct cred *new;
 883        gid_t old_fsgid;
 884
 885        new = prepare_creds();
 886        if (!new)
 887                return current_fsgid();
 888        old = current_cred();
 889        old_fsgid = old->fsgid;
 890
 891        if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
 892                goto error;
 893
 894        if (gid == old->gid  || gid == old->egid  ||
 895            gid == old->sgid || gid == old->fsgid ||
 896            capable(CAP_SETGID)) {
 897                if (gid != old_fsgid) {
 898                        new->fsgid = gid;
 899                        goto change_okay;
 900                }
 901        }
 902
 903error:
 904        abort_creds(new);
 905        return old_fsgid;
 906
 907change_okay:
 908        commit_creds(new);
 909        return old_fsgid;
 910}
 911
 912void do_sys_times(struct tms *tms)
 913{
 914        struct task_cputime cputime;
 915        cputime_t cutime, cstime;
 916
 917        thread_group_cputime(current, &cputime);
 918        spin_lock_irq(&current->sighand->siglock);
 919        cutime = current->signal->cutime;
 920        cstime = current->signal->cstime;
 921        spin_unlock_irq(&current->sighand->siglock);
 922        tms->tms_utime = cputime_to_clock_t(cputime.utime);
 923        tms->tms_stime = cputime_to_clock_t(cputime.stime);
 924        tms->tms_cutime = cputime_to_clock_t(cutime);
 925        tms->tms_cstime = cputime_to_clock_t(cstime);
 926}
 927
 928SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 929{
 930        if (tbuf) {
 931                struct tms tmp;
 932
 933                do_sys_times(&tmp);
 934                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 935                        return -EFAULT;
 936        }
 937        force_successful_syscall_return();
 938        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 939}
 940
 941/*
 942 * This needs some heavy checking ...
 943 * I just haven't the stomach for it. I also don't fully
 944 * understand sessions/pgrp etc. Let somebody who does explain it.
 945 *
 946 * OK, I think I have the protection semantics right.... this is really
 947 * only important on a multi-user system anyway, to make sure one user
 948 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 949 *
 950 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
 951 * LBT 04.03.94
 952 */
 953SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 954{
 955        struct task_struct *p;
 956        struct task_struct *group_leader = current->group_leader;
 957        struct pid *pgrp;
 958        int err;
 959
 960        if (!pid)
 961                pid = task_pid_vnr(group_leader);
 962        if (!pgid)
 963                pgid = pid;
 964        if (pgid < 0)
 965                return -EINVAL;
 966
 967        /* From this point forward we keep holding onto the tasklist lock
 968         * so that our parent does not change from under us. -DaveM
 969         */
 970        write_lock_irq(&tasklist_lock);
 971
 972        err = -ESRCH;
 973        p = find_task_by_vpid(pid);
 974        if (!p)
 975                goto out;
 976
 977        err = -EINVAL;
 978        if (!thread_group_leader(p))
 979                goto out;
 980
 981        if (same_thread_group(p->real_parent, group_leader)) {
 982                err = -EPERM;
 983                if (task_session(p) != task_session(group_leader))
 984                        goto out;
 985                err = -EACCES;
 986                if (p->did_exec)
 987                        goto out;
 988        } else {
 989                err = -ESRCH;
 990                if (p != group_leader)
 991                        goto out;
 992        }
 993
 994        err = -EPERM;
 995        if (p->signal->leader)
 996                goto out;
 997
 998        pgrp = task_pid(p);
 999        if (pgid != pid) {
1000                struct task_struct *g;
1001
1002                pgrp = find_vpid(pgid);
1003                g = pid_task(pgrp, PIDTYPE_PGID);
1004                if (!g || task_session(g) != task_session(group_leader))
1005                        goto out;
1006        }
1007
1008        err = security_task_setpgid(p, pgid);
1009        if (err)
1010                goto out;
1011
1012        if (task_pgrp(p) != pgrp)
1013                change_pid(p, PIDTYPE_PGID, pgrp);
1014
1015        err = 0;
1016out:
1017        /* All paths lead to here, thus we are safe. -DaveM */
1018        write_unlock_irq(&tasklist_lock);
1019        return err;
1020}
1021
1022SYSCALL_DEFINE1(getpgid, pid_t, pid)
1023{
