linux/mm/bootmem.c
<<
>>
Prefs
   1/*
   2 *  bootmem - A boot-time physical memory allocator and configurator
   3 *
   4 *  Copyright (C) 1999 Ingo Molnar
   5 *                1999 Kanoj Sarcar, SGI
   6 *                2008 Johannes Weiner
   7 *
   8 * Access to this subsystem has to be serialized externally (which is true
   9 * for the boot process anyway).
  10 */
  11#include <linux/init.h>
  12#include <linux/pfn.h>
  13#include <linux/bootmem.h>
  14#include <linux/module.h>
  15#include <linux/kmemleak.h>
  16
  17#include <asm/bug.h>
  18#include <asm/io.h>
  19#include <asm/processor.h>
  20
  21#include "internal.h"
  22
  23unsigned long max_low_pfn;
  24unsigned long min_low_pfn;
  25unsigned long max_pfn;
  26
  27#ifdef CONFIG_CRASH_DUMP
  28/*
  29 * If we have booted due to a crash, max_pfn will be a very low value. We need
  30 * to know the amount of memory that the previous kernel used.
  31 */
  32unsigned long saved_max_pfn;
  33#endif
  34
  35bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  36
  37static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  38
  39static int bootmem_debug;
  40
  41static int __init bootmem_debug_setup(char *buf)
  42{
  43        bootmem_debug = 1;
  44        return 0;
  45}
  46early_param("bootmem_debug", bootmem_debug_setup);
  47
  48#define bdebug(fmt, args...) ({                         \
  49        if (unlikely(bootmem_debug))                    \
  50                printk(KERN_INFO                        \
  51                        "bootmem::%s " fmt,             \
  52                        __func__, ## args);             \
  53})
  54
  55static unsigned long __init bootmap_bytes(unsigned long pages)
  56{
  57        unsigned long bytes = (pages + 7) / 8;
  58
  59        return ALIGN(bytes, sizeof(long));
  60}
  61
  62/**
  63 * bootmem_bootmap_pages - calculate bitmap size in pages
  64 * @pages: number of pages the bitmap has to represent
  65 */
  66unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  67{
  68        unsigned long bytes = bootmap_bytes(pages);
  69
  70        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
  71}
  72
  73/*
  74 * link bdata in order
  75 */
  76static void __init link_bootmem(bootmem_data_t *bdata)
  77{
  78        struct list_head *iter;
  79
  80        list_for_each(iter, &bdata_list) {
  81                bootmem_data_t *ent;
  82
  83                ent = list_entry(iter, bootmem_data_t, list);
  84                if (bdata->node_min_pfn < ent->node_min_pfn)
  85                        break;
  86        }
  87        list_add_tail(&bdata->list, iter);
  88}
  89
  90/*
  91 * Called once to set up the allocator itself.
  92 */
  93static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
  94        unsigned long mapstart, unsigned long start, unsigned long end)
  95{
  96        unsigned long mapsize;
  97
  98        mminit_validate_memmodel_limits(&start, &end);
  99        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 100        bdata->node_min_pfn = start;
 101        bdata->node_low_pfn = end;
 102        link_bootmem(bdata);
 103
 104        /*
 105         * Initially all pages are reserved - setup_arch() has to
 106         * register free RAM areas explicitly.
 107         */
 108        mapsize = bootmap_bytes(end - start);
 109        memset(bdata->node_bootmem_map, 0xff, mapsize);
 110
 111        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 112                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 113
 114        return mapsize;
 115}
 116
 117/**
 118 * init_bootmem_node - register a node as boot memory
 119 * @pgdat: node to register
 120 * @freepfn: pfn where the bitmap for this node is to be placed
 121 * @startpfn: first pfn on the node
 122 * @endpfn: first pfn after the node
 123 *
 124 * Returns the number of bytes needed to hold the bitmap for this node.
 125 */
 126unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 127                                unsigned long startpfn, unsigned long endpfn)
 128{
 129        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 130}
 131
 132/**
 133 * init_bootmem - register boot memory
 134 * @start: pfn where the bitmap is to be placed
 135 * @pages: number of available physical pages
 136 *
 137 * Returns the number of bytes needed to hold the bitmap.
 138 */
 139unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 140{
 141        max_low_pfn = pages;
 142        min_low_pfn = start;
 143        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 144}
 145
 146static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 147{
 148        int aligned;
 149        struct page *page;
 150        unsigned long start, end, pages, count = 0;
 151
 152        if (!bdata->node_bootmem_map)
 153                return 0;
 154
 155        start = bdata->node_min_pfn;
 156        end = bdata->node_low_pfn;
 157
 158        /*
 159         * If the start is aligned to the machines wordsize, we might
 160         * be able to free pages in bulks of that order.
