linux/kernel/workqueue.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/workqueue.c
   3 *
   4 * Generic mechanism for defining kernel helper threads for running
   5 * arbitrary tasks in process context.
   6 *
   7 * Started by Ingo Molnar, Copyright (C) 2002
   8 *
   9 * Derived from the taskqueue/keventd code by:
  10 *
  11 *   David Woodhouse <dwmw2@infradead.org>
  12 *   Andrew Morton
  13 *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
  14 *   Theodore Ts'o <tytso@mit.edu>
  15 *
  16 * Made to use alloc_percpu by Christoph Lameter.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/sched.h>
  22#include <linux/init.h>
  23#include <linux/signal.h>
  24#include <linux/completion.h>
  25#include <linux/workqueue.h>
  26#include <linux/slab.h>
  27#include <linux/cpu.h>
  28#include <linux/notifier.h>
  29#include <linux/kthread.h>
  30#include <linux/hardirq.h>
  31#include <linux/mempolicy.h>
  32#include <linux/freezer.h>
  33#include <linux/kallsyms.h>
  34#include <linux/debug_locks.h>
  35#include <linux/lockdep.h>
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/workqueue.h>
  38
  39/*
  40 * The per-CPU workqueue (if single thread, we always use the first
  41 * possible cpu).
  42 */
  43struct cpu_workqueue_struct {
  44
  45        spinlock_t lock;
  46
  47        struct list_head worklist;
  48        wait_queue_head_t more_work;
  49        struct work_struct *current_work;
  50
  51        struct workqueue_struct *wq;
  52        struct task_struct *thread;
  53} ____cacheline_aligned;
  54
  55/*
  56 * The externally visible workqueue abstraction is an array of
  57 * per-CPU workqueues:
  58 */
  59struct workqueue_struct {
  60        struct cpu_workqueue_struct *cpu_wq;
  61        struct list_head list;
  62        const char *name;
  63        int singlethread;
  64        int freezeable;         /* Freeze threads during suspend */
  65        int rt;
  66#ifdef CONFIG_LOCKDEP
  67        struct lockdep_map lockdep_map;
  68#endif
  69};
  70
  71/* Serializes the accesses to the list of workqueues. */
  72static DEFINE_SPINLOCK(workqueue_lock);
  73static LIST_HEAD(workqueues);
  74
  75static int singlethread_cpu __read_mostly;
  76static const struct cpumask *cpu_singlethread_map __read_mostly;
  77/*
  78 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
  79 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
  80 * which comes in between can't use for_each_online_cpu(). We could
  81 * use cpu_possible_map, the cpumask below is more a documentation
  82 * than optimization.
  83 */
  84static cpumask_var_t cpu_populated_map __read_mostly;
  85
  86/* If it's single threaded, it isn't in the list of workqueues. */
  87static inline int is_wq_single_threaded(struct workqueue_struct *wq)
  88{
  89        return wq->singlethread;
  90}
  91
  92static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
  93{
  94        return is_wq_single_threaded(wq)
  95                ? cpu_singlethread_map : cpu_populated_map;
  96}
  97
  98static
  99struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
 100{
 101        if (unlikely(is_wq_single_threaded(wq)))
 102                cpu = singlethread_cpu;
 103        return per_cpu_ptr(wq->cpu_wq, cpu);
 104}
 105
 106/*
 107 * Set the workqueue on which a work item is to be run
 108 * - Must *only* be called if the pending flag is set
 109 */
 110static inline void set_wq_data(struct work_struct *work,
 111                                struct cpu_workqueue_struct *cwq)
 112{
 113        unsigned long new;
 114
 115        BUG_ON(!work_pending(work));
 116
 117        new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
 118        new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
 119        atomic_long_set(&work->data, new);
 120}
 121
 122static inline
 123struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
 124{
 125        return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
 126}
 127
 128static void insert_work(struct cpu_workqueue_struct *cwq,
 129                        struct work_struct *work, struct list_head *head)
 130{
 131        trace_workqueue_insertion(cwq->thread, work);
 132
 133        set_wq_data(work, cwq);
 134        /*
 135         * Ensure that we get the right work->data if we see the
 136         * result of list_add() below, see try_to_grab_pending().
