linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/mmu_notifier.h>
  33#include <linux/swap.h>
  34#include <linux/ksm.h>
  35
  36#include <asm/tlbflush.h>
  37
  38/*
  39 * A few notes about the KSM scanning process,
  40 * to make it easier to understand the data structures below:
  41 *
  42 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  43 * contents into a data structure that holds pointers to the pages' locations.
  44 *
  45 * Since the contents of the pages may change at any moment, KSM cannot just
  46 * insert the pages into a normal sorted tree and expect it to find anything.
  47 * Therefore KSM uses two data structures - the stable and the unstable tree.
  48 *
  49 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  50 * by their contents.  Because each such page is write-protected, searching on
  51 * this tree is fully assured to be working (except when pages are unmapped),
  52 * and therefore this tree is called the stable tree.
  53 *
  54 * In addition to the stable tree, KSM uses a second data structure called the
  55 * unstable tree: this tree holds pointers to pages which have been found to
  56 * be "unchanged for a period of time".  The unstable tree sorts these pages
  57 * by their contents, but since they are not write-protected, KSM cannot rely
  58 * upon the unstable tree to work correctly - the unstable tree is liable to
  59 * be corrupted as its contents are modified, and so it is called unstable.
  60 *
  61 * KSM solves this problem by several techniques:
  62 *
  63 * 1) The unstable tree is flushed every time KSM completes scanning all
  64 *    memory areas, and then the tree is rebuilt again from the beginning.
  65 * 2) KSM will only insert into the unstable tree, pages whose hash value
  66 *    has not changed since the previous scan of all memory areas.
  67 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  68 *    colors of the nodes and not on their contents, assuring that even when
  69 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  70 *    remains the same (also, searching and inserting nodes in an rbtree uses
  71 *    the same algorithm, so we have no overhead when we flush and rebuild).
  72 * 4) KSM never flushes the stable tree, which means that even if it were to
  73 *    take 10 attempts to find a page in the unstable tree, once it is found,
  74 *    it is secured in the stable tree.  (When we scan a new page, we first
  75 *    compare it against the stable tree, and then against the unstable tree.)
  76 */
  77
  78/**
  79 * struct mm_slot - ksm information per mm that is being scanned
  80 * @link: link to the mm_slots hash list
  81 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  82 * @rmap_list: head for this mm_slot's list of rmap_items
  83 * @mm: the mm that this information is valid for
  84 */
  85struct mm_slot {
  86        struct hlist_node link;
  87        struct list_head mm_list;
  88        struct list_head rmap_list;
  89        struct mm_struct *mm;
  90};
  91
  92/**
  93 * struct ksm_scan - cursor for scanning
  94 * @mm_slot: the current mm_slot we are scanning
  95 * @address: the next address inside that to be scanned
  96 * @rmap_item: the current rmap that we are scanning inside the rmap_list
  97 * @seqnr: count of completed full scans (needed when removing unstable node)
  98 *
  99 * There is only the one ksm_scan instance of this cursor structure.
 100 */
 101struct ksm_scan {
 102        struct mm_slot *mm_slot;
 103        unsigned long address;
 104        struct rmap_item *rmap_item;
 105        unsigned long seqnr;
 106};
 107
 108/**
 109 * struct rmap_item - reverse mapping item for virtual addresses
 110 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
 111 * @mm: the memory structure this rmap_item is pointing into
 112 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 113 * @oldchecksum: previous checksum of the page at that virtual address
 114 * @node: rb_node of this rmap_item in either unstable or stable tree
 115 * @next: next rmap_item hanging off the same node of the stable tree
 116 * @prev: previous rmap_item hanging off the same node of the stable tree
 117 */
 118struct rmap_item {
 119        struct list_head link;
 120        struct mm_struct *mm;
 121        unsigned long address;          /* + low bits used for flags below */
 122        union {
 123                unsigned int oldchecksum;               /* when unstable */
 124                struct rmap_item *next;                 /* when stable */
 125        };
 126        union {
 127                struct rb_node node;                    /* when tree node */
 128                struct rmap_item *prev;                 /* in stable list */
 129        };
 130};
 131
 132#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 133#define NODE_FLAG       0x100   /* is a node of unstable or stable tree */
 134#define STABLE_FLAG     0x200   /* is a node or list item of stable tree */
 135
 136/* The stable and unstable tree heads */
 137static struct rb_root root_stable_tree = RB_ROOT;
 138static struct rb_root root_unstable_tree = RB_ROOT;
 139
 140#define MM_SLOTS_HASH_HEADS 1024
 141static struct hlist_head *mm_slots_hash;
 142
 143static struct mm_slot ksm_mm_head = {
 144        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 145};
 146static struct ksm_scan ksm_scan = {
 147        .mm_slot = &ksm_mm_head,
 148};
 149
 150static struct kmem_cache *rmap_item_cache;
 151static struct kmem_cache *mm_slot_cache;
 152
 153/* The number of nodes in the stable tree */
 154static unsigned long ksm_pages_shared;
 155
 156/* The number of page slots additionally sharing those nodes */
 157static unsigned long ksm_pages_sharing;
 158
 159/* The number of nodes in the unstable tree */
 160static unsigned long ksm_pages_unshared;
 161
 162/* The number of rmap_items in use: to calculate pages_volatile */
 163static unsigned long ksm_rmap_items;
 164
 165/* Limit on the number of unswappable pages used */
 166static unsigned long ksm_max_kernel_pages;
 167
 168/* Number of pages ksmd should scan in one batch */
 169static unsigned int ksm_thread_pages_to_scan = 100;
 170
 171/* Milliseconds ksmd should sleep between batches */
 172static unsigned int ksm_thread_sleep_millisecs = 20;
 173
 174#define KSM_RUN_STOP    0
 175#define KSM_RUN_MERGE   1
 176#define KSM_RUN_UNMERGE 2
 177static unsigned int ksm_run = KSM_RUN_STOP;
 178
 179static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 180static DEFINE_MUTEX(ksm_thread_mutex);
 181static DEFINE_SPINLOCK(ksm_mmlist_lock);
 182
 183#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 184                sizeof(struct __struct), __alignof__(struct __struct),\
 185                (__flags), NULL)
 186
 187static int __init ksm_slab_init(void)
 188{
 189        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 190        if (!rmap_item_cache)
 191                goto out;
 192
 193        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 194        if (!mm_slot_cache)
 195                goto out_free;
 196
 197        return 0;
 198
 199out_free:
 200        kmem_cache_destroy(rmap_item_cache);
 201out:
 202        return -ENOMEM;
 203}
 204
 205static void __init ksm_slab_free(void)
 206{
 207        kmem_cache_destroy(mm_slot_cache);
 208        kmem_cache_destroy(rmap_item_cache);
 209        mm_slot_cache = NULL;
 210}
 211
 212static inline struct rmap_item *alloc_rmap_item(void)
 213{
 214        struct rmap_item *rmap_item;
 215
 216        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
 217        if (rmap_item)
 218                ksm_rmap_items++;
 219        return rmap_item;
 220}
 221
