linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 */
  19
  20#include <linux/res_counter.h>
  21#include <linux/memcontrol.h>
  22#include <linux/cgroup.h>
  23#include <linux/mm.h>
  24#include <linux/pagemap.h>
  25#include <linux/smp.h>
  26#include <linux/page-flags.h>
  27#include <linux/backing-dev.h>
  28#include <linux/bit_spinlock.h>
  29#include <linux/rcupdate.h>
  30#include <linux/limits.h>
  31#include <linux/mutex.h>
  32#include <linux/rbtree.h>
  33#include <linux/slab.h>
  34#include <linux/swap.h>
  35#include <linux/spinlock.h>
  36#include <linux/fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/vmalloc.h>
  39#include <linux/mm_inline.h>
  40#include <linux/page_cgroup.h>
  41#include "internal.h"
  42
  43#include <asm/uaccess.h>
  44
  45struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  46#define MEM_CGROUP_RECLAIM_RETRIES      5
  47struct mem_cgroup *root_mem_cgroup __read_mostly;
  48
  49#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  50/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  51int do_swap_account __read_mostly;
  52static int really_do_swap_account __initdata = 1; /* for remember boot option*/
  53#else
  54#define do_swap_account         (0)
  55#endif
  56
  57static DEFINE_MUTEX(memcg_tasklist);    /* can be hold under cgroup_mutex */
  58#define SOFTLIMIT_EVENTS_THRESH (1000)
  59
  60/*
  61 * Statistics for memory cgroup.
  62 */
  63enum mem_cgroup_stat_index {
  64        /*
  65         * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  66         */
  67        MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
  68        MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
  69        MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
  70        MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
  71        MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
  72        MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
  73        MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  74
  75        MEM_CGROUP_STAT_NSTATS,
  76};
  77
  78struct mem_cgroup_stat_cpu {
  79        s64 count[MEM_CGROUP_STAT_NSTATS];
  80} ____cacheline_aligned_in_smp;
  81
  82struct mem_cgroup_stat {
  83        struct mem_cgroup_stat_cpu cpustat[0];
  84};
  85
  86static inline void
  87__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
  88                                enum mem_cgroup_stat_index idx)
  89{
  90        stat->count[idx] = 0;
  91}
  92
  93static inline s64
  94__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
  95                                enum mem_cgroup_stat_index idx)
  96{
  97        return stat->count[idx];
  98}
  99
 100/*
 101 * For accounting under irq disable, no need for increment preempt count.
 102 */
 103static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
 104                enum mem_cgroup_stat_index idx, int val)
 105{
 106        stat->count[idx] += val;
 107}
 108
 109static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
 110                enum mem_cgroup_stat_index idx)
 111{
 112        int cpu;
 113        s64 ret = 0;
 114        for_each_possible_cpu(cpu)
 115                ret += stat->cpustat[cpu].count[idx];
 116        return ret;
 117}
 118
 119static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
 120{
 121        s64 ret;
 122
 123        ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
 124        ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
 125        return ret;
 126}
 127
 128/*
 129 * per-zone information in memory controller.
 130 */
 131struct mem_cgroup_per_zone {
 132        /*
 133         * spin_lock to protect the per cgroup LRU
 134         */
 135        struct list_head        lists[NR_LRU_LISTS];
 136        unsigned long           count[NR_LRU_LISTS];
 137
 138        struct zone_reclaim_stat reclaim_stat;
 139        struct rb_node          tree_node;      /* RB tree node */
 140        unsigned long long      usage_in_excess;/* Set to the value by which */
 141                                                /* the soft limit is exceeded*/
 142        bool                    on_tree;
 143        struct mem_cgroup       *mem;           /* Back pointer, we cannot */
 144                                                /* use container_of        */
 145};
 146/* Macro for accessing counter */
 147#define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
 148
 149struct mem_cgroup_per_node {
 150        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 151};
 152
 153struct mem_cgroup_lru_info {
 154        struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 155};
 156
 157/*
 158 * Cgroups above their limits are maintained in a RB-Tree, independent of
 159 * their hierarchy representation
 160 */
 161
 162struct mem_cgroup_tree_per_zone {
 163        struct rb_root rb_root;
 164        spinlock_t lock;
 165};
 166
 167struct mem_cgroup_tree_per_node {
 168        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 169};
 170
 171struct mem_cgroup_tree {
 172        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 173};
 174
 175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 176
 177/*
 178 * The memory controller data structure. The memory controller controls both
 179 * page cache and RSS per cgroup. We would eventually like to provide
 180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 181 * to help the administrator determine what knobs to tune.