 137         */
 138        smp_wmb();
 139        list_add_tail(&work->entry, head);
 140        wake_up(&cwq->more_work);
 141}
 142
 143static void __queue_work(struct cpu_workqueue_struct *cwq,
 144                         struct work_struct *work)
 145{
 146        unsigned long flags;
 147
 148        spin_lock_irqsave(&cwq->lock, flags);
 149        insert_work(cwq, work, &cwq->worklist);
 150        spin_unlock_irqrestore(&cwq->lock, flags);
 151}
 152
 153/**
 154 * queue_work - queue work on a workqueue
 155 * @wq: workqueue to use
 156 * @work: work to queue
 157 *
 158 * Returns 0 if @work was already on a queue, non-zero otherwise.
 159 *
 160 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 161 * it can be processed by another CPU.
 162 */
 163int queue_work(struct workqueue_struct *wq, struct work_struct *work)
 164{
 165        int ret;
 166
 167        ret = queue_work_on(get_cpu(), wq, work);
 168        put_cpu();
 169
 170        return ret;
 171}
 172EXPORT_SYMBOL_GPL(queue_work);
 173
 174/**
 175 * queue_work_on - queue work on specific cpu
 176 * @cpu: CPU number to execute work on
 177 * @wq: workqueue to use
 178 * @work: work to queue
 179 *
 180 * Returns 0 if @work was already on a queue, non-zero otherwise.
 181 *
 182 * We queue the work to a specific CPU, the caller must ensure it
 183 * can't go away.
 184 */
 185int
 186queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
 187{
 188        int ret = 0;
 189
 190        if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
 191                BUG_ON(!list_empty(&work->entry));
 192                __queue_work(wq_per_cpu(wq, cpu), work);
 193                ret = 1;
 194        }
 195        return ret;
 196}
 197EXPORT_SYMBOL_GPL(queue_work_on);
 198
 199static void delayed_work_timer_fn(unsigned long __data)
 200{
 201        struct delayed_work *dwork = (struct delayed_work *)__data;
 202        struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
 203        struct workqueue_struct *wq = cwq->wq;
 204
 205        __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
 206}
 207
 208/**
 209 * queue_delayed_work - queue work on a workqueue after delay
 210 * @wq: workqueue to use
 211 * @dwork: delayable work to queue
 212 * @delay: number of jiffies to wait before queueing
 213 *
 214 * Returns 0 if @work was already on a queue, non-zero otherwise.
 215 */
 216int queue_delayed_work(struct workqueue_struct *wq,
 217                        struct delayed_work *dwork, unsigned long delay)
 218{
 219        if (delay == 0)
 220                return queue_work(wq, &dwork->work);
 221
 222        return queue_delayed_work_on(-1, wq, dwork, delay);
 223}
 224EXPORT_SYMBOL_GPL(queue_delayed_work);
 225
 226/**
 227 * queue_delayed_work_on - queue work on specific CPU after delay
 228 * @cpu: CPU number to execute work on
 229 * @wq: workqueue to use
 230 * @dwork: work to queue
 231 * @delay: number of jiffies to wait before queueing
 232 *
 233 * Returns 0 if @work was already on a queue, non-zero otherwise.
 234 */
 235int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 236                        struct delayed_work *dwork, unsigned long delay)
 237{
 238        int ret = 0;
 239        struct timer_list *timer = &dwork->timer;
 240        struct work_struct *work = &dwork->work;
 241
 242        if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
 243                BUG_ON(timer_pending(timer));
 244                BUG_ON(!list_empty(&work->entry));
 245
 246                timer_stats_timer_set_start_info(&dwork->timer);
 247
 248                /* This stores cwq for the moment, for the timer_fn */
 249                set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
 250                timer->expires = jiffies + delay;
 251                timer->data = (unsigned long)dwork;
 252                timer->function = delayed_work_timer_fn;
 253
 254                if (unlikely(cpu >= 0))
 255                        add_timer_on(timer, cpu);
 256                else
 257                        add_timer(timer);
 258                ret = 1;
 259        }
 260        return ret;
 261}
 262EXPORT_SYMBOL_GPL(queue_delayed_work_on);
 263
 264static void run_workqueue(struct cpu_workqueue_struct *cwq)
 265{
 266        spin_lock_irq(&cwq->lock);
 267        while (!list_empty(&cwq->worklist)) {
 268                struct work_struct *work = list_entry(cwq->worklist.next,
 269                                                struct work_struct, entry);
 270                work_func_t f = work->func;
 271#ifdef CONFIG_LOCKDEP
 272                /*
 273                 * It is permissible to free the struct work_struct
 274                 * from inside the function that is called from it,
 275                 * this we need to take into account for lockdep too.
