1/* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8#include <linux/module.h> 9#include <linux/ctype.h> 10#include <linux/errno.h> 11#include <linux/bitmap.h> 12#include <linux/bitops.h> 13#include <asm/uaccess.h> 14 15/* 16 * bitmaps provide an array of bits, implemented using an an 17 * array of unsigned longs. The number of valid bits in a 18 * given bitmap does _not_ need to be an exact multiple of 19 * BITS_PER_LONG. 20 * 21 * The possible unused bits in the last, partially used word 22 * of a bitmap are 'don't care'. The implementation makes 23 * no particular effort to keep them zero. It ensures that 24 * their value will not affect the results of any operation. 25 * The bitmap operations that return Boolean (bitmap_empty, 26 * for example) or scalar (bitmap_weight, for example) results 27 * carefully filter out these unused bits from impacting their 28 * results. 29 * 30 * These operations actually hold to a slightly stronger rule: 31 * if you don't input any bitmaps to these ops that have some 32 * unused bits set, then they won't output any set unused bits 33 * in output bitmaps. 34 * 35 * The byte ordering of bitmaps is more natural on little 36 * endian architectures. See the big-endian headers 37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 38 * for the best explanations of this ordering. 39 */ 40 41int __bitmap_empty(const unsigned long *bitmap, int bits) 42{ 43 int k, lim = bits/BITS_PER_LONG; 44 for (k = 0; k < lim; ++k) 45 if (bitmap[k]) 46 return 0; 47 48 if (bits % BITS_PER_LONG) 49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 50 return 0; 51 52 return 1; 53} 54EXPORT_SYMBOL(__bitmap_empty); 55 56int __bitmap_full(const unsigned long *bitmap, int bits) 57{ 58 int k, lim = bits/BITS_PER_LONG; 59 for (k = 0; k < lim; ++k) 60 if (~bitmap[k]) 61 return 0; 62 63 if (bits % BITS_PER_LONG) 64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 65 return 0; 66 67 return 1; 68} 69EXPORT_SYMBOL(__bitmap_full); 70 71int __bitmap_equal(const unsigned long *bitmap1, 72 const unsigned long *bitmap2, int bits) 73{ 74 int k, lim = bits/BITS_PER_LONG; 75 for (k = 0; k < lim; ++k) 76 if (bitmap1[k] != bitmap2[k]) 77 return 0; 78 79 if (bits % BITS_PER_LONG) 80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 81 return 0; 82 83 return 1; 84} 85EXPORT_SYMBOL(__bitmap_equal); 86 87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) 88{ 89 int k, lim = bits/BITS_PER_LONG; 90 for (k = 0; k < lim; ++k) 91 dst[k] = ~src[k]; 92 93 if (bits % BITS_PER_LONG) 94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); 95} 96EXPORT_SYMBOL(__bitmap_complement); 97 98/** 99 * __bitmap_shift_right - logical right shift of the bits in a bitmap 100 * @dst : destination bitmap 101 * @src : source bitmap 102 * @shift : shift by this many bits 103 * @bits : bitmap size, in bits 104 * 105 * Shifting right (dividing) means moving bits in the MS -> LS bit 106 * direction. Zeros are fed into the vacated MS positions and the 107 * LS bits shifted off the bottom are lost. 108 */ 109void __bitmap_shift_right(unsigned long *dst, 110 const unsigned long *src, int shift, int bits) 111{ 112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 114 unsigned long mask = (1UL << left) - 1; 115 for (k = 0; off + k < lim; ++k) { 116 unsigned long upper, lower; 117 118 /* 119 * If shift is not word aligned, take lower rem bits of 120 * word above and make them the top rem bits of result. 121 */ 122 if (!rem || off + k + 1 >= lim) 123 upper = 0; 124 else { 125 upper = src[off + k + 1]; 126 if (off + k + 1 == lim - 1 && left) 127 upper &= mask; 128 } 129 lower = src[off + k]; 130 if (left && off + k == lim - 1) 131 lower &= mask; 132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; 133 if (left && k == lim - 1) 134 dst[k] &= mask; 135 } 136 if (off) 137 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 138} 139EXPORT_SYMBOL(__bitmap_shift_right); 140 141 142/** 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap 144 * @dst : destination bitmap 145 * @src : source bitmap 146 * @shift : shift by this many bits 147 * @bits : bitmap size, in bits 148 * 149 * Shifting left (multiplying) means moving bits in the LS -> MS 150 * direction. Zeros are fed into the vacated LS bit positions 151 * and those MS bits shifted off the top are lost. 152 */ 153 154void __bitmap_shift_left(unsigned long *dst, 155 const unsigned long *src, int shift, int bits) 156{ 157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 159 for (k = lim - off - 1; k >= 0; --k) { 160 unsigned long upper, lower; 161 162 /* 163 * If shift is not word aligned, take upper rem bits of 164 * word below and make them the bottom rem bits of result. 