 182 *
 183 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 184 * we hit the water mark. May be even add a low water mark, such that
 185 * no reclaim occurs from a cgroup at it's low water mark, this is
 186 * a feature that will be implemented much later in the future.
 187 */
 188struct mem_cgroup {
 189        struct cgroup_subsys_state css;
 190        /*
 191         * the counter to account for memory usage
 192         */
 193        struct res_counter res;
 194        /*
 195         * the counter to account for mem+swap usage.
 196         */
 197        struct res_counter memsw;
 198        /*
 199         * Per cgroup active and inactive list, similar to the
 200         * per zone LRU lists.
 201         */
 202        struct mem_cgroup_lru_info info;
 203
 204        /*
 205          protect against reclaim related member.
 206        */
 207        spinlock_t reclaim_param_lock;
 208
 209        int     prev_priority;  /* for recording reclaim priority */
 210
 211        /*
 212         * While reclaiming in a hiearchy, we cache the last child we
 213         * reclaimed from.
 214         */
 215        int last_scanned_child;
 216        /*
 217         * Should the accounting and control be hierarchical, per subtree?
 218         */
 219        bool use_hierarchy;
 220        unsigned long   last_oom_jiffies;
 221        atomic_t        refcnt;
 222
 223        unsigned int    swappiness;
 224
 225        /* set when res.limit == memsw.limit */
 226        bool            memsw_is_minimum;
 227
 228        /*
 229         * statistics. This must be placed at the end of memcg.
 230         */
 231        struct mem_cgroup_stat stat;
 232};
 233
 234/*
 235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 236 * limit reclaim to prevent infinite loops, if they ever occur.
 237 */
 238#define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
 239#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
 240
 241enum charge_type {
 242        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 243        MEM_CGROUP_CHARGE_TYPE_MAPPED,
 244        MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
 245        MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
 246        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 247        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 248        NR_CHARGE_TYPE,
 249};
 250
 251/* only for here (for easy reading.) */
 252#define PCGF_CACHE      (1UL << PCG_CACHE)
 253#define PCGF_USED       (1UL << PCG_USED)
 254#define PCGF_LOCK       (1UL << PCG_LOCK)
 255/* Not used, but added here for completeness */
 256#define PCGF_ACCT       (1UL << PCG_ACCT)
 257
 258/* for encoding cft->private value on file */
 259#define _MEM                    (0)
 260#define _MEMSWAP                (1)
 261#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
 262#define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
 263#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 264
 265/*
 266 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 267 */
 268#define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
 269#define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 270#define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
 271#define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 272#define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
 273#define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 274
 275static void mem_cgroup_get(struct mem_cgroup *mem);
 276static void mem_cgroup_put(struct mem_cgroup *mem);
 277static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 278
 279static struct mem_cgroup_per_zone *
 280mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 281{
 282        return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 283}
 284
 285static struct mem_cgroup_per_zone *
 286page_cgroup_zoneinfo(struct page_cgroup *pc)
 287{
 288        struct mem_cgroup *mem = pc->mem_cgroup;
 289        int nid = page_cgroup_nid(pc);
 290        int zid = page_cgroup_zid(pc);
 291
 292        if (!mem)
 293                return NULL;
 294
 295        return mem_cgroup_zoneinfo(mem, nid, zid);
 296}
 297
 298static struct mem_cgroup_tree_per_zone *
 299soft_limit_tree_node_zone(int nid, int zid)
 300{
 301        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 302}
 303
 304static struct mem_cgroup_tree_per_zone *
 305soft_limit_tree_from_page(struct page *page)
 306{
 307        int nid = page_to_nid(page);
 308        int zid = page_zonenum(page);
 309
 310        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 311}
 312
 313static void
 314__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 315                                struct mem_cgroup_per_zone *mz,
 316                                struct mem_cgroup_tree_per_zone *mctz,
 317                                unsigned long long new_usage_in_excess)
 318{
 319        struct rb_node **p = &mctz->rb_root.rb_node;
 320        struct rb_node *parent = NULL;
 321        struct mem_cgroup_per_zone *mz_node;
 322
 323        if (mz->on_tree)
 324                return;
 325
