linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) William Irwin, April 2004
   4 */
   5#include <linux/gfp.h>
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/module.h>
   9#include <linux/mm.h>
  10#include <linux/seq_file.h>
  11#include <linux/sysctl.h>
  12#include <linux/highmem.h>
  13#include <linux/mmu_notifier.h>
  14#include <linux/nodemask.h>
  15#include <linux/pagemap.h>
  16#include <linux/mempolicy.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/bootmem.h>
  20#include <linux/sysfs.h>
  21
  22#include <asm/page.h>
  23#include <asm/pgtable.h>
  24#include <asm/io.h>
  25
  26#include <linux/hugetlb.h>
  27#include "internal.h"
  28
  29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  31unsigned long hugepages_treat_as_movable;
  32
  33static int max_hstate;
  34unsigned int default_hstate_idx;
  35struct hstate hstates[HUGE_MAX_HSTATE];
  36
  37__initdata LIST_HEAD(huge_boot_pages);
  38
  39/* for command line parsing */
  40static struct hstate * __initdata parsed_hstate;
  41static unsigned long __initdata default_hstate_max_huge_pages;
  42static unsigned long __initdata default_hstate_size;
  43
  44#define for_each_hstate(h) \
  45        for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
  46
  47/*
  48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  49 */
  50static DEFINE_SPINLOCK(hugetlb_lock);
  51
  52/*
  53 * Region tracking -- allows tracking of reservations and instantiated pages
  54 *                    across the pages in a mapping.
  55 *
  56 * The region data structures are protected by a combination of the mmap_sem
  57 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
  58 * must either hold the mmap_sem for write, or the mmap_sem for read and
  59 * the hugetlb_instantiation mutex:
  60 *
  61 *      down_write(&mm->mmap_sem);
  62 * or
  63 *      down_read(&mm->mmap_sem);
  64 *      mutex_lock(&hugetlb_instantiation_mutex);
  65 */
  66struct file_region {
  67        struct list_head link;
  68        long from;
  69        long to;
  70};
  71
  72static long region_add(struct list_head *head, long f, long t)
  73{
  74        struct file_region *rg, *nrg, *trg;
  75
  76        /* Locate the region we are either in or before. */
  77        list_for_each_entry(rg, head, link)
  78                if (f <= rg->to)
  79                        break;
  80
  81        /* Round our left edge to the current segment if it encloses us. */
  82        if (f > rg->from)
  83                f = rg->from;
  84
  85        /* Check for and consume any regions we now overlap with. */
  86        nrg = rg;
  87        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  88                if (&rg->link == head)
  89                        break;
  90                if (rg->from > t)
  91                        break;
  92
  93                /* If this area reaches higher then extend our area to
  94                 * include it completely.  If this is not the first area
  95                 * which we intend to reuse, free it. */
  96                if (rg->to > t)
  97                        t = rg->to;
  98                if (rg != nrg) {
  99                        list_del(&rg->link);
 100                        kfree(rg);
 101                }
 102        }
 103        nrg->from = f;
 104        nrg->to = t;
 105        return 0;
 106}
 107
 108static long region_chg(struct list_head *head, long f, long t)
 109{
 110        struct file_region *rg, *nrg;
 111        long chg = 0;
 112
 113        /* Locate the region we are before or in. */
 114        list_for_each_entry(rg, head, link)
 115                if (f <= rg->to)
 116                        break;
 117
 118        /* If we are below the current region then a new region is required.
 119         * Subtle, allocate a new region at the position but make it zero
 120         * size such that we can guarantee to record the reservation. */
 121        if (&rg->link == head || t < rg->from) {
 122                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 123                if (!nrg)
 124                        return -ENOMEM;
 125                nrg->from = f;
 126                nrg->to   = f;
 127                INIT_LIST_HEAD(&nrg->link);
 128                list_add(&nrg->link, rg->link.prev);
 129
 130                return t - f;
 131        }
 132
 133        /* Round our left edge to the current segment if it encloses us. */
 134        if (f > rg->from)
 135                f = rg->from;
 136        chg = t - f;
 137
 138        /* Check for and consume any regions we now overlap with. */
 139        list_for_each_entry(rg, rg->link.prev, link) {
 140                if (&rg->link == head)
 141                        break;
 142                if (rg->from > t)
 143                        return chg;
 144
 145                /* We overlap with this area, if it extends futher than
 146                 * us then we must extend ourselves.  Account for its
 147                 * existing reservation. */
 148                if (rg->to > t) {
 149                        chg += rg->to - t;
 150                        t = rg->to;
 151                }
 152                chg -= rg->to - rg->from;
 153        }
 154        return chg;
 155}
 156
 157static long region_truncate(struct list_head *head, long end)
 158{
 159        struct file_region *rg, *trg;
 160        long chg = 0;
 161
 162        /* Locate the region we are either in or before. */
 163        list_for_each_entry(rg, head, link)
 164                if (end <= rg->to)
 165                        break;
 166        if (&rg->link == head)
 167                return 0;
 168
 169        /* If we are in the middle of a region then adjust it. */
 170        if (end > rg->from) {
 171                chg = rg->to - end;
 172                rg->to = end;
 173                rg = list_entry(rg->link.next, typeof(*rg), link);
 174        }
 175
 176        /* Drop any remaining regions. */
 177        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 178                if (&rg->link == head)
 179                        break;
 180                chg += rg->to - rg->from;
 181                list_del(&rg->link);
 182                kfree(rg);
 183        }
 184        return chg;
 185}
 186
 187static long region_count(struct list_head *head, long f, long t)
 188{
 189        struct file_region *rg;
 190        long chg = 0;
 191
 192        /* Locate each segment we overlap with, and count that overlap. */
 193        list_for_each_entry(rg, head, link) {
 194                int seg_from;
 195                int seg_to;
 196
 197                if (rg->to <= f)
 198                        continue;
 199                if (rg->from >= t)
 200                        break;
 201
 202                seg_from = max(rg->from, f);
 203                seg_to = min(rg->to, t);
 204
 205                chg += seg_to - seg_from;
 206        }
 207
 208        return chg;
 209}
 210
 211/*
 212 * Convert the address within this vma to the page offset within
 213 * the mapping, in pagecache page units; huge pages here.
 214 */
 215static pgoff_t vma_hugecache_offset(struct hstate *h,
 216                        struct vm_area_struct *vma, unsigned long address)
 217{
 218        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 219                        (vma->vm_pgoff >> huge_page_order(h));
 220}
 221
 222/*
 223 * Return the size of the pages allocated when backing a VMA. In the majority
 224 * cases this will be same size as used by the page table entries.
 225 */
 226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 227{
 228        struct hstate *hstate;
 229
 230        if (!is_vm_hugetlb_page(vma))
 231                return PAGE_SIZE;
 232
 233        hstate = hstate_vma(vma);
 234
 235        return 1UL << (hstate->order + PAGE_SHIFT);
 236}
 237EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 238
 239/*
 240 * Return the page size being used by the MMU to back a VMA. In the majority
 241 * of cases, the page size used by the kernel matches the MMU size. On
 242 * architectures where it differs, an architecture-specific version of this
 243 * function is required.
 244 */
 245#ifndef vma_mmu_pagesize
 246unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 247{
 248        return vma_kernel_pagesize(vma);
 249}
 250#endif
 251
 252/*
 253 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 254 * bits of the reservation map pointer, which are always clear due to
 255 * alignment.
 256 */
 257#define HPAGE_RESV_OWNER    (1UL << 0)
 258#define HPAGE_RESV_UNMAPPED (1UL << 1)
 259#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 260
 261/*
 262 * These helpers are used to track how many pages are reserved for
 263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 264 * is guaranteed to have their future faults succeed.
 265 *
 266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 267 * the reserve counters are updated with the hugetlb_lock held. It is safe
 268 * to reset the VMA at fork() time as it is not in use yet and there is no
 269 * chance of the global counters getting corrupted as a result of the values.
 270 *
 271 * The private mapping reservation is represented in a subtly different
 272 * manner to a shared mapping.  A shared mapping has a region map associated
 273 * with the underlying file, this region map represents the backing file
 274 * pages which have ever had a reservation assigned which this persists even
 275 * after the page is instantiated.  A private mapping has a region map
 276 * associated with the original mmap which is attached to all VMAs which
 277 * reference it, this region map represents those offsets which have consumed
 278 * reservation ie. where pages have been instantiated.
 279 */
 280static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 281{
 282        return (unsigned long)vma->vm_private_data;
 283}
 284
 285static void set_vma_private_data(struct vm_area_struct *vma,
 286                                                        unsigned long value)
 287{
 288        vma->vm_private_data = (void *)value;
 289}
 290
 291struct resv_map {
 292        struct kref refs;
 293        struct list_head regions;
 294};
 295
 296static struct resv_map *resv_map_alloc(void)
 297{
 298        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 299        if (!resv_map)
 300                return NULL;
 301
 302        kref_init(&resv_map->refs);
 303        INIT_LIST_HEAD(&resv_map->regions);
 304
 305        return resv_map;
 306}
 307
 308static void resv_map_release(struct kref *ref)
 309{
 310        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 311
 312        /* Clear out any active regions before we release the map. */
 313        region_truncate(&resv_map->regions, 0);
 314        kfree(resv_map);
 315}
 316
 317static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 318{
 319        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 320        if (!(vma->vm_flags & VM_MAYSHARE))
 321                return (struct resv_map *)(get_vma_private_data(vma) &
 322                                                        ~HPAGE_RESV_MASK);
 323        return NULL;
 324}
 325
 326static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 327{
 328        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 329        VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 330
 331        set_vma_private_data(vma, (get_vma_private_data(vma) &
 332                                HPAGE_RESV_MASK) | (unsigned long)map);
 333}
 334
 335static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 336{
 337        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 338        VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 339
 340        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 341}
 342
 343static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 344{
 345        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 346
 347        return (get_vma_private_data(vma) & flag) != 0;
 348}
 349
 350/* Decrement the reserved pages in the hugepage pool by one */
 351static void decrement_hugepage_resv_vma(struct hstate *h,
 352                        struct vm_area_struct *vma)
 353{
 354        if (vma->vm_flags & VM_NORESERVE)
 355                return;
 356
 357        if (vma->vm_flags & VM_MAYSHARE) {
 358                /* Shared mappings always use reserves */
 359                h->resv_huge_pages--;
 360        } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 361                /*
 362                 * Only the process that called mmap() has reserves for
 363                 * private mappings.