 161         */
 162        aligned = !(start & (BITS_PER_LONG - 1));
 163
 164        bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
 165                bdata - bootmem_node_data, start, end, aligned);
 166
 167        while (start < end) {
 168                unsigned long *map, idx, vec;
 169
 170                map = bdata->node_bootmem_map;
 171                idx = start - bdata->node_min_pfn;
 172                vec = ~map[idx / BITS_PER_LONG];
 173
 174                if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
 175                        int order = ilog2(BITS_PER_LONG);
 176
 177                        __free_pages_bootmem(pfn_to_page(start), order);
 178                        count += BITS_PER_LONG;
 179                } else {
 180                        unsigned long off = 0;
 181
 182                        while (vec && off < BITS_PER_LONG) {
 183                                if (vec & 1) {
 184                                        page = pfn_to_page(start + off);
 185                                        __free_pages_bootmem(page, 0);
 186                                        count++;
 187                                }
 188                                vec >>= 1;
 189                                off++;
 190                        }
 191                }
 192                start += BITS_PER_LONG;
 193        }
 194
 195        page = virt_to_page(bdata->node_bootmem_map);
 196        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 197        pages = bootmem_bootmap_pages(pages);
 198        count += pages;
 199        while (pages--)
 200                __free_pages_bootmem(page++, 0);
 201
 202        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 203
 204        return count;
 205}
 206
 207/**
 208 * free_all_bootmem_node - release a node's free pages to the buddy allocator
 209 * @pgdat: node to be released
 210 *
 211 * Returns the number of pages actually released.
 212 */
 213unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
 214{
 215        register_page_bootmem_info_node(pgdat);
 216        return free_all_bootmem_core(pgdat->bdata);
 217}
 218
 219/**
 220 * free_all_bootmem - release free pages to the buddy allocator
 221 *
 222 * Returns the number of pages actually released.
 223 */
 224unsigned long __init free_all_bootmem(void)
 225{
 226        return free_all_bootmem_core(NODE_DATA(0)->bdata);
 227}
 228
 229static void __init __free(bootmem_data_t *bdata,
 230                        unsigned long sidx, unsigned long eidx)
 231{
 232        unsigned long idx;
 233
 234        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 235                sidx + bdata->node_min_pfn,
 236                eidx + bdata->node_min_pfn);
 237
 238        if (bdata->hint_idx > sidx)
 239                bdata->hint_idx = sidx;
 240
 241        for (idx = sidx; idx < eidx; idx++)
 242                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 243                        BUG();
 244}
 245
 246static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 247                        unsigned long eidx, int flags)
 248{
 249        unsigned long idx;
 250        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 251
 252        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 253                bdata - bootmem_node_data,
 254                sidx + bdata->node_min_pfn,
 255                eidx + bdata->node_min_pfn,
 256                flags);
 257
 258        for (idx = sidx; idx < eidx; idx++)
 259                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 260                        if (exclusive) {
 261                                __free(bdata, sidx, idx);
 262                                return -EBUSY;
 263                        }
 264                        bdebug("silent double reserve of PFN %lx\n",
 265                                idx + bdata->node_min_pfn);
 266                }
 267        return 0;
 268}
 269
 270static int __init mark_bootmem_node(bootmem_data_t *bdata,
 271                                unsigned long start, unsigned long end,
 272                                int reserve, int flags)
 273{
 274        unsigned long sidx, eidx;
 275
 276        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 277                bdata - bootmem_node_data, start, end, reserve, flags);
 278
 279        BUG_ON(start < bdata->node_min_pfn);
 280        BUG_ON(end > bdata->node_low_pfn);
 281
 282        sidx = start - bdata->node_min_pfn;
 283        eidx = end - bdata->node_min_pfn;
 284
 285        if (reserve)
 286                return __reserve(bdata, sidx, eidx, flags);
 287        else
 288                __free(bdata, sidx, eidx);
 289        return 0;
 290}
 291
 292static int __init mark_bootmem(unsigned long start, unsigned long end,
 293                                int reserve, int flags)
 294{
 295        unsigned long pos;
 296        bootmem_data_t *bdata;
 297
 298        pos = start;
 299        list_for_each_entry(bdata, &bdata_list, list) {
 300                int err;
 301                unsigned long max;
 302
 303                if (pos < bdata->node_min_pfn ||
 304                    pos >= bdata->node_low_pfn) {
 305                        BUG_ON(pos != start);
 306                        continue;
 307                }
 308
 309                max = min(bdata->node_low_pfn, end);
 310
 311                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 312                if (reserve && err) {
 313                        mark_bootmem(start, pos, 0, 0);
 314                        return err;
 315                }
 316
 317                if (max == end)
 318                        return 0;
 319                pos = bdata->node_low_pfn;
 320        }
 321        BUG();
 322}
 323
 324/**
 325 * free_bootmem_node - mark a page range as usable
 326 * @pgdat: node the range resides on
 327 * @physaddr: starting address of the range
 328 * @size: size of the range in bytes
 329 *
 330 * Partial pages will be considered reserved and left as they are.
 331 *
 332 * The range must reside completely on the specified node.
 333 */
 334void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 335                              unsigned long size)
 336{
 337        unsigned long start, end;
 338
 339        kmemleak_free_part(__va(physaddr), size);
 340
 341        start = PFN_UP(physaddr);
 342        end = PFN_DOWN(physaddr + size);
 343
 344        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 345}
 346
 347/**
 348 * free_bootmem - mark a page range as usable
 349 * @addr: starting address of the range
 350 * @size: size of the range in bytes
 351 *
 352 * Partial pages will be considered reserved and left as they are.
 353 *
 354 * The range must be contiguous but may span node boundaries.
 355 */
 356void __init free_bootmem(unsigned long addr, unsigned long size)
 357{
 358        unsigned long start, end;
 359
 360        kmemleak_free_part(__va(addr), size);
 361
 362        start = PFN_UP(addr);
 363        end = PFN_DOWN(addr + size);
 364
 365        mark_bootmem(start, end, 0, 0);
 366}
 367
 368/**
 369 * reserve_bootmem_node - mark a page range as reserved
 370 * @pgdat: node the range resides on
 371 * @physaddr: starting address of the range
 372 * @size: size of the range in bytes
 373 * @flags: reservation flags (see linux/bootmem.h)
 374 *
 375 * Partial pages will be reserved.
 376 *
 377 * The range must reside completely on the specified node.
 378 */
 379int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 380                                 unsigned long size, int flags)
 381{
 382        unsigned long start, end;
 383
 384        start = PFN_DOWN(physaddr);
 385        end = PFN_UP(physaddr + size);
 386
 387        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 388}
 389
 390/**
 391 * reserve_bootmem - mark a page range as usable
 392 * @addr: starting address of the range
 393 * @size: size of the range in bytes
 394 * @flags: reservation flags (see linux/bootmem.h)
 395 *
 396 * Partial pages will be reserved.
 397 *
 398 * The range must be contiguous but may span node boundaries.
 399 */
 400int __init reserve_bootmem(unsigned long addr, unsigned long size,
 401                            int flags)
 402{
 403        unsigned long start, end;
 404
 405        start = PFN_DOWN(addr);
 406        end = PFN_UP(addr + size);
 407
 408        return mark_bootmem(start, end, 1, flags);
 409}
 410
 411static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx,
 412                        unsigned long step)
 413{
 414        unsigned long base = bdata->node_min_pfn;
 415
 416        /*
 417         * Align the index with respect to the node start so that the
 418         * combination of both satisfies the requested alignment.
 419         */
 420
 421        return ALIGN(base + idx, step) - base;
 422}
 423
 424static unsigned long align_off(struct bootmem_data *bdata, unsigned long off,
 425                        unsigned long align)
 426{
 427        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 428
 429        /* Same as align_idx for byte offsets */
 430
 431        return ALIGN(base + off, align) - base;
 432}
 433
 434static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
 435                                        unsigned long size, unsigned long align,
 436                                        unsigned long goal, unsigned long limit)
 437{
 438        unsigned long fallback = 0;
 439        unsigned long min, max, start, sidx, midx, step;
 440
 441        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 442                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 443                align, goal, limit);
 444
 445        BUG_ON(!size);
 446        BUG_ON(align & (align - 1));
 447        BUG_ON(limit && goal + size > limit);
 448
 449        if (!bdata->node_bootmem_map)
 450                return NULL;
 451
 452        min = bdata->node_min_pfn;
 453        max = bdata->node_low_pfn;
 454
 455        goal >>= PAGE_SHIFT;
 456        limit >>= PAGE_SHIFT;
 457
 458        if (limit && max > limit)
 459                max = limit;
 460        if (max <= min)
 461                return NULL;
 462
 463        step = max(align >> PAGE_SHIFT, 1UL);
 464
 465        if (goal && min < goal && goal < max)
 466                start = ALIGN(goal, step);
 467        else
 468                start = ALIGN(min, step);
 469
 470        sidx = start - bdata->node_min_pfn;
 471        midx = max - bdata->node_min_pfn;
 472
 473        if (bdata->hint_idx > sidx) {
 474                /*
 475                 * Handle the valid case of sidx being zero and still
 476                 * catch the fallback below.
 477                 */
 478                fallback = sidx + 1;
 479                sidx = align_idx(bdata, bdata->hint_idx, step);
 480        }
 481
 482        while (1) {
 483                int merge;
 484                void *region;
 485                unsigned long eidx, i, start_off, end_off;
 486find_block:
 487                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 488                sidx = align_idx(bdata, sidx, step);
 489                eidx = sidx + PFN_UP(size);
 490
 491                if (sidx >= midx || eidx > midx)
 492                        break;
 493
 494                for (i = sidx; i < eidx; i++)
 495                        if (test_bit(i, bdata->node_bootmem_map)) {
 496                                sidx = align_idx(bdata, i, step);
 497                                if (sidx == i)
 498                                        sidx += step;
 499                                goto find_block;
 500                        }
 501
 502                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 503                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 504                        start_off = align_off(bdata, bdata->last_end_off, align);
 505                else
 506                        start_off = PFN_PHYS(sidx);
 507
 508                merge = PFN_DOWN(start_off) < sidx;
 509                end_off = start_off + size;
 510
 511                bdata->last_end_off = end_off;
 512                bdata->hint_idx = PFN_UP(end_off);
 513
 514                /*
 515                 * Reserve the area now:
 516                 */
 517                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 518                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 519                        BUG();
 520
 521                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 522                                start_off);
 523                memset(region, 0, size);
 524                /*
 525                 * The min_count is set to 0 so that bootmem allocated blocks
 526                 * are never reported as leaks.
 527                 */
 528                kmemleak_alloc(region, size, 0, 0);
 529                return region;
 530        }
 531
 532        if (fallback) {
 533                sidx = align_idx(bdata, fallback - 1, step);
 534                fallback = 0;
 535                goto find_block;
 536        }
 537
 538        return NULL;
 539}
 540
 541static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
 542                                        unsigned long size, unsigned long align,
 543                                        unsigned long goal, unsigned long limit)
 544{
 545        if (WARN_ON_ONCE(slab_is_available()))
 546                return kzalloc(size, GFP_NOWAIT);
 547
 548#ifdef CONFIG_HAVE_ARCH_BOOTMEM
 549        {
 550                bootmem_data_t *p_bdata;
 551
 552                p_bdata = bootmem_arch_preferred_node(bdata, size, align,
 553                                                        goal, limit);
 554                if (p_bdata)
 555                        return alloc_bootmem_core(p_bdata, size, align,
 556                                                        goal, limit);
 557        }
 558#endif
 559        return NULL;
 560}
 561
 562static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 563                                        unsigned long align,
 564                                        unsigned long goal,
 565                                        unsigned long limit)
 566{
 567        bootmem_data_t *bdata;
 568        void *region;
 569
 570restart:
 571        region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
 572        if (region)
 573                return region;
 574
 575        list_for_each_entry(bdata, &bdata_list, list) {
 576                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 577                        continue;
 578                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 579                        break;
 580
 581                region = alloc_bootmem_core(bdata, size, align, goal, limit);
 582                if (region)
 583                        return region;
 584        }
 585
 586        if (goal) {
 587                goal = 0;
 588                goto restart;
 589        }
 590
 591        return NULL;
 592}
 593
 594/**
 595 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 596 * @size: size of the request in bytes
 597 * @align: alignment of the region
 598 * @goal: preferred starting address of the region
 599 *
 600 * The goal is dropped if it can not be satisfied and the allocation will
 601 * fall back to memory below @goal.
 602 *
 603 * Allocation may happen on any node in the system.
 604 *
 605 * Returns NULL on failure.
 606 */
 607void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 608                                        unsigned long goal)
 609{
 610        return ___alloc_bootmem_nopanic(size, align, goal, 0);
 611}
 612
 613static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 614                                        unsigned long goal, unsigned long limit)
 615{
 616        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 617
 618        if (mem)
 619                return mem;
 620        /*
 621         * Whoops, we cannot satisfy the allocation request.
 622         */
 623        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 624        panic("Out of memory");
 625        return NULL;
 626}
 627
 628/**
 629 * __alloc_bootmem - allocate boot memory
 630 * @size: size of the request in bytes
 631 * @align: alignment of the region
 632 * @goal: preferred starting address of the region
 633 *
 634 * The goal is dropped if it can not be satisfied and the allocation will
 635 * fall back to memory below @goal.
 636 *
 637 * Allocation may happen on any node in the system.
 638 *
 639 * The function panics if the request can not be satisfied.
 640 */
 641void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 642                              unsigned long goal)
 643{
 644        return ___alloc_bootmem(size, align, goal, 0);
 645}
 646
 647static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
 648                                unsigned long size, unsigned long align,
 649                                unsigned long goal, unsigned long limit)
 650{
 651        void *ptr;
 652
 653        ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
 654        if (ptr)
 655                return ptr;
 656
 657        ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
 658        if (ptr)
 659                return ptr;
 660
 661        return ___alloc_bootmem(size, align, goal, limit);
 662}
 663
 664/**
 665 * __alloc_bootmem_node - allocate boot memory from a specific node
 666 * @pgdat: node to allocate from
 667 * @size: size of the request in bytes
 668 * @align: alignment of the region
 669 * @goal: preferred starting address of the region
 670 *
 671 * The goal is dropped if it can not be satisfied and the allocation will
 672 * fall back to memory below @goal.
 673 *
 674 * Allocation may fall back to any node in the system if the specified node
 675 * can not hold the requested memory.
 676 *
 677 * The function panics if the request can not be satisfied.
 678 */
 679void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 680                                   unsigned long align, unsigned long goal)
 681{
 682        if (WARN_ON_ONCE(slab_is_available()))
 683                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 684
 685        return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
 686}
 687
 688#ifdef CONFIG_SPARSEMEM
 689/**
 690 * alloc_bootmem_section - allocate boot memory from a specific section
 691 * @size: size of the request in bytes
 692 * @section_nr: sparse map section to allocate from
 693 *
 694 * Return NULL on failure.
 695 */
 696void * __init alloc_bootmem_section(unsigned long size,
 697                                    unsigned long section_nr)
 698{
 699        bootmem_data_t *bdata;
 700        unsigned long pfn, goal, limit;
 701
 702        pfn = section_nr_to_pfn(section_nr);
 703        goal = pfn << PAGE_SHIFT;
 704        limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
 705        bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
 706
 707        return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
 708}
 709#endif
 710
 711void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 712                                   unsigned long align, unsigned long goal)
 713{
 714        void *ptr;
 715
 716        if (WARN_ON_ONCE(slab_is_available()))
 717                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 718
 719        ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
 720        if (ptr)
 721                return ptr;
 722
 723        ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
 724        if (ptr)
 725                return ptr;
 726
 727        return __alloc_bootmem_nopanic(size, align, goal);
 728}
 729
 730#ifndef ARCH_LOW_ADDRESS_LIMIT
 731#define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
 732#endif
 733
 734/**
 735 * __alloc_bootmem_low - allocate low boot memory
 736 * @size: size of the request in bytes
 737 * @align: alignment of the region
 738 * @goal: preferred starting address of the region
 739 *
 740 * The goal is dropped if it can not be satisfied and the allocation will
 741 * fall back to memory below @goal.
 742 *
 743 * Allocation may happen on any node in the system.
 744 *
 745 * The function panics if the request can not be satisfied.
 746 */
 747void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 748                                  unsigned long goal)
 749{
 750        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 751}
 752
 753/**
 754 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 755 * @pgdat: node to allocate from
 756 * @size: size of the request in bytes
 757 * @align: alignment of the region
 758 * @goal: preferred starting address of the region
 759 *
 760 * The goal is dropped if it can not be satisfied and the allocation will
 761 * fall back to memory below @goal.
 762 *
 763 * Allocation may fall back to any node in the system if the specified node
 764 * can not hold the requested memory.
 765 *
 766 * The function panics if the request can not be satisfied.
 767 */
 768void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 769                                       unsigned long align, unsigned long goal)
 770{
 771        if (WARN_ON_ONCE(slab_is_available()))
 772                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 773
 774        return ___alloc_bootmem_node(pgdat->bdata, size, align,
 775                                goal, ARCH_LOW_ADDRESS_LIMIT);
 776}
 777