 326        mz->usage_in_excess = new_usage_in_excess;
 327        if (!mz->usage_in_excess)
 328                return;
 329        while (*p) {
 330                parent = *p;
 331                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 332                                        tree_node);
 333                if (mz->usage_in_excess < mz_node->usage_in_excess)
 334                        p = &(*p)->rb_left;
 335                /*
 336                 * We can't avoid mem cgroups that are over their soft
 337                 * limit by the same amount
 338                 */
 339                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 340                        p = &(*p)->rb_right;
 341        }
 342        rb_link_node(&mz->tree_node, parent, p);
 343        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 344        mz->on_tree = true;
 345}
 346
 347static void
 348__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 349                                struct mem_cgroup_per_zone *mz,
 350                                struct mem_cgroup_tree_per_zone *mctz)
 351{
 352        if (!mz->on_tree)
 353                return;
 354        rb_erase(&mz->tree_node, &mctz->rb_root);
 355        mz->on_tree = false;
 356}
 357
 358static void
 359mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 360                                struct mem_cgroup_per_zone *mz,
 361                                struct mem_cgroup_tree_per_zone *mctz)
 362{
 363        spin_lock(&mctz->lock);
 364        __mem_cgroup_remove_exceeded(mem, mz, mctz);
 365        spin_unlock(&mctz->lock);
 366}
 367
 368static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
 369{
 370        bool ret = false;
 371        int cpu;
 372        s64 val;
 373        struct mem_cgroup_stat_cpu *cpustat;
 374
 375        cpu = get_cpu();
 376        cpustat = &mem->stat.cpustat[cpu];
 377        val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
 378        if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
 379                __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
 380                ret = true;
 381        }
 382        put_cpu();
 383        return ret;
 384}
 385
 386static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 387{
 388        unsigned long long excess;
 389        struct mem_cgroup_per_zone *mz;
 390        struct mem_cgroup_tree_per_zone *mctz;
 391        int nid = page_to_nid(page);
 392        int zid = page_zonenum(page);
 393        mctz = soft_limit_tree_from_page(page);
 394
 395        /*
 396         * Necessary to update all ancestors when hierarchy is used.
 397         * because their event counter is not touched.
 398         */
 399        for (; mem; mem = parent_mem_cgroup(mem)) {
 400                mz = mem_cgroup_zoneinfo(mem, nid, zid);
 401                excess = res_counter_soft_limit_excess(&mem->res);
 402                /*
 403                 * We have to update the tree if mz is on RB-tree or
 404                 * mem is over its softlimit.
 405                 */
 406                if (excess || mz->on_tree) {
 407                        spin_lock(&mctz->lock);
 408                        /* if on-tree, remove it */
 409                        if (mz->on_tree)
 410                                __mem_cgroup_remove_exceeded(mem, mz, mctz);
 411                        /*
 412                         * Insert again. mz->usage_in_excess will be updated.
 413                         * If excess is 0, no tree ops.
 414                         */
 415                        __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 416                        spin_unlock(&mctz->lock);
 417                }
 418        }
 419}
 420
 421static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 422{
 423        int node, zone;
 424        struct mem_cgroup_per_zone *mz;
 425        struct mem_cgroup_tree_per_zone *mctz;
 426
 427        for_each_node_state(node, N_POSSIBLE) {
 428                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 429                        mz = mem_cgroup_zoneinfo(mem, node, zone);
 430                        mctz = soft_limit_tree_node_zone(node, zone);
 431                        mem_cgroup_remove_exceeded(mem, mz, mctz);
 432                }
 433        }
 434}
 435
 436static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
 437{
 438        return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
 439}
 440
 441static struct mem_cgroup_per_zone *
 442__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 443{
 444        struct rb_node *rightmost = NULL;
 445        struct mem_cgroup_per_zone *mz;
 446
 447retry:
 448        mz = NULL;
 449        rightmost = rb_last(&mctz->rb_root);
 450        if (!rightmost)
 451                goto done;              /* Nothing to reclaim from */
 452
 453        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 454        /*
 455         * Remove the node now but someone else can add it back,
 456         * we will to add it back at the end of reclaim to its correct
 457         * position in the tree.