1024        struct task_struct *p;
1025        struct pid *grp;
1026        int retval;
1027
1028        rcu_read_lock();
1029        if (!pid)
1030                grp = task_pgrp(current);
1031        else {
1032                retval = -ESRCH;
1033                p = find_task_by_vpid(pid);
1034                if (!p)
1035                        goto out;
1036                grp = task_pgrp(p);
1037                if (!grp)
1038                        goto out;
1039
1040                retval = security_task_getpgid(p);
1041                if (retval)
1042                        goto out;
1043        }
1044        retval = pid_vnr(grp);
1045out:
1046        rcu_read_unlock();
1047        return retval;
1048}
1049
1050#ifdef __ARCH_WANT_SYS_GETPGRP
1051
1052SYSCALL_DEFINE0(getpgrp)
1053{
1054        return sys_getpgid(0);
1055}
1056
1057#endif
1058
1059SYSCALL_DEFINE1(getsid, pid_t, pid)
1060{
1061        struct task_struct *p;
1062        struct pid *sid;
1063        int retval;
1064
1065        rcu_read_lock();
1066        if (!pid)
1067                sid = task_session(current);
1068        else {
1069                retval = -ESRCH;
1070                p = find_task_by_vpid(pid);
1071                if (!p)
1072                        goto out;
1073                sid = task_session(p);
1074                if (!sid)
1075                        goto out;
1076
1077                retval = security_task_getsid(p);
1078                if (retval)
1079                        goto out;
1080        }
1081        retval = pid_vnr(sid);
1082out:
1083        rcu_read_unlock();
1084        return retval;
1085}
1086
1087SYSCALL_DEFINE0(setsid)
1088{
1089        struct task_struct *group_leader = current->group_leader;
1090        struct pid *sid = task_pid(group_leader);
1091        pid_t session = pid_vnr(sid);
1092        int err = -EPERM;
1093
1094        write_lock_irq(&tasklist_lock);
1095        /* Fail if I am already a session leader */
1096        if (group_leader->signal->leader)
1097                goto out;
1098
1099        /* Fail if a process group id already exists that equals the
1100         * proposed session id.
1101         */
1102        if (pid_task(sid, PIDTYPE_PGID))
1103                goto out;
1104
1105        group_leader->signal->leader = 1;
1106        __set_special_pids(sid);
1107
1108        proc_clear_tty(group_leader);
1109
1110        err = session;
1111out:
1112        write_unlock_irq(&tasklist_lock);
1113        if (err > 0)
1114                proc_sid_connector(group_leader);
1115        return err;
1116}
1117
1118DECLARE_RWSEM(uts_sem);
1119
1120SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1121{
1122        int errno = 0;
1123
1124        down_read(&uts_sem);
1125        if (copy_to_user(name, utsname(), sizeof *name))
1126                errno = -EFAULT;
1127        up_read(&uts_sem);
1128        return errno;
1129}
1130
1131SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1132{
1133        int errno;
1134        char tmp[__NEW_UTS_LEN];
1135
1136        if (!capable(CAP_SYS_ADMIN))
1137                return -EPERM;
1138        if (len < 0 || len > __NEW_UTS_LEN)
1139                return -EINVAL;
1140        down_write(&uts_sem);
1141        errno = -EFAULT;
1142        if (!copy_from_user(tmp, name, len)) {
1143                struct new_utsname *u = utsname();
1144
1145                memcpy(u->nodename, tmp, len);
1146                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1147                errno = 0;
1148        }
1149        up_write(&uts_sem);
1150        return errno;
1151}
1152
1153#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1154
1155SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1156{
1157        int i, errno;
1158        struct new_utsname *u;
1159
1160        if (len < 0)
1161                return -EINVAL;
1162        down_read(&uts_sem);
1163        u = utsname();
1164        i = 1 + strlen(u->nodename);
1165        if (i > len)
1166                i = len;
1167        errno = 0;
1168        if (copy_to_user(name, u->nodename, i))
1169                errno = -EFAULT;
1170        up_read(&uts_sem);
1171        return errno;
1172}
1173
1174#endif
1175
1176/*
1177 * Only setdomainname; getdomainname can be implemented by calling
1178 * uname()
1179 */
1180SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1181{
1182        int errno;
1183        char tmp[__NEW_UTS_LEN];
1184
1185        if (!capable(CAP_SYS_ADMIN))
1186                return -EPERM;
1187        if (len < 0 || len > __NEW_UTS_LEN)