 222static inline void free_rmap_item(struct rmap_item *rmap_item)
 223{
 224        ksm_rmap_items--;
 225        rmap_item->mm = NULL;   /* debug safety */
 226        kmem_cache_free(rmap_item_cache, rmap_item);
 227}
 228
 229static inline struct mm_slot *alloc_mm_slot(void)
 230{
 231        if (!mm_slot_cache)     /* initialization failed */
 232                return NULL;
 233        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 234}
 235
 236static inline void free_mm_slot(struct mm_slot *mm_slot)
 237{
 238        kmem_cache_free(mm_slot_cache, mm_slot);
 239}
 240
 241static int __init mm_slots_hash_init(void)
 242{
 243        mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
 244                                GFP_KERNEL);
 245        if (!mm_slots_hash)
 246                return -ENOMEM;
 247        return 0;
 248}
 249
 250static void __init mm_slots_hash_free(void)
 251{
 252        kfree(mm_slots_hash);
 253}
 254
 255static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 256{
 257        struct mm_slot *mm_slot;
 258        struct hlist_head *bucket;
 259        struct hlist_node *node;
 260
 261        bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
 262                                % MM_SLOTS_HASH_HEADS];
 263        hlist_for_each_entry(mm_slot, node, bucket, link) {
 264                if (mm == mm_slot->mm)
 265                        return mm_slot;
 266        }
 267        return NULL;
 268}
 269
 270static void insert_to_mm_slots_hash(struct mm_struct *mm,
 271                                    struct mm_slot *mm_slot)
 272{
 273        struct hlist_head *bucket;
 274
 275        bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
 276                                % MM_SLOTS_HASH_HEADS];
 277        mm_slot->mm = mm;
 278        INIT_LIST_HEAD(&mm_slot->rmap_list);
 279        hlist_add_head(&mm_slot->link, bucket);
 280}
 281
 282static inline int in_stable_tree(struct rmap_item *rmap_item)
 283{
 284        return rmap_item->address & STABLE_FLAG;
 285}
 286
 287/*
 288 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 289 * page tables after it has passed through ksm_exit() - which, if necessary,
 290 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 291 * a special flag: they can just back out as soon as mm_users goes to zero.
 292 * ksm_test_exit() is used throughout to make this test for exit: in some
 293 * places for correctness, in some places just to avoid unnecessary work.
 294 */
 295static inline bool ksm_test_exit(struct mm_struct *mm)
 296{
 297        return atomic_read(&mm->mm_users) == 0;
 298}
 299
 300/*
 301 * We use break_ksm to break COW on a ksm page: it's a stripped down
 302 *
 303 *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
 304 *              put_page(page);
 305 *
 306 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 307 * in case the application has unmapped and remapped mm,addr meanwhile.
 308 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 309 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 310 */
 311static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 312{
 313        struct page *page;
 314        int ret = 0;
 315
 316        do {
 317                cond_resched();
 318                page = follow_page(vma, addr, FOLL_GET);
 319                if (!page)
 320                        break;
 321                if (PageKsm(page))
 322                        ret = handle_mm_fault(vma->vm_mm, vma, addr,
 323                                                        FAULT_FLAG_WRITE);
 324                else
 325                        ret = VM_FAULT_WRITE;
 326                put_page(page);
 327        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
 328        /*
 329         * We must loop because handle_mm_fault() may back out if there's
 330         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 331         *
 332         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 333         * COW has been broken, even if the vma does not permit VM_WRITE;
 334         * but note that a concurrent fault might break PageKsm for us.
 335         *
 336         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 337         * backing file, which also invalidates anonymous pages: that's
 338         * okay, that truncation will have unmapped the PageKsm for us.
 339         *
 340         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 341         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 342         * current task has TIF_MEMDIE set, and will be OOM killed on return
 343         * to user; and ksmd, having no mm, would never be chosen for that.
 344         *
 345         * But if the mm is in a limited mem_cgroup, then the fault may fail
 346         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 347         * even ksmd can fail in this way - though it's usually breaking ksm
 348         * just to undo a merge it made a moment before, so unlikely to oom.
 349         *
 350         * That's a pity: we might therefore have more kernel pages allocated
 351         * than we're counting as nodes in the stable tree; but ksm_do_scan
 352         * will retry to break_cow on each pass, so should recover the page
 353         * in due course.  The important thing is to not let VM_MERGEABLE
 354         * be cleared while any such pages might remain in the area.
 355         */
 356        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 357}
 358
 359static void break_cow(struct mm_struct *mm, unsigned long addr)
 360{
 361        struct vm_area_struct *vma;
 362
 363        down_read(&mm->mmap_sem);
 364        if (ksm_test_exit(mm))
 365                goto out;
 366        vma = find_vma(mm, addr);
 367        if (!vma || vma->vm_start > addr)
 368                goto out;
 369        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 370                goto out;
 371        break_ksm(vma, addr);
 372out:
 373        up_read(&mm->mmap_sem);
 374}
 375
 376static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 377{
 378        struct mm_struct *mm = rmap_item->mm;
 379        unsigned long addr = rmap_item->address;
 380        struct vm_area_struct *vma;
 381        struct page *page;
 382
 383        down_read(&mm->mmap_sem);
 384        if (ksm_test_exit(mm))
 385                goto out;
 386        vma = find_vma(mm, addr);
 387        if (!vma || vma->vm_start > addr)
 388                goto out;
 389        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 390                goto out;
 391
 392        page = follow_page(vma, addr, FOLL_GET);
 393        if (!page)
 394                goto out;
 395        if (PageAnon(page)) {
 396                flush_anon_page(vma, page, addr);
 397                flush_dcache_page(page);
 398        } else {
 399                put_page(page);
 400out:            page = NULL;
 401        }
 402        up_read(&mm->mmap_sem);
 403        return page;
 404}
 405
 406/*
 407 * get_ksm_page: checks if the page at the virtual address in rmap_item
 408 * is still PageKsm, in which case we can trust the content of the page,
 409 * and it returns the gotten page; but NULL if the page has been zapped.
 410 */
 411static struct page *get_ksm_page(struct rmap_item *rmap_item)
 412{
 413        struct page *page;
 414
 415        page = get_mergeable_page(rmap_item);
 416        if (page && !PageKsm(page)) {
 417                put_page(page);
 418                page = NULL;
 419        }
 420        return page;
 421}
 422
 423/*
 424 * Removing rmap_item from stable or unstable tree.
 425 * This function will clean the information from the stable/unstable tree.
