linux/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  This file contains the interface functions for the various
   7 *  time related system calls: time, stime, gettimeofday, settimeofday,
   8 *                             adjtime
   9 */
  10/*
  11 * Modification history kernel/time.c
  12 *
  13 * 1993-09-02    Philip Gladstone
  14 *      Created file with time related functions from sched.c and adjtimex()
  15 * 1993-10-08    Torsten Duwe
  16 *      adjtime interface update and CMOS clock write code
  17 * 1995-08-13    Torsten Duwe
  18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19 * 1999-01-16    Ulrich Windl
  20 *      Introduced error checking for many cases in adjtimex().
  21 *      Updated NTP code according to technical memorandum Jan '96
  22 *      "A Kernel Model for Precision Timekeeping" by Dave Mills
  23 *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24 *      (Even though the technical memorandum forbids it)
  25 * 2004-07-14    Christoph Lameter
  26 *      Added getnstimeofday to allow the posix timer functions to return
  27 *      with nanosecond accuracy
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/timex.h>
  32#include <linux/capability.h>
  33#include <linux/clocksource.h>
  34#include <linux/errno.h>
  35#include <linux/syscalls.h>
  36#include <linux/security.h>
  37#include <linux/fs.h>
  38#include <linux/slab.h>
  39#include <linux/math64.h>
  40#include <linux/ptrace.h>
  41
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44
  45#include "timeconst.h"
  46
  47/*
  48 * The timezone where the local system is located.  Used as a default by some
  49 * programs who obtain this value by using gettimeofday.
  50 */
  51struct timezone sys_tz;
  52
  53EXPORT_SYMBOL(sys_tz);
  54
  55#ifdef __ARCH_WANT_SYS_TIME
  56
  57/*
  58 * sys_time() can be implemented in user-level using
  59 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  60 * why not move it into the appropriate arch directory (for those
  61 * architectures that need it).
  62 */
  63SYSCALL_DEFINE1(time, time_t __user *, tloc)
  64{
  65        time_t i = get_seconds();
  66
  67        if (tloc) {
  68                if (put_user(i,tloc))
  69                        return -EFAULT;
  70        }
  71        force_successful_syscall_return();
  72        return i;
  73}
  74
  75/*
  76 * sys_stime() can be implemented in user-level using
  77 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  78 * why not move it into the appropriate arch directory (for those
  79 * architectures that need it).
  80 */
  81
  82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  83{
  84        struct timespec tv;
  85        int err;
  86
  87        if (get_user(tv.tv_sec, tptr))
  88                return -EFAULT;
  89
  90        tv.tv_nsec = 0;
  91
  92        err = security_settime(&tv, NULL);
  93        if (err)
  94                return err;
  95
  96        do_settimeofday(&tv);
  97        return 0;
  98}
  99
 100#endif /* __ARCH_WANT_SYS_TIME */
 101
 102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
 103                struct timezone __user *, tz)
 104{
 105        if (likely(tv != NULL)) {
 106                struct timeval ktv;
 107                do_gettimeofday(&ktv);
 108                if (copy_to_user(tv, &ktv, sizeof(ktv)))
 109                        return -EFAULT;
 110        }
 111        if (unlikely(tz != NULL)) {
 112                if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 113                        return -EFAULT;
 114        }
 115        return 0;
 116}
 117
 118/*
 119 * Adjust the time obtained from the CMOS to be UTC time instead of
 120 * local time.
 121 *
 122 * This is ugly, but preferable to the alternatives.  Otherwise we
 123 * would either need to write a program to do it in /etc/rc (and risk
 124 * confusion if the program gets run more than once; it would also be
 125 * hard to make the program warp the clock precisely n hours)  or
 126 * compile in the timezone information into the kernel.  Bad, bad....
 127 *
 128 *                                              - TYT, 1992-01-01
 129 *
 130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 131 * as real UNIX machines always do it. This avoids all headaches about
 132 * daylight saving times and warping kernel clocks.