1188                return -EINVAL;
1189
1190        down_write(&uts_sem);
1191        errno = -EFAULT;
1192        if (!copy_from_user(tmp, name, len)) {
1193                struct new_utsname *u = utsname();
1194
1195                memcpy(u->domainname, tmp, len);
1196                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1197                errno = 0;
1198        }
1199        up_write(&uts_sem);
1200        return errno;
1201}
1202
1203SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1204{
1205        if (resource >= RLIM_NLIMITS)
1206                return -EINVAL;
1207        else {
1208                struct rlimit value;
1209                task_lock(current->group_leader);
1210                value = current->signal->rlim[resource];
1211                task_unlock(current->group_leader);
1212                return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1213        }
1214}
1215
1216#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1217
1218/*
1219 *      Back compatibility for getrlimit. Needed for some apps.
1220 */
1221 
1222SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1223                struct rlimit __user *, rlim)
1224{
1225        struct rlimit x;
1226        if (resource >= RLIM_NLIMITS)
1227                return -EINVAL;
1228
1229        task_lock(current->group_leader);
1230        x = current->signal->rlim[resource];
1231        task_unlock(current->group_leader);
1232        if (x.rlim_cur > 0x7FFFFFFF)
1233                x.rlim_cur = 0x7FFFFFFF;
1234        if (x.rlim_max > 0x7FFFFFFF)
1235                x.rlim_max = 0x7FFFFFFF;
1236        return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1237}
1238
1239#endif
1240
1241SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1242{
1243        struct rlimit new_rlim, *old_rlim;
1244        int retval;
1245
1246        if (resource >= RLIM_NLIMITS)
1247                return -EINVAL;
1248        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1249                return -EFAULT;
1250        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1251                return -EINVAL;
1252        old_rlim = current->signal->rlim + resource;
1253        if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1254            !capable(CAP_SYS_RESOURCE))
1255                return -EPERM;
1256        if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1257                return -EPERM;
1258
1259        retval = security_task_setrlimit(resource, &new_rlim);
1260        if (retval)
1261                return retval;
1262
1263        if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1264                /*
1265                 * The caller is asking for an immediate RLIMIT_CPU
1266                 * expiry.  But we use the zero value to mean "it was
1267                 * never set".  So let's cheat and make it one second
1268                 * instead
1269                 */
1270                new_rlim.rlim_cur = 1;
1271        }
1272
1273        task_lock(current->group_leader);
1274        *old_rlim = new_rlim;
1275        task_unlock(current->group_leader);
1276
1277        if (resource != RLIMIT_CPU)
1278                goto out;
1279
1280        /*
1281         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1282         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1283         * very long-standing error, and fixing it now risks breakage of
1284         * applications, so we live with it
1285         */
1286        if (new_rlim.rlim_cur == RLIM_INFINITY)
1287                goto out;
1288
1289        update_rlimit_cpu(new_rlim.rlim_cur);
1290out:
1291        return 0;
1292}
1293
1294/*
1295 * It would make sense to put struct rusage in the task_struct,
1296 * except that would make the task_struct be *really big*.  After
1297 * task_struct gets moved into malloc'ed memory, it would
1298 * make sense to do this.  It will make moving the rest of the information
1299 * a lot simpler!  (Which we're not doing right now because we're not
1300 * measuring them yet).
1301 *
1302 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1303 * races with threads incrementing their own counters.  But since word
1304 * reads are atomic, we either get new values or old values and we don't
1305 * care which for the sums.  We always take the siglock to protect reading
1306 * the c* fields from p->signal from races with exit.c updating those
1307 * fields when reaping, so a sample either gets all the additions of a
1308 * given child after it's reaped, or none so this sample is before reaping.
