linux/lib/bitmap.c
<<
>>
Prefs
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/module.h>
   9#include <linux/ctype.h>
  10#include <linux/errno.h>
  11#include <linux/bitmap.h>
  12#include <linux/bitops.h>
  13#include <asm/uaccess.h>
  14
  15/*
  16 * bitmaps provide an array of bits, implemented using an an
  17 * array of unsigned longs.  The number of valid bits in a
  18 * given bitmap does _not_ need to be an exact multiple of
  19 * BITS_PER_LONG.
  20 *
  21 * The possible unused bits in the last, partially used word
  22 * of a bitmap are 'don't care'.  The implementation makes
  23 * no particular effort to keep them zero.  It ensures that
  24 * their value will not affect the results of any operation.
  25 * The bitmap operations that return Boolean (bitmap_empty,
  26 * for example) or scalar (bitmap_weight, for example) results
  27 * carefully filter out these unused bits from impacting their
  28 * results.
  29 *
  30 * These operations actually hold to a slightly stronger rule:
  31 * if you don't input any bitmaps to these ops that have some
  32 * unused bits set, then they won't output any set unused bits
  33 * in output bitmaps.
  34 *
  35 * The byte ordering of bitmaps is more natural on little
  36 * endian architectures.  See the big-endian headers
  37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  38 * for the best explanations of this ordering.
  39 */
  40
  41int __bitmap_empty(const unsigned long *bitmap, int bits)
  42{
  43        int k, lim = bits/BITS_PER_LONG;
  44        for (k = 0; k < lim; ++k)
  45                if (bitmap[k])
  46                        return 0;
  47
  48        if (bits % BITS_PER_LONG)
  49                if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  50                        return 0;
  51
  52        return 1;
  53}
  54EXPORT_SYMBOL(__bitmap_empty);
  55
  56int __bitmap_full(const unsigned long *bitmap, int bits)
  57{
  58        int k, lim = bits/BITS_PER_LONG;
  59        for (k = 0; k < lim; ++k)
  60                if (~bitmap[k])
  61                        return 0;
  62
  63        if (bits % BITS_PER_LONG)
  64                if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  65                        return 0;
  66
  67        return 1;
  68}
  69EXPORT_SYMBOL(__bitmap_full);
  70
  71int __bitmap_equal(const unsigned long *bitmap1,
  72                const unsigned long *bitmap2, int bits)
  73{
  74        int k, lim = bits/BITS_PER_LONG;
  75        for (k = 0; k < lim; ++k)
  76                if (bitmap1[k] != bitmap2[k])
  77                        return 0;
  78
  79        if (bits % BITS_PER_LONG)
  80                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  81                        return 0;
  82
  83        return 1;
  84}
  85EXPORT_SYMBOL(__bitmap_equal);
  86
  87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  88{
  89        int k, lim = bits/BITS_PER_LONG;
  90        for (k = 0; k < lim; ++k)
  91                dst[k] = ~src[k];
  92
  93        if (bits % BITS_PER_LONG)
  94                dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  95}
  96EXPORT_SYMBOL(__bitmap_complement);
  97
  98/**
  99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 100 *   @dst : destination bitmap
 101 *   @src : source bitmap
 102 *   @shift : shift by this many bits
 103 *   @bits : bitmap size, in bits
 104 *
 105 * Shifting right (dividing) means moving bits in the MS -> LS bit
 106 * direction.  Zeros are fed into the vacated MS positions and the
 107 * LS bits shifted off the bottom are lost.
 108 */
 109void __bitmap_shift_right(unsigned long *dst,
 110                        const unsigned long *src, int shift, int bits)
 111{
 112        int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 113        int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 114        unsigned long mask = (1UL << left) - 1;
 115        for (k = 0; off + k < lim; ++k) {
 116                unsigned long upper, lower;
 117
 118                /*
 119                 * If shift is not word aligned, take lower rem bits of
 120                 * word above and make them the top rem bits of result.
 121                 */
 122                if (!rem || off + k + 1 >= lim)
 123                        upper = 0;
 124                else {
 125                        upper = src[off + k + 1];
 126                        if (off + k + 1 == lim - 1 && left)
 127                                upper &= mask;
 128                }
 129                lower = src[off + k];
 130                if (left && off + k == lim - 1)
 131                        lower &= mask;
 132                dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
 133                if (left && k == lim - 1)
 134                        dst[k] &= mask;
 135        }
 136        if (off)
 137                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 138}
 139EXPORT_SYMBOL(__bitmap_shift_right);
 140
 141
 142/**
 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 144 *   @dst : destination bitmap
 145 *   @src : source bitmap
 146 *   @shift : shift by this many bits
 147 *   @bits : bitmap size, in bits
 148 *
 149 * Shifting left (multiplying) means moving bits in the LS -> MS
 150 * direction.  Zeros are fed into the vacated LS bit positions
 151 * and those MS bits shifted off the top are lost.