165 */ 166 if (rem && k > 0) 167 lower = src[k - 1]; 168 else 169 lower = 0; 170 upper = src[k]; 171 if (left && k == lim - 1) 172 upper &= (1UL << left) - 1; 173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; 174 if (left && k + off == lim - 1) 175 dst[k + off] &= (1UL << left) - 1; 176 } 177 if (off) 178 memset(dst, 0, off*sizeof(unsigned long)); 179} 180EXPORT_SYMBOL(__bitmap_shift_left); 181 182int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 183 const unsigned long *bitmap2, int bits) 184{ 185 int k; 186 int nr = BITS_TO_LONGS(bits); 187 unsigned long result = 0; 188 189 for (k = 0; k < nr; k++) 190 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 191 return result != 0; 192} 193EXPORT_SYMBOL(__bitmap_and); 194 195void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 196 const unsigned long *bitmap2, int bits) 197{ 198 int k; 199 int nr = BITS_TO_LONGS(bits); 200 201 for (k = 0; k < nr; k++) 202 dst[k] = bitmap1[k] | bitmap2[k]; 203} 204EXPORT_SYMBOL(__bitmap_or); 205 206void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 207 const unsigned long *bitmap2, int bits) 208{ 209 int k; 210 int nr = BITS_TO_LONGS(bits); 211 212 for (k = 0; k < nr; k++) 213 dst[k] = bitmap1[k] ^ bitmap2[k]; 214} 215EXPORT_SYMBOL(__bitmap_xor); 216 217int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 218 const unsigned long *bitmap2, int bits) 219{ 220 int k; 221 int nr = BITS_TO_LONGS(bits); 222 unsigned long result = 0; 223 224 for (k = 0; k < nr; k++) 225 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 226 return result != 0; 227} 228EXPORT_SYMBOL(__bitmap_andnot); 229 230int __bitmap_intersects(const unsigned long *bitmap1, 231 const unsigned long *bitmap2, int bits) 232{ 233 int k, lim = bits/BITS_PER_LONG; 234 for (k = 0; k < lim; ++k) 235 if (bitmap1[k] & bitmap2[k]) 236 return 1; 237 238 if (bits % BITS_PER_LONG) 239 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 240 return 1; 241 return 0; 242} 243EXPORT_SYMBOL(__bitmap_intersects); 244 245int __bitmap_subset(const unsigned long *bitmap1, 246 const unsigned long *bitmap2, int bits) 247{ 248 int k, lim = bits/BITS_PER_LONG; 249 for (k = 0; k < lim; ++k) 250 if (bitmap1[k] & ~bitmap2[k]) 251 return 0; 252 253 if (bits % BITS_PER_LONG) 254 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 255 return 0; 256 return 1; 257} 258EXPORT_SYMBOL(__bitmap_subset); 259 260int __bitmap_weight(const unsigned long *bitmap, int bits) 261{ 262 int k, w = 0, lim = bits/BITS_PER_LONG; 263 264 for (k = 0; k < lim; k++) 265 w += hweight_long(bitmap[k]); 266 267 if (bits % BITS_PER_LONG) 268 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 269 270 return w; 271} 272EXPORT_SYMBOL(__bitmap_weight); 273 274/* 275 * Bitmap printing & parsing functions: first version by Bill Irwin, 276 * second version by Paul Jackson, third by Joe Korty. 277 */ 278 279#define CHUNKSZ 32 280#define nbits_to_hold_value(val) fls(val) 281#define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10)) 282#define BASEDEC 10 /* fancier cpuset lists input in decimal */ 283 284/** 285 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 286 * @buf: byte buffer into which string is placed 287 * @buflen: reserved size of @buf, in bytes 288 * @maskp: pointer to bitmap to convert 289 * @nmaskbits: size of bitmap, in bits 290 * 291 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 292 * comma-separated sets of eight digits per set. 293 */ 294int bitmap_scnprintf(char *buf, unsigned int buflen, 295 const unsigned long *maskp, int nmaskbits) 296{ 297 int i, word, bit, len = 0; 298 unsigned long val; 299 const char *sep = ""; 300 int chunksz; 301 u32 chunkmask; 302 303 chunksz = nmaskbits & (CHUNKSZ - 1); 304 if (chunksz == 0) 305 chunksz = CHUNKSZ; 306 307 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; 308 for (; i >= 0; i -= CHUNKSZ) { 309 chunkmask = ((1ULL << chunksz) - 1); 310 word = i / BITS_PER_LONG; 311 bit = i % BITS_PER_LONG; 312 val = (maskp[word] >> bit) & chunkmask; 313 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 314 (chunksz+3)/4, val); 315 chunksz = CHUNKSZ; 316 sep = ","; 317 } 318 return len; 319} 320EXPORT_SYMBOL(bitmap_scnprintf); 321 322/** 323 * __bitmap_parse - convert an ASCII hex string into a bitmap. 324 * @buf: pointer to buffer containing string. 325 * @buflen: buffer size in bytes. If string is smaller than this 326 * then it must be terminated with a \0. 327 * @is_user: location of buffer, 0 indicates kernel space 328 * @maskp: pointer to bitmap array that will contain result. 329 * @nmaskbits: size of bitmap, in bits. 330 * 331 * Commas group hex digits into chunks. Each chunk defines exactly 32 332 * bits of the resultant bitmask. No chunk may specify a value larger 333 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 334 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 335 * characters and for grouping errors such as "1,,5", ",44", "," and "". 336 * Leading and trailing whitespace accepted, but not embedded whitespace. 337 */ 338int __bitmap_parse(const char *buf, unsigned int buflen, 339 int is_user, unsigned long *maskp, 340 int nmaskbits) 341{ 342 int c, old_c, totaldigits, ndigits, nchunks, nbits; 343 u32 chunk; 344 const char __user *ubuf = buf; 345 346 bitmap_zero(maskp, nmaskbits); 347 348 nchunks = nbits = totaldigits = c = 0; 349 do { 350 chunk = ndigits = 0; 351 352 /* Get the next chunk of the bitmap */ 353 while (buflen) { 354 old_c = c; 355 if (is_user) { 356 if (__get_user(c, ubuf++)) 357 return -EFAULT; 358 } 359 else 360 c = *buf++; 361 buflen--; 362 if (isspace(c)) 363 continue; 364 365 /* 366 * If the last character was a space and the current 367 * character isn't '\0', we've got embedded whitespace. 368 * This is a no-no, so throw an error. 369 */ 370 if (totaldigits && c && isspace(old_c)) 371 return -EINVAL; 372 373 /* A '\0' or a ',' signal the end of the chunk */ 374 if (c == '\0' || c == ',') 375 break; 376 377 if (!isxdigit(c)) 378 return -EINVAL; 379 380 /* 381 * Make sure there are at least 4 free bits in 'chunk'. 382 * If not, this hexdigit will overflow 'chunk', so 383 * throw an error. 384 */ 385 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 386 return -EOVERFLOW; 387 388 chunk = (chunk << 4) | unhex(c); 389 ndigits++; totaldigits++; 390 } 391 if (ndigits == 0) 392 return -EINVAL; 393 if (nchunks == 0 && chunk == 0) 394 continue; 395 396 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 397 *maskp |= chunk; 398 nchunks++; 399 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 400 if (nbits > nmaskbits) 401 return -EOVERFLOW; 402 } while (buflen && c == ','); 403 404 return 0; 405} 406EXPORT_SYMBOL(__bitmap_parse); 407 408/** 409 * bitmap_parse_user() 410 * 411 * @ubuf: pointer to user buffer containing string. 412 * @ulen: buffer size in bytes. If string is smaller than this 413 * then it must be terminated with a \0. 414 * @maskp: pointer to bitmap array that will contain result. 415 * @nmaskbits: size of bitmap, in bits. 416 * 417 * Wrapper for __bitmap_parse(), providing it with user buffer. 418 * 419 * We cannot have this as an inline function in bitmap.h because it needs 420 * linux/uaccess.h to get the access_ok() declaration and this causes 421 * cyclic dependencies. 422 */ 423int bitmap_parse_user(const char __user *ubuf, 424 unsigned int ulen, unsigned long *maskp, 425 int nmaskbits) 426{ 427 if (!access_ok(VERIFY_READ, ubuf, ulen)) 428 return -EFAULT; 429 return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits); 430} 431EXPORT_SYMBOL(bitmap_parse_user); 432 433/* 434 * bscnl_emit(buf, buflen, rbot, rtop, bp) 435 * 436 * Helper routine for bitmap_scnlistprintf(). Write decimal number 437 * or range to buf, suppressing output past buf+buflen, with optional 438 * comma-prefix. Return len of what would be written to buf, if it 439 * all fit. 440 */ 441static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 442{ 443 if (len > 0) 444 len += scnprintf(buf + len, buflen - len, ","); 445 if (rbot == rtop) 446 len += scnprintf(buf + len, buflen - len, "%d", rbot); 447 else 448 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 449 return len; 450} 451 452/** 453 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 454 * @buf: byte buffer into which string is placed 455 * @buflen: reserved size of @buf, in bytes 456 * @maskp: pointer to bitmap to convert 457 * @nmaskbits: size of bitmap, in bits 458 * 459 * Output format is a comma-separated list of decimal numbers and 460 * ranges. Consecutively set bits are shown as two hyphen-separated 461 * decimal numbers, the smallest and largest bit numbers set in 462 * the range. Output format is compatible with the format 463 * accepted as input by bitmap_parselist(). 464 * 465 * The return value is the number of characters which would be 466 * generated for the given input, excluding the trailing '\0', as 467 * per ISO C99. 468 */ 469int bitmap_scnlistprintf(char *buf, unsigned int buflen, 470 const unsigned long *maskp, int nmaskbits) 471{ 472 int len = 0; 473 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 474 int cur, rbot, rtop; 475 476 if (buflen == 0) 477 return 0; 478 buf[0] = 0; 479 480 rbot = cur = find_first_bit(maskp, nmaskbits); 481 while (cur < nmaskbits) { 482 rtop = cur; 483 cur = find_next_bit(maskp, nmaskbits, cur+1); 484 if (cur >= nmaskbits || cur > rtop + 1) { 485 len = bscnl_emit(buf, buflen, rbot, rtop, len); 486 rbot = cur; 487 } 488 } 489 return len; 490} 491EXPORT_SYMBOL(bitmap_scnlistprintf); 492 493/** 494 * bitmap_parselist - convert list format ASCII string to bitmap 495 * @bp: read nul-terminated user string from this buffer 496 * @maskp: write resulting mask here 497 * @nmaskbits: number of bits in mask to be written 498 * 499 * Input format is a comma-separated list of decimal numbers and 500 * ranges. Consecutively set bits are shown as two hyphen-separated 501 * decimal numbers, the smallest and largest bit numbers set in 502 * the range. 503 * 504 * Returns 0 on success, -errno on invalid input strings. 505 * Error values: 506 * %-EINVAL: second number in range smaller than first 507 * %-EINVAL: invalid character in string 508 * %-ERANGE: bit number specified too large for mask 509 */ 510int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 511{ 512 unsigned a, b; 513 514 bitmap_zero(maskp, nmaskbits); 515 do { 516 if (!isdigit(*bp)) 517 return -EINVAL; 518 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC); 519 if (*bp == '-') { 520 bp++; 521 if (!isdigit(*bp)) 522 return -EINVAL; 523 b = simple_strtoul(bp, (char **)&bp, BASEDEC); 524 } 525 if (!(a <= b)) 526 return -EINVAL; 527 if (b >= nmaskbits) 528 return -ERANGE; 529 while (a <= b) { 530 set_bit(a, maskp); 531 a++; 532 } 533 if (*bp == ',') 534 bp++; 535 } while (*bp != '\0' && *bp != '\n'); 536 return 0; 537} 538EXPORT_SYMBOL(bitmap_parselist); 539 540/** 541 * bitmap_pos_to_ord(buf, pos, bits) 542 * @buf: pointer to a bitmap 543 * @pos: a bit position in @buf (0 <= @pos < @bits) 544 * @bits: number of valid bit positions in @buf 545 * 546 * Map the bit at position @pos in @buf (of length @bits) to the 547 * ordinal of which set bit it is. If it is not set or if @pos 548 * is not a valid bit position, map to -1. 549 * 550 * If for example, just bits 4 through 7 are set in @buf, then @pos 551 * values 4 through 7 will get mapped to 0 through 3, respectively, 552 * and other @pos values will get mapped to 0. When @pos value 7 553 * gets mapped to (returns) @ord value 3 in this example, that means 554 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 555 * 556 * The bit positions 0 through @bits are valid positions in @buf. 557 */ 558static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) 559{ 560 int i, ord; 561 562 if (pos < 0 || pos >= bits || !test_bit(pos, buf)) 563 return -1; 564 565 i = find_first_bit(buf, bits); 566 ord = 0; 567 while (i < pos) { 568 i = find_next_bit(buf, bits, i + 1); 569 ord++; 570 } 571 BUG_ON(i != pos); 572 573 return ord; 574} 575 576/** 577 * bitmap_ord_to_pos(buf, ord, bits) 578 * @buf: pointer to bitmap 579 * @ord: ordinal bit position (n-th set bit, n >= 0) 580 * @bits: number of valid bit positions in @buf 581 * 582 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 583 * Value of @ord should be in range 0 <= @ord < weight(buf), else 584 * results are undefined. 585 * 586 * If for example, just bits 4 through 7 are set in @buf, then @ord 587 * values 0 through 3 will get mapped to 4 through 7, respectively, 588 * and all other @ord values return undefined values. When @ord value 3 589 * gets mapped to (returns) @pos value 7 in this example, that means 590 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 591 * 592 * The bit positions 0 through @bits are valid positions in @buf. 593 */ 594static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) 595{ 596 int pos = 0; 597 598 if (ord >= 0 && ord < bits) { 599 int i; 600 601 for (i = find_first_bit(buf, bits); 602 i < bits && ord > 0; 603 i = find_next_bit(buf, bits, i + 1)) 604 ord--; 605 if (i < bits && ord == 0) 606 pos = i; 607 } 608 609 return pos; 610} 611 612/** 613 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 614 * @dst: remapped result 615 * @src: subset to be remapped 616 * @old: defines domain of map 617 * @new: defines range of map 618 * @bits: number of bits in each of these bitmaps 619 * 620 * Let @old and @new define a mapping of bit positions, such that 621 * whatever position is held by the n-th set bit in @old is mapped 622 * to the n-th set bit in @new. In the more general case, allowing 623 * for the possibility that the weight 'w' of @new is less than the 624 * weight of @old, map the position of the n-th set bit in @old to 625 * the position of the m-th set bit in @new, where m == n % w. 626 * 627 * If either of the @old and @new bitmaps are empty, or if @src and 628 * @dst point to the same location, then this routine copies @src 629 * to @dst. 630 * 631 * The positions of unset bits in @old are mapped to themselves 632 * (the identify map). 633 * 634 * Apply the above specified mapping to @src, placing the result in 635 * @dst, clearing any bits previously set in @dst. 636 * 637 * For example, lets say that @old has bits 4 through 7 set, and 638 * @new has bits 12 through 15 set. This defines the mapping of bit 639 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 640 * bit positions unchanged. So if say @src comes into this routine 641 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 642 * 13 and 15 set. 643 */ 644void bitmap_remap(unsigned long *dst, const unsigned long *src, 645 const unsigned long *old, const unsigned long *new, 646 int bits) 647{ 648 int oldbit, w; 649 650 if (dst == src) /* following doesn't handle inplace remaps */ 651 return; 652 bitmap_zero(dst, bits); 653 654 w = bitmap_weight(new, bits); 655 for (oldbit = find_first_bit(src, bits); 656 oldbit < bits; 657 oldbit = find_next_bit(src, bits, oldbit + 1)) { 658 int n = bitmap_pos_to_ord(old, oldbit, bits); 659 if (n < 0 || w == 0) 660 set_bit(oldbit, dst); /* identity map */ 661 else 662 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); 663 } 664} 665EXPORT_SYMBOL(bitmap_remap); 666 667/** 668 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 669 * @oldbit: bit position to be mapped 670 * @old: defines domain of map 671 * @new: defines range of map 672 * @bits: number of bits in each of these bitmaps 673 * 674 * Let @old and @new define a mapping of bit positions, such that 675 * whatever position is held by the n-th set bit in @old is mapped 676 * to the n-th set bit in @new. In the more general case, allowing 677 * for the possibility that the weight 'w' of @new is less than the 678 * weight of @old, map the position of the n-th set bit in @old to 679 * the position of the m-th set bit in @new, where m == n % w. 680 * 681 * The positions of unset bits in @old are mapped to themselves 682 * (the identify map). 683 * 684 * Apply the above specified mapping to bit position @oldbit, returning 685 * the new bit position. 686 * 687 * For example, lets say that @old has bits 4 through 7 set, and 688 * @new has bits 12 through 15 set. This defines the mapping of bit 689 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 690 * bit positions unchanged. So if say @oldbit is 5, then this routine 691 * returns 13. 692 */ 693int bitmap_bitremap(int oldbit, const unsigned long *old, 694 const unsigned long *new, int bits) 695{ 696 int w = bitmap_weight(new, bits); 697 int n = bitmap_pos_to_ord(old, oldbit, bits); 698 if (n < 0 || w == 0) 699 return oldbit; 700 else 701 return bitmap_ord_to_pos(new, n % w, bits); 702} 703EXPORT_SYMBOL(bitmap_bitremap); 704 705/** 706 * bitmap_onto - translate one bitmap relative to another 707 * @dst: resulting translated bitmap 708 * @orig: original untranslated bitmap 709 * @relmap: bitmap relative to which translated 710 * @bits: number of bits in each of these bitmaps 711 * 712 * Set the n-th bit of @dst iff there exists some m such that the 713 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 714 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 715 * (If you understood the previous sentence the first time your 716 * read it, you're overqualified for your current job.) 717 * 718 * In other words, @orig is mapped onto (surjectively) @dst, 719 * using the the map { <n, m> | the n-th bit of @relmap is the 720 * m-th set bit of @relmap }. 721 * 722 * Any set bits in @orig above bit number W, where W is the 723 * weight of (number of set bits in) @relmap are mapped nowhere. 724 * In particular, if for all bits m set in @orig, m >= W, then 725 * @dst will end up empty. In situations where the possibility 726 * of such an empty result is not desired, one way to avoid it is 727 * to use the bitmap_fold() operator, below, to first fold the 728 * @orig bitmap over itself so that all its set bits x are in the 729 * range 0 <= x < W. The bitmap_fold() operator does this by 730 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 731 * 732 * Example [1] for bitmap_onto(): 733 * Let's say @relmap has bits 30-39 set, and @orig has bits 734 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 735 * @dst will have bits 31, 33, 35, 37 and 39 set. 736 * 737 * When bit 0 is set in @orig, it means turn on the bit in 738 * @dst corresponding to whatever is the first bit (if any) 739 * that is turned on in @relmap. Since bit 0 was off in the 740 * above example, we leave off that bit (bit 30) in @dst. 741 * 742 * When bit 1 is set in @orig (as in the above example), it 743 * means turn on the bit in @dst corresponding to whatever 744 * is the second bit that is turned on in @relmap. The second 745 * bit in @relmap that was turned on in the above example was 746 * bit 31, so we turned on bit 31 in @dst. 747 * 748 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 749 * because they were the 4th, 6th, 8th and 10th set bits 750 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 751 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 752 * 753 * When bit 11 is set in @orig, it means turn on the bit in 754 * @dst corresponding to whatever is the twelth bit that is 755 * turned on in @relmap. In the above example, there were 756 * only ten bits turned on in @relmap (30..39), so that bit 757 * 11 was set in @orig had no affect on @dst. 758 * 759 * Example [2] for bitmap_fold() + bitmap_onto(): 760 * Let's say @relmap has these ten bits set: 761 * 40 41 42 43 45 48 53 61 74 95 762 * (for the curious, that's 40 plus the first ten terms of the 763 * Fibonacci sequence.) 764 * 765 * Further lets say we use the following code, invoking 766 * bitmap_fold() then bitmap_onto, as suggested above to 767 * avoid the possitility of an empty @dst result: 768 * 769 * unsigned long *tmp; // a temporary bitmap's bits 770 * 771 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 772 * bitmap_onto(dst, tmp, relmap, bits); 773 * 774 * Then this table shows what various values of @dst would be, for 775 * various @orig's. I list the zero-based positions of each set bit. 776 * The tmp column shows the intermediate result, as computed by 777 * using bitmap_fold() to fold the @orig bitmap modulo ten 778 * (the weight of @relmap). 779 * 780 * @orig tmp @dst 781 * 0 0 40 782 * 1 1 41 783 * 9 9 95 784 * 10 0 40 (*) 785 * 1 3 5 7 1 3 5 7 41 43 48 61 786 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 787 * 0 9 18 27 0 9 8 7 40 61 74 95 788 * 0 10 20 30 0 40 789 * 0 11 22 33 0 1 2 3 40 41 42 43 790 * 0 12 24 36 0 2 4 6 40 42 45 53 791 * 78 102 211 1 2 8 41 42 74 (*) 792 * 793 * (*) For these marked lines, if we hadn't first done bitmap_fold() 794 * into tmp, then the @dst result would have been empty. 795 * 796 * If either of @orig or @relmap is empty (no set bits), then @dst 797 * will be returned empty. 798 * 799 * If (as explained above) the only set bits in @orig are in positions 800 * m where m >= W, (where W is the weight of @relmap) then @dst will 801 * once again be returned empty. 802 * 803 * All bits in @dst not set by the above rule are cleared. 804 */ 805void bitmap_onto(unsigned long *dst, const unsigned long *orig, 806 const unsigned long *relmap, int bits) 807{ 808 int n, m; /* same meaning as in above comment */ 809 810 if (dst == orig) /* following doesn't handle inplace mappings */ 811 return; 812 bitmap_zero(dst, bits); 813 814 /* 815 * The following code is a more efficient, but less 816 * obvious, equivalent to the loop: 817 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 818 * n = bitmap_ord_to_pos(orig, m, bits); 819 * if (test_bit(m, orig)) 820 * set_bit(n, dst); 821 * } 822 */ 823 824 m = 0; 825 for (n = find_first_bit(relmap, bits); 826 n < bits; 827 n = find_next_bit(relmap, bits, n + 1)) { 828 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 829 if (test_bit(m, orig)) 830 set_bit(n, dst); 831 m++; 832 } 833} 834EXPORT_SYMBOL(bitmap_onto); 835 836/** 837 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 838 * @dst: resulting smaller bitmap 839 * @orig: original larger bitmap 840 * @sz: specified size 841 * @bits: number of bits in each of these bitmaps 842 * 843 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 844 * Clear all other bits in @dst. See further the comment and 845 * Example [2] for bitmap_onto() for why and how to use this. 846 */ 847void bitmap_fold(unsigned long *dst, const unsigned long *orig, 848 int sz, int bits) 849{ 850 int oldbit; 851 852 if (dst == orig) /* following doesn't handle inplace mappings */ 853 return; 854 bitmap_zero(dst, bits); 855 856 for (oldbit = find_first_bit(orig, bits); 857 oldbit < bits; 858 oldbit = find_next_bit(orig, bits, oldbit + 1)) 859 set_bit(oldbit % sz, dst); 860} 861EXPORT_SYMBOL(bitmap_fold); 862 863/* 864 * Common code for bitmap_*_region() routines. 865 * bitmap: array of unsigned longs corresponding to the bitmap 866 * pos: the beginning of the region 867 * order: region size (log base 2 of number of bits) 868 * reg_op: operation(s) to perform on that region of bitmap 869 * 870 * Can set, verify and/or release a region of bits in a bitmap, 871 * depending on which combination of REG_OP_* flag bits is set. 872 * 873 * A region of a bitmap is a sequence of bits in the bitmap, of 874 * some size '1 << order' (a power of two), aligned to that same 875 * '1 << order' power of two. 876 * 877 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 878 * Returns 0 in all other cases and reg_ops. 879 */ 880 881enum { 882 REG_OP_ISFREE, /* true if region is all zero bits */ 883 REG_OP_ALLOC, /* set all bits in region */ 884 REG_OP_RELEASE, /* clear all bits in region */ 885}; 886 887static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) 888{ 889 int nbits_reg; /* number of bits in region */ 890 int index; /* index first long of region in bitmap */ 891 int offset; /* bit offset region in bitmap[index] */ 892 int nlongs_reg; /* num longs spanned by region in bitmap */ 893 int nbitsinlong; /* num bits of region in each spanned long */ 894 unsigned long mask; /* bitmask for one long of region */ 895 int i; /* scans bitmap by longs */ 896 int ret = 0; /* return value */ 897 898 /* 899 * Either nlongs_reg == 1 (for small orders that fit in one long) 900 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 901 */ 902 nbits_reg = 1 << order; 903 index = pos / BITS_PER_LONG; 904 offset = pos - (index * BITS_PER_LONG); 905 nlongs_reg = BITS_TO_LONGS(nbits_reg); 906 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 907 908 /* 909 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 910 * overflows if nbitsinlong == BITS_PER_LONG. 911 */ 912 mask = (1UL << (nbitsinlong - 1)); 913 mask += mask - 1; 914 mask <<= offset; 915 916 switch (reg_op) { 917 case REG_OP_ISFREE: 918 for (i = 0; i < nlongs_reg; i++) { 919 if (bitmap[index + i] & mask) 920 goto done; 921 } 922 ret = 1; /* all bits in region free (zero) */ 923 break; 924 925 case REG_OP_ALLOC: 926 for (i = 0; i < nlongs_reg; i++) 927 bitmap[index + i] |= mask; 928 break; 929 930 case REG_OP_RELEASE: 931 for (i = 0; i < nlongs_reg; i++) 932 bitmap[index + i] &= ~mask; 933 break; 934 } 935done: 936 return ret; 937} 938 939/** 940 * bitmap_find_free_region - find a contiguous aligned mem region 941 * @bitmap: array of unsigned longs corresponding to the bitmap 942 * @bits: number of bits in the bitmap 943 * @order: region size (log base 2 of number of bits) to find 944 * 945 * Find a region of free (zero) bits in a @bitmap of @bits bits and 946 * allocate them (set them to one). Only consider regions of length 947 * a power (@order) of two, aligned to that power of two, which 948 * makes the search algorithm much faster. 949 * 950 * Return the bit offset in bitmap of the allocated region, 951 * or -errno on failure. 952 */ 953int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) 954{ 955 int pos, end; /* scans bitmap by regions of size order */ 956 957 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { 958 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 959 continue; 960 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 961 return pos; 962 } 963 return -ENOMEM; 964} 965EXPORT_SYMBOL(bitmap_find_free_region); 966 967/** 968 * bitmap_release_region - release allocated bitmap region 969 * @bitmap: array of unsigned longs corresponding to the bitmap 970 * @pos: beginning of bit region to release 971 * @order: region size (log base 2 of number of bits) to release 972 * 973 * This is the complement to __bitmap_find_free_region() and releases 974 * the found region (by clearing it in the bitmap). 975 * 976 * No return value. 977 */ 978void bitmap_release_region(unsigned long *bitmap, int pos, int order) 979{ 980 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 981} 982EXPORT_SYMBOL(bitmap_release_region); 983 984/** 985 * bitmap_allocate_region - allocate bitmap region 986 * @bitmap: array of unsigned longs corresponding to the bitmap 987 * @pos: beginning of bit region to allocate 988 * @order: region size (log base 2 of number of bits) to allocate 989 * 990 * Allocate (set bits in) a specified region of a bitmap. 991 * 992 * Return 0 on success, or %-EBUSY if specified region wasn't 993 * free (not all bits were zero). 994 */ 995int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) 996{ 997 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 998 return -EBUSY; 999 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1000 return 0;
1001} 1002EXPORT_SYMBOL(bitmap_allocate_region); 1003 1004/** 1005 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1006 * @dst: destination buffer 1007 * @src: bitmap to copy 1008 * @nbits: number of bits in the bitmap 1009 * 1010 * Require nbits % BITS_PER_LONG == 0. 1011 */ 1012void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) 1013{ 1014 unsigned long *d = dst; 1015 int i; 1016 1017 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1018 if (BITS_PER_LONG == 64) 1019 d[i] = cpu_to_le64(src[i]); 1020 else 1021 d[i] = cpu_to_le32(src[i]); 1022 } 1023} 1024EXPORT_SYMBOL(bitmap_copy_le); 1025