 133 */
 134static inline void warp_clock(void)
 135{
 136        write_seqlock_irq(&xtime_lock);
 137        wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
 138        xtime.tv_sec += sys_tz.tz_minuteswest * 60;
 139        update_xtime_cache(0);
 140        write_sequnlock_irq(&xtime_lock);
 141        clock_was_set();
 142}
 143
 144/*
 145 * In case for some reason the CMOS clock has not already been running
 146 * in UTC, but in some local time: The first time we set the timezone,
 147 * we will warp the clock so that it is ticking UTC time instead of
 148 * local time. Presumably, if someone is setting the timezone then we
 149 * are running in an environment where the programs understand about
 150 * timezones. This should be done at boot time in the /etc/rc script,
 151 * as soon as possible, so that the clock can be set right. Otherwise,
 152 * various programs will get confused when the clock gets warped.
 153 */
 154
 155int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
 156{
 157        static int firsttime = 1;
 158        int error = 0;
 159
 160        if (tv && !timespec_valid(tv))
 161                return -EINVAL;
 162
 163        error = security_settime(tv, tz);
 164        if (error)
 165                return error;
 166
 167        if (tz) {
 168                /* SMP safe, global irq locking makes it work. */
 169                sys_tz = *tz;
 170                update_vsyscall_tz();
 171                if (firsttime) {
 172                        firsttime = 0;
 173                        if (!tv)
 174                                warp_clock();
 175                }
 176        }
 177        if (tv)
 178        {
 179                /* SMP safe, again the code in arch/foo/time.c should
 180                 * globally block out interrupts when it runs.
 181                 */
 182                return do_settimeofday(tv);
 183        }
 184        return 0;
 185}
 186
 187SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
 188                struct timezone __user *, tz)
 189{
 190        struct timeval user_tv;
 191        struct timespec new_ts;
 192        struct timezone new_tz;
 193
 194        if (tv) {
 195                if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 196                        return -EFAULT;
 197                new_ts.tv_sec = user_tv.tv_sec;
 198                new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 199        }
 200        if (tz) {
 201                if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 202                        return -EFAULT;
 203        }
 204
 205        return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 206}
 207
 208SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 209{
 210        struct timex txc;               /* Local copy of parameter */
 211        int ret;
 212
 213        /* Copy the user data space into the kernel copy
 214         * structure. But bear in mind that the structures
 215         * may change
 216         */
 217        if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
 218                return -EFAULT;
 219        ret = do_adjtimex(&txc);
 220        return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 221}
 222
 223/**
 224 * current_fs_time - Return FS time
 225 * @sb: Superblock.
 226 *
 227 * Return the current time truncated to the time granularity supported by
 228 * the fs.
 229 */
 230struct timespec current_fs_time(struct super_block *sb)
 231{
 232        struct timespec now = current_kernel_time();
 233        return timespec_trunc(now, sb->s_time_gran);
 234}
 235EXPORT_SYMBOL(current_fs_time);
 236
 237/*
 238 * Convert jiffies to milliseconds and back.
 239 *
 240 * Avoid unnecessary multiplications/divisions in the
 241 * two most common HZ cases:
 242 */
 243unsigned int inline jiffies_to_msecs(const unsigned long j)
 244{
 245#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 246        return (MSEC_PER_SEC / HZ) * j;
 247#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 248        return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 249#else
 250# if BITS_PER_LONG == 32
 251        return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 252# else
 253        return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
 254# endif
 255#endif
 256}
 257EXPORT_SYMBOL(jiffies_to_msecs);
 258
 259unsigned int inline jiffies_to_usecs(const unsigned long j)
 260{
 261#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
 262        return (USEC_PER_SEC / HZ) * j;
 263#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
 264        return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
 265#else
 266# if BITS_PER_LONG == 32
 267        return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 268# else
 269        return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 270# endif
 271#endif
 272}
 273EXPORT_SYMBOL(jiffies_to_usecs);
 274
 275/**
 276 * timespec_trunc - Truncate timespec to a granularity
 277 * @t: Timespec
 278 * @gran: Granularity in ns.
 279 *
 280 * Truncate a timespec to a granularity. gran must be smaller than a second.
 281 * Always rounds down.
 282 *
 283 * This function should be only used for timestamps returned by
 284 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
 285 * it doesn't handle the better resolution of the latter.
 286 */
 287struct timespec timespec_trunc(struct timespec t, unsigned gran)
 288{
 289        /*
 290         * Division is pretty slow so avoid it for common cases.