 458         */
 459        __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 460        if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 461                !css_tryget(&mz->mem->css))
 462                goto retry;
 463done:
 464        return mz;
 465}
 466
 467static struct mem_cgroup_per_zone *
 468mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 469{
 470        struct mem_cgroup_per_zone *mz;
 471
 472        spin_lock(&mctz->lock);
 473        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 474        spin_unlock(&mctz->lock);
 475        return mz;
 476}
 477
 478static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 479                                         bool charge)
 480{
 481        int val = (charge) ? 1 : -1;
 482        struct mem_cgroup_stat *stat = &mem->stat;
 483        struct mem_cgroup_stat_cpu *cpustat;
 484        int cpu = get_cpu();
 485
 486        cpustat = &stat->cpustat[cpu];
 487        __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
 488        put_cpu();
 489}
 490
 491static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 492                                         struct page_cgroup *pc,
 493                                         bool charge)
 494{
 495        int val = (charge) ? 1 : -1;
 496        struct mem_cgroup_stat *stat = &mem->stat;
 497        struct mem_cgroup_stat_cpu *cpustat;
 498        int cpu = get_cpu();
 499
 500        cpustat = &stat->cpustat[cpu];
 501        if (PageCgroupCache(pc))
 502                __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
 503        else
 504                __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
 505
 506        if (charge)
 507                __mem_cgroup_stat_add_safe(cpustat,
 508                                MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
 509        else
 510                __mem_cgroup_stat_add_safe(cpustat,
 511                                MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
 512        __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
 513        put_cpu();
 514}
 515
 516static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
 517                                        enum lru_list idx)
 518{
 519        int nid, zid;
 520        struct mem_cgroup_per_zone *mz;
 521        u64 total = 0;
 522
 523        for_each_online_node(nid)
 524                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 525                        mz = mem_cgroup_zoneinfo(mem, nid, zid);
 526                        total += MEM_CGROUP_ZSTAT(mz, idx);
 527                }
 528        return total;
 529}
 530
 531static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 532{
 533        return container_of(cgroup_subsys_state(cont,
 534                                mem_cgroup_subsys_id), struct mem_cgroup,
 535                                css);
 536}
 537
 538struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 539{
 540        /*
 541         * mm_update_next_owner() may clear mm->owner to NULL
 542         * if it races with swapoff, page migration, etc.
 543         * So this can be called with p == NULL.
 544         */
 545        if (unlikely(!p))
 546                return NULL;
 547
 548        return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 549                                struct mem_cgroup, css);
 550}
 551
 552static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 553{
 554        struct mem_cgroup *mem = NULL;
 555
 556        if (!mm)
 557                return NULL;
 558        /*
 559         * Because we have no locks, mm->owner's may be being moved to other
 560         * cgroup. We use css_tryget() here even if this looks
 561         * pessimistic (rather than adding locks here).
 562         */
 563        rcu_read_lock();
 564        do {
 565                mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 566                if (unlikely(!mem))
 567                        break;
 568        } while (!css_tryget(&mem->css));
 569        rcu_read_unlock();
 570        return mem;
 571}
 572
 573/*
 574 * Call callback function against all cgroup under hierarchy tree.