 364                 */
 365                h->resv_huge_pages--;
 366        }
 367}
 368
 369/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 370void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 371{
 372        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 373        if (!(vma->vm_flags & VM_MAYSHARE))
 374                vma->vm_private_data = (void *)0;
 375}
 376
 377/* Returns true if the VMA has associated reserve pages */
 378static int vma_has_reserves(struct vm_area_struct *vma)
 379{
 380        if (vma->vm_flags & VM_MAYSHARE)
 381                return 1;
 382        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 383                return 1;
 384        return 0;
 385}
 386
 387static void clear_gigantic_page(struct page *page,
 388                        unsigned long addr, unsigned long sz)
 389{
 390        int i;
 391        struct page *p = page;
 392
 393        might_sleep();
 394        for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
 395                cond_resched();
 396                clear_user_highpage(p, addr + i * PAGE_SIZE);
 397        }
 398}
 399static void clear_huge_page(struct page *page,
 400                        unsigned long addr, unsigned long sz)
 401{
 402        int i;
 403
 404        if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
 405                clear_gigantic_page(page, addr, sz);
 406                return;
 407        }
 408
 409        might_sleep();
 410        for (i = 0; i < sz/PAGE_SIZE; i++) {
 411                cond_resched();
 412                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
 413        }
 414}
 415
 416static void copy_gigantic_page(struct page *dst, struct page *src,
 417                           unsigned long addr, struct vm_area_struct *vma)
 418{
 419        int i;
 420        struct hstate *h = hstate_vma(vma);
 421        struct page *dst_base = dst;
 422        struct page *src_base = src;
 423        might_sleep();
 424        for (i = 0; i < pages_per_huge_page(h); ) {
 425                cond_resched();
 426                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
 427
 428                i++;
 429                dst = mem_map_next(dst, dst_base, i);
 430                src = mem_map_next(src, src_base, i);
 431        }
 432}
 433static void copy_huge_page(struct page *dst, struct page *src,
 434                           unsigned long addr, struct vm_area_struct *vma)
 435{
 436        int i;
 437        struct hstate *h = hstate_vma(vma);
 438
 439        if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
 440                copy_gigantic_page(dst, src, addr, vma);
 441                return;
 442        }
 443
 444        might_sleep();
 445        for (i = 0; i < pages_per_huge_page(h); i++) {
 446                cond_resched();
 447                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
 448        }
 449}
 450
 451static void enqueue_huge_page(struct hstate *h, struct page *page)
 452{
 453        int nid = page_to_nid(page);
 454        list_add(&page->lru, &h->hugepage_freelists[nid]);
 455        h->free_huge_pages++;
 456        h->free_huge_pages_node[nid]++;
 457}
 458
 459static struct page *dequeue_huge_page_vma(struct hstate *h,
 460                                struct vm_area_struct *vma,
 461                                unsigned long address, int avoid_reserve)
 462{
 463        int nid;
 464        struct page *page = NULL;
 465        struct mempolicy *mpol;
 466        nodemask_t *nodemask;
 467        struct zonelist *zonelist = huge_zonelist(vma, address,
 468                                        htlb_alloc_mask, &mpol, &nodemask);
 469        struct zone *zone;
 470        struct zoneref *z;
 471
 472        /*
 473         * A child process with MAP_PRIVATE mappings created by their parent
 474         * have no page reserves. This check ensures that reservations are
 475         * not "stolen". The child may still get SIGKILLed
 476         */
 477        if (!vma_has_reserves(vma) &&
 478                        h->free_huge_pages - h->resv_huge_pages == 0)
 479                return NULL;
 480
 481        /* If reserves cannot be used, ensure enough pages are in the pool */
 482        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 483                return NULL;
 484
 485        for_each_zone_zonelist_nodemask(zone, z, zonelist,
 486                                                MAX_NR_ZONES - 1, nodemask) {
 487                nid = zone_to_nid(zone);
 488                if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
 489                    !list_empty(&h->hugepage_freelists[nid])) {
 490                        page = list_entry(h->hugepage_freelists[nid].next,
 491                                          struct page, lru);
 492                        list_del(&page->lru);
 493                        h->free_huge_pages--;
 494                        h->free_huge_pages_node[nid]--;
 495
 496                        if (!avoid_reserve)
 497                                decrement_hugepage_resv_vma(h, vma);
 498
 499                        break;
 500                }
 501        }
 502        mpol_cond_put(mpol);
 503        return page;
 504}
 505
 506static void update_and_free_page(struct hstate *h, struct page *page)
 507{
 508        int i;
 509
 510        VM_BUG_ON(h->order >= MAX_ORDER);
 511
 512        h->nr_huge_pages--;
 513        h->nr_huge_pages_node[page_to_nid(page)]--;
 514        for (i = 0; i < pages_per_huge_page(h); i++) {
 515                page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
 516                                1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
 517                                1 << PG_private | 1<< PG_writeback);
 518        }
 519        set_compound_page_dtor(page, NULL);
 520        set_page_refcounted(page);
 521        arch_release_hugepage(page);
 522        __free_pages(page, huge_page_order(h));
 523}
 524
 525struct hstate *size_to_hstate(unsigned long size)
 526{
 527        struct hstate *h;
 528
 529        for_each_hstate(h) {
 530                if (huge_page_size(h) == size)
 531                        return h;
 532        }
 533        return NULL;
 534}
 535
 536static void free_huge_page(struct page *page)
 537{
 538        /*
 539         * Can't pass hstate in here because it is called from the
 540         * compound page destructor.
 541         */
 542        struct hstate *h = page_hstate(page);
 543        int nid = page_to_nid(page);
 544        struct address_space *mapping;
 545
 546        mapping = (struct address_space *) page_private(page);
 547        set_page_private(page, 0);
 548        BUG_ON(page_count(page));
 549        INIT_LIST_HEAD(&page->lru);
 550
 551        spin_lock(&hugetlb_lock);
 552        if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
 553                update_and_free_page(h, page);
 554                h->surplus_huge_pages--;
 555                h->surplus_huge_pages_node[nid]--;
 556        } else {
 557                enqueue_huge_page(h, page);
 558        }
 559        spin_unlock(&hugetlb_lock);
 560        if (mapping)
 561                hugetlb_put_quota(mapping, 1);
 562}
 563
 564static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 565{
 566        set_compound_page_dtor(page, free_huge_page);
 567        spin_lock(&hugetlb_lock);
 568        h->nr_huge_pages++;
 569        h->nr_huge_pages_node[nid]++;
 570        spin_unlock(&hugetlb_lock);
 571        put_page(page); /* free it into the hugepage allocator */
 572}
 573
 574static void prep_compound_gigantic_page(struct page *page, unsigned long order)
 575{
 576        int i;
 577        int nr_pages = 1 << order;
 578        struct page *p = page + 1;
 579
 580        /* we rely on prep_new_huge_page to set the destructor */
 581        set_compound_order(page, order);
 582        __SetPageHead(page);
 583        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 584                __SetPageTail(p);
 585                p->first_page = page;
 586        }
 587}
 588
 589int PageHuge(struct page *page)
 590{
 591        compound_page_dtor *dtor;
 592
 593        if (!PageCompound(page))
 594                return 0;
 595
 596        page = compound_head(page);
 597        dtor = get_compound_page_dtor(page);
 598
 599        return dtor == free_huge_page;
 600}
 601
 602static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 603{
 604        struct page *page;
 605
 606        if (h->order >= MAX_ORDER)
 607                return NULL;
 608
 609        page = alloc_pages_exact_node(nid,
 610                htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
 611                                                __GFP_REPEAT|__GFP_NOWARN,
 612                huge_page_order(h));
 613        if (page) {
 614                if (arch_prepare_hugepage(page)) {
 615                        __free_pages(page, huge_page_order(h));
 616                        return NULL;
 617                }
 618                prep_new_huge_page(h, page, nid);
 619        }
 620
 621        return page;
 622}
 623
 624/*
 625 * Use a helper variable to find the next node and then
 626 * copy it back to next_nid_to_alloc afterwards:
 627 * otherwise there's a window in which a racer might
 628 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
 629 * But we don't need to use a spin_lock here: it really
 630 * doesn't matter if occasionally a racer chooses the
 631 * same nid as we do.  Move nid forward in the mask even
 632 * if we just successfully allocated a hugepage so that
 633 * the next caller gets hugepages on the next node.
 634 */
 635static int hstate_next_node_to_alloc(struct hstate *h)
 636{
 637        int next_nid;
 638        next_nid = next_node(h->next_nid_to_alloc, node_online_map);
 639        if (next_nid == MAX_NUMNODES)
 640                next_nid = first_node(node_online_map);
 641        h->next_nid_to_alloc = next_nid;
 642        return next_nid;
 643}
 644
 645static int alloc_fresh_huge_page(struct hstate *h)
 646{
 647        struct page *page;
 648        int start_nid;
 649        int next_nid;
 650        int ret = 0;
 651
 652        start_nid = h->next_nid_to_alloc;
 653        next_nid = start_nid;
 654
 655        do {
 656                page = alloc_fresh_huge_page_node(h, next_nid);
 657                if (page)
 658                        ret = 1;
 659                next_nid = hstate_next_node_to_alloc(h);
 660        } while (!page && next_nid != start_nid);
 661
 662        if (ret)
 663                count_vm_event(HTLB_BUDDY_PGALLOC);
 664        else
 665                count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 666
 667        return ret;
 668}
 669
 670/*
 671 * helper for free_pool_huge_page() - find next node
 672 * from which to free a huge page
 673 */
 674static int hstate_next_node_to_free(struct hstate *h)
 675{
 676        int next_nid;
 677        next_nid = next_node(h->next_nid_to_free, node_online_map);
 678        if (next_nid == MAX_NUMNODES)
 679                next_nid = first_node(node_online_map);
 680        h->next_nid_to_free = next_nid;
 681        return next_nid;
 682}
 683
 684/*
 685 * Free huge page from pool from next node to free.
 686 * Attempt to keep persistent huge pages more or less
 687 * balanced over allowed nodes.
 688 * Called with hugetlb_lock locked.
 689 */
 690static int free_pool_huge_page(struct hstate *h, bool acct_surplus)
 691{
 692        int start_nid;
 693        int next_nid;
 694        int ret = 0;
 695
 696        start_nid = h->next_nid_to_free;
 697        next_nid = start_nid;
 698
 699        do {
 700                /*
 701                 * If we're returning unused surplus pages, only examine
 702                 * nodes with surplus pages.
 703                 */
 704                if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
 705                    !list_empty(&h->hugepage_freelists[next_nid])) {
 706                        struct page *page =
 707                                list_entry(h->hugepage_freelists[next_nid].next,
 708                                          struct page, lru);
 709                        list_del(&page->lru);
 710                        h->free_huge_pages--;
 711                        h->free_huge_pages_node[next_nid]--;
 712                        if (acct_surplus) {
 713                                h->surplus_huge_pages--;
 714                                h->surplus_huge_pages_node[next_nid]--;
 715                        }
 716                        update_and_free_page(h, page);
 717                        ret = 1;
 718                }
 719                next_nid = hstate_next_node_to_free(h);
 720        } while (!ret && next_nid != start_nid);
 721
 722        return ret;
 723}
 724
 725static struct page *alloc_buddy_huge_page(struct hstate *h,
 726                        struct vm_area_struct *vma, unsigned long address)
 727{
 728        struct page *page;
 729        unsigned int nid;
 730
 731        if (h->order >= MAX_ORDER)
 732                return NULL;
 733
 734        /*
 735         * Assume we will successfully allocate the surplus page to
 736         * prevent racing processes from causing the surplus to exceed
 737         * overcommit
 738         *
 739         * This however introduces a different race, where a process B
 740         * tries to grow the static hugepage pool while alloc_pages() is
 741         * called by process A. B will only examine the per-node
 742         * counters in determining if surplus huge pages can be
 743         * converted to normal huge pages in adjust_pool_surplus(). A
 744         * won't be able to increment the per-node counter, until the
 745         * lock is dropped by B, but B doesn't drop hugetlb_lock until
 746         * no more huge pages can be converted from surplus to normal
 747         * state (and doesn't try to convert again). Thus, we have a
 748         * case where a surplus huge page exists, the pool is grown, and
 749         * the surplus huge page still exists after, even though it
 750         * should just have been converted to a normal huge page. This
 751         * does not leak memory, though, as the hugepage will be freed
 752         * once it is out of use. It also does not allow the counters to
 753         * go out of whack in adjust_pool_surplus() as we don't modify
 754         * the node values until we've gotten the hugepage and only the
 755         * per-node value is checked there.
 756         */
 757        spin_lock(&hugetlb_lock);
 758        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 759                spin_unlock(&hugetlb_lock);
 760                return NULL;
 761        } else {
 762                h->nr_huge_pages++;
 763                h->surplus_huge_pages++;
 764        }
 765        spin_unlock(&hugetlb_lock);
 766
 767        page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
 768                                        __GFP_REPEAT|__GFP_NOWARN,
 769                                        huge_page_order(h));
 770
 771        if (page && arch_prepare_hugepage(page)) {
 772                __free_pages(page, huge_page_order(h));
 773                return NULL;
 774        }
 775
 776        spin_lock(&hugetlb_lock);
 777        if (page) {
 778                /*
 779                 * This page is now managed by the hugetlb allocator and has
 780                 * no users -- drop the buddy allocator's reference.
 781                 */
 782                put_page_testzero(page);
 783                VM_BUG_ON(page_count(page));
 784                nid = page_to_nid(page);
 785                set_compound_page_dtor(page, free_huge_page);
 786                /*
 787                 * We incremented the global counters already
 788                 */
 789                h->nr_huge_pages_node[nid]++;
 790                h->surplus_huge_pages_node[nid]++;
 791                __count_vm_event(HTLB_BUDDY_PGALLOC);
 792        } else {
 793                h->nr_huge_pages--;
 794                h->surplus_huge_pages--;
 795                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 796        }
 797        spin_unlock(&hugetlb_lock);
 798
 799        return page;
 800}
 801
 802/*
 803 * Increase the hugetlb pool such that it can accomodate a reservation
 804 * of size 'delta'.
 805 */
 806static int gather_surplus_pages(struct hstate *h, int delta)
 807{
 808        struct list_head surplus_list;
 809        struct page *page, *tmp;
 810        int ret, i;
 811        int needed, allocated;
 812
 813        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
 814        if (needed <= 0) {
 815                h->resv_huge_pages += delta;
 816                return 0;
 817        }
 818
 819        allocated = 0;
 820        INIT_LIST_HEAD(&surplus_list);
 821
 822        ret = -ENOMEM;
 823retry:
 824        spin_unlock(&hugetlb_lock);
 825        for (i = 0; i < needed; i++) {
 826                page = alloc_buddy_huge_page(h, NULL, 0);
 827                if (!page) {
 828                        /*
 829                         * We were not able to allocate enough pages to
 830                         * satisfy the entire reservation so we free what
 831                         * we've allocated so far.
 832                         */
 833                        spin_lock(&hugetlb_lock);
 834                        needed = 0;
 835                        goto free;
 836                }
 837
 838                list_add(&page->lru, &surplus_list);
 839        }
 840        allocated += needed;
 841
 842        /*
 843         * After retaking hugetlb_lock, we need to recalculate 'needed'
 844         * because either resv_huge_pages or free_huge_pages may have changed.
 845         */
 846        spin_lock(&hugetlb_lock);
 847        needed = (h->resv_huge_pages + delta) -
 848                        (h->free_huge_pages + allocated);
 849        if (needed > 0)
 850                goto retry;
 851
 852        /*
 853         * The surplus_list now contains _at_least_ the number of extra pages
 854         * needed to accomodate the reservation.  Add the appropriate number
 855         * of pages to the hugetlb pool and free the extras back to the buddy
 856         * allocator.  Commit the entire reservation here to prevent another
 857         * process from stealing the pages as they are added to the pool but
 858         * before they are reserved.
 859         */
 860        needed += allocated;
 861        h->resv_huge_pages += delta;
 862        ret = 0;
 863free:
 864        /* Free the needed pages to the hugetlb pool */
 865        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 866                if ((--needed) < 0)
 867                        break;
 868                list_del(&page->lru);
 869                enqueue_huge_page(h, page);
 870        }
 871
 872        /* Free unnecessary surplus pages to the buddy allocator */
 873        if (!list_empty(&surplus_list)) {
 874                spin_unlock(&hugetlb_lock);
 875                list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 876                        list_del(&page->lru);
 877                        /*
 878                         * The page has a reference count of zero already, so
 879                         * call free_huge_page directly instead of using
 880                         * put_page.  This must be done with hugetlb_lock
 881                         * unlocked which is safe because free_huge_page takes
 882                         * hugetlb_lock before deciding how to free the page.
 883                         */
 884                        free_huge_page(page);
 885                }
 886                spin_lock(&hugetlb_lock);
 887        }
 888
 889        return ret;
 890}
 891
 892/*
 893 * When releasing a hugetlb pool reservation, any surplus pages that were
 894 * allocated to satisfy the reservation must be explicitly freed if they were
 895 * never used.
 896 * Called with hugetlb_lock held.
 897 */
 898static void return_unused_surplus_pages(struct hstate *h,
 899                                        unsigned long unused_resv_pages)
 900{
 901        unsigned long nr_pages;
 902
 903        /* Uncommit the reservation */
 904        h->resv_huge_pages -= unused_resv_pages;
 905
 906        /* Cannot return gigantic pages currently */
 907        if (h->order >= MAX_ORDER)
 908                return;
 909
 910        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
 911
 912        /*
 913         * We want to release as many surplus pages as possible, spread
 914         * evenly across all nodes. Iterate across all nodes until we
 915         * can no longer free unreserved surplus pages. This occurs when
 916         * the nodes with surplus pages have no free pages.
 917         * free_pool_huge_page() will balance the the frees across the
 918         * on-line nodes for us and will handle the hstate accounting.
 919         */
 920        while (nr_pages--) {
 921                if (!free_pool_huge_page(h, 1))
 922                        break;
 923        }
 924}
 925
 926/*
 927 * Determine if the huge page at addr within the vma has an associated
 928 * reservation.  Where it does not we will need to logically increase
 929 * reservation and actually increase quota before an allocation can occur.
 930 * Where any new reservation would be required the reservation change is
 931 * prepared, but not committed.  Once the page has been quota'd allocated
 932 * an instantiated the change should be committed via vma_commit_reservation.
 933 * No action is required on failure.
 934 */
 935static long vma_needs_reservation(struct hstate *h,
 936                        struct vm_area_struct *vma, unsigned long addr)
 937{
 938        struct address_space *mapping = vma->vm_file->f_mapping;
 939        struct inode *inode = mapping->host;
 940
 941        if (vma->vm_flags & VM_MAYSHARE) {
 942                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 943                return region_chg(&inode->i_mapping->private_list,
 944                                                        idx, idx + 1);
 945
 946        } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 947                return 1;
 948
 949        } else  {
 950                long err;
 951                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 952                struct resv_map *reservations = vma_resv_map(vma);
 953
 954                err = region_chg(&reservations->regions, idx, idx + 1);
 955                if (err < 0)
 956                        return err;
 957                return 0;
 958        }
 959}
 960static void vma_commit_reservation(struct hstate *h,
 961                        struct vm_area_struct *vma, unsigned long addr)
 962{
 963        struct address_space *mapping = vma->vm_file->f_mapping;
 964        struct inode *inode = mapping->host;
 965
 966        if (vma->vm_flags & VM_MAYSHARE) {
 967                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 968                region_add(&inode->i_mapping->private_list, idx, idx + 1);
 969
 970        } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 971                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 972                struct resv_map *reservations = vma_resv_map(vma);
 973
 974                /* Mark this page used in the map. */
 975                region_add(&reservations->regions, idx, idx + 1);
 976        }
 977}
 978
 979static struct page *alloc_huge_page(struct vm_area_struct *vma,
 980                                    unsigned long addr, int avoid_reserve)
 981{
 982        struct hstate *h = hstate_vma(vma);
 983        struct page *page;
 984        struct address_space *mapping = vma->vm_file->f_mapping;
 985        struct inode *inode = mapping->host;
 986        long chg;
 987
 988        /*
 989         * Processes that did not create the mapping will have no reserves and
 990         * will not have accounted against quota. Check that the quota can be
 991         * made before satisfying the allocation
 992         * MAP_NORESERVE mappings may also need pages and quota allocated
 993         * if no reserve mapping overlaps.
 994         */
 995        chg = vma_needs_reservation(h, vma, addr);
 996        if (chg < 0)
 997                return ERR_PTR(chg);
 998        if (chg)
 999                if (hugetlb_get_quota(inode->i_mapping, chg))
1000                        return ERR_PTR(-ENOSPC);
1001
1002        spin_lock(&hugetlb_lock);
1003        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1004        spin_unlock(&hugetlb_lock);
1005
1006        if (!page) {
1007                page = alloc_buddy_huge_page(h, vma, addr);
1008                if (!page) {
1009                        hugetlb_put_quota(inode->i_mapping, chg);
1010                        return ERR_PTR(-VM_FAULT_OOM);
1011                }
1012        }
1013
1014        set_page_refcounted(page);
1015        set_page_private(page, (unsigned long) mapping);
1016
1017        vma_commit_reservation(h, vma, addr);
1018
1019        return page;
1020}
1021
1022int __weak alloc_bootmem_huge_page(struct hstate *h)
1023{
1024        struct huge_bootmem_page *m;
1025        int nr_nodes = nodes_weight(node_online_map);
1026
1027        while (nr_nodes) {
1028                void *addr;
1029
1030                addr = __alloc_bootmem_node_nopanic(
1031                                NODE_DATA(h->next_nid_to_alloc),
1032                                huge_page_size(h), huge_page_size(h), 0);
1033
1034                hstate_next_node_to_alloc(h);
1035                if (addr) {
1036                        /*
1037                         * Use the beginning of the huge page to store the
1038                         * huge_bootmem_page struct (until gather_bootmem
1039                         * puts them into the mem_map).
1040                         */
1041                        m = addr;
1042                        goto found;
1043                }
1044                nr_nodes--;
1045        }
1046        return 0;
1047
1048found:
1049        BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1050        /* Put them into a private list first because mem_map is not up yet */
1051        list_add(&m->list, &huge_boot_pages);
1052        m->hstate = h;
1053        return 1;
1054}
1055
1056static void prep_compound_huge_page(struct page *page, int order)
1057{
1058        if (unlikely(order > (MAX_ORDER - 1)))
1059                prep_compound_gigantic_page(page, order);
1060        else
1061                prep_compound_page(page, order);
1062}
1063
1064/* Put bootmem huge pages into the standard lists after mem_map is up */
1065static void __init gather_bootmem_prealloc(void)
1066{
1067        struct huge_bootmem_page *m;
1068
1069        list_for_each_entry(m, &huge_boot_pages, list) {
1070                struct page *page = virt_to_page(m);
1071                struct hstate *h = m->hstate;
1072                __ClearPageReserved(page);
1073                WARN_ON(page_count(page) != 1);
1074                prep_compound_huge_page(page, h->order);
1075                prep_new_huge_page(h, page, page_to_nid(page));
1076        }
1077}
1078
1079static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1080{
1081        unsigned long i;
1082
1083        for (i = 0; i < h->max_huge_pages; ++i) {
1084                if (h->order >= MAX_ORDER) {
1085                        if (!alloc_bootmem_huge_page(h))
1086                                break;
1087                } else if (!alloc_fresh_huge_page(h))
1088                        break;
1089        }
1090        h->max_huge_pages = i;
1091}
1092
1093static void __init hugetlb_init_hstates(void)
1094{
1095        struct hstate *h;
1096
1097        for_each_hstate(h) {
1098                /* oversize hugepages were init'ed in early boot */
1099                if (h->order < MAX_ORDER)
1100                        hugetlb_hstate_alloc_pages(h);
1101        }
1102}
1103
1104static char * __init memfmt(char *buf, unsigned long n)
1105{
1106        if (n >= (1UL << 30))
1107                sprintf(buf, "%lu GB", n >> 30);
1108        else if (n >= (1UL << 20))
1109                sprintf(buf, "%lu MB", n >> 20);
1110        else
1111                sprintf(buf, "%lu KB", n >> 10);
1112        return buf;
1113}
1114
1115static void __init report_hugepages(void)
1116{
1117        struct hstate *h;
1118
1119        for_each_hstate(h) {
1120                char buf[32];
1121                printk(KERN_INFO "HugeTLB registered %s page size, "
1122                                 "pre-allocated %ld pages\n",
1123                        memfmt(buf, huge_page_size(h)),
1124                        h->free_huge_pages);
1125        }
1126}
1127
1128#ifdef CONFIG_HIGHMEM
1129static void try_to_free_low(struct hstate *h, unsigned long count)
1130{
1131        int i;
1132
1133        if (h->order >= MAX_ORDER)
1134                return;
1135
1136        for (i = 0; i < MAX_NUMNODES; ++i) {
1137                struct page *page, *next;
1138                struct list_head *freel = &h->hugepage_freelists[i];
1139                list_for_each_entry_safe(page, next, freel, lru) {
1140                        if (count >= h->nr_huge_pages)
1141                                return;
1142                        if (PageHighMem(page))
1143                                continue;
1144                        list_del(&page->lru);
1145                        update_and_free_page(h, page);
1146                        h->free_huge_pages--;
1147                        h->free_huge_pages_node[page_to_nid(page)]--;
1148                }
1149        }
1150}
1151#else
1152static inline void try_to_free_low(struct hstate *h, unsigned long count)
1153{
1154}
1155#endif
1156
1157/*
1158 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1159 * balanced by operating on them in a round-robin fashion.
1160 * Returns 1 if an adjustment was made.
1161 */
1162static int adjust_pool_surplus(struct hstate *h, int delta)
1163{
1164        int start_nid, next_nid;
1165        int ret = 0;
1166
1167        VM_BUG_ON(delta != -1 && delta != 1);
1168
1169        if (delta < 0)
1170                start_nid = h->next_nid_to_alloc;
1171        else
1172                start_nid = h->next_nid_to_free;
1173        next_nid = start_nid;
1174
1175        do {
1176                int nid = next_nid;
1177                if (delta < 0)  {
1178                        next_nid = hstate_next_node_to_alloc(h);
1179                        /*
1180                         * To shrink on this node, there must be a surplus page
1181                         */
1182                        if (!h->surplus_huge_pages_node[nid])
1183                                continue;
1184                }
1185                if (delta > 0) {
1186                        next_nid = hstate_next_node_to_free(h);
1187                        /*
1188                         * Surplus cannot exceed the total number of pages
1189                         */
1190                        if (h->surplus_huge_pages_node[nid] >=
1191                                                h->nr_huge_pages_node[nid])
1192                                continue;
1193                }
1194
1195                h->surplus_huge_pages += delta;
1196                h->surplus_huge_pages_node[nid] += delta;
1197                ret = 1;
1198                break;
1199        } while (next_nid != start_nid);
1200
1201        return ret;
1202}
1203
1204#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1205static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1206{
1207        unsigned long min_count, ret;
1208
1209        if (h->order >= MAX_ORDER)
1210                return h->max_huge_pages;
1211
1212        /*
1213         * Increase the pool size
1214         * First take pages out of surplus state.  Then make up the
1215         * remaining difference by allocating fresh huge pages.
1216         *
1217         * We might race with alloc_buddy_huge_page() here and be unable
1218         * to convert a surplus huge page to a normal huge page. That is
1219         * not critical, though, it just means the overall size of the
1220         * pool might be one hugepage larger than it needs to be, but
1221         * within all the constraints specified by the sysctls.
1222         */
1223        spin_lock(&hugetlb_lock);
1224        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1225                if (!adjust_pool_surplus(h, -1))
1226                        break;
1227        }
1228
1229        while (count > persistent_huge_pages(h)) {
1230                /*
1231                 * If this allocation races such that we no longer need the
1232                 * page, free_huge_page will handle it by freeing the page
1233                 * and reducing the surplus.
1234                 */
1235                spin_unlock(&hugetlb_lock);
1236                ret = alloc_fresh_huge_page(h);
1237                spin_lock(&hugetlb_lock);
1238                if (!ret)
1239                        goto out;
1240
1241        }
1242
1243        /*
1244         * Decrease the pool size
1245         * First return free pages to the buddy allocator (being careful
1246         * to keep enough around to satisfy reservations).  Then place
1247         * pages into surplus state as needed so the pool will shrink
1248         * to the desired size as pages become free.
1249         *
1250         * By placing pages into the surplus state independent of the
1251         * overcommit value, we are allowing the surplus pool size to
1252         * exceed overcommit. There are few sane options here. Since
1253         * alloc_buddy_huge_page() is checking the global counter,
1254         * though, we'll note that we're not allowed to exceed surplus
1255         * and won't grow the pool anywhere else. Not until one of the
1256         * sysctls are changed, or the surplus pages go out of use.
1257         */
1258        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1259        min_count = max(count, min_count);
1260        try_to_free_low(h, min_count);
1261        while (min_count < persistent_huge_pages(h)) {
1262                if (!free_pool_huge_page(h, 0))
1263                        break;
1264        }
1265        while (count < persistent_huge_pages(h)) {
1266                if (!adjust_pool_surplus(h, 1))
1267                        break;
1268        }
1269out:
1270        ret = persistent_huge_pages(h);
1271        spin_unlock(&hugetlb_lock);
1272        return ret;
1273}
1274
1275#define HSTATE_ATTR_RO(_name) \
1276        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1277
1278#define HSTATE_ATTR(_name) \
1279        static struct kobj_attribute _name##_attr = \
1280                __ATTR(_name, 0644, _name##_show, _name##_store)
1281
1282static struct kobject *hugepages_kobj;
1283static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1284
1285static struct hstate *kobj_to_hstate(struct kobject *kobj)
1286{
1287        int i;
1288        for (i = 0; i < HUGE_MAX_HSTATE; i++)
1289                if (hstate_kobjs[i] == kobj)
1290                        return &hstates[i];
1291        BUG();
1292        return NULL;
1293}
1294
1295static ssize_t nr_hugepages_show(struct kobject *kobj,
1296                                        struct kobj_attribute *attr, char *buf)
1297{
1298        struct hstate *h = kobj_to_hstate(kobj);
1299        return sprintf(buf, "%lu\n", h->nr_huge_pages);
1300}
1301static ssize_t nr_hugepages_store(struct kobject *kobj,
1302                struct kobj_attribute *attr, const char *buf, size_t count)
1303{
1304        int err;
1305        unsigned long input;
1306        struct hstate *h = kobj_to_hstate(kobj);
1307
1308        err = strict_strtoul(buf, 10, &input);
1309        if (err)
1310                return 0;
1311
1312        h->max_huge_pages = set_max_huge_pages(h, input);
1313
1314        return count;
1315}
1316HSTATE_ATTR(nr_hugepages);
1317
1318static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1319                                        struct kobj_attribute *attr, char *buf)
1320{
1321        struct hstate *h = kobj_to_hstate(kobj);
1322        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1323}
1324static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1325                struct kobj_attribute *attr, const char *buf, size_t count)
1326{
1327        int err;
1328        unsigned long input;
1329        struct hstate *h = kobj_to_hstate(kobj);
1330
1331        err = strict_strtoul(buf, 10, &input);
1332        if (err)
1333                return 0;
1334
1335        spin_lock(&hugetlb_lock);
1336        h->nr_overcommit_huge_pages = input;
1337        spin_unlock(&hugetlb_lock);
1338
1339        return count;
1340}
1341HSTATE_ATTR(nr_overcommit_hugepages);
1342
1343static ssize_t free_hugepages_show(struct kobject *kobj,
1344                                        struct kobj_attribute *attr, char *buf)
1345{
1346        struct hstate *h = kobj_to_hstate(kobj);
1347        return sprintf(buf, "%lu\n", h->free_huge_pages);
1348}
1349HSTATE_ATTR_RO(free_hugepages);
1350
1351static ssize_t resv_hugepages_show(struct kobject *kobj,
1352                                        struct kobj_attribute *attr, char *buf)
1353{
1354        struct hstate *h = kobj_to_hstate(kobj);
1355        return sprintf(buf, "%lu\n", h->resv_huge_pages);
1356}
1357HSTATE_ATTR_RO(resv_hugepages);
1358
1359static ssize_t surplus_hugepages_show(struct kobject *kobj,
1360                                        struct kobj_attribute *attr, char *buf)
1361{
1362        struct hstate *h = kobj_to_hstate(kobj);
1363        return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1364}
1365HSTATE_ATTR_RO(surplus_hugepages);
1366
1367static struct attribute *hstate_attrs[] = {
1368        &nr_hugepages_attr.attr,
1369        &nr_overcommit_hugepages_attr.attr,
1370        &free_hugepages_attr.attr,
1371        &resv_hugepages_attr.attr,
1372        &surplus_hugepages_attr.attr,
1373        NULL,
1374};
1375
1376static struct attribute_group hstate_attr_group = {
1377        .attrs = hstate_attrs,
1378};
1379
1380static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1381{
1382        int retval;
1383
1384        hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1385                                                        hugepages_kobj);
1386        if (!hstate_kobjs[h - hstates])
1387                return -ENOMEM;
1388
1389        retval = sysfs_create_group(hstate_kobjs[h - hstates],
1390                                                        &hstate_attr_group);
1391        if (retval)
1392                kobject_put(hstate_kobjs[h - hstates]);
1393
1394        return retval;
1395}
1396
1397static void __init hugetlb_sysfs_init(void)
1398{
1399        struct hstate *h;
1400        int err;
1401
1402        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1403        if (!hugepages_kobj)
1404                return;
1405
1406        for_each_hstate(h) {
1407                err = hugetlb_sysfs_add_hstate(h);
1408                if (err)
1409                        printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1410                                                                h->name);
1411        }
1412}
1413
1414static void __exit hugetlb_exit(void)
1415{
1416        struct hstate *h;
1417
1418        for_each_hstate(h) {
1419                kobject_put(hstate_kobjs[h - hstates]);
1420        }
1421
1422        kobject_put(hugepages_kobj);
1423}
1424module_exit(hugetlb_exit);
1425
1426static int __init hugetlb_init(void)
1427{
1428        /* Some platform decide whether they support huge pages at boot
1429         * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1430         * there is no such support
1431         */
1432        if (HPAGE_SHIFT == 0)
1433                return 0;
1434
1435        if (!size_to_hstate(default_hstate_size)) {
1436                default_hstate_size = HPAGE_SIZE;
1437                if (!size_to_hstate(default_hstate_size))
1438                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1439        }
1440        default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1441        if (default_hstate_max_huge_pages)
1442                default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1443
1444        hugetlb_init_hstates();
1445
1446        gather_bootmem_prealloc();
1447
1448        report_hugepages();
1449
1450        hugetlb_sysfs_init();
1451
1452        return 0;
1453}
1454module_init(hugetlb_init);
1455
1456/* Should be called on processing a hugepagesz=... option */
1457void __init hugetlb_add_hstate(unsigned order)
1458{
1459        struct hstate *h;
1460        unsigned long i;
1461
1462        if (size_to_hstate(PAGE_SIZE << order)) {
1463                printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1464                return;
1465        }
1466        BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1467        BUG_ON(order == 0);
1468        h = &hstates[max_hstate++];
1469        h->order = order;
1470        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1471        h->nr_huge_pages = 0;
1472        h->free_huge_pages = 0;
1473        for (i = 0; i < MAX_NUMNODES; ++i)
1474                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1475        h->next_nid_to_alloc = first_node(node_online_map);
1476        h->next_nid_to_free = first_node(node_online_map);
1477        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1478                                        huge_page_size(h)/1024);
1479
1480        parsed_hstate = h;
1481}
1482
1483static int __init hugetlb_nrpages_setup(char *s)
1484{
1485        unsigned long *mhp;
1486        static unsigned long *last_mhp;
1487
1488        /*
1489         * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1490         * so this hugepages= parameter goes to the "default hstate".
1491         */
1492        if (!max_hstate)
1493                mhp = &default_hstate_max_huge_pages;
1494        else
1495                mhp = &parsed_hstate->max_huge_pages;
1496
1497        if (mhp == last_mhp) {
1498                printk(KERN_WARNING "hugepages= specified twice without "
1499                        "interleaving hugepagesz=, ignoring\n");
1500                return 1;
1501        }
1502
1503        if (sscanf(s, "%lu", mhp) <= 0)
1504                *mhp = 0;
1505
1506        /*
1507         * Global state is always initialized later in hugetlb_init.
1508         * But we need to allocate >= MAX_ORDER hstates here early to still
1509         * use the bootmem allocator.
1510         */
1511        if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1512                hugetlb_hstate_alloc_pages(parsed_hstate);
1513
1514        last_mhp = mhp;
1515
1516        return 1;
1517}
1518__setup("hugepages=", hugetlb_nrpages_setup);
1519
1520static int __init hugetlb_default_setup(char *s)
1521{
1522        default_hstate_size = memparse(s, &s);
1523        return 1;
1524}
1525__setup("default_hugepagesz=", hugetlb_default_setup);
1526
1527static unsigned int cpuset_mems_nr(unsigned int *array)
1528{
1529        int node;
1530        unsigned int nr = 0;
1531
1532        for_each_node_mask(node, cpuset_current_mems_allowed)
1533                nr += array[node];
1534
1535        return nr;
1536}
1537
1538#ifdef CONFIG_SYSCTL
1539int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1540                           void __user *buffer,
1541                           size_t *length, loff_t *ppos)
1542{
1543        struct hstate *h = &default_hstate;
1544        unsigned long tmp;
1545
1546        if (!write)
1547                tmp = h->max_huge_pages;
1548
1549        table->data = &tmp;
1550        table->maxlen = sizeof(unsigned long);
1551        proc_doulongvec_minmax(table, write, buffer, length, ppos);
1552
1553        if (write)
1554                h->max_huge_pages = set_max_huge_pages(h, tmp);
1555
1556        return 0;
1557}
1558
1559int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1560                        void __user *buffer,
1561                        size_t *length, loff_t *ppos)
1562{
1563        proc_dointvec(table, write, buffer, length, ppos);
1564        if (hugepages_treat_as_movable)
1565                htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1566        else
1567                htlb_alloc_mask = GFP_HIGHUSER;
1568        return 0;
1569}
1570
1571int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1572                        void __user *buffer,
1573                        size_t *length, loff_t *ppos)
1574{
1575        struct hstate *h = &default_hstate;
1576        unsigned long tmp;
1577
1578        if (!write)
1579                tmp = h->nr_overcommit_huge_pages;
1580
1581        table->data = &tmp;
1582        table->maxlen = sizeof(unsigned long);
1583        proc_doulongvec_minmax(table, write, buffer, length, ppos);
1584
1585        if (write) {
1586                spin_lock(&hugetlb_lock);
1587                h->nr_overcommit_huge_pages = tmp;
1588                spin_unlock(&hugetlb_lock);
1589        }
1590
1591        return 0;
1592}
1593
1594#endif /* CONFIG_SYSCTL */
1595
1596void hugetlb_report_meminfo(struct seq_file *m)
1597{
1598        struct hstate *h = &default_hstate;
1599        seq_printf(m,
1600                        "HugePages_Total:   %5lu\n"
1601                        "HugePages_Free:    %5lu\n"
1602                        "HugePages_Rsvd:    %5lu\n"
1603                        "HugePages_Surp:    %5lu\n"
1604                        "Hugepagesize:   %8lu kB\n",
1605                        h->nr_huge_pages,
1606                        h->free_huge_pages,
1607                        h->resv_huge_pages,
1608                        h->surplus_huge_pages,
1609                        1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1610}
1611
1612int hugetlb_report_node_meminfo(int nid, char *buf)
1613{
1614        struct hstate *h = &default_hstate;
1615        return sprintf(buf,
1616                "Node %d HugePages_Total: %5u\n"
1617                "Node %d HugePages_Free:  %5u\n"
1618                "Node %d HugePages_Surp:  %5u\n",
1619                nid, h->nr_huge_pages_node[nid],
1620                nid, h->free_huge_pages_node[nid],
1621                nid, h->surplus_huge_pages_node[nid]);
1622}
1623
1624/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1625unsigned long hugetlb_total_pages(void)
1626{
1627        struct hstate *h = &default_hstate;
1628        return h->nr_huge_pages * pages_per_huge_page(h);
1629}
1630
1631static int hugetlb_acct_memory(struct hstate *h, long delta)
1632{
1633        int ret = -ENOMEM;
1634
1635        spin_lock(&hugetlb_lock);
1636        /*
1637         * When cpuset is configured, it breaks the strict hugetlb page
1638         * reservation as the accounting is done on a global variable. Such
1639         * reservation is completely rubbish in the presence of cpuset because
1640         * the reservation is not checked against page availability for the
1641         * current cpuset. Application can still potentially OOM'ed by kernel
1642         * with lack of free htlb page in cpuset that the task is in.
1643         * Attempt to enforce strict accounting with cpuset is almost
1644         * impossible (or too ugly) because cpuset is too fluid that
1645         * task or memory node can be dynamically moved between cpusets.
1646         *
1647         * The change of semantics for shared hugetlb mapping with cpuset is
1648         * undesirable. However, in order to preserve some of the semantics,
1649         * we fall back to check against current free page availability as
1650         * a best attempt and hopefully to minimize the impact of changing
1651         * semantics that cpuset has.
1652         */
1653        if (delta > 0) {
1654                if (gather_surplus_pages(h, delta) < 0)
1655                        goto out;
1656
1657                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1658                        return_unused_surplus_pages(h, delta);
1659                        goto out;
1660                }
1661        }
1662
1663        ret = 0;
1664        if (delta < 0)
1665                return_unused_surplus_pages(h, (unsigned long) -delta);
1666
1667out:
1668        spin_unlock(&hugetlb_lock);
1669        return ret;
1670}
1671
1672static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1673{
1674        struct resv_map *reservations = vma_resv_map(vma);
1675
1676        /*
1677         * This new VMA should share its siblings reservation map if present.
1678         * The VMA will only ever have a valid reservation map pointer where
1679         * it is being copied for another still existing VMA.  As that VMA
1680         * has a reference to the reservation map it cannot dissappear until
1681         * after this open call completes.  It is therefore safe to take a
1682         * new reference here without additional locking.
1683         */
1684        if (reservations)
1685                kref_get(&reservations->refs);
1686}
1687
1688static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1689{
1690        struct hstate *h = hstate_vma(vma);
1691        struct resv_map *reservations = vma_resv_map(vma);
1692        unsigned long reserve;
1693        unsigned long start;
1694        unsigned long end;
1695
1696        if (reservations) {
1697                start = vma_hugecache_offset(h, vma, vma->vm_start);
1698                end = vma_hugecache_offset(h, vma, vma->vm_end);
1699
1700                reserve = (end - start) -
1701                        region_count(&reservations->regions, start, end);
1702
1703                kref_put(&reservations->refs, resv_map_release);
1704
1705                if (reserve) {
1706                        hugetlb_acct_memory(h, -reserve);
1707                        hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1708                }
1709        }
1710}
1711
1712/*
1713 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1714 * handle_mm_fault() to try to instantiate regular-sized pages in the
1715 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1716 * this far.
1717 */
1718static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1719{
1720        BUG();
1721        return 0;
1722}
1723
1724const struct vm_operations_struct hugetlb_vm_ops = {
1725        .fault = hugetlb_vm_op_fault,
1726        .open = hugetlb_vm_op_open,
1727        .close = hugetlb_vm_op_close,
1728};
1729
1730static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1731                                int writable)
1732{
1733        pte_t entry;
1734
1735        if (writable) {
1736                entry =
1737                    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1738        } else {
1739                entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1740        }
1741        entry = pte_mkyoung(entry);
1742        entry = pte_mkhuge(entry);
1743
1744        return entry;
1745}
1746
1747static void set_huge_ptep_writable(struct vm_area_struct *vma,
1748                                   unsigned long address, pte_t *ptep)
1749{
1750        pte_t entry;
1751
1752        entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1753        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1754                update_mmu_cache(vma, address, entry);
1755        }
1756}
1757
1758
1759int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1760                            struct vm_area_struct *vma)
1761{
1762        pte_t *src_pte, *dst_pte, entry;
1763        struct page *ptepage;
1764        unsigned long addr;
1765        int cow;
1766        struct hstate *h = hstate_vma(vma);
1767        unsigned long sz = huge_page_size(h);
1768
1769        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1770
1771        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1772                src_pte = huge_pte_offset(src, addr);
1773                if (!src_pte)
1774                        continue;
1775                dst_pte = huge_pte_alloc(dst, addr, sz);
1776                if (!dst_pte)
1777                        goto nomem;
1778
1779                /* If the pagetables are shared don't copy or take references */
1780                if (dst_pte == src_pte)
1781                        continue;
1782
1783                spin_lock(&dst->page_table_lock);
1784                spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1785                if (!huge_pte_none(huge_ptep_get(src_pte))) {
1786                        if (cow)
1787                                huge_ptep_set_wrprotect(src, addr, src_pte);
1788                        entry = huge_ptep_get(src_pte);
1789                        ptepage = pte_page(entry);
1790                        get_page(ptepage);
1791                        set_huge_pte_at(dst, addr, dst_pte, entry);
1792                }
1793                spin_unlock(&src->page_table_lock);
1794                spin_unlock(&dst->page_table_lock);
1795        }
1796        return 0;
1797
1798nomem:
1799        return -ENOMEM;
1800}
1801
1802void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1803                            unsigned long end, struct page *ref_page)
1804{
1805        struct mm_struct *mm = vma->vm_mm;
1806        unsigned long address;
1807        pte_t *ptep;
1808        pte_t pte;
1809        struct page *page;
1810        struct page *tmp;
1811        struct hstate *h = hstate_vma(vma);
1812        unsigned long sz = huge_page_size(h);
1813
1814        /*
1815         * A page gathering list, protected by per file i_mmap_lock. The
1816         * lock is used to avoid list corruption from multiple unmapping
1817         * of the same page since we are using page->lru.
1818         */
1819        LIST_HEAD(page_list);
1820
1821        WARN_ON(!is_vm_hugetlb_page(vma));
1822        BUG_ON(start & ~huge_page_mask(h));
1823        BUG_ON(end & ~huge_page_mask(h));
1824
1825        mmu_notifier_invalidate_range_start(mm, start, end);
1826        spin_lock(&mm->page_table_lock);
1827        for (address = start; address < end; address += sz) {
1828                ptep = huge_pte_offset(mm, address);
1829                if (!ptep)
1830                        continue;
1831
1832                if (huge_pmd_unshare(mm, &address, ptep))
1833                        continue;
1834
1835                /*
1836                 * If a reference page is supplied, it is because a specific
1837                 * page is being unmapped, not a range. Ensure the page we
1838                 * are about to unmap is the actual page of interest.
1839                 */
1840                if (ref_page) {
1841                        pte = huge_ptep_get(ptep);
1842                        if (huge_pte_none(pte))
1843                                continue;
1844                        page = pte_page(pte);
1845                        if (page != ref_page)
1846                                continue;
1847
1848                        /*
1849                         * Mark the VMA as having unmapped its page so that
1850                         * future faults in this VMA will fail rather than
1851                         * looking like data was lost
1852                         */
1853                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1854                }
1855
1856                pte = huge_ptep_get_and_clear(mm, address, ptep);
1857                if (huge_pte_none(pte))
1858                        continue;
1859
1860                page = pte_page(pte);
1861                if (pte_dirty(pte))
1862                        set_page_dirty(page);
1863                list_add(&page->lru, &page_list);
1864        }
1865        spin_unlock(&mm->page_table_lock);
1866        flush_tlb_range(vma, start, end);
1867        mmu_notifier_invalidate_range_end(mm, start, end);
1868        list_for_each_entry_safe(page, tmp, &page_list, lru) {
1869                list_del(&page->lru);
1870                put_page(page);
1871        }
1872}
1873
1874void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1875                          unsigned long end, struct page *ref_page)
1876{
1877        spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1878        __unmap_hugepage_range(vma, start, end, ref_page);
1879        spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1880}
1881
1882/*
1883 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1884 * mappping it owns the reserve page for. The intention is to unmap the page
1885 * from other VMAs and let the children be SIGKILLed if they are faulting the
1886 * same region.
1887 */
1888static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1889                                struct page *page, unsigned long address)
1890{
1891        struct hstate *h = hstate_vma(vma);
1892        struct vm_area_struct *iter_vma;
1893        struct address_space *mapping;
1894        struct prio_tree_iter iter;
1895        pgoff_t pgoff;
1896
1897        /*
1898         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1899         * from page cache lookup which is in HPAGE_SIZE units.
1900         */
1901        address = address & huge_page_mask(h);
1902        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1903                + (vma->vm_pgoff >> PAGE_SHIFT);
1904        mapping = (struct address_space *)page_private(page);
1905
1906        vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1907                /* Do not unmap the current VMA */
1908                if (iter_vma == vma)
1909                        continue;
1910
1911                /*
1912                 * Unmap the page from other VMAs without their own reserves.
1913                 * They get marked to be SIGKILLed if they fault in these
1914                 * areas. This is because a future no-page fault on this VMA
1915                 * could insert a zeroed page instead of the data existing
1916                 * from the time of fork. This would look like data corruption
1917                 */
1918                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1919                        unmap_hugepage_range(iter_vma,
1920                                address, address + huge_page_size(h),
1921                                page);
1922        }
1923
1924        return 1;
1925}
1926
1927static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1928                        unsigned long address, pte_t *ptep, pte_t pte,
1929                        struct page *pagecache_page)
1930{
1931        struct hstate *h = hstate_vma(vma);
1932        struct page *old_page, *new_page;
1933        int avoidcopy;
1934        int outside_reserve = 0;
1935
1936        old_page = pte_page(pte);
1937
1938retry_avoidcopy:
1939        /* If no-one else is actually using this page, avoid the copy
1940         * and just make the page writable */
1941        avoidcopy = (page_count(old_page) == 1);
1942        if (avoidcopy) {
1943                set_huge_ptep_writable(vma, address, ptep);
1944                return 0;
1945        }
1946
1947        /*
1948         * If the process that created a MAP_PRIVATE mapping is about to
1949         * perform a COW due to a shared page count, attempt to satisfy
1950         * the allocation without using the existing reserves. The pagecache
1951         * page is used to determine if the reserve at this address was
1952         * consumed or not. If reserves were used, a partial faulted mapping
1953         * at the time of fork() could consume its reserves on COW instead
1954         * of the full address range.
1955         */
1956        if (!(vma->vm_flags & VM_MAYSHARE) &&
1957                        is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1958                        old_page != pagecache_page)
1959                outside_reserve = 1;
1960
1961        page_cache_get(old_page);
1962        new_page = alloc_huge_page(vma, address, outside_reserve);
1963
1964        if (IS_ERR(new_page)) {
1965                page_cache_release(old_page);
1966
1967                /*
1968                 * If a process owning a MAP_PRIVATE mapping fails to COW,
1969                 * it is due to references held by a child and an insufficient
1970                 * huge page pool. To guarantee the original mappers
1971                 * reliability, unmap the page from child processes. The child
1972                 * may get SIGKILLed if it later faults.
1973                 */
1974                if (outside_reserve) {
1975                        BUG_ON(huge_pte_none(pte));
1976                        if (unmap_ref_private(mm, vma, old_page, address)) {
1977                                BUG_ON(page_count(old_page) != 1);
1978                                BUG_ON(huge_pte_none(pte));
1979                                goto retry_avoidcopy;
1980                        }
1981                        WARN_ON_ONCE(1);
1982                }
1983
1984                return -PTR_ERR(new_page);
1985        }
1986
1987        spin_unlock(&mm->page_table_lock);
1988        copy_huge_page(new_page, old_page, address, vma);
1989        __SetPageUptodate(new_page);
1990        spin_lock(&mm->page_table_lock);
1991
1992        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1993        if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1994                /* Break COW */
1995                huge_ptep_clear_flush(vma, address, ptep);
1996                set_huge_pte_at(mm, address, ptep,
1997                                make_huge_pte(vma, new_page, 1));
1998                /* Make the old page be freed below */
1999                new_page = old_page;
2000        }
2001        page_cache_release(new_page);
2002        page_cache_release(old_page);
2003        return 0;
2004}
2005
2006/* Return the pagecache page at a given address within a VMA */
2007static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2008                        struct vm_area_struct *vma, unsigned long address)
2009{
2010        struct address_space *mapping;
2011        pgoff_t idx;
2012
2013        mapping = vma->vm_file->f_mapping;
2014        idx = vma_hugecache_offset(h, vma, address);
2015
2016        return find_lock_page(mapping, idx);
2017}
2018
2019/*
2020 * Return whether there is a pagecache page to back given address within VMA.
2021 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2022 */
2023static bool hugetlbfs_pagecache_present(struct hstate *h,
2024                        struct vm_area_struct *vma, unsigned long address)
2025{
2026        struct address_space *mapping;
2027        pgoff_t idx;
2028        struct page *page;
2029
2030        mapping = vma->vm_file->f_mapping;
2031        idx = vma_hugecache_offset(h, vma, address);
2032
2033        page = find_get_page(mapping, idx);
2034        if (page)
2035                put_page(page);
2036        return page != NULL;
2037}
2038
2039static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2040                        unsigned long address, pte_t *ptep, unsigned int flags)
2041{
2042        struct hstate *h = hstate_vma(vma);
2043        int ret = VM_FAULT_SIGBUS;
2044        pgoff_t idx;
2045        unsigned long size;
2046        struct page *page;
2047        struct address_space *mapping;
2048        pte_t new_pte;
2049
2050        /*
2051         * Currently, we are forced to kill the process in the event the
2052         * original mapper has unmapped pages from the child due to a failed
2053         * COW. Warn that such a situation has occured as it may not be obvious
2054         */
2055        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2056                printk(KERN_WARNING
2057                        "PID %d killed due to inadequate hugepage pool\n",
2058                        current->pid);
2059                return ret;
2060        }
2061
2062        mapping = vma->vm_file->f_mapping;
2063        idx = vma_hugecache_offset(h, vma, address);
2064
2065        /*
2066         * Use page lock to guard against racing truncation
2067         * before we get page_table_lock.
2068         */
2069retry:
2070        page = find_lock_page(mapping, idx);
2071        if (!page) {
2072                size = i_size_read(mapping->host) >> huge_page_shift(h);
2073                if (idx >= size)
2074                        goto out;
2075                page = alloc_huge_page(vma, address, 0);
2076                if (IS_ERR(page)) {
2077                        ret = -PTR_ERR(page);
2078                        goto out;
2079                }
2080                clear_huge_page(page, address, huge_page_size(h));
2081                __SetPageUptodate(page);
2082
2083                if (vma->vm_flags & VM_MAYSHARE) {
2084                        int err;
2085                        struct inode *inode = mapping->host;
2086
2087                        err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2088                        if (err) {
2089                                put_page(page);
2090                                if (err == -EEXIST)
2091                                        goto retry;
2092                                goto out;
2093                        }
2094
2095                        spin_lock(&inode->i_lock);
2096                        inode->i_blocks += blocks_per_huge_page(h);
2097                        spin_unlock(&inode->i_lock);
2098                } else
2099                        lock_page(page);
2100        }
2101
2102        /*
2103         * If we are going to COW a private mapping later, we examine the
2104         * pending reservations for this page now. This will ensure that
2105         * any allocations necessary to record that reservation occur outside
2106         * the spinlock.
2107         */
2108        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2109                if (vma_needs_reservation(h, vma, address) < 0) {
2110                        ret = VM_FAULT_OOM;
2111                        goto backout_unlocked;
2112                }
2113
2114        spin_lock(&mm->page_table_lock);
2115        size = i_size_read(mapping->host) >> huge_page_shift(h);
2116        if (idx >= size)
2117                goto backout;
2118
2119        ret = 0;
2120        if (!huge_pte_none(huge_ptep_get(ptep)))
2121                goto backout;
2122
2123        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2124                                && (vma->vm_flags & VM_SHARED)));
2125        set_huge_pte_at(mm, address, ptep, new_pte);
2126
2127        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2128                /* Optimization, do the COW without a second fault */
2129                ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2130        }
2131
2132        spin_unlock(&mm->page_table_lock);
2133        unlock_page(page);
2134out:
2135        return ret;
2136
2137backout:
2138        spin_unlock(&mm->page_table_lock);
2139backout_unlocked:
2140        unlock_page(page);
2141        put_page(page);
2142        goto out;
2143}
2144
2145int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2146                        unsigned long address, unsigned int flags)
2147{
2148        pte_t *ptep;
2149        pte_t entry;
2150        int ret;
2151        struct page *pagecache_page = NULL;
2152        static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2153        struct hstate *h = hstate_vma(vma);
2154
2155        ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2156        if (!ptep)
2157                return VM_FAULT_OOM;
2158
2159        /*
2160         * Serialize hugepage allocation and instantiation, so that we don't
2161         * get spurious allocation failures if two CPUs race to instantiate
2162         * the same page in the page cache.
2163         */
2164        mutex_lock(&hugetlb_instantiation_mutex);
2165        entry = huge_ptep_get(ptep);
2166        if (huge_pte_none(entry)) {
2167                ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2168                goto out_mutex;
2169        }
2170
2171        ret = 0;
2172
2173        /*
2174         * If we are going to COW the mapping later, we examine the pending
2175         * reservations for this page now. This will ensure that any
2176         * allocations necessary to record that reservation occur outside the
2177         * spinlock. For private mappings, we also lookup the pagecache
2178         * page now as it is used to determine if a reservation has been
2179         * consumed.
2180         */
2181        if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2182                if (vma_needs_reservation(h, vma, address) < 0) {
2183                        ret = VM_FAULT_OOM;
2184                        goto out_mutex;
2185                }
2186
2187                if (!(vma->vm_flags & VM_MAYSHARE))
2188                        pagecache_page = hugetlbfs_pagecache_page(h,
2189                                                                vma, address);
2190        }
2191
2192        spin_lock(&mm->page_table_lock);
2193        /* Check for a racing update before calling hugetlb_cow */
2194        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2195                goto out_page_table_lock;
2196
2197
2198        if (flags & FAULT_FLAG_WRITE) {
2199                if (!pte_write(entry)) {
2200                        ret = hugetlb_cow(mm, vma, address, ptep, entry,
2201                                                        pagecache_page);
2202                        goto out_page_table_lock;
2203                }
2204                entry = pte_mkdirty(entry);
2205        }
2206        entry = pte_mkyoung(entry);
2207        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2208                                                flags & FAULT_FLAG_WRITE))
2209                update_mmu_cache(vma, address, entry);
2210
2211out_page_table_lock:
2212        spin_unlock(&mm->page_table_lock);
2213
2214        if (pagecache_page) {
2215                unlock_page(pagecache_page);
2216                put_page(pagecache_page);
2217        }
2218
2219out_mutex:
2220        mutex_unlock(&hugetlb_instantiation_mutex);
2221
2222        return ret;
2223}
2224
2225/* Can be overriden by architectures */
2226__attribute__((weak)) struct page *
2227follow_huge_pud(struct mm_struct *mm, unsigned long address,
2228               pud_t *pud, int write)
2229{
2230        BUG();
2231        return NULL;
2232}
2233
2234int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2235                        struct page **pages, struct vm_area_struct **vmas,
2236                        unsigned long *position, int *length, int i,
2237                        unsigned int flags)
2238{
2239        unsigned long pfn_offset;
2240        unsigned long vaddr = *position;
2241        int remainder = *length;
2242        struct hstate *h = hstate_vma(vma);
2243
2244        spin_lock(&mm->page_table_lock);
2245        while (vaddr < vma->vm_end && remainder) {
2246                pte_t *pte;
2247                int absent;
2248                struct page *page;
2249
2250                /*
2251                 * Some archs (sparc64, sh*) have multiple pte_ts to
2252                 * each hugepage.  We have to make sure we get the
2253                 * first, for the page indexing below to work.
2254                 */
2255                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2256                absent = !pte || huge_pte_none(huge_ptep_get(pte));
2257
2258                /*
2259                 * When coredumping, it suits get_dump_page if we just return
2260                 * an error where there's an empty slot with no huge pagecache
2261                 * to back it.  This way, we avoid allocating a hugepage, and
2262                 * the sparse dumpfile avoids allocating disk blocks, but its
2263                 * huge holes still show up with zeroes where they need to be.
2264                 */
2265                if (absent && (flags & FOLL_DUMP) &&
2266                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2267                        remainder = 0;
2268                        break;
2269                }
2270
2271                if (absent ||
2272                    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2273                        int ret;
2274
2275                        spin_unlock(&mm->page_table_lock);
2276                        ret = hugetlb_fault(mm, vma, vaddr,
2277                                (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2278                        spin_lock(&mm->page_table_lock);
2279                        if (!(ret & VM_FAULT_ERROR))
2280                                continue;
2281
2282                        remainder = 0;
2283                        break;
2284                }
2285
2286                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2287                page = pte_page(huge_ptep_get(pte));
2288same_page:
2289                if (pages) {
2290                        pages[i] = mem_map_offset(page, pfn_offset);
2291                        get_page(pages[i]);
2292                }
2293
2294                if (vmas)
2295                        vmas[i] = vma;
2296
2297                vaddr += PAGE_SIZE;
2298                ++pfn_offset;
2299                --remainder;
2300                ++i;
2301                if (vaddr < vma->vm_end && remainder &&
2302                                pfn_offset < pages_per_huge_page(h)) {
2303                        /*
2304                         * We use pfn_offset to avoid touching the pageframes
2305                         * of this compound page.
2306                         */
2307                        goto same_page;
2308                }
2309        }
2310        spin_unlock(&mm->page_table_lock);
2311        *length = remainder;
2312        *position = vaddr;
2313
2314        return i ? i : -EFAULT;
2315}
2316
2317void hugetlb_change_protection(struct vm_area_struct *vma,
2318                unsigned long address, unsigned long end, pgprot_t newprot)
2319{
2320        struct mm_struct *mm = vma->vm_mm;
2321        unsigned long start = address;
2322        pte_t *ptep;
2323        pte_t pte;
2324        struct hstate *h = hstate_vma(vma);
2325
2326        BUG_ON(address >= end);
2327        flush_cache_range(vma, address, end);
2328
2329        spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2330        spin_lock(&mm->page_table_lock);
2331        for (; address < end; address += huge_page_size(h)) {
2332                ptep = huge_pte_offset(mm, address);
2333                if (!ptep)
2334                        continue;
2335                if (huge_pmd_unshare(mm, &address, ptep))
2336                        continue;
2337                if (!huge_pte_none(huge_ptep_get(ptep))) {
2338                        pte = huge_ptep_get_and_clear(mm, address, ptep);
2339                        pte = pte_mkhuge(pte_modify(pte, newprot));
2340                        set_huge_pte_at(mm, address, ptep, pte);
2341                }
2342        }
2343        spin_unlock(&mm->page_table_lock);
2344        spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2345
2346        flush_tlb_range(vma, start, end);
2347}
2348
2349int hugetlb_reserve_pages(struct inode *inode,
2350                                        long from, long to,
2351                                        struct vm_area_struct *vma,
2352                                        int acctflag)
2353{
2354        long ret, chg;
2355        struct hstate *h = hstate_inode(inode);
2356
2357        /*
2358         * Only apply hugepage reservation if asked. At fault time, an
2359         * attempt will be made for VM_NORESERVE to allocate a page
2360         * and filesystem quota without using reserves
2361         */
2362        if (acctflag & VM_NORESERVE)
2363                return 0;
2364
2365        /*
2366         * Shared mappings base their reservation on the number of pages that
2367         * are already allocated on behalf of the file. Private mappings need
2368         * to reserve the full area even if read-only as mprotect() may be
2369         * called to make the mapping read-write. Assume !vma is a shm mapping
2370         */
2371        if (!vma || vma->vm_flags & VM_MAYSHARE)
2372                chg = region_chg(&inode->i_mapping->private_list, from, to);
2373        else {
2374                struct resv_map *resv_map = resv_map_alloc();
2375                if (!resv_map)
2376                        return -ENOMEM;
2377
2378                chg = to - from;
2379
2380                set_vma_resv_map(vma, resv_map);
2381                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2382        }
2383
2384        if (chg < 0)
2385                return chg;
2386
2387        /* There must be enough filesystem quota for the mapping */
2388        if (hugetlb_get_quota(inode->i_mapping, chg))
2389                return -ENOSPC;
2390
2391        /*
2392         * Check enough hugepages are available for the reservation.
2393         * Hand back the quota if there are not
2394         */
2395        ret = hugetlb_acct_memory(h, chg);
2396        if (ret < 0) {
2397                hugetlb_put_quota(inode->i_mapping, chg);
2398                return ret;
2399        }
2400
2401        /*
2402         * Account for the reservations made. Shared mappings record regions
2403         * that have reservations as they are shared by multiple VMAs.
2404         * When the last VMA disappears, the region map says how much
2405         * the reservation was and the page cache tells how much of
2406         * the reservation was consumed. Private mappings are per-VMA and
2407         * only the consumed reservations are tracked. When the VMA
2408         * disappears, the original reservation is the VMA size and the
2409         * consumed reservations are stored in the map. Hence, nothing
2410         * else has to be done for private mappings here
2411         */
2412        if (!vma || vma->vm_flags & VM_MAYSHARE)
2413                region_add(&inode->i_mapping->private_list, from, to);
2414        return 0;
2415}
2416
2417void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2418{
2419        struct hstate *h = hstate_inode(inode);
2420        long chg = region_truncate(&inode->i_mapping->private_list, offset);
2421
2422        spin_lock(&inode->i_lock);
2423        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2424        spin_unlock(&inode->i_lock);
2425
2426        hugetlb_put_quota(inode->i_mapping, (chg - freed));
2427        hugetlb_acct_memory(h, -(chg - freed));
2428}
2429