 276                 * To avoid bogus "held lock freed" warnings as well
 277                 * as problems when looking into work->lockdep_map,
 278                 * make a copy and use that here.
 279                 */
 280                struct lockdep_map lockdep_map = work->lockdep_map;
 281#endif
 282                trace_workqueue_execution(cwq->thread, work);
 283                cwq->current_work = work;
 284                list_del_init(cwq->worklist.next);
 285                spin_unlock_irq(&cwq->lock);
 286
 287                BUG_ON(get_wq_data(work) != cwq);
 288                work_clear_pending(work);
 289                lock_map_acquire(&cwq->wq->lockdep_map);
 290                lock_map_acquire(&lockdep_map);
 291                f(work);
 292                lock_map_release(&lockdep_map);
 293                lock_map_release(&cwq->wq->lockdep_map);
 294
 295                if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
 296                        printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
 297                                        "%s/0x%08x/%d\n",
 298                                        current->comm, preempt_count(),
 299                                        task_pid_nr(current));
 300                        printk(KERN_ERR "    last function: ");
 301                        print_symbol("%s\n", (unsigned long)f);
 302                        debug_show_held_locks(current);
 303                        dump_stack();
 304                }
 305
 306                spin_lock_irq(&cwq->lock);
 307                cwq->current_work = NULL;
 308        }
 309        spin_unlock_irq(&cwq->lock);
 310}
 311
 312static int worker_thread(void *__cwq)
 313{
 314        struct cpu_workqueue_struct *cwq = __cwq;
 315        DEFINE_WAIT(wait);
 316
 317        if (cwq->wq->freezeable)
 318                set_freezable();
 319
 320        for (;;) {
 321                prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
 322                if (!freezing(current) &&
 323                    !kthread_should_stop() &&
 324                    list_empty(&cwq->worklist))
 325                        schedule();
 326                finish_wait(&cwq->more_work, &wait);
 327
 328                try_to_freeze();
 329
 330                if (kthread_should_stop())
 331                        break;
 332
 333                run_workqueue(cwq);
 334        }
 335
 336        return 0;
 337}
 338
 339struct wq_barrier {
 340        struct work_struct      work;
 341        struct completion       done;
 342};
 343
 344static void wq_barrier_func(struct work_struct *work)
 345{
 346        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
 347        complete(&barr->done);
 348}
 349
 350static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
 351                        struct wq_barrier *barr, struct list_head *head)
 352{
 353        INIT_WORK(&barr->work, wq_barrier_func);
 354        __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
 355
 356        init_completion(&barr->done);
 357
 358        insert_work(cwq, &barr->work, head);
 359}
 360
 361static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
 362{
 363        int active = 0;
 364        struct wq_barrier barr;
 365
 366        WARN_ON(cwq->thread == current);
 367
 368        spin_lock_irq(&cwq->lock);
 369        if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
 370                insert_wq_barrier(cwq, &barr, &cwq->worklist);
 371                active = 1;
 372        }
 373        spin_unlock_irq(&cwq->lock);
 374
 375        if (active)
 376                wait_for_completion(&barr.done);
 377
 378        return active;
 379}
 380
 381/**
 382 * flush_workqueue - ensure that any scheduled work has run to completion.
 383 * @wq: workqueue to flush
 384 *
 385 * Forces execution of the workqueue and blocks until its completion.
 386 * This is typically used in driver shutdown handlers.
 387 *
 388 * We sleep until all works which were queued on entry have been handled,
 389 * but we are not livelocked by new incoming ones.
 390 *
 391 * This function used to run the workqueues itself.  Now we just wait for the
 392 * helper threads to do it.