1309 *
1310 * Locking:
1311 * We need to take the siglock for CHILDEREN, SELF and BOTH
1312 * for  the cases current multithreaded, non-current single threaded
1313 * non-current multithreaded.  Thread traversal is now safe with
1314 * the siglock held.
1315 * Strictly speaking, we donot need to take the siglock if we are current and
1316 * single threaded,  as no one else can take our signal_struct away, no one
1317 * else can  reap the  children to update signal->c* counters, and no one else
1318 * can race with the signal-> fields. If we do not take any lock, the
1319 * signal-> fields could be read out of order while another thread was just
1320 * exiting. So we should  place a read memory barrier when we avoid the lock.
1321 * On the writer side,  write memory barrier is implied in  __exit_signal
1322 * as __exit_signal releases  the siglock spinlock after updating the signal->
1323 * fields. But we don't do this yet to keep things simple.
1324 *
1325 */
1326
1327static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1328{
1329        r->ru_nvcsw += t->nvcsw;
1330        r->ru_nivcsw += t->nivcsw;
1331        r->ru_minflt += t->min_flt;
1332        r->ru_majflt += t->maj_flt;
1333        r->ru_inblock += task_io_get_inblock(t);
1334        r->ru_oublock += task_io_get_oublock(t);
1335}
1336
1337static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1338{
1339        struct task_struct *t;
1340        unsigned long flags;
1341        cputime_t utime, stime;
1342        struct task_cputime cputime;
1343        unsigned long maxrss = 0;
1344
1345        memset((char *) r, 0, sizeof *r);
1346        utime = stime = cputime_zero;
1347
1348        if (who == RUSAGE_THREAD) {
1349                utime = task_utime(current);
1350                stime = task_stime(current);
1351                accumulate_thread_rusage(p, r);
1352                maxrss = p->signal->maxrss;
1353                goto out;
1354        }
1355
1356        if (!lock_task_sighand(p, &flags))
1357                return;
1358
1359        switch (who) {
1360                case RUSAGE_BOTH:
1361                case RUSAGE_CHILDREN:
1362                        utime = p->signal->cutime;
1363                        stime = p->signal->cstime;
1364                        r->ru_nvcsw = p->signal->cnvcsw;
1365                        r->ru_nivcsw = p->signal->cnivcsw;
1366                        r->ru_minflt = p->signal->cmin_flt;
1367                        r->ru_majflt = p->signal->cmaj_flt;
1368                        r->ru_inblock = p->signal->cinblock;
1369                        r->ru_oublock = p->signal->coublock;
1370                        maxrss = p->signal->cmaxrss;
1371
1372                        if (who == RUSAGE_CHILDREN)
1373                                break;
1374
1375                case RUSAGE_SELF:
1376                        thread_group_cputime(p, &cputime);
1377                        utime = cputime_add(utime, cputime.utime);
1378                        stime = cputime_add(stime, cputime.stime);
1379                        r->ru_nvcsw += p->signal->nvcsw;
1380                        r->ru_nivcsw += p->signal->nivcsw;
1381                        r->ru_minflt += p->signal->min_flt;
1382                        r->ru_majflt += p->signal->maj_flt;
1383                        r->ru_inblock += p->signal->inblock;
1384                        r->ru_oublock += p->signal->oublock;
1385                        if (maxrss < p->signal->maxrss)
1386                                maxrss = p->signal->maxrss;
1387                        t = p;
1388                        do {
1389                                accumulate_thread_rusage(t, r);
1390                                t = next_thread(t);
1391                        } while (t != p);
1392                        break;
1393
1394                default:
1395                        BUG();
1396        }
1397        unlock_task_sighand(p, &flags);
1398
1399out:
1400        cputime_to_timeval(utime, &r->ru_utime);
1401        cputime_to_timeval(stime, &r->ru_stime);
1402
1403        if (who != RUSAGE_CHILDREN) {
1404                struct mm_struct *mm = get_task_mm(p);
1405                if (mm) {
1406                        setmax_mm_hiwater_rss(&maxrss, mm);
1407                        mmput(mm);
1408                }
1409        }
1410        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1411}
1412
1413int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1414{
1415        struct rusage r;
1416        k_getrusage(p, who, &r);
1417        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1418}
1419
1420SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1421{
1422        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1423            who != RUSAGE_THREAD)
1424                return -EINVAL;