 291         * Currently current_kernel_time() never returns better than
 292         * jiffies resolution. Exploit that.
 293         */
 294        if (gran <= jiffies_to_usecs(1) * 1000) {
 295                /* nothing */
 296        } else if (gran == 1000000000) {
 297                t.tv_nsec = 0;
 298        } else {
 299                t.tv_nsec -= t.tv_nsec % gran;
 300        }
 301        return t;
 302}
 303EXPORT_SYMBOL(timespec_trunc);
 304
 305#ifndef CONFIG_GENERIC_TIME
 306/*
 307 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
 308 * and therefore only yields usec accuracy
 309 */
 310void getnstimeofday(struct timespec *tv)
 311{
 312        struct timeval x;
 313
 314        do_gettimeofday(&x);
 315        tv->tv_sec = x.tv_sec;
 316        tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
 317}
 318EXPORT_SYMBOL_GPL(getnstimeofday);
 319#endif
 320
 321/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 322 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 323 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 324 *
 325 * [For the Julian calendar (which was used in Russia before 1917,
 326 * Britain & colonies before 1752, anywhere else before 1582,
 327 * and is still in use by some communities) leave out the
 328 * -year/100+year/400 terms, and add 10.]
 329 *
 330 * This algorithm was first published by Gauss (I think).
 331 *
 332 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 333 * machines where long is 32-bit! (However, as time_t is signed, we
 334 * will already get problems at other places on 2038-01-19 03:14:08)
 335 */
 336unsigned long
 337mktime(const unsigned int year0, const unsigned int mon0,
 338       const unsigned int day, const unsigned int hour,
 339       const unsigned int min, const unsigned int sec)
 340{
 341        unsigned int mon = mon0, year = year0;
 342
 343        /* 1..12 -> 11,12,1..10 */
 344        if (0 >= (int) (mon -= 2)) {
 345                mon += 12;      /* Puts Feb last since it has leap day */
 346                year -= 1;
 347        }
 348
 349        return ((((unsigned long)
 350                  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 351                  year*365 - 719499
 352            )*24 + hour /* now have hours */
 353          )*60 + min /* now have minutes */
 354        )*60 + sec; /* finally seconds */
 355}
 356
 357EXPORT_SYMBOL(mktime);
 358
 359/**
 360 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 361 *
 362 * @ts:         pointer to timespec variable to be set
 363 * @sec:        seconds to set
 364 * @nsec:       nanoseconds to set
 365 *
 366 * Set seconds and nanoseconds field of a timespec variable and
 367 * normalize to the timespec storage format
 368 *
 369 * Note: The tv_nsec part is always in the range of
 370 *      0 <= tv_nsec < NSEC_PER_SEC
 371 * For negative values only the tv_sec field is negative !
 372 */
 373void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
 374{
 375        while (nsec >= NSEC_PER_SEC) {
 376                /*
 377                 * The following asm() prevents the compiler from
 378                 * optimising this loop into a modulo operation. See
 379                 * also __iter_div_u64_rem() in include/linux/time.h
 380                 */
 381                asm("" : "+rm"(nsec));
 382                nsec -= NSEC_PER_SEC;
 383                ++sec;
 384        }
 385        while (nsec < 0) {
 386                asm("" : "+rm"(nsec));
 387                nsec += NSEC_PER_SEC;
 388                --sec;
 389        }
 390        ts->tv_sec = sec;
 391        ts->tv_nsec = nsec;
 392}
 393EXPORT_SYMBOL(set_normalized_timespec);
 394
 395/**
 396 * ns_to_timespec - Convert nanoseconds to timespec
 397 * @nsec:       the nanoseconds value to be converted
 398 *
 399 * Returns the timespec representation of the nsec parameter.
 400 */
 401struct timespec ns_to_timespec(const s64 nsec)
 402{
 403        struct timespec ts;
 404        s32 rem;
 405
 406        if (!nsec)
 407                return (struct timespec) {0, 0};
 408
 409        ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
 410        if (unlikely(rem < 0)) {
 411                ts.tv_sec--;
 412                rem += NSEC_PER_SEC;
 413        }
 414        ts.tv_nsec = rem;
 415
 416        return ts;
 417}
 418EXPORT_SYMBOL(ns_to_timespec);
 419
 420/**
 421 * ns_to_timeval - Convert nanoseconds to timeval
 422 * @nsec:       the nanoseconds value to be converted
 423 *
 424 * Returns the timeval representation of the nsec parameter.