 393 */
 394void flush_workqueue(struct workqueue_struct *wq)
 395{
 396        const struct cpumask *cpu_map = wq_cpu_map(wq);
 397        int cpu;
 398
 399        might_sleep();
 400        lock_map_acquire(&wq->lockdep_map);
 401        lock_map_release(&wq->lockdep_map);
 402        for_each_cpu(cpu, cpu_map)
 403                flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
 404}
 405EXPORT_SYMBOL_GPL(flush_workqueue);
 406
 407/**
 408 * flush_work - block until a work_struct's callback has terminated
 409 * @work: the work which is to be flushed
 410 *
 411 * Returns false if @work has already terminated.
 412 *
 413 * It is expected that, prior to calling flush_work(), the caller has
 414 * arranged for the work to not be requeued, otherwise it doesn't make
 415 * sense to use this function.
 416 */
 417int flush_work(struct work_struct *work)
 418{
 419        struct cpu_workqueue_struct *cwq;
 420        struct list_head *prev;
 421        struct wq_barrier barr;
 422
 423        might_sleep();
 424        cwq = get_wq_data(work);
 425        if (!cwq)
 426                return 0;
 427
 428        lock_map_acquire(&cwq->wq->lockdep_map);
 429        lock_map_release(&cwq->wq->lockdep_map);
 430
 431        prev = NULL;
 432        spin_lock_irq(&cwq->lock);
 433        if (!list_empty(&work->entry)) {
 434                /*
 435                 * See the comment near try_to_grab_pending()->smp_rmb().
 436                 * If it was re-queued under us we are not going to wait.
 437                 */
 438                smp_rmb();
 439                if (unlikely(cwq != get_wq_data(work)))
 440                        goto out;
 441                prev = &work->entry;
 442        } else {
 443                if (cwq->current_work != work)
 444                        goto out;
 445                prev = &cwq->worklist;
 446        }
 447        insert_wq_barrier(cwq, &barr, prev->next);
 448out:
 449        spin_unlock_irq(&cwq->lock);
 450        if (!prev)
 451                return 0;
 452
 453        wait_for_completion(&barr.done);
 454        return 1;
 455}
 456EXPORT_SYMBOL_GPL(flush_work);
 457
 458/*
 459 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
 460 * so this work can't be re-armed in any way.
 461 */
 462static int try_to_grab_pending(struct work_struct *work)
 463{
 464        struct cpu_workqueue_struct *cwq;
 465        int ret = -1;
 466
 467        if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
 468                return 0;
 469
 470        /*
 471         * The queueing is in progress, or it is already queued. Try to
 472         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
 473         */
 474
 475        cwq = get_wq_data(work);
 476        if (!cwq)
 477                return ret;
 478
 479        spin_lock_irq(&cwq->lock);
 480        if (!list_empty(&work->entry)) {
 481                /*
 482                 * This work is queued, but perhaps we locked the wrong cwq.
 483                 * In that case we must see the new value after rmb(), see
 484                 * insert_work()->wmb().
 485                 */
 486                smp_rmb();
 487                if (cwq == get_wq_data(work)) {
 488                        list_del_init(&work->entry);
 489                        ret = 1;
 490                }
 491        }
 492        spin_unlock_irq(&cwq->lock);
 493
 494        return ret;
 495}
 496
 497static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
 498                                struct work_struct *work)
 499{
 500        struct wq_barrier barr;
 501        int running = 0;
 502
 503        spin_lock_irq(&cwq->lock);
 504        if (unlikely(cwq->current_work == work)) {
 505                insert_wq_barrier(cwq, &barr, cwq->worklist.next);
 506                running = 1;
 507        }
 508        spin_unlock_irq(&cwq->lock);
 509
 510        if (unlikely(running))
 511                wait_for_completion(&barr.done);
 512}
 513
 514static void wait_on_work(struct work_struct *work)
 515{
 516        struct cpu_workqueue_struct *cwq;
 517        struct workqueue_struct *wq;
 518        const struct cpumask *cpu_map;
 519        int cpu;
 520
 521        might_sleep();
 522
 523        lock_map_acquire(&work->lockdep_map);
 524        lock_map_release(&work->lockdep_map);
 525
 526        cwq = get_wq_data(work);
 527        if (!cwq)
 528                return;
 529
 530        wq = cwq->wq;
 531        cpu_map = wq_cpu_map(wq);
 532
 533        for_each_cpu(cpu, cpu_map)
 534                wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
 535}
 536
 537static int __cancel_work_timer(struct work_struct *work,
 538                                struct timer_list* timer)
 539{
 540        int ret;
 541
 542        do {
 543                ret = (timer && likely(del_timer(timer)));
 544                if (!ret)
 545                        ret = try_to_grab_pending(work);
 546                wait_on_work(work);
 547        } while (unlikely(ret < 0));
 548
 549        work_clear_pending(work);
 550        return ret;
 551}
 552
 553/**
 554 * cancel_work_sync - block until a work_struct's callback has terminated
 555 * @work: the work which is to be flushed
 556 *
 557 * Returns true if @work was pending.