 152 */
 153
 154void __bitmap_shift_left(unsigned long *dst,
 155                        const unsigned long *src, int shift, int bits)
 156{
 157        int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 158        int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 159        for (k = lim - off - 1; k >= 0; --k) {
 160                unsigned long upper, lower;
 161
 162                /*
 163                 * If shift is not word aligned, take upper rem bits of
 164                 * word below and make them the bottom rem bits of result.
 165                 */
 166                if (rem && k > 0)
 167                        lower = src[k - 1];
 168                else
 169                        lower = 0;
 170                upper = src[k];
 171                if (left && k == lim - 1)
 172                        upper &= (1UL << left) - 1;
 173                dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
 174                if (left && k + off == lim - 1)
 175                        dst[k + off] &= (1UL << left) - 1;
 176        }
 177        if (off)
 178                memset(dst, 0, off*sizeof(unsigned long));
 179}
 180EXPORT_SYMBOL(__bitmap_shift_left);
 181
 182int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 183                                const unsigned long *bitmap2, int bits)
 184{
 185        int k;
 186        int nr = BITS_TO_LONGS(bits);
 187        unsigned long result = 0;
 188
 189        for (k = 0; k < nr; k++)
 190                result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 191        return result != 0;
 192}
 193EXPORT_SYMBOL(__bitmap_and);
 194
 195void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 196                                const unsigned long *bitmap2, int bits)
 197{
 198        int k;
 199        int nr = BITS_TO_LONGS(bits);
 200
 201        for (k = 0; k < nr; k++)
 202                dst[k] = bitmap1[k] | bitmap2[k];
 203}
 204EXPORT_SYMBOL(__bitmap_or);
 205
 206void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 207                                const unsigned long *bitmap2, int bits)
 208{
 209        int k;
 210        int nr = BITS_TO_LONGS(bits);
 211
 212        for (k = 0; k < nr; k++)
 213                dst[k] = bitmap1[k] ^ bitmap2[k];
 214}
 215EXPORT_SYMBOL(__bitmap_xor);
 216
 217int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 218                                const unsigned long *bitmap2, int bits)
 219{
 220        int k;
 221        int nr = BITS_TO_LONGS(bits);
 222        unsigned long result = 0;
 223
 224        for (k = 0; k < nr; k++)
 225                result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 226        return result != 0;
 227}
 228EXPORT_SYMBOL(__bitmap_andnot);
 229
 230int __bitmap_intersects(const unsigned long *bitmap1,
 231                                const unsigned long *bitmap2, int bits)
 232{
 233        int k, lim = bits/BITS_PER_LONG;
 234        for (k = 0; k < lim; ++k)
 235                if (bitmap1[k] & bitmap2[k])
 236                        return 1;
 237
 238        if (bits % BITS_PER_LONG)
 239                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 240                        return 1;
 241        return 0;
 242}
 243EXPORT_SYMBOL(__bitmap_intersects);
 244
 245int __bitmap_subset(const unsigned long *bitmap1,
 246                                const unsigned long *bitmap2, int bits)
 247{
 248        int k, lim = bits/BITS_PER_LONG;
 249        for (k = 0; k < lim; ++k)
 250                if (bitmap1[k] & ~bitmap2[k])
 251                        return 0;
 252
 253        if (bits % BITS_PER_LONG)
 254                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 255                        return 0;
 256        return 1;
 257}
 258EXPORT_SYMBOL(__bitmap_subset);
 259
 260int __bitmap_weight(const unsigned long *bitmap, int bits)
 261{
 262        int k, w = 0, lim = bits/BITS_PER_LONG;
 263
 264        for (k = 0; k < lim; k++)
 265                w += hweight_long(bitmap[k]);
 266
 267        if (bits % BITS_PER_LONG)
 268                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 269
 270        return w;
 271}
 272EXPORT_SYMBOL(__bitmap_weight);
 273
 274/*
 275 * Bitmap printing & parsing functions: first version by Bill Irwin,
 276 * second version by Paul Jackson, third by Joe Korty.