1425        return getrusage(current, who, ru);
1426}
1427
1428SYSCALL_DEFINE1(umask, int, mask)
1429{
1430        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1431        return mask;
1432}
1433
1434SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1435                unsigned long, arg4, unsigned long, arg5)
1436{
1437        struct task_struct *me = current;
1438        unsigned char comm[sizeof(me->comm)];
1439        long error;
1440
1441        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1442        if (error != -ENOSYS)
1443                return error;
1444
1445        error = 0;
1446        switch (option) {
1447                case PR_SET_PDEATHSIG:
1448                        if (!valid_signal(arg2)) {
1449                                error = -EINVAL;
1450                                break;
1451                        }
1452                        me->pdeath_signal = arg2;
1453                        error = 0;
1454                        break;
1455                case PR_GET_PDEATHSIG:
1456                        error = put_user(me->pdeath_signal, (int __user *)arg2);
1457                        break;
1458                case PR_GET_DUMPABLE:
1459                        error = get_dumpable(me->mm);
1460                        break;
1461                case PR_SET_DUMPABLE:
1462                        if (arg2 < 0 || arg2 > 1) {
1463                                error = -EINVAL;
1464                                break;
1465                        }
1466                        set_dumpable(me->mm, arg2);
1467                        error = 0;
1468                        break;
1469
1470                case PR_SET_UNALIGN:
1471                        error = SET_UNALIGN_CTL(me, arg2);
1472                        break;
1473                case PR_GET_UNALIGN:
1474                        error = GET_UNALIGN_CTL(me, arg2);
1475                        break;
1476                case PR_SET_FPEMU:
1477                        error = SET_FPEMU_CTL(me, arg2);
1478                        break;
1479                case PR_GET_FPEMU:
1480                        error = GET_FPEMU_CTL(me, arg2);
1481                        break;
1482                case PR_SET_FPEXC:
1483                        error = SET_FPEXC_CTL(me, arg2);
1484                        break;
1485                case PR_GET_FPEXC:
1486                        error = GET_FPEXC_CTL(me, arg2);
1487                        break;
1488                case PR_GET_TIMING:
1489                        error = PR_TIMING_STATISTICAL;
1490                        break;
1491                case PR_SET_TIMING:
1492                        if (arg2 != PR_TIMING_STATISTICAL)
1493                                error = -EINVAL;
1494                        else
1495                                error = 0;
1496                        break;
1497
1498                case PR_SET_NAME:
1499                        comm[sizeof(me->comm)-1] = 0;
1500                        if (strncpy_from_user(comm, (char __user *)arg2,
1501                                              sizeof(me->comm) - 1) < 0)
1502                                return -EFAULT;
1503                        set_task_comm(me, comm);
1504                        return 0;
1505                case PR_GET_NAME:
1506                        get_task_comm(comm, me);
1507                        if (copy_to_user((char __user *)arg2, comm,
1508                                         sizeof(comm)))
1509                                return -EFAULT;
1510                        return 0;
1511                case PR_GET_ENDIAN:
1512                        error = GET_ENDIAN(me, arg2);
1513                        break;
1514                case PR_SET_ENDIAN:
1515                        error = SET_ENDIAN(me, arg2);
1516                        break;
1517
1518                case PR_GET_SECCOMP:
1519                        error = prctl_get_seccomp();
1520                        break;
1521                case PR_SET_SECCOMP:
1522                        error = prctl_set_seccomp(arg2);
1523                        break;
1524                case PR_GET_TSC:
1525                        error = GET_TSC_CTL(arg2);
1526                        break;
1527                case PR_SET_TSC:
1528                        error = SET_TSC_CTL(arg2);
1529                        break;
1530                case PR_TASK_PERF_EVENTS_DISABLE:
1531                        error = perf_event_task_disable();
1532                        break;
1533                case PR_TASK_PERF_EVENTS_ENABLE:
1534                        error = perf_event_task_enable();
1535                        break;
1536                case PR_GET_TIMERSLACK:
1537                        error = current->timer_slack_ns;
1538                        break;