 558 *
 559 * cancel_work_sync() will cancel the work if it is queued. If the work's
 560 * callback appears to be running, cancel_work_sync() will block until it
 561 * has completed.
 562 *
 563 * It is possible to use this function if the work re-queues itself. It can
 564 * cancel the work even if it migrates to another workqueue, however in that
 565 * case it only guarantees that work->func() has completed on the last queued
 566 * workqueue.
 567 *
 568 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
 569 * pending, otherwise it goes into a busy-wait loop until the timer expires.
 570 *
 571 * The caller must ensure that workqueue_struct on which this work was last
 572 * queued can't be destroyed before this function returns.
 573 */
 574int cancel_work_sync(struct work_struct *work)
 575{
 576        return __cancel_work_timer(work, NULL);
 577}
 578EXPORT_SYMBOL_GPL(cancel_work_sync);
 579
 580/**
 581 * cancel_delayed_work_sync - reliably kill off a delayed work.
 582 * @dwork: the delayed work struct
 583 *
 584 * Returns true if @dwork was pending.
 585 *
 586 * It is possible to use this function if @dwork rearms itself via queue_work()
 587 * or queue_delayed_work(). See also the comment for cancel_work_sync().
 588 */
 589int cancel_delayed_work_sync(struct delayed_work *dwork)
 590{
 591        return __cancel_work_timer(&dwork->work, &dwork->timer);
 592}
 593EXPORT_SYMBOL(cancel_delayed_work_sync);
 594
 595static struct workqueue_struct *keventd_wq __read_mostly;
 596
 597/**
 598 * schedule_work - put work task in global workqueue
 599 * @work: job to be done
 600 *
 601 * Returns zero if @work was already on the kernel-global workqueue and
 602 * non-zero otherwise.
 603 *
 604 * This puts a job in the kernel-global workqueue if it was not already
 605 * queued and leaves it in the same position on the kernel-global
 606 * workqueue otherwise.
 607 */
 608int schedule_work(struct work_struct *work)
 609{
 610        return queue_work(keventd_wq, work);
 611}
 612EXPORT_SYMBOL(schedule_work);
 613
 614/*
 615 * schedule_work_on - put work task on a specific cpu
 616 * @cpu: cpu to put the work task on
 617 * @work: job to be done
 618 *
 619 * This puts a job on a specific cpu
 620 */
 621int schedule_work_on(int cpu, struct work_struct *work)
 622{
 623        return queue_work_on(cpu, keventd_wq, work);
 624}
 625EXPORT_SYMBOL(schedule_work_on);
 626
 627/**
 628 * schedule_delayed_work - put work task in global workqueue after delay
 629 * @dwork: job to be done
 630 * @delay: number of jiffies to wait or 0 for immediate execution
 631 *
 632 * After waiting for a given time this puts a job in the kernel-global
 633 * workqueue.
 634 */
 635int schedule_delayed_work(struct delayed_work *dwork,
 636                                        unsigned long delay)
 637{
 638        return queue_delayed_work(keventd_wq, dwork, delay);
 639}
 640EXPORT_SYMBOL(schedule_delayed_work);
 641
 642/**
 643 * flush_delayed_work - block until a dwork_struct's callback has terminated
 644 * @dwork: the delayed work which is to be flushed
 645 *
 646 * Any timeout is cancelled, and any pending work is run immediately.
 647 */
 648void flush_delayed_work(struct delayed_work *dwork)
 649{
 650        if (del_timer_sync(&dwork->timer)) {
 651                struct cpu_workqueue_struct *cwq;
 652                cwq = wq_per_cpu(keventd_wq, get_cpu());
 653                __queue_work(cwq, &dwork->work);
 654                put_cpu();
 655        }
 656        flush_work(&dwork->work);
 657}
 658EXPORT_SYMBOL(flush_delayed_work);
 659
 660/**
 661 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 662 * @cpu: cpu to use
 663 * @dwork: job to be done
 664 * @delay: number of jiffies to wait
 665 *
 666 * After waiting for a given time this puts a job in the kernel-global
 667 * workqueue on the specified CPU.
 668 */
 669int schedule_delayed_work_on(int cpu,
 670                        struct delayed_work *dwork, unsigned long delay)
 671{
 672        return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
 673}
 674EXPORT_SYMBOL(schedule_delayed_work_on);
 675
 676/**
 677 * schedule_on_each_cpu - call a function on each online CPU from keventd
 678 * @func: the function to call
 679 *
 680 * Returns zero on success.
 681 * Returns -ve errno on failure.
 682 *
 683 * schedule_on_each_cpu() is very slow.
 684 */
 685int schedule_on_each_cpu(work_func_t func)
 686{
 687        int cpu;
 688        int orig = -1;
 689        struct work_struct *works;
 690
 691        works = alloc_percpu(struct work_struct);
 692        if (!works)
 693                return -ENOMEM;
 694
 695        get_online_cpus();
 696
 697        /*
 698         * When running in keventd don't schedule a work item on
 699         * itself.  Can just call directly because the work queue is
 700         * already bound.  This also is faster.
 701         */
 702        if (current_is_keventd())
 703                orig = raw_smp_processor_id();
 704
 705        for_each_online_cpu(cpu) {
 706                struct work_struct *work = per_cpu_ptr(works, cpu);
 707
 708                INIT_WORK(work, func);
 709                if (cpu != orig)
 710                        schedule_work_on(cpu, work);
 711        }
 712        if (orig >= 0)
 713                func(per_cpu_ptr(works, orig));
 714
 715        for_each_online_cpu(cpu)
 716                flush_work(per_cpu_ptr(works, cpu));
 717
 718        put_online_cpus();
 719        free_percpu(works);
 720        return 0;
 721}
 722
 723void flush_scheduled_work(void)
 724{
 725        flush_workqueue(keventd_wq);
 726}
 727EXPORT_SYMBOL(flush_scheduled_work);
 728
 729/**
 730 * execute_in_process_context - reliably execute the routine with user context
 731 * @fn:         the function to execute
 732 * @ew:         guaranteed storage for the execute work structure (must
 733 *              be available when the work executes)
 734 *
 735 * Executes the function immediately if process context is available,
 736 * otherwise schedules the function for delayed execution.
 737 *
 738 * Returns:     0 - function was executed
 739 *              1 - function was scheduled for execution
 740 */
 741int execute_in_process_context(work_func_t fn, struct execute_work *ew)
 742{
 743        if (!in_interrupt()) {
 744                fn(&ew->work);
 745                return 0;
 746        }
 747
 748        INIT_WORK(&ew->work, fn);
 749        schedule_work(&ew->work);
 750
 751        return 1;
 752}
 753EXPORT_SYMBOL_GPL(execute_in_process_context);
 754
 755int keventd_up(void)
 756{
 757        return keventd_wq != NULL;
 758}
 759
 760int current_is_keventd(void)
 761{
 762        struct cpu_workqueue_struct *cwq;
 763        int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
 764        int ret = 0;
 765
 766        BUG_ON(!keventd_wq);
 767
 768        cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
 769        if (current == cwq->thread)
 770                ret = 1;
 771
 772        return ret;
 773
 774}
 775
 776static struct cpu_workqueue_struct *
 777init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
 778{
 779        struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
 780
 781        cwq->wq = wq;
 782        spin_lock_init(&cwq->lock);
 783        INIT_LIST_HEAD(&cwq->worklist);
 784        init_waitqueue_head(&cwq->more_work);
 785
 786        return cwq;
 787}
 788
 789static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
 790{
 791        struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
 792        struct workqueue_struct *wq = cwq->wq;
 793        const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
 794        struct task_struct *p;
 795
 796        p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
 797        /*
 798         * Nobody can add the work_struct to this cwq,
 799         *      if (caller is __create_workqueue)
 800         *              nobody should see this wq
 801         *      else // caller is CPU_UP_PREPARE
 802         *              cpu is not on cpu_online_map
 803         * so we can abort safely.
 804         */
 805        if (IS_ERR(p))
 806                return PTR_ERR(p);
 807        if (cwq->wq->rt)
 808                sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
 809        cwq->thread = p;
 810
 811        trace_workqueue_creation(cwq->thread, cpu);
 812
 813        return 0;
 814}
 815
 816static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
 817{
 818        struct task_struct *p = cwq->thread;
 819
 820        if (p != NULL) {
 821                if (cpu >= 0)
 822                        kthread_bind(p, cpu);
 823                wake_up_process(p);
 824        }
 825}
 826
 827struct workqueue_struct *__create_workqueue_key(const char *name,
 828                                                int singlethread,
 829                                                int freezeable,
 830                                                int rt,
 831                                                struct lock_class_key *key,
 832                                                const char *lock_name)
 833{
 834        struct workqueue_struct *wq;
 835        struct cpu_workqueue_struct *cwq;
 836        int err = 0, cpu;
 837
 838        wq = kzalloc(sizeof(*wq), GFP_KERNEL);
 839        if (!wq)
 840                return NULL;
 841
 842        wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
 843        if (!wq->cpu_wq) {
 844                kfree(wq);
 845                return NULL;
 846        }
 847
 848        wq->name = name;
 849        lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
 850        wq->singlethread = singlethread;
 851        wq->freezeable = freezeable;
 852        wq->rt = rt;
 853        INIT_LIST_HEAD(&wq->list);
 854
 855        if (singlethread) {
 856                cwq = init_cpu_workqueue(wq, singlethread_cpu);
 857                err = create_workqueue_thread(cwq, singlethread_cpu);
 858                start_workqueue_thread(cwq, -1);
 859        } else {
 860                cpu_maps_update_begin();
 861                /*
 862                 * We must place this wq on list even if the code below fails.
 863                 * cpu_down(cpu) can remove cpu from cpu_populated_map before
 864                 * destroy_workqueue() takes the lock, in that case we leak
 865                 * cwq[cpu]->thread.
 866                 */
 867                spin_lock(&workqueue_lock);
 868                list_add(&wq->list, &workqueues);
 869                spin_unlock(&workqueue_lock);
 870                /*
 871                 * We must initialize cwqs for each possible cpu even if we
 872                 * are going to call destroy_workqueue() finally. Otherwise
 873                 * cpu_up() can hit the uninitialized cwq once we drop the
 874                 * lock.
 875                 */
 876                for_each_possible_cpu(cpu) {
 877                        cwq = init_cpu_workqueue(wq, cpu);
 878                        if (err || !cpu_online(cpu))
 879                                continue;
 880                        err = create_workqueue_thread(cwq, cpu);
 881                        start_workqueue_thread(cwq, cpu);
 882                }
 883                cpu_maps_update_done();
 884        }
 885
 886        if (err) {
 887                destroy_workqueue(wq);
 888                wq = NULL;
 889        }
 890        return wq;
 891}
 892EXPORT_SYMBOL_GPL(__create_workqueue_key);
 893
 894static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
 895{
 896        /*
 897         * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
 898         * cpu_add_remove_lock protects cwq->thread.
 899         */
 900        if (cwq->thread == NULL)
 901                return;
 902
 903        lock_map_acquire(&cwq->wq->lockdep_map);
 904        lock_map_release(&cwq->wq->lockdep_map);
 905
 906        flush_cpu_workqueue(cwq);
 907        /*
 908         * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
 909         * a concurrent flush_workqueue() can insert a barrier after us.
 910         * However, in that case run_workqueue() won't return and check
 911         * kthread_should_stop() until it flushes all work_struct's.
 912         * When ->worklist becomes empty it is safe to exit because no
 913         * more work_structs can be queued on this cwq: flush_workqueue
 914         * checks list_empty(), and a "normal" queue_work() can't use
 915         * a dead CPU.
 916         */
 917        trace_workqueue_destruction(cwq->thread);
 918        kthread_stop(cwq->thread);
 919        cwq->thread = NULL;
 920}
 921
 922/**
 923 * destroy_workqueue - safely terminate a workqueue
 924 * @wq: target workqueue
 925 *
 926 * Safely destroy a workqueue. All work currently pending will be done first.
 927 */
 928void destroy_workqueue(struct workqueue_struct *wq)
 929{
 930        const struct cpumask *cpu_map = wq_cpu_map(wq);
 931        int cpu;
 932
 933        cpu_maps_update_begin();
 934        spin_lock(&workqueue_lock);
 935        list_del(&wq->list);
 936        spin_unlock(&workqueue_lock);
 937
 938        for_each_cpu(cpu, cpu_map)
 939                cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
 940        cpu_maps_update_done();
 941
 942        free_percpu(wq->cpu_wq);
 943        kfree(wq);
 944}
 945EXPORT_SYMBOL_GPL(destroy_workqueue);
 946
 947static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
 948                                                unsigned long action,
 949                                                void *hcpu)
 950{
 951        unsigned int cpu = (unsigned long)hcpu;
 952        struct cpu_workqueue_struct *cwq;
 953        struct workqueue_struct *wq;
 954        int ret = NOTIFY_OK;
 955
 956        action &= ~CPU_TASKS_FROZEN;
 957
 958        switch (action) {
 959        case CPU_UP_PREPARE:
 960                cpumask_set_cpu(cpu, cpu_populated_map);
 961        }
 962undo:
 963        list_for_each_entry(wq, &workqueues, list) {
 964                cwq = per_cpu_ptr(wq->cpu_wq, cpu);
 965
 966                switch (action) {
 967                case CPU_UP_PREPARE:
 968                        if (!create_workqueue_thread(cwq, cpu))
 969                                break;
 970                        printk(KERN_ERR "workqueue [%s] for %i failed\n",
 971                                wq->name, cpu);
 972                        action = CPU_UP_CANCELED;
 973                        ret = NOTIFY_BAD;
 974                        goto undo;
 975
 976                case CPU_ONLINE:
 977                        start_workqueue_thread(cwq, cpu);
 978                        break;
 979
 980                case CPU_UP_CANCELED:
 981                        start_workqueue_thread(cwq, -1);
 982                case CPU_POST_DEAD:
 983                        cleanup_workqueue_thread(cwq);
 984                        break;
 985                }
 986        }
 987
 988        switch (action) {
 989        case CPU_UP_CANCELED:
 990        case CPU_POST_DEAD:
 991                cpumask_clear_cpu(cpu, cpu_populated_map);
 992        }
 993
 994        return ret;
 995}
 996
 997#ifdef CONFIG_SMP
 998
 999struct work_for_cpu {
1000        struct completion completion;
1001        long (*fn)(void *);
1002        void *arg;
1003        long ret;
1004};
1005
1006static int do_work_for_cpu(void *_wfc)
1007{
1008        struct work_for_cpu *wfc = _wfc;
1009        wfc->ret = wfc->fn(wfc->arg);
1010        complete(&wfc->completion);
1011        return 0;
1012}
1013
1014/**
1015 * work_on_cpu - run a function in user context on a particular cpu
1016 * @cpu: the cpu to run on
1017 * @fn: the function to run
1018 * @arg: the function arg
1019 *
1020 * This will return the value @fn returns.
1021 * It is up to the caller to ensure that the cpu doesn't go offline.
1022 * The caller must not hold any locks which would prevent @fn from completing.
1023 */
1024long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1025{
1026        struct task_struct *sub_thread;
1027        struct work_for_cpu wfc = {
1028                .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1029                .fn = fn,
1030                .arg = arg,
1031        };
1032
1033        sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1034        if (IS_ERR(sub_thread))
1035                return PTR_ERR(sub_thread);
1036        kthread_bind(sub_thread, cpu);
1037        wake_up_process(sub_thread);
1038        wait_for_completion(&wfc.completion);
1039        return wfc.ret;
1040}
1041EXPORT_SYMBOL_GPL(work_on_cpu);
1042#endif /* CONFIG_SMP */
1043
1044void __init init_workqueues(void)
1045{
1046        alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1047
1048        cpumask_copy(cpu_populated_map, cpu_online_mask);
1049        singlethread_cpu = cpumask_first(cpu_possible_mask);
1050        cpu_singlethread_map = cpumask_of(singlethread_cpu);
1051        hotcpu_notifier(workqueue_cpu_callback, 0);
1052        keventd_wq = create_workqueue("events");
1053        BUG_ON(!keventd_wq);
1054}
1055