 277 */
 278
 279#define CHUNKSZ                         32
 280#define nbits_to_hold_value(val)        fls(val)
 281#define unhex(c)                        (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
 282#define BASEDEC 10              /* fancier cpuset lists input in decimal */
 283
 284/**
 285 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
 286 * @buf: byte buffer into which string is placed
 287 * @buflen: reserved size of @buf, in bytes
 288 * @maskp: pointer to bitmap to convert
 289 * @nmaskbits: size of bitmap, in bits
 290 *
 291 * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
 292 * comma-separated sets of eight digits per set.
 293 */
 294int bitmap_scnprintf(char *buf, unsigned int buflen,
 295        const unsigned long *maskp, int nmaskbits)
 296{
 297        int i, word, bit, len = 0;
 298        unsigned long val;
 299        const char *sep = "";
 300        int chunksz;
 301        u32 chunkmask;
 302
 303        chunksz = nmaskbits & (CHUNKSZ - 1);
 304        if (chunksz == 0)
 305                chunksz = CHUNKSZ;
 306
 307        i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
 308        for (; i >= 0; i -= CHUNKSZ) {
 309                chunkmask = ((1ULL << chunksz) - 1);
 310                word = i / BITS_PER_LONG;
 311                bit = i % BITS_PER_LONG;
 312                val = (maskp[word] >> bit) & chunkmask;
 313                len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
 314                        (chunksz+3)/4, val);
 315                chunksz = CHUNKSZ;
 316                sep = ",";
 317        }
 318        return len;
 319}
 320EXPORT_SYMBOL(bitmap_scnprintf);
 321
 322/**
 323 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 324 * @buf: pointer to buffer containing string.
 325 * @buflen: buffer size in bytes.  If string is smaller than this
 326 *    then it must be terminated with a \0.
 327 * @is_user: location of buffer, 0 indicates kernel space
 328 * @maskp: pointer to bitmap array that will contain result.
 329 * @nmaskbits: size of bitmap, in bits.
 330 *
 331 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 332 * bits of the resultant bitmask.  No chunk may specify a value larger
 333 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 334 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 335 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 336 * Leading and trailing whitespace accepted, but not embedded whitespace.
 337 */
 338int __bitmap_parse(const char *buf, unsigned int buflen,
 339                int is_user, unsigned long *maskp,
 340                int nmaskbits)
 341{
 342        int c, old_c, totaldigits, ndigits, nchunks, nbits;
 343        u32 chunk;
 344        const char __user *ubuf = buf;
 345
 346        bitmap_zero(maskp, nmaskbits);
 347
 348        nchunks = nbits = totaldigits = c = 0;
 349        do {
 350                chunk = ndigits = 0;
 351
 352                /* Get the next chunk of the bitmap */
 353                while (buflen) {
 354                        old_c = c;
 355                        if (is_user) {
 356                                if (__get_user(c, ubuf++))
 357                                        return -EFAULT;
 358                        }
 359                        else
 360                                c = *buf++;
 361                        buflen--;
 362                        if (isspace(c))
 363                                continue;
 364
 365                        /*
 366                         * If the last character was a space and the current
 367                         * character isn't '\0', we've got embedded whitespace.
 368                         * This is a no-no, so throw an error.
 369                         */
 370                        if (totaldigits && c && isspace(old_c))
 371                                return -EINVAL;
 372
 373                        /* A '\0' or a ',' signal the end of the chunk */
 374                        if (c == '\0' || c == ',')
 375                                break;
 376
 377                        if (!isxdigit(c))
 378                                return -EINVAL;
 379
 380                        /*
 381                         * Make sure there are at least 4 free bits in 'chunk'.
 382                         * If not, this hexdigit will overflow 'chunk', so
 383                         * throw an error.
 384                         */
 385                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 386                                return -EOVERFLOW;
 387
 388                        chunk = (chunk << 4) | unhex(c);
 389                        ndigits++; totaldigits++;
 390                }
 391                if (ndigits == 0)
 392                        return -EINVAL;
 393                if (nchunks == 0 && chunk == 0)
 394                        continue;
 395
 396                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 397                *maskp |= chunk;
 398                nchunks++;
 399                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 400                if (nbits > nmaskbits)
 401                        return -EOVERFLOW;
 402        } while (buflen && c == ',');
 403
 404        return 0;
 405}
 406EXPORT_SYMBOL(__bitmap_parse);
 407
 408/**
 409 * bitmap_parse_user()
 410 *
 411 * @ubuf: pointer to user buffer containing string.
 412 * @ulen: buffer size in bytes.  If string is smaller than this
 413 *    then it must be terminated with a \0.
 414 * @maskp: pointer to bitmap array that will contain result.