1539                case PR_SET_TIMERSLACK:
1540                        if (arg2 <= 0)
1541                                current->timer_slack_ns =
1542                                        current->default_timer_slack_ns;
1543                        else
1544                                current->timer_slack_ns = arg2;
1545                        error = 0;
1546                        break;
1547                case PR_MCE_KILL:
1548                        if (arg4 | arg5)
1549                                return -EINVAL;
1550                        switch (arg2) {
1551                        case PR_MCE_KILL_CLEAR:
1552                                if (arg3 != 0)
1553                                        return -EINVAL;
1554                                current->flags &= ~PF_MCE_PROCESS;
1555                                break;
1556                        case PR_MCE_KILL_SET:
1557                                current->flags |= PF_MCE_PROCESS;
1558                                if (arg3 == PR_MCE_KILL_EARLY)
1559                                        current->flags |= PF_MCE_EARLY;
1560                                else if (arg3 == PR_MCE_KILL_LATE)
1561                                        current->flags &= ~PF_MCE_EARLY;
1562                                else if (arg3 == PR_MCE_KILL_DEFAULT)
1563                                        current->flags &=
1564                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1565                                else
1566                                        return -EINVAL;
1567                                break;
1568                        default:
1569                                return -EINVAL;
1570                        }
1571                        error = 0;
1572                        break;
1573                case PR_MCE_KILL_GET:
1574                        if (arg2 | arg3 | arg4 | arg5)
1575                                return -EINVAL;
1576                        if (current->flags & PF_MCE_PROCESS)
1577                                error = (current->flags & PF_MCE_EARLY) ?
1578                                        PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1579                        else
1580                                error = PR_MCE_KILL_DEFAULT;
1581                        break;
1582                default:
1583                        error = -EINVAL;
1584                        break;
1585        }
1586        return error;
1587}
1588
1589SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1590                struct getcpu_cache __user *, unused)
1591{
1592        int err = 0;
1593        int cpu = raw_smp_processor_id();
1594        if (cpup)
1595                err |= put_user(cpu, cpup);
1596        if (nodep)
1597                err |= put_user(cpu_to_node(cpu), nodep);
1598        return err ? -EFAULT : 0;
1599}
1600
1601char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1602
1603static void argv_cleanup(char **argv, char **envp)
1604{
1605        argv_free(argv);
1606}
1607
1608/**
1609 * orderly_poweroff - Trigger an orderly system poweroff
1610 * @force: force poweroff if command execution fails
1611 *
1612 * This may be called from any context to trigger a system shutdown.
1613 * If the orderly shutdown fails, it will force an immediate shutdown.
1614 */
1615int orderly_poweroff(bool force)
1616{
1617        int argc;
1618        char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1619        static char *envp[] = {
1620                "HOME=/",
1621                "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1622                NULL
1623        };
1624        int ret = -ENOMEM;
1625        struct subprocess_info *info;
1626
1627        if (argv == NULL) {
1628                printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1629                       __func__, poweroff_cmd);
1630                goto out;
1631        }
1632
1633        info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1634        if (info == NULL) {
1635                argv_free(argv);
1636                goto out;
1637        }
1638
1639        call_usermodehelper_setcleanup(info, argv_cleanup);
1640
1641        ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1642
1643  out:
1644        if (ret && force) {
1645                printk(KERN_WARNING "Failed to start orderly shutdown: "
1646                       "forcing the issue\n");
1647
1648                /* I guess this should try to kick off some daemon to
1649                   sync and poweroff asap.  Or not even bother syncing
1650                   if we're doing an emergency shutdown? */
1651                emergency_sync();
1652                kernel_power_off();
1653        }
1654
1655        return ret;
1656}
1657EXPORT_SYMBOL_GPL(orderly_poweroff);
1658