 426 */
 427static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 428{
 429        if (in_stable_tree(rmap_item)) {
 430                struct rmap_item *next_item = rmap_item->next;
 431
 432                if (rmap_item->address & NODE_FLAG) {
 433                        if (next_item) {
 434                                rb_replace_node(&rmap_item->node,
 435                                                &next_item->node,
 436                                                &root_stable_tree);
 437                                next_item->address |= NODE_FLAG;
 438                                ksm_pages_sharing--;
 439                        } else {
 440                                rb_erase(&rmap_item->node, &root_stable_tree);
 441                                ksm_pages_shared--;
 442                        }
 443                } else {
 444                        struct rmap_item *prev_item = rmap_item->prev;
 445
 446                        BUG_ON(prev_item->next != rmap_item);
 447                        prev_item->next = next_item;
 448                        if (next_item) {
 449                                BUG_ON(next_item->prev != rmap_item);
 450                                next_item->prev = rmap_item->prev;
 451                        }
 452                        ksm_pages_sharing--;
 453                }
 454
 455                rmap_item->next = NULL;
 456
 457        } else if (rmap_item->address & NODE_FLAG) {
 458                unsigned char age;
 459                /*
 460                 * Usually ksmd can and must skip the rb_erase, because
 461                 * root_unstable_tree was already reset to RB_ROOT.
 462                 * But be careful when an mm is exiting: do the rb_erase
 463                 * if this rmap_item was inserted by this scan, rather
 464                 * than left over from before.
 465                 */
 466                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 467                BUG_ON(age > 1);
 468                if (!age)
 469                        rb_erase(&rmap_item->node, &root_unstable_tree);
 470                ksm_pages_unshared--;
 471        }
 472
 473        rmap_item->address &= PAGE_MASK;
 474
 475        cond_resched();         /* we're called from many long loops */
 476}
 477
 478static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 479                                       struct list_head *cur)
 480{
 481        struct rmap_item *rmap_item;
 482
 483        while (cur != &mm_slot->rmap_list) {
 484                rmap_item = list_entry(cur, struct rmap_item, link);
 485                cur = cur->next;
 486                remove_rmap_item_from_tree(rmap_item);
 487                list_del(&rmap_item->link);
 488                free_rmap_item(rmap_item);
 489        }
 490}
 491
 492/*
 493 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
 494 * than check every pte of a given vma, the locking doesn't quite work for
 495 * that - an rmap_item is assigned to the stable tree after inserting ksm
 496 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 497 * rmap_items from parent to child at fork time (so as not to waste time
 498 * if exit comes before the next scan reaches it).
 499 *
 500 * Similarly, although we'd like to remove rmap_items (so updating counts
 501 * and freeing memory) when unmerging an area, it's easier to leave that
 502 * to the next pass of ksmd - consider, for example, how ksmd might be
 503 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 504 */
 505static int unmerge_ksm_pages(struct vm_area_struct *vma,
 506                             unsigned long start, unsigned long end)
 507{
 508        unsigned long addr;
 509        int err = 0;
 510
 511        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 512                if (ksm_test_exit(vma->vm_mm))
 513                        break;
 514                if (signal_pending(current))
 515                        err = -ERESTARTSYS;
 516                else
 517                        err = break_ksm(vma, addr);
 518        }
 519        return err;
 520}
 521
 522#ifdef CONFIG_SYSFS
 523/*
 524 * Only called through the sysfs control interface:
 525 */
 526static int unmerge_and_remove_all_rmap_items(void)
 527{
 528        struct mm_slot *mm_slot;
 529        struct mm_struct *mm;
 530        struct vm_area_struct *vma;
 531        int err = 0;
 532
 533        spin_lock(&ksm_mmlist_lock);
 534        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 535                                                struct mm_slot, mm_list);
 536        spin_unlock(&ksm_mmlist_lock);
 537
 538        for (mm_slot = ksm_scan.mm_slot;
 539                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 540                mm = mm_slot->mm;
 541                down_read(&mm->mmap_sem);
 542                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 543                        if (ksm_test_exit(mm))
 544                                break;
 545                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 546                                continue;
 547                        err = unmerge_ksm_pages(vma,
 548                                                vma->vm_start, vma->vm_end);
 549                        if (err)
 550                                goto error;
 551                }
 552
 553                remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
 554
 555                spin_lock(&ksm_mmlist_lock);
 556                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 557                                                struct mm_slot, mm_list);
 558                if (ksm_test_exit(mm)) {
 559                        hlist_del(&mm_slot->link);
 560                        list_del(&mm_slot->mm_list);
 561                        spin_unlock(&ksm_mmlist_lock);
 562
 563                        free_mm_slot(mm_slot);
 564                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 565                        up_read(&mm->mmap_sem);
 566                        mmdrop(mm);
 567                } else {
 568                        spin_unlock(&ksm_mmlist_lock);
 569                        up_read(&mm->mmap_sem);
 570                }
 571        }
 572
 573        ksm_scan.seqnr = 0;
 574        return 0;
 575
 576error:
 577        up_read(&mm->mmap_sem);
 578        spin_lock(&ksm_mmlist_lock);
 579        ksm_scan.mm_slot = &ksm_mm_head;
 580        spin_unlock(&ksm_mmlist_lock);
 581        return err;
 582}
 583#endif /* CONFIG_SYSFS */
 584
 585static u32 calc_checksum(struct page *page)
 586{
 587        u32 checksum;
 588        void *addr = kmap_atomic(page, KM_USER0);
 589        checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 590        kunmap_atomic(addr, KM_USER0);
 591        return checksum;
 592}
 593
 594static int memcmp_pages(struct page *page1, struct page *page2)
 595{
 596        char *addr1, *addr2;
 597        int ret;
 598
 599        addr1 = kmap_atomic(page1, KM_USER0);
 600        addr2 = kmap_atomic(page2, KM_USER1);
 601        ret = memcmp(addr1, addr2, PAGE_SIZE);
 602        kunmap_atomic(addr2, KM_USER1);
 603        kunmap_atomic(addr1, KM_USER0);
 604        return ret;
 605}
 606
 607static inline int pages_identical(struct page *page1, struct page *page2)
 608{
 609        return !memcmp_pages(page1, page2);
 610}
 611
 612static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 613                              pte_t *orig_pte)
 614{
 615        struct mm_struct *mm = vma->vm_mm;
 616        unsigned long addr;
 617        pte_t *ptep;
 618        spinlock_t *ptl;
 619        int swapped;
 620        int err = -EFAULT;
 621
 622        addr = page_address_in_vma(page, vma);
 623        if (addr == -EFAULT)
 624                goto out;
 625
 626        ptep = page_check_address(page, mm, addr, &ptl, 0);
 627        if (!ptep)
 628                goto out;
 629
 630        if (pte_write(*ptep)) {
 631                pte_t entry;
 632
 633                swapped = PageSwapCache(page);
 634                flush_cache_page(vma, addr, page_to_pfn(page));
 635                /*
 636                 * Ok this is tricky, when get_user_pages_fast() run it doesnt
 637                 * take any lock, therefore the check that we are going to make
 638                 * with the pagecount against the mapcount is racey and
 639                 * O_DIRECT can happen right after the check.
 640                 * So we clear the pte and flush the tlb before the check
 641                 * this assure us that no O_DIRECT can happen after the check
 642                 * or in the middle of the check.
 643                 */
 644                entry = ptep_clear_flush(vma, addr, ptep);
 645                /*
 646                 * Check that no O_DIRECT or similar I/O is in progress on the
 647                 * page
 648                 */
 649                if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
 650                        set_pte_at_notify(mm, addr, ptep, entry);
 651                        goto out_unlock;
 652                }
 653                entry = pte_wrprotect(entry);
 654                set_pte_at_notify(mm, addr, ptep, entry);
 655        }
 656        *orig_pte = *ptep;
 657        err = 0;
 658
 659out_unlock:
 660        pte_unmap_unlock(ptep, ptl);
 661out:
 662        return err;
 663}
 664
 665/**
 666 * replace_page - replace page in vma by new ksm page
 667 * @vma:      vma that holds the pte pointing to oldpage
 668 * @oldpage:  the page we are replacing by newpage
 669 * @newpage:  the ksm page we replace oldpage by
 670 * @orig_pte: the original value of the pte
 671 *
 672 * Returns 0 on success, -EFAULT on failure.
 673 */
 674static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
 675                        struct page *newpage, pte_t orig_pte)
 676{
 677        struct mm_struct *mm = vma->vm_mm;
 678        pgd_t *pgd;
 679        pud_t *pud;
 680        pmd_t *pmd;
 681        pte_t *ptep;
 682        spinlock_t *ptl;
 683        unsigned long addr;
 684        pgprot_t prot;
 685        int err = -EFAULT;
 686
 687        prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
 688
 689        addr = page_address_in_vma(oldpage, vma);
 690        if (addr == -EFAULT)
 691                goto out;
 692
 693        pgd = pgd_offset(mm, addr);
 694        if (!pgd_present(*pgd))
 695                goto out;
 696
 697        pud = pud_offset(pgd, addr);
 698        if (!pud_present(*pud))
 699                goto out;
 700
 701        pmd = pmd_offset(pud, addr);
 702        if (!pmd_present(*pmd))
 703                goto out;
 704
 705        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 706        if (!pte_same(*ptep, orig_pte)) {
 707                pte_unmap_unlock(ptep, ptl);
 708                goto out;
 709        }
 710
 711        get_page(newpage);
 712        page_add_ksm_rmap(newpage);
 713
 714        flush_cache_page(vma, addr, pte_pfn(*ptep));
 715        ptep_clear_flush(vma, addr, ptep);
 716        set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
 717
 718        page_remove_rmap(oldpage);
 719        put_page(oldpage);
 720
 721        pte_unmap_unlock(ptep, ptl);
 722        err = 0;
 723out:
 724        return err;
 725}
 726
 727/*
 728 * try_to_merge_one_page - take two pages and merge them into one
 729 * @vma: the vma that hold the pte pointing into oldpage
 730 * @oldpage: the page that we want to replace with newpage
 731 * @newpage: the page that we want to map instead of oldpage
 732 *
 733 * Note:
 734 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
 735 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
 736 *
 737 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 738 */
 739static int try_to_merge_one_page(struct vm_area_struct *vma,
 740                                 struct page *oldpage,
 741                                 struct page *newpage)
 742{
 743        pte_t orig_pte = __pte(0);
 744        int err = -EFAULT;
 745
 746        if (!(vma->vm_flags & VM_MERGEABLE))
 747                goto out;
 748
 749        if (!PageAnon(oldpage))
 750                goto out;
 751
 752        get_page(newpage);
 753        get_page(oldpage);
 754
 755        /*
 756         * We need the page lock to read a stable PageSwapCache in
 757         * write_protect_page().  We use trylock_page() instead of
 758         * lock_page() because we don't want to wait here - we
 759         * prefer to continue scanning and merging different pages,
 760         * then come back to this page when it is unlocked.
 761         */
 762        if (!trylock_page(oldpage))
 763                goto out_putpage;
 764        /*
 765         * If this anonymous page is mapped only here, its pte may need
 766         * to be write-protected.  If it's mapped elsewhere, all of its
 767         * ptes are necessarily already write-protected.  But in either
 768         * case, we need to lock and check page_count is not raised.
 769         */
 770        if (write_protect_page(vma, oldpage, &orig_pte)) {
 771                unlock_page(oldpage);
 772                goto out_putpage;
 773        }
 774        unlock_page(oldpage);
 775
 776        if (pages_identical(oldpage, newpage))
 777                err = replace_page(vma, oldpage, newpage, orig_pte);
 778
 779out_putpage:
 780        put_page(oldpage);
 781        put_page(newpage);
 782out:
 783        return err;
 784}
 785
 786/*
 787 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
 788 * but no new kernel page is allocated: kpage must already be a ksm page.
 789 */
 790static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
 791                                      unsigned long addr1,
 792                                      struct page *page1,
 793                                      struct page *kpage)
 794{
 795        struct vm_area_struct *vma;
 796        int err = -EFAULT;
 797
 798        down_read(&mm1->mmap_sem);
 799        if (ksm_test_exit(mm1))
 800                goto out;
 801
 802        vma = find_vma(mm1, addr1);
 803        if (!vma || vma->vm_start > addr1)
 804                goto out;
 805
 806        err = try_to_merge_one_page(vma, page1, kpage);
 807out:
 808        up_read(&mm1->mmap_sem);
 809        return err;
 810}
 811
 812/*
 813 * try_to_merge_two_pages - take two identical pages and prepare them
 814 * to be merged into one page.
 815 *
 816 * This function returns 0 if we successfully mapped two identical pages
 817 * into one page, -EFAULT otherwise.
 818 *
 819 * Note that this function allocates a new kernel page: if one of the pages
 820 * is already a ksm page, try_to_merge_with_ksm_page should be used.
 821 */
 822static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
 823                                  struct page *page1, struct mm_struct *mm2,
 824                                  unsigned long addr2, struct page *page2)
 825{
 826        struct vm_area_struct *vma;
 827        struct page *kpage;
 828        int err = -EFAULT;
 829
 830        /*
 831         * The number of nodes in the stable tree
 832         * is the number of kernel pages that we hold.
 833         */
 834        if (ksm_max_kernel_pages &&
 835            ksm_max_kernel_pages <= ksm_pages_shared)
 836                return err;
 837
 838        kpage = alloc_page(GFP_HIGHUSER);
 839        if (!kpage)
 840                return err;
 841
 842        down_read(&mm1->mmap_sem);
 843        if (ksm_test_exit(mm1)) {
 844                up_read(&mm1->mmap_sem);
 845                goto out;
 846        }
 847        vma = find_vma(mm1, addr1);
 848        if (!vma || vma->vm_start > addr1) {
 849                up_read(&mm1->mmap_sem);
 850                goto out;
 851        }
 852
 853        copy_user_highpage(kpage, page1, addr1, vma);
 854        err = try_to_merge_one_page(vma, page1, kpage);
 855        up_read(&mm1->mmap_sem);
 856
 857        if (!err) {
 858                err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
 859                /*
 860                 * If that fails, we have a ksm page with only one pte
 861                 * pointing to it: so break it.
 862                 */
 863                if (err)
 864                        break_cow(mm1, addr1);
 865        }
 866out:
 867        put_page(kpage);
 868        return err;
 869}
 870
 871/*
 872 * stable_tree_search - search page inside the stable tree
 873 * @page: the page that we are searching identical pages to.
 874 * @page2: pointer into identical page that we are holding inside the stable
 875 *         tree that we have found.
 876 * @rmap_item: the reverse mapping item
 877 *
 878 * This function checks if there is a page inside the stable tree
 879 * with identical content to the page that we are scanning right now.
 880 *
 881 * This function return rmap_item pointer to the identical item if found,
 882 * NULL otherwise.
 883 */
 884static struct rmap_item *stable_tree_search(struct page *page,
 885                                            struct page **page2,
 886                                            struct rmap_item *rmap_item)
 887{
 888        struct rb_node *node = root_stable_tree.rb_node;
 889
 890        while (node) {
 891                struct rmap_item *tree_rmap_item, *next_rmap_item;
 892                int ret;
 893
 894                tree_rmap_item = rb_entry(node, struct rmap_item, node);
 895                while (tree_rmap_item) {
 896                        BUG_ON(!in_stable_tree(tree_rmap_item));
 897                        cond_resched();
 898                        page2[0] = get_ksm_page(tree_rmap_item);
 899                        if (page2[0])
 900                                break;
 901                        next_rmap_item = tree_rmap_item->next;
 902                        remove_rmap_item_from_tree(tree_rmap_item);
 903                        tree_rmap_item = next_rmap_item;
 904                }
 905                if (!tree_rmap_item)
 906                        return NULL;
 907
 908                ret = memcmp_pages(page, page2[0]);
 909
 910                if (ret < 0) {
 911                        put_page(page2[0]);
 912                        node = node->rb_left;
 913                } else if (ret > 0) {
 914                        put_page(page2[0]);
 915                        node = node->rb_right;
 916                } else {
 917                        return tree_rmap_item;
 918                }
 919        }
 920
 921        return NULL;
 922}
 923
 924/*
 925 * stable_tree_insert - insert rmap_item pointing to new ksm page
 926 * into the stable tree.
 927 *
 928 * @page: the page that we are searching identical page to inside the stable
 929 *        tree.
 930 * @rmap_item: pointer to the reverse mapping item.
 931 *
 932 * This function returns rmap_item if success, NULL otherwise.
 933 */
 934static struct rmap_item *stable_tree_insert(struct page *page,
 935                                            struct rmap_item *rmap_item)
 936{
 937        struct rb_node **new = &root_stable_tree.rb_node;
 938        struct rb_node *parent = NULL;
 939
 940        while (*new) {
 941                struct rmap_item *tree_rmap_item, *next_rmap_item;
 942                struct page *tree_page;
 943                int ret;
 944
 945                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
 946                while (tree_rmap_item) {
 947                        BUG_ON(!in_stable_tree(tree_rmap_item));
 948                        cond_resched();
 949                        tree_page = get_ksm_page(tree_rmap_item);
 950                        if (tree_page)
 951                                break;
 952                        next_rmap_item = tree_rmap_item->next;
 953                        remove_rmap_item_from_tree(tree_rmap_item);
 954                        tree_rmap_item = next_rmap_item;
 955                }
 956                if (!tree_rmap_item)
 957                        return NULL;
 958
 959                ret = memcmp_pages(page, tree_page);
 960                put_page(tree_page);
 961
 962                parent = *new;
 963                if (ret < 0)
 964                        new = &parent->rb_left;
 965                else if (ret > 0)
 966                        new = &parent->rb_right;
 967                else {
 968                        /*
 969                         * It is not a bug that stable_tree_search() didn't
 970                         * find this node: because at that time our page was
 971                         * not yet write-protected, so may have changed since.
 972                         */
 973                        return NULL;
 974                }
 975        }
 976
 977        rmap_item->address |= NODE_FLAG | STABLE_FLAG;
 978        rmap_item->next = NULL;
 979        rb_link_node(&rmap_item->node, parent, new);
 980        rb_insert_color(&rmap_item->node, &root_stable_tree);
 981
 982        ksm_pages_shared++;
 983        return rmap_item;
 984}
 985
 986/*
 987 * unstable_tree_search_insert - search and insert items into the unstable tree.
 988 *
 989 * @page: the page that we are going to search for identical page or to insert
 990 *        into the unstable tree
 991 * @page2: pointer into identical page that was found inside the unstable tree
 992 * @rmap_item: the reverse mapping item of page
 993 *
 994 * This function searches for a page in the unstable tree identical to the
 995 * page currently being scanned; and if no identical page is found in the
 996 * tree, we insert rmap_item as a new object into the unstable tree.
 997 *
 998 * This function returns pointer to rmap_item found to be identical
 999 * to the currently scanned page, NULL otherwise.
1000 *
1001 * This function does both searching and inserting, because they share
1002 * the same walking algorithm in an rbtree.
1003 */
1004static struct rmap_item *unstable_tree_search_insert(struct page *page,
1005                                                struct page **page2,
1006                                                struct rmap_item *rmap_item)
1007{
1008        struct rb_node **new = &root_unstable_tree.rb_node;
1009        struct rb_node *parent = NULL;
1010
1011        while (*new) {
1012                struct rmap_item *tree_rmap_item;
1013                int ret;
1014
1015                cond_resched();
1016                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1017                page2[0] = get_mergeable_page(tree_rmap_item);
1018                if (!page2[0])
1019                        return NULL;
1020
1021                /*
1022                 * Don't substitute an unswappable ksm page
1023                 * just for one good swappable forked page.
1024                 */
1025                if (page == page2[0]) {
1026                        put_page(page2[0]);
1027                        return NULL;
1028                }
1029
1030                ret = memcmp_pages(page, page2[0]);
1031
1032                parent = *new;
1033                if (ret < 0) {
1034                        put_page(page2[0]);
1035                        new = &parent->rb_left;
1036                } else if (ret > 0) {
1037                        put_page(page2[0]);
1038                        new = &parent->rb_right;
1039                } else {
1040                        return tree_rmap_item;
1041                }
1042        }
1043
1044        rmap_item->address |= NODE_FLAG;
1045        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1046        rb_link_node(&rmap_item->node, parent, new);
1047        rb_insert_color(&rmap_item->node, &root_unstable_tree);
1048
1049        ksm_pages_unshared++;
1050        return NULL;
1051}
1052
1053/*
1054 * stable_tree_append - add another rmap_item to the linked list of
1055 * rmap_items hanging off a given node of the stable tree, all sharing
1056 * the same ksm page.
1057 */
1058static void stable_tree_append(struct rmap_item *rmap_item,
1059                               struct rmap_item *tree_rmap_item)
1060{
1061        rmap_item->next = tree_rmap_item->next;
1062        rmap_item->prev = tree_rmap_item;
1063
1064        if (tree_rmap_item->next)
1065                tree_rmap_item->next->prev = rmap_item;
1066
1067        tree_rmap_item->next = rmap_item;
1068        rmap_item->address |= STABLE_FLAG;
1069
1070        ksm_pages_sharing++;
1071}
1072
1073/*
1074 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1075 * if not, compare checksum to previous and if it's the same, see if page can
1076 * be inserted into the unstable tree, or merged with a page already there and
1077 * both transferred to the stable tree.
1078 *
1079 * @page: the page that we are searching identical page to.
1080 * @rmap_item: the reverse mapping into the virtual address of this page
1081 */
1082static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1083{
1084        struct page *page2[1];
1085        struct rmap_item *tree_rmap_item;
1086        unsigned int checksum;
1087        int err;
1088
1089        if (in_stable_tree(rmap_item))
1090                remove_rmap_item_from_tree(rmap_item);
1091
1092        /* We first start with searching the page inside the stable tree */
1093        tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1094        if (tree_rmap_item) {
1095                if (page == page2[0])                   /* forked */
1096                        err = 0;
1097                else
1098                        err = try_to_merge_with_ksm_page(rmap_item->mm,
1099                                                         rmap_item->address,
1100                                                         page, page2[0]);
1101                put_page(page2[0]);
1102
1103                if (!err) {
1104                        /*
1105                         * The page was successfully merged:
1106                         * add its rmap_item to the stable tree.
1107                         */
1108                        stable_tree_append(rmap_item, tree_rmap_item);
1109                }
1110                return;
1111        }
1112
1113        /*
1114         * A ksm page might have got here by fork, but its other
1115         * references have already been removed from the stable tree.
1116         * Or it might be left over from a break_ksm which failed
1117         * when the mem_cgroup had reached its limit: try again now.
1118         */
1119        if (PageKsm(page))
1120                break_cow(rmap_item->mm, rmap_item->address);
1121
1122        /*
1123         * In case the hash value of the page was changed from the last time we
1124         * have calculated it, this page to be changed frequely, therefore we
1125         * don't want to insert it to the unstable tree, and we don't want to
1126         * waste our time to search if there is something identical to it there.
1127         */
1128        checksum = calc_checksum(page);
1129        if (rmap_item->oldchecksum != checksum) {
1130                rmap_item->oldchecksum = checksum;
1131                return;
1132        }
1133
1134        tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1135        if (tree_rmap_item) {
1136                err = try_to_merge_two_pages(rmap_item->mm,
1137                                             rmap_item->address, page,
1138                                             tree_rmap_item->mm,
1139                                             tree_rmap_item->address, page2[0]);
1140                /*
1141                 * As soon as we merge this page, we want to remove the
1142                 * rmap_item of the page we have merged with from the unstable
1143                 * tree, and insert it instead as new node in the stable tree.
1144                 */
1145                if (!err) {
1146                        rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1147                        tree_rmap_item->address &= ~NODE_FLAG;
1148                        ksm_pages_unshared--;
1149
1150                        /*
1151                         * If we fail to insert the page into the stable tree,
1152                         * we will have 2 virtual addresses that are pointing
1153                         * to a ksm page left outside the stable tree,
1154                         * in which case we need to break_cow on both.
1155                         */
1156                        if (stable_tree_insert(page2[0], tree_rmap_item))
1157                                stable_tree_append(rmap_item, tree_rmap_item);
1158                        else {
1159                                break_cow(tree_rmap_item->mm,
1160                                                tree_rmap_item->address);
1161                                break_cow(rmap_item->mm, rmap_item->address);
1162                        }
1163                }
1164
1165                put_page(page2[0]);
1166        }
1167}
1168
1169static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1170                                            struct list_head *cur,
1171                                            unsigned long addr)
1172{
1173        struct rmap_item *rmap_item;
1174
1175        while (cur != &mm_slot->rmap_list) {
1176                rmap_item = list_entry(cur, struct rmap_item, link);
1177                if ((rmap_item->address & PAGE_MASK) == addr) {
1178                        if (!in_stable_tree(rmap_item))
1179                                remove_rmap_item_from_tree(rmap_item);
1180                        return rmap_item;
1181                }
1182                if (rmap_item->address > addr)
1183                        break;
1184                cur = cur->next;
1185                remove_rmap_item_from_tree(rmap_item);
1186                list_del(&rmap_item->link);
1187                free_rmap_item(rmap_item);
1188        }
1189
1190        rmap_item = alloc_rmap_item();
1191        if (rmap_item) {
1192                /* It has already been zeroed */
1193                rmap_item->mm = mm_slot->mm;
1194                rmap_item->address = addr;
1195                list_add_tail(&rmap_item->link, cur);
1196        }
1197        return rmap_item;
1198}
1199
1200static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1201{
1202        struct mm_struct *mm;
1203        struct mm_slot *slot;
1204        struct vm_area_struct *vma;
1205        struct rmap_item *rmap_item;
1206
1207        if (list_empty(&ksm_mm_head.mm_list))
1208                return NULL;
1209
1210        slot = ksm_scan.mm_slot;
1211        if (slot == &ksm_mm_head) {
1212                root_unstable_tree = RB_ROOT;
1213
1214                spin_lock(&ksm_mmlist_lock);
1215                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1216                ksm_scan.mm_slot = slot;
1217                spin_unlock(&ksm_mmlist_lock);
1218next_mm:
1219                ksm_scan.address = 0;
1220                ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1221                                                struct rmap_item, link);
1222        }
1223
1224        mm = slot->mm;
1225        down_read(&mm->mmap_sem);
1226        if (ksm_test_exit(mm))
1227                vma = NULL;
1228        else
1229                vma = find_vma(mm, ksm_scan.address);
1230
1231        for (; vma; vma = vma->vm_next) {
1232                if (!(vma->vm_flags & VM_MERGEABLE))
1233                        continue;
1234                if (ksm_scan.address < vma->vm_start)
1235                        ksm_scan.address = vma->vm_start;
1236                if (!vma->anon_vma)
1237                        ksm_scan.address = vma->vm_end;
1238
1239                while (ksm_scan.address < vma->vm_end) {
1240                        if (ksm_test_exit(mm))
1241                                break;
1242                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1243                        if (*page && PageAnon(*page)) {
1244                                flush_anon_page(vma, *page, ksm_scan.address);
1245                                flush_dcache_page(*page);
1246                                rmap_item = get_next_rmap_item(slot,
1247                                        ksm_scan.rmap_item->link.next,
1248                                        ksm_scan.address);
1249                                if (rmap_item) {
1250                                        ksm_scan.rmap_item = rmap_item;
1251                                        ksm_scan.address += PAGE_SIZE;
1252                                } else
1253                                        put_page(*page);
1254                                up_read(&mm->mmap_sem);
1255                                return rmap_item;
1256                        }
1257                        if (*page)
1258                                put_page(*page);
1259                        ksm_scan.address += PAGE_SIZE;
1260                        cond_resched();
1261                }
1262        }
1263
1264        if (ksm_test_exit(mm)) {
1265                ksm_scan.address = 0;
1266                ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1267                                                struct rmap_item, link);
1268        }
1269        /*
1270         * Nuke all the rmap_items that are above this current rmap:
1271         * because there were no VM_MERGEABLE vmas with such addresses.