 415 * @nmaskbits: size of bitmap, in bits.
 416 *
 417 * Wrapper for __bitmap_parse(), providing it with user buffer.
 418 *
 419 * We cannot have this as an inline function in bitmap.h because it needs
 420 * linux/uaccess.h to get the access_ok() declaration and this causes
 421 * cyclic dependencies.
 422 */
 423int bitmap_parse_user(const char __user *ubuf,
 424                        unsigned int ulen, unsigned long *maskp,
 425                        int nmaskbits)
 426{
 427        if (!access_ok(VERIFY_READ, ubuf, ulen))
 428                return -EFAULT;
 429        return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
 430}
 431EXPORT_SYMBOL(bitmap_parse_user);
 432
 433/*
 434 * bscnl_emit(buf, buflen, rbot, rtop, bp)
 435 *
 436 * Helper routine for bitmap_scnlistprintf().  Write decimal number
 437 * or range to buf, suppressing output past buf+buflen, with optional
 438 * comma-prefix.  Return len of what would be written to buf, if it
 439 * all fit.
 440 */
 441static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
 442{
 443        if (len > 0)
 444                len += scnprintf(buf + len, buflen - len, ",");
 445        if (rbot == rtop)
 446                len += scnprintf(buf + len, buflen - len, "%d", rbot);
 447        else
 448                len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
 449        return len;
 450}
 451
 452/**
 453 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
 454 * @buf: byte buffer into which string is placed
 455 * @buflen: reserved size of @buf, in bytes
 456 * @maskp: pointer to bitmap to convert
 457 * @nmaskbits: size of bitmap, in bits
 458 *
 459 * Output format is a comma-separated list of decimal numbers and
 460 * ranges.  Consecutively set bits are shown as two hyphen-separated
 461 * decimal numbers, the smallest and largest bit numbers set in
 462 * the range.  Output format is compatible with the format
 463 * accepted as input by bitmap_parselist().
 464 *
 465 * The return value is the number of characters which would be
 466 * generated for the given input, excluding the trailing '\0', as
 467 * per ISO C99.
 468 */
 469int bitmap_scnlistprintf(char *buf, unsigned int buflen,
 470        const unsigned long *maskp, int nmaskbits)
 471{
 472        int len = 0;
 473        /* current bit is 'cur', most recently seen range is [rbot, rtop] */
 474        int cur, rbot, rtop;
 475
 476        if (buflen == 0)
 477                return 0;
 478        buf[0] = 0;
 479
 480        rbot = cur = find_first_bit(maskp, nmaskbits);
 481        while (cur < nmaskbits) {
 482                rtop = cur;
 483                cur = find_next_bit(maskp, nmaskbits, cur+1);
 484                if (cur >= nmaskbits || cur > rtop + 1) {
 485                        len = bscnl_emit(buf, buflen, rbot, rtop, len);
 486                        rbot = cur;
 487                }
 488        }
 489        return len;
 490}
 491EXPORT_SYMBOL(bitmap_scnlistprintf);
 492
 493/**
 494 * bitmap_parselist - convert list format ASCII string to bitmap
 495 * @bp: read nul-terminated user string from this buffer
 496 * @maskp: write resulting mask here
 497 * @nmaskbits: number of bits in mask to be written
 498 *
 499 * Input format is a comma-separated list of decimal numbers and
 500 * ranges.  Consecutively set bits are shown as two hyphen-separated
 501 * decimal numbers, the smallest and largest bit numbers set in
 502 * the range.
 503 *
 504 * Returns 0 on success, -errno on invalid input strings.
 505 * Error values:
 506 *    %-EINVAL: second number in range smaller than first
 507 *    %-EINVAL: invalid character in string
 508 *    %-ERANGE: bit number specified too large for mask
 509 */
 510int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 511{
 512        unsigned a, b;
 513
 514        bitmap_zero(maskp, nmaskbits);
 515        do {
 516                if (!isdigit(*bp))
 517                        return -EINVAL;
 518                b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
 519                if (*bp == '-') {
 520                        bp++;
 521                        if (!isdigit(*bp))
 522                                return -EINVAL;
 523                        b = simple_strtoul(bp, (char **)&bp, BASEDEC);
 524                }
 525                if (!(a <= b))
 526                        return -EINVAL;
 527                if (b >= nmaskbits)
 528                        return -ERANGE;
 529                while (a <= b) {
 530                        set_bit(a, maskp);
 531                        a++;
 532                }
 533                if (*bp == ',')
 534                        bp++;
 535        } while (*bp != '\0' && *bp != '\n');
 536        return 0;
 537}
 538EXPORT_SYMBOL(bitmap_parselist);
 539
 540/**
 541 * bitmap_pos_to_ord(buf, pos, bits)
 542 *      @buf: pointer to a bitmap
 543 *      @pos: a bit position in @buf (0 <= @pos < @bits)
 544 *      @bits: number of valid bit positions in @buf
 545 *
 546 * Map the bit at position @pos in @buf (of length @bits) to the
 547 * ordinal of which set bit it is.  If it is not set or if @pos
 548 * is not a valid bit position, map to -1.