 425 */
 426struct timeval ns_to_timeval(const s64 nsec)
 427{
 428        struct timespec ts = ns_to_timespec(nsec);
 429        struct timeval tv;
 430
 431        tv.tv_sec = ts.tv_sec;
 432        tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
 433
 434        return tv;
 435}
 436EXPORT_SYMBOL(ns_to_timeval);
 437
 438/*
 439 * When we convert to jiffies then we interpret incoming values
 440 * the following way:
 441 *
 442 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 443 *
 444 * - 'too large' values [that would result in larger than
 445 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 446 *
 447 * - all other values are converted to jiffies by either multiplying
 448 *   the input value by a factor or dividing it with a factor
 449 *
 450 * We must also be careful about 32-bit overflows.
 451 */
 452unsigned long msecs_to_jiffies(const unsigned int m)
 453{
 454        /*
 455         * Negative value, means infinite timeout:
 456         */
 457        if ((int)m < 0)
 458                return MAX_JIFFY_OFFSET;
 459
 460#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 461        /*
 462         * HZ is equal to or smaller than 1000, and 1000 is a nice
 463         * round multiple of HZ, divide with the factor between them,
 464         * but round upwards:
 465         */
 466        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 467#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 468        /*
 469         * HZ is larger than 1000, and HZ is a nice round multiple of
 470         * 1000 - simply multiply with the factor between them.
 471         *
 472         * But first make sure the multiplication result cannot
 473         * overflow:
 474         */
 475        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 476                return MAX_JIFFY_OFFSET;
 477
 478        return m * (HZ / MSEC_PER_SEC);
 479#else
 480        /*
 481         * Generic case - multiply, round and divide. But first
 482         * check that if we are doing a net multiplication, that
 483         * we wouldn't overflow:
 484         */
 485        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 486                return MAX_JIFFY_OFFSET;
 487
 488        return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
 489                >> MSEC_TO_HZ_SHR32;
 490#endif
 491}
 492EXPORT_SYMBOL(msecs_to_jiffies);
 493
 494unsigned long usecs_to_jiffies(const unsigned int u)
 495{
 496        if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 497                return MAX_JIFFY_OFFSET;
 498#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
 499        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 500#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
 501        return u * (HZ / USEC_PER_SEC);
 502#else
 503        return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 504                >> USEC_TO_HZ_SHR32;
 505#endif
 506}
 507EXPORT_SYMBOL(usecs_to_jiffies);
 508
 509/*
 510 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 511 * that a remainder subtract here would not do the right thing as the
 512 * resolution values don't fall on second boundries.  I.e. the line:
 513 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 514 *
 515 * Rather, we just shift the bits off the right.
 516 *
 517 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 518 * value to a scaled second value.
 519 */
 520unsigned long
 521timespec_to_jiffies(const struct timespec *value)
 522{
 523        unsigned long sec = value->tv_sec;
 524        long nsec = value->tv_nsec + TICK_NSEC - 1;
 525
 526        if (sec >= MAX_SEC_IN_JIFFIES){
 527                sec = MAX_SEC_IN_JIFFIES;
 528                nsec = 0;
 529        }
 530        return (((u64)sec * SEC_CONVERSION) +
 531                (((u64)nsec * NSEC_CONVERSION) >>
 532                 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 533
 534}
 535EXPORT_SYMBOL(timespec_to_jiffies);
 536
 537void
 538jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
 539{
 540        /*
 541         * Convert jiffies to nanoseconds and separate with
 542         * one divide.
 543         */
 544        u32 rem;
 545        value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 546                                    NSEC_PER_SEC, &rem);
 547        value->tv_nsec = rem;
 548}
 549EXPORT_SYMBOL(jiffies_to_timespec);
 550
 551/* Same for "timeval"
 552 *
 553 * Well, almost.  The problem here is that the real system resolution is
 554 * in nanoseconds and the value being converted is in micro seconds.
 555 * Also for some machines (those that use HZ = 1024, in-particular),
 556 * there is a LARGE error in the tick size in microseconds.
 557
 558 * The solution we use is to do the rounding AFTER we convert the
 559 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 560 * Instruction wise, this should cost only an additional add with carry
 561 * instruction above the way it was done above.
 562 */
 563unsigned long
 564timeval_to_jiffies(const struct timeval *value)
 565{
 566        unsigned long sec = value->tv_sec;
 567        long usec = value->tv_usec;
 568
 569        if (sec >= MAX_SEC_IN_JIFFIES){
 570                sec = MAX_SEC_IN_JIFFIES;
 571                usec = 0;
 572        }
 573        return (((u64)sec * SEC_CONVERSION) +
 574                (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
 575                 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 576}
 577EXPORT_SYMBOL(timeval_to_jiffies);
 578
 579void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
 580{
 581        /*
 582         * Convert jiffies to nanoseconds and separate with
 583         * one divide.
 584         */
 585        u32 rem;
 586
 587        value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 588                                    NSEC_PER_SEC, &rem);
 589        value->tv_usec = rem / NSEC_PER_USEC;
 590}
 591EXPORT_SYMBOL(jiffies_to_timeval);
 592
 593/*
 594 * Convert jiffies/jiffies_64 to clock_t and back.
 595 */
 596clock_t jiffies_to_clock_t(long x)
 597{
 598#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 599# if HZ < USER_HZ
 600        return x * (USER_HZ / HZ);
 601# else
 602        return x / (HZ / USER_HZ);
 603# endif
 604#else
 605        return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 606#endif
 607}
 608EXPORT_SYMBOL(jiffies_to_clock_t);
 609
 610unsigned long clock_t_to_jiffies(unsigned long x)
 611{
 612#if (HZ % USER_HZ)==0
 613        if (x >= ~0UL / (HZ / USER_HZ))
 614                return ~0UL;
 615        return x * (HZ / USER_HZ);
 616#else
 617        /* Don't worry about loss of precision here .. */
 618        if (x >= ~0UL / HZ * USER_HZ)
 619                return ~0UL;
 620
 621        /* .. but do try to contain it here */
 622        return div_u64((u64)x * HZ, USER_HZ);
 623#endif
 624}
 625EXPORT_SYMBOL(clock_t_to_jiffies);
 626
 627u64 jiffies_64_to_clock_t(u64 x)
 628{
 629#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 630# if HZ < USER_HZ
 631        x = div_u64(x * USER_HZ, HZ);
 632# elif HZ > USER_HZ
 633        x = div_u64(x, HZ / USER_HZ);
 634# else
 635        /* Nothing to do */
 636# endif
 637#else
 638        /*
 639         * There are better ways that don't overflow early,
 640         * but even this doesn't overflow in hundreds of years
 641         * in 64 bits, so..
 642         */
 643        x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 644#endif
 645        return x;
 646}
 647EXPORT_SYMBOL(jiffies_64_to_clock_t);
 648
 649u64 nsec_to_clock_t(u64 x)
 650{
 651#if (NSEC_PER_SEC % USER_HZ) == 0
 652        return div_u64(x, NSEC_PER_SEC / USER_HZ);
 653#elif (USER_HZ % 512) == 0
 654        return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 655#else
 656        /*
 657         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 658         * overflow after 64.99 years.
 659         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 660         */
 661        return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 662#endif
 663}
 664
 665#if (BITS_PER_LONG < 64)
 666u64 get_jiffies_64(void)
 667{
 668        unsigned long seq;
 669        u64 ret;
 670
 671        do {
 672                seq = read_seqbegin(&xtime_lock);
 673                ret = jiffies_64;
 674        } while (read_seqretry(&xtime_lock, seq));
 675        return ret;
 676}
 677EXPORT_SYMBOL(get_jiffies_64);
 678#endif
 679
 680EXPORT_SYMBOL(jiffies);
 681
 682/*
 683 * Add two timespec values and do a safety check for overflow.
 684 * It's assumed that both values are valid (>= 0)
 685 */
 686struct timespec timespec_add_safe(const struct timespec lhs,
 687                                  const struct timespec rhs)
 688{
 689        struct timespec res;
 690
 691        set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
 692                                lhs.tv_nsec + rhs.tv_nsec);
 693
 694        if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
 695                res.tv_sec = TIME_T_MAX;
 696
 697        return res;
 698}
 699