1272         */
1273        remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1274
1275        spin_lock(&ksm_mmlist_lock);
1276        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1277                                                struct mm_slot, mm_list);
1278        if (ksm_scan.address == 0) {
1279                /*
1280                 * We've completed a full scan of all vmas, holding mmap_sem
1281                 * throughout, and found no VM_MERGEABLE: so do the same as
1282                 * __ksm_exit does to remove this mm from all our lists now.
1283                 * This applies either when cleaning up after __ksm_exit
1284                 * (but beware: we can reach here even before __ksm_exit),
1285                 * or when all VM_MERGEABLE areas have been unmapped (and
1286                 * mmap_sem then protects against race with MADV_MERGEABLE).
1287                 */
1288                hlist_del(&slot->link);
1289                list_del(&slot->mm_list);
1290                spin_unlock(&ksm_mmlist_lock);
1291
1292                free_mm_slot(slot);
1293                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1294                up_read(&mm->mmap_sem);
1295                mmdrop(mm);
1296        } else {
1297                spin_unlock(&ksm_mmlist_lock);
1298                up_read(&mm->mmap_sem);
1299        }
1300
1301        /* Repeat until we've completed scanning the whole list */
1302        slot = ksm_scan.mm_slot;
1303        if (slot != &ksm_mm_head)
1304                goto next_mm;
1305
1306        ksm_scan.seqnr++;
1307        return NULL;
1308}
1309
1310/**
1311 * ksm_do_scan  - the ksm scanner main worker function.
1312 * @scan_npages - number of pages we want to scan before we return.
1313 */
1314static void ksm_do_scan(unsigned int scan_npages)
1315{
1316        struct rmap_item *rmap_item;
1317        struct page *page;
1318
1319        while (scan_npages--) {
1320                cond_resched();
1321                rmap_item = scan_get_next_rmap_item(&page);
1322                if (!rmap_item)
1323                        return;
1324                if (!PageKsm(page) || !in_stable_tree(rmap_item))
1325                        cmp_and_merge_page(page, rmap_item);
1326                else if (page_mapcount(page) == 1) {
1327                        /*
1328                         * Replace now-unshared ksm page by ordinary page.
1329                         */
1330                        break_cow(rmap_item->mm, rmap_item->address);
1331                        remove_rmap_item_from_tree(rmap_item);
1332                        rmap_item->oldchecksum = calc_checksum(page);
1333                }
1334                put_page(page);
1335        }
1336}
1337
1338static int ksmd_should_run(void)
1339{
1340        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1341}
1342
1343static int ksm_scan_thread(void *nothing)
1344{
1345        set_user_nice(current, 5);
1346
1347        while (!kthread_should_stop()) {
1348                mutex_lock(&ksm_thread_mutex);
1349                if (ksmd_should_run())
1350                        ksm_do_scan(ksm_thread_pages_to_scan);
1351                mutex_unlock(&ksm_thread_mutex);
1352
1353                if (ksmd_should_run()) {
1354                        schedule_timeout_interruptible(
1355                                msecs_to_jiffies(ksm_thread_sleep_millisecs));
1356                } else {
1357                        wait_event_interruptible(ksm_thread_wait,
1358                                ksmd_should_run() || kthread_should_stop());
1359                }
1360        }
1361        return 0;
1362}
1363
1364int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1365                unsigned long end, int advice, unsigned long *vm_flags)
1366{
1367        struct mm_struct *mm = vma->vm_mm;
1368        int err;
1369
1370        switch (advice) {
1371        case MADV_MERGEABLE:
1372                /*
1373                 * Be somewhat over-protective for now!
1374                 */
1375                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1376                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1377                                 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1378                                 VM_MIXEDMAP  | VM_SAO))
1379                        return 0;               /* just ignore the advice */
1380
1381                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1382                        err = __ksm_enter(mm);
1383                        if (err)
1384                                return err;
1385                }
1386
1387                *vm_flags |= VM_MERGEABLE;
1388                break;
1389
1390        case MADV_UNMERGEABLE:
1391                if (!(*vm_flags & VM_MERGEABLE))
1392                        return 0;               /* just ignore the advice */
1393
1394                if (vma->anon_vma) {
1395                        err = unmerge_ksm_pages(vma, start, end);
1396                        if (err)
1397                                return err;
1398                }
1399
1400                *vm_flags &= ~VM_MERGEABLE;
1401                break;
1402        }
1403
1404        return 0;
1405}
1406
1407int __ksm_enter(struct mm_struct *mm)
1408{
1409        struct mm_slot *mm_slot;
1410        int needs_wakeup;
1411
1412        mm_slot = alloc_mm_slot();
1413        if (!mm_slot)
1414                return -ENOMEM;
1415
1416        /* Check ksm_run too?  Would need tighter locking */
1417        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1418
1419        spin_lock(&ksm_mmlist_lock);
1420        insert_to_mm_slots_hash(mm, mm_slot);
1421        /*
1422         * Insert just behind the scanning cursor, to let the area settle
1423         * down a little; when fork is followed by immediate exec, we don't
1424         * want ksmd to waste time setting up and tearing down an rmap_list.
1425         */
1426        list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1427        spin_unlock(&ksm_mmlist_lock);
1428
1429        set_bit(MMF_VM_MERGEABLE, &mm->flags);
1430        atomic_inc(&mm->mm_count);
1431
1432        if (needs_wakeup)
1433                wake_up_interruptible(&ksm_thread_wait);
1434
1435        return 0;
1436}
1437
1438void __ksm_exit(struct mm_struct *mm)
1439{
1440        struct mm_slot *mm_slot;
1441        int easy_to_free = 0;
1442
1443        /*
1444         * This process is exiting: if it's straightforward (as is the
1445         * case when ksmd was never running), free mm_slot immediately.
1446         * But if it's at the cursor or has rmap_items linked to it, use
1447         * mmap_sem to synchronize with any break_cows before pagetables
1448         * are freed, and leave the mm_slot on the list for ksmd to free.
1449         * Beware: ksm may already have noticed it exiting and freed the slot.
1450         */
1451
1452        spin_lock(&ksm_mmlist_lock);
1453        mm_slot = get_mm_slot(mm);
1454        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1455                if (list_empty(&mm_slot->rmap_list)) {
1456                        hlist_del(&mm_slot->link);
1457                        list_del(&mm_slot->mm_list);
1458                        easy_to_free = 1;
1459                } else {
1460                        list_move(&mm_slot->mm_list,
1461                                  &ksm_scan.mm_slot->mm_list);
1462                }
1463        }
1464        spin_unlock(&ksm_mmlist_lock);
1465
1466        if (easy_to_free) {
1467                free_mm_slot(mm_slot);
1468                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1469                mmdrop(mm);
1470        } else if (mm_slot) {
1471                down_write(&mm->mmap_sem);
1472                up_write(&mm->mmap_sem);
1473        }
1474}
1475
1476#ifdef CONFIG_SYSFS
1477/*
1478 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1479 */
1480
1481#define KSM_ATTR_RO(_name) \
1482        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1483#define KSM_ATTR(_name) \
1484        static struct kobj_attribute _name##_attr = \
1485                __ATTR(_name, 0644, _name##_show, _name##_store)
1486
1487static ssize_t sleep_millisecs_show(struct kobject *kobj,
1488                                    struct kobj_attribute *attr, char *buf)
1489{
1490        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1491}
1492
1493static ssize_t sleep_millisecs_store(struct kobject *kobj,
1494                                     struct kobj_attribute *attr,
1495                                     const char *buf, size_t count)
1496{
1497        unsigned long msecs;
1498        int err;
1499
1500        err = strict_strtoul(buf, 10, &msecs);
1501        if (err || msecs > UINT_MAX)
1502                return -EINVAL;
1503
1504        ksm_thread_sleep_millisecs = msecs;
1505
1506        return count;
1507}
1508KSM_ATTR(sleep_millisecs);
1509
1510static ssize_t pages_to_scan_show(struct kobject *kobj,
1511                                  struct kobj_attribute *attr, char *buf)
1512{
1513        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1514}
1515
1516static ssize_t pages_to_scan_store(struct kobject *kobj,
1517                                   struct kobj_attribute *attr,
1518                                   const char *buf, size_t count)
1519{
1520        int err;
1521        unsigned long nr_pages;
1522
1523        err = strict_strtoul(buf, 10, &nr_pages);
1524        if (err || nr_pages > UINT_MAX)
1525                return -EINVAL;
1526
1527        ksm_thread_pages_to_scan = nr_pages;
1528
1529        return count;
1530}
1531KSM_ATTR(pages_to_scan);
1532
1533static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1534                        char *buf)
1535{
1536        return sprintf(buf, "%u\n", ksm_run);
1537}
1538
1539static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1540                         const char *buf, size_t count)
1541{
1542        int err;
1543        unsigned long flags;
1544
1545        err = strict_strtoul(buf, 10, &flags);
1546        if (err || flags > UINT_MAX)
1547                return -EINVAL;
1548        if (flags > KSM_RUN_UNMERGE)
1549                return -EINVAL;
1550
1551        /*
1552         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1553         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1554         * breaking COW to free the unswappable pages_shared (but leaves
1555         * mm_slots on the list for when ksmd may be set running again).
1556         */
1557
1558        mutex_lock(&ksm_thread_mutex);
1559        if (ksm_run != flags) {
1560                ksm_run = flags;
1561                if (flags & KSM_RUN_UNMERGE) {
1562                        current->flags |= PF_OOM_ORIGIN;
1563                        err = unmerge_and_remove_all_rmap_items();
1564                        current->flags &= ~PF_OOM_ORIGIN;
1565                        if (err) {
1566                                ksm_run = KSM_RUN_STOP;
1567                                count = err;
1568                        }
1569                }
1570        }
1571        mutex_unlock(&ksm_thread_mutex);
1572
1573        if (flags & KSM_RUN_MERGE)
1574                wake_up_interruptible(&ksm_thread_wait);
1575
1576        return count;
1577}
1578KSM_ATTR(run);
1579
1580static ssize_t max_kernel_pages_store(struct kobject *kobj,
1581                                      struct kobj_attribute *attr,
1582                                      const char *buf, size_t count)
1583{
1584        int err;
1585        unsigned long nr_pages;
1586
1587        err = strict_strtoul(buf, 10, &nr_pages);
1588        if (err)
1589                return -EINVAL;
1590
1591        ksm_max_kernel_pages = nr_pages;
1592
1593        return count;
1594}
1595
1596static ssize_t max_kernel_pages_show(struct kobject *kobj,
1597                                     struct kobj_attribute *attr, char *buf)
1598{
1599        return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1600}
1601KSM_ATTR(max_kernel_pages);
1602
1603static ssize_t pages_shared_show(struct kobject *kobj,
1604                                 struct kobj_attribute *attr, char *buf)
1605{
1606        return sprintf(buf, "%lu\n", ksm_pages_shared);
1607}
1608KSM_ATTR_RO(pages_shared);
1609
1610static ssize_t pages_sharing_show(struct kobject *kobj,
1611                                  struct kobj_attribute *attr, char *buf)
1612{
1613        return sprintf(buf, "%lu\n", ksm_pages_sharing);
1614}
1615KSM_ATTR_RO(pages_sharing);
1616
1617static ssize_t pages_unshared_show(struct kobject *kobj,
1618                                   struct kobj_attribute *attr, char *buf)
1619{
1620        return sprintf(buf, "%lu\n", ksm_pages_unshared);
1621}
1622KSM_ATTR_RO(pages_unshared);
1623
1624static ssize_t pages_volatile_show(struct kobject *kobj,
1625                                   struct kobj_attribute *attr, char *buf)
1626{
1627        long ksm_pages_volatile;
1628
1629        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1630                                - ksm_pages_sharing - ksm_pages_unshared;
1631        /*
1632         * It was not worth any locking to calculate that statistic,
1633         * but it might therefore sometimes be negative: conceal that.
1634         */
1635        if (ksm_pages_volatile < 0)
1636                ksm_pages_volatile = 0;
1637        return sprintf(buf, "%ld\n", ksm_pages_volatile);
1638}
1639KSM_ATTR_RO(pages_volatile);
1640
1641static ssize_t full_scans_show(struct kobject *kobj,
1642                               struct kobj_attribute *attr, char *buf)
1643{
1644        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1645}
1646KSM_ATTR_RO(full_scans);
1647
1648static struct attribute *ksm_attrs[] = {
1649        &sleep_millisecs_attr.attr,
1650        &pages_to_scan_attr.attr,
1651        &run_attr.attr,
1652        &max_kernel_pages_attr.attr,
1653        &pages_shared_attr.attr,
1654        &pages_sharing_attr.attr,
1655        &pages_unshared_attr.attr,
1656        &pages_volatile_attr.attr,
1657        &full_scans_attr.attr,
1658        NULL,
1659};
1660
1661static struct attribute_group ksm_attr_group = {
1662        .attrs = ksm_attrs,
1663        .name = "ksm",
1664};
1665#endif /* CONFIG_SYSFS */
1666
1667static int __init ksm_init(void)
1668{
1669        struct task_struct *ksm_thread;
1670        int err;
1671
1672        ksm_max_kernel_pages = totalram_pages / 4;
1673
1674        err = ksm_slab_init();
1675        if (err)
1676                goto out;
1677
1678        err = mm_slots_hash_init();
1679        if (err)
1680                goto out_free1;
1681
1682        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1683        if (IS_ERR(ksm_thread)) {
1684                printk(KERN_ERR "ksm: creating kthread failed\n");
1685                err = PTR_ERR(ksm_thread);
1686                goto out_free2;
1687        }
1688
1689#ifdef CONFIG_SYSFS
1690        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1691        if (err) {
1692                printk(KERN_ERR "ksm: register sysfs failed\n");
1693                kthread_stop(ksm_thread);
1694                goto out_free2;
1695        }
1696#else
1697        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
1698
1699#endif /* CONFIG_SYSFS */
1700
1701        return 0;
1702
1703out_free2:
1704        mm_slots_hash_free();
1705out_free1:
1706        ksm_slab_free();
1707out:
1708        return err;
1709}
1710module_init(ksm_init)
1711