 549 *
 550 * If for example, just bits 4 through 7 are set in @buf, then @pos
 551 * values 4 through 7 will get mapped to 0 through 3, respectively,
 552 * and other @pos values will get mapped to 0.  When @pos value 7
 553 * gets mapped to (returns) @ord value 3 in this example, that means
 554 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 555 *
 556 * The bit positions 0 through @bits are valid positions in @buf.
 557 */
 558static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
 559{
 560        int i, ord;
 561
 562        if (pos < 0 || pos >= bits || !test_bit(pos, buf))
 563                return -1;
 564
 565        i = find_first_bit(buf, bits);
 566        ord = 0;
 567        while (i < pos) {
 568                i = find_next_bit(buf, bits, i + 1);
 569                ord++;
 570        }
 571        BUG_ON(i != pos);
 572
 573        return ord;
 574}
 575
 576/**
 577 * bitmap_ord_to_pos(buf, ord, bits)
 578 *      @buf: pointer to bitmap
 579 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 580 *      @bits: number of valid bit positions in @buf
 581 *
 582 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 583 * Value of @ord should be in range 0 <= @ord < weight(buf), else
 584 * results are undefined.
 585 *
 586 * If for example, just bits 4 through 7 are set in @buf, then @ord
 587 * values 0 through 3 will get mapped to 4 through 7, respectively,
 588 * and all other @ord values return undefined values.  When @ord value 3
 589 * gets mapped to (returns) @pos value 7 in this example, that means
 590 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 591 *
 592 * The bit positions 0 through @bits are valid positions in @buf.
 593 */
 594static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
 595{
 596        int pos = 0;
 597
 598        if (ord >= 0 && ord < bits) {
 599                int i;
 600
 601                for (i = find_first_bit(buf, bits);
 602                     i < bits && ord > 0;
 603                     i = find_next_bit(buf, bits, i + 1))
 604                        ord--;
 605                if (i < bits && ord == 0)
 606                        pos = i;
 607        }
 608
 609        return pos;
 610}
 611
 612/**
 613 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 614 *      @dst: remapped result
 615 *      @src: subset to be remapped
 616 *      @old: defines domain of map
 617 *      @new: defines range of map
 618 *      @bits: number of bits in each of these bitmaps
 619 *
 620 * Let @old and @new define a mapping of bit positions, such that
 621 * whatever position is held by the n-th set bit in @old is mapped
 622 * to the n-th set bit in @new.  In the more general case, allowing
 623 * for the possibility that the weight 'w' of @new is less than the
 624 * weight of @old, map the position of the n-th set bit in @old to
 625 * the position of the m-th set bit in @new, where m == n % w.
 626 *
 627 * If either of the @old and @new bitmaps are empty, or if @src and
 628 * @dst point to the same location, then this routine copies @src
 629 * to @dst.
 630 *
 631 * The positions of unset bits in @old are mapped to themselves
 632 * (the identify map).
 633 *
 634 * Apply the above specified mapping to @src, placing the result in
 635 * @dst, clearing any bits previously set in @dst.
 636 *
 637 * For example, lets say that @old has bits 4 through 7 set, and
 638 * @new has bits 12 through 15 set.  This defines the mapping of bit
 639 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 640 * bit positions unchanged.  So if say @src comes into this routine
 641 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 642 * 13 and 15 set.
 643 */
 644void bitmap_remap(unsigned long *dst, const unsigned long *src,
 645                const unsigned long *old, const unsigned long *new,
 646                int bits)
 647{
 648        int oldbit, w;
 649
 650        if (dst == src)         /* following doesn't handle inplace remaps */
 651                return;
 652        bitmap_zero(dst, bits);
 653
 654        w = bitmap_weight(new, bits);
 655        for (oldbit = find_first_bit(src, bits);
 656             oldbit < bits;
 657             oldbit = find_next_bit(src, bits, oldbit + 1)) {
 658                int n = bitmap_pos_to_ord(old, oldbit, bits);
 659                if (n < 0 || w == 0)
 660                        set_bit(oldbit, dst);   /* identity map */
 661                else
 662                        set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
 663        }
 664}
 665EXPORT_SYMBOL(bitmap_remap);
 666
 667/**
 668 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 669 *      @oldbit: bit position to be mapped
 670 *      @old: defines domain of map
 671 *      @new: defines range of map
 672 *      @bits: number of bits in each of these bitmaps
 673 *
 674 * Let @old and @new define a mapping of bit positions, such that
 675 * whatever position is held by the n-th set bit in @old is mapped
 676 * to the n-th set bit in @new.  In the more general case, allowing
 677 * for the possibility that the weight 'w' of @new is less than the
 678 * weight of @old, map the position of the n-th set bit in @old to
 679 * the position of the m-th set bit in @new, where m == n % w.
 680 *
 681 * The positions of unset bits in @old are mapped to themselves
 682 * (the identify map).
 683 *
 684 * Apply the above specified mapping to bit position @oldbit, returning
 685 * the new bit position.
 686 *
 687 * For example, lets say that @old has bits 4 through 7 set, and
 688 * @new has bits 12 through 15 set.  This defines the mapping of bit
 689 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 690 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 691 * returns 13.
 692 */
 693int bitmap_bitremap(int oldbit, const unsigned long *old,
 694                                const unsigned long *new, int bits)
 695{
 696        int w = bitmap_weight(new, bits);
 697        int n = bitmap_pos_to_ord(old, oldbit, bits);
 698        if (n < 0 || w == 0)
 699                return oldbit;
 700        else
 701                return bitmap_ord_to_pos(new, n % w, bits);
 702}
 703EXPORT_SYMBOL(bitmap_bitremap);
 704
 705/**
 706 * bitmap_onto - translate one bitmap relative to another
 707 *      @dst: resulting translated bitmap
 708 *      @orig: original untranslated bitmap
 709 *      @relmap: bitmap relative to which translated
 710 *      @bits: number of bits in each of these bitmaps
 711 *
 712 * Set the n-th bit of @dst iff there exists some m such that the
 713 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 714 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 715 * (If you understood the previous sentence the first time your
 716 * read it, you're overqualified for your current job.)
 717 *
 718 * In other words, @orig is mapped onto (surjectively) @dst,
 719 * using the the map { <n, m> | the n-th bit of @relmap is the
 720 * m-th set bit of @relmap }.
 721 *
 722 * Any set bits in @orig above bit number W, where W is the
 723 * weight of (number of set bits in) @relmap are mapped nowhere.
 724 * In particular, if for all bits m set in @orig, m >= W, then
 725 * @dst will end up empty.  In situations where the possibility
 726 * of such an empty result is not desired, one way to avoid it is
 727 * to use the bitmap_fold() operator, below, to first fold the
 728 * @orig bitmap over itself so that all its set bits x are in the
 729 * range 0 <= x < W.  The bitmap_fold() operator does this by
 730 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 731 *
 732 * Example [1] for bitmap_onto():
 733 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 734 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 735 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 736 *
 737 *  When bit 0 is set in @orig, it means turn on the bit in
 738 *  @dst corresponding to whatever is the first bit (if any)
 739 *  that is turned on in @relmap.  Since bit 0 was off in the
 740 *  above example, we leave off that bit (bit 30) in @dst.
 741 *
 742 *  When bit 1 is set in @orig (as in the above example), it
 743 *  means turn on the bit in @dst corresponding to whatever
 744 *  is the second bit that is turned on in @relmap.  The second
 745 *  bit in @relmap that was turned on in the above example was
 746 *  bit 31, so we turned on bit 31 in @dst.
 747 *
 748 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 749 *  because they were the 4th, 6th, 8th and 10th set bits
 750 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 751 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 752 *
 753 *  When bit 11 is set in @orig, it means turn on the bit in
 754 *  @dst corresponding to whatever is the twelth bit that is
 755 *  turned on in @relmap.  In the above example, there were
 756 *  only ten bits turned on in @relmap (30..39), so that bit
 757 *  11 was set in @orig had no affect on @dst.
 758 *
 759 * Example [2] for bitmap_fold() + bitmap_onto():
 760 *  Let's say @relmap has these ten bits set:
 761 *              40 41 42 43 45 48 53 61 74 95
 762 *  (for the curious, that's 40 plus the first ten terms of the
 763 *  Fibonacci sequence.)
 764 *
 765 *  Further lets say we use the following code, invoking
 766 *  bitmap_fold() then bitmap_onto, as suggested above to
 767 *  avoid the possitility of an empty @dst result:
 768 *
 769 *      unsigned long *tmp;     // a temporary bitmap's bits
 770 *
 771 *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 772 *      bitmap_onto(dst, tmp, relmap, bits);
 773 *
 774 *  Then this table shows what various values of @dst would be, for
 775 *  various @orig's.  I list the zero-based positions of each set bit.
 776 *  The tmp column shows the intermediate result, as computed by
 777 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 778 *  (the weight of @relmap).
 779 *
 780 *      @orig           tmp            @dst
 781 *      0                0             40
 782 *      1                1             41
 783 *      9                9             95
 784 *      10               0             40 (*)
 785 *      1 3 5 7          1 3 5 7       41 43 48 61
 786 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 787 *      0 9 18 27        0 9 8 7       40 61 74 95
 788 *      0 10 20 30       0             40
 789 *      0 11 22 33       0 1 2 3       40 41 42 43
 790 *      0 12 24 36       0 2 4 6       40 42 45 53
 791 *      78 102 211       1 2 8         41 42 74 (*)
 792 *
 793 * (*) For these marked lines, if we hadn't first done bitmap_fold()
 794 *     into tmp, then the @dst result would have been empty.
 795 *
 796 * If either of @orig or @relmap is empty (no set bits), then @dst
 797 * will be returned empty.
 798 *
 799 * If (as explained above) the only set bits in @orig are in positions
 800 * m where m >= W, (where W is the weight of @relmap) then @dst will
 801 * once again be returned empty.
 802 *
 803 * All bits in @dst not set by the above rule are cleared.
 804 */
 805void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 806                        const unsigned long *relmap, int bits)
 807{
 808        int n, m;               /* same meaning as in above comment */
 809
 810        if (dst == orig)        /* following doesn't handle inplace mappings */
 811                return;
 812        bitmap_zero(dst, bits);
 813
 814        /*
 815         * The following code is a more efficient, but less
 816         * obvious, equivalent to the loop:
 817         *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 818         *              n = bitmap_ord_to_pos(orig, m, bits);
 819         *              if (test_bit(m, orig))
 820         *                      set_bit(n, dst);
 821         *      }
 822         */
 823
 824        m = 0;
 825        for (n = find_first_bit(relmap, bits);
 826             n < bits;
 827             n = find_next_bit(relmap, bits, n + 1)) {
 828                /* m == bitmap_pos_to_ord(relmap, n, bits) */
 829                if (test_bit(m, orig))
 830                        set_bit(n, dst);
 831                m++;
 832        }
 833}
 834EXPORT_SYMBOL(bitmap_onto);
 835
 836/**
 837 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 838 *      @dst: resulting smaller bitmap
 839 *      @orig: original larger bitmap
 840 *      @sz: specified size
 841 *      @bits: number of bits in each of these bitmaps
 842 *
 843 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 844 * Clear all other bits in @dst.  See further the comment and
 845 * Example [2] for bitmap_onto() for why and how to use this.
 846 */
 847void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 848                        int sz, int bits)
 849{
 850        int oldbit;
 851
 852        if (dst == orig)        /* following doesn't handle inplace mappings */
 853                return;
 854        bitmap_zero(dst, bits);
 855
 856        for (oldbit = find_first_bit(orig, bits);
 857             oldbit < bits;
 858             oldbit = find_next_bit(orig, bits, oldbit + 1))
 859                set_bit(oldbit % sz, dst);
 860}
 861EXPORT_SYMBOL(bitmap_fold);
 862
 863/*
 864 * Common code for bitmap_*_region() routines.
 865 *      bitmap: array of unsigned longs corresponding to the bitmap
 866 *      pos: the beginning of the region
 867 *      order: region size (log base 2 of number of bits)
 868 *      reg_op: operation(s) to perform on that region of bitmap
 869 *
 870 * Can set, verify and/or release a region of bits in a bitmap,
 871 * depending on which combination of REG_OP_* flag bits is set.
 872 *
 873 * A region of a bitmap is a sequence of bits in the bitmap, of
 874 * some size '1 << order' (a power of two), aligned to that same
 875 * '1 << order' power of two.
 876 *
 877 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 878 * Returns 0 in all other cases and reg_ops.
 879 */
 880
 881enum {
 882        REG_OP_ISFREE,          /* true if region is all zero bits */
 883        REG_OP_ALLOC,           /* set all bits in region */
 884        REG_OP_RELEASE,         /* clear all bits in region */
 885};
 886
 887static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
 888{
 889        int nbits_reg;          /* number of bits in region */
 890        int index;              /* index first long of region in bitmap */
 891        int offset;             /* bit offset region in bitmap[index] */
 892        int nlongs_reg;         /* num longs spanned by region in bitmap */
 893        int nbitsinlong;        /* num bits of region in each spanned long */
 894        unsigned long mask;     /* bitmask for one long of region */
 895        int i;                  /* scans bitmap by longs */
 896        int ret = 0;            /* return value */
 897
 898        /*
 899         * Either nlongs_reg == 1 (for small orders that fit in one long)
 900         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 901         */
 902        nbits_reg = 1 << order;
 903        index = pos / BITS_PER_LONG;
 904        offset = pos - (index * BITS_PER_LONG);
 905        nlongs_reg = BITS_TO_LONGS(nbits_reg);
 906        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 907
 908        /*
 909         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 910         * overflows if nbitsinlong == BITS_PER_LONG.
 911         */
 912        mask = (1UL << (nbitsinlong - 1));
 913        mask += mask - 1;
 914        mask <<= offset;
 915
 916        switch (reg_op) {
 917        case REG_OP_ISFREE:
 918                for (i = 0; i < nlongs_reg; i++) {
 919                        if (bitmap[index + i] & mask)
 920                                goto done;
 921                }
 922                ret = 1;        /* all bits in region free (zero) */
 923                break;
 924
 925        case REG_OP_ALLOC:
 926                for (i = 0; i < nlongs_reg; i++)
 927                        bitmap[index + i] |= mask;
 928                break;
 929
 930        case REG_OP_RELEASE:
 931                for (i = 0; i < nlongs_reg; i++)
 932                        bitmap[index + i] &= ~mask;
 933                break;
 934        }
 935done:
 936        return ret;
 937}
 938
 939/**
 940 * bitmap_find_free_region - find a contiguous aligned mem region
 941 *      @bitmap: array of unsigned longs corresponding to the bitmap
 942 *      @bits: number of bits in the bitmap
 943 *      @order: region size (log base 2 of number of bits) to find
 944 *
 945 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 946 * allocate them (set them to one).  Only consider regions of length
 947 * a power (@order) of two, aligned to that power of two, which
 948 * makes the search algorithm much faster.
 949 *
 950 * Return the bit offset in bitmap of the allocated region,
 951 * or -errno on failure.
 952 */
 953int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
 954{
 955        int pos, end;           /* scans bitmap by regions of size order */
 956
 957        for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
 958                if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 959                        continue;
 960                __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 961                return pos;
 962        }
 963        return -ENOMEM;
 964}
 965EXPORT_SYMBOL(bitmap_find_free_region);
 966
 967/**
 968 * bitmap_release_region - release allocated bitmap region
 969 *      @bitmap: array of unsigned longs corresponding to the bitmap
 970 *      @pos: beginning of bit region to release
 971 *      @order: region size (log base 2 of number of bits) to release
 972 *
 973 * This is the complement to __bitmap_find_free_region() and releases
 974 * the found region (by clearing it in the bitmap).
 975 *
 976 * No return value.
 977 */
 978void bitmap_release_region(unsigned long *bitmap, int pos, int order)
 979{
 980        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
 981}
 982EXPORT_SYMBOL(bitmap_release_region);
 983
 984/**
 985 * bitmap_allocate_region - allocate bitmap region
 986 *      @bitmap: array of unsigned longs corresponding to the bitmap
 987 *      @pos: beginning of bit region to allocate
 988 *      @order: region size (log base 2 of number of bits) to allocate
 989 *
 990 * Allocate (set bits in) a specified region of a bitmap.
 991 *
 992 * Return 0 on success, or %-EBUSY if specified region wasn't
 993 * free (not all bits were zero).
 994 */
 995int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
 996{
 997        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 998                return -EBUSY;
 999        __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1000        return 0;
1001}
1002EXPORT_SYMBOL(bitmap_allocate_region);
1003
1004/**
1005 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1006 * @dst:   destination buffer
1007 * @src:   bitmap to copy
1008 * @nbits: number of bits in the bitmap
1009 *
1010 * Require nbits % BITS_PER_LONG == 0.
1011 */
1012void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1013{
1014        unsigned long *d = dst;
1015        int i;
1016
1017        for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1018                if (BITS_PER_LONG == 64)
1019                        d[i] = cpu_to_le64(src[i]);
1020                else
1021                        d[i] = cpu_to_le32(src[i]);
1022        }
1023}
1024EXPORT_SYMBOL(bitmap_copy_le);
1025