 575 */
 576static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
 577                          int (*func)(struct mem_cgroup *, void *))
 578{
 579        int found, ret, nextid;
 580        struct cgroup_subsys_state *css;
 581        struct mem_cgroup *mem;
 582
 583        if (!root->use_hierarchy)
 584                return (*func)(root, data);
 585
 586        nextid = 1;
 587        do {
 588                ret = 0;
 589                mem = NULL;
 590
 591                rcu_read_lock();
 592                css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
 593                                   &found);
 594                if (css && css_tryget(css))
 595                        mem = container_of(css, struct mem_cgroup, css);
 596                rcu_read_unlock();
 597
 598                if (mem) {
 599                        ret = (*func)(mem, data);
 600                        css_put(&mem->css);
 601                }
 602                nextid = found + 1;
 603        } while (!ret && css);
 604
 605        return ret;
 606}
 607
 608static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 609{
 610        return (mem == root_mem_cgroup);
 611}
 612
 613/*
 614 * Following LRU functions are allowed to be used without PCG_LOCK.
 615 * Operations are called by routine of global LRU independently from memcg.
 616 * What we have to take care of here is validness of pc->mem_cgroup.
 617 *
 618 * Changes to pc->mem_cgroup happens when
 619 * 1. charge
 620 * 2. moving account
 621 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 622 * It is added to LRU before charge.
 623 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 624 * When moving account, the page is not on LRU. It's isolated.
 625 */
 626
 627void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 628{
 629        struct page_cgroup *pc;
 630        struct mem_cgroup_per_zone *mz;
 631
 632        if (mem_cgroup_disabled())
 633                return;
 634        pc = lookup_page_cgroup(page);
 635        /* can happen while we handle swapcache. */
 636        if (!TestClearPageCgroupAcctLRU(pc))
 637                return;
 638        VM_BUG_ON(!pc->mem_cgroup);
 639        /*
 640         * We don't check PCG_USED bit. It's cleared when the "page" is finally
 641         * removed from global LRU.
 642         */
 643        mz = page_cgroup_zoneinfo(pc);
 644        MEM_CGROUP_ZSTAT(mz, lru) -= 1;
 645        if (mem_cgroup_is_root(pc->mem_cgroup))
 646                return;
 647        VM_BUG_ON(list_empty(&pc->lru));
 648        list_del_init(&pc->lru);
 649        return;
 650}
 651
 652void mem_cgroup_del_lru(struct page *page)
 653{
 654        mem_cgroup_del_lru_list(page, page_lru(page));
 655}
 656
 657void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 658{
 659        struct mem_cgroup_per_zone *mz;
 660        struct page_cgroup *pc;
 661
 662        if (mem_cgroup_disabled())
 663                return;
 664
 665        pc = lookup_page_cgroup(page);
 666        /*
 667         * Used bit is set without atomic ops but after smp_wmb().
 668         * For making pc->mem_cgroup visible, insert smp_rmb() here.
 669         */
 670        smp_rmb();
 671        /* unused or root page is not rotated. */
 672        if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
 673                return;
 674        mz = page_cgroup_zoneinfo(pc);
 675        list_move(&pc->lru, &mz->lists[lru]);
 676}
 677
 678void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 679{
 680        struct page_cgroup *pc;
 681        struct mem_cgroup_per_zone *mz;
 682
 683        if (mem_cgroup_disabled())
 684                return;
 685        pc = lookup_page_cgroup(page);
 686        VM_BUG_ON(PageCgroupAcctLRU(pc));
 687        /*
 688         * Used bit is set without atomic ops but after smp_wmb().
 689         * For making pc->mem_cgroup visible, insert smp_rmb() here.
 690         */
 691        smp_rmb();
 692        if (!PageCgroupUsed(pc))
 693                return;
 694
 695        mz = page_cgroup_zoneinfo(pc);
 696        MEM_CGROUP_ZSTAT(mz, lru) += 1;
 697        SetPageCgroupAcctLRU(pc);
 698        if (mem_cgroup_is_root(pc->mem_cgroup))
 699                return;
 700        list_add(&pc->lru, &mz->lists[lru]);
 701}
 702
 703/*
 704 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 705 * lru because the page may.be reused after it's fully uncharged (because of
 706 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 707 * it again. This function is only used to charge SwapCache. It's done under
 708 * lock_page and expected that zone->lru_lock is never held.
 709 */
 710static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
 711{
 712        unsigned long flags;
 713        struct zone *zone = page_zone(page);
 714        struct page_cgroup *pc = lookup_page_cgroup(page);
 715
 716        spin_lock_irqsave(&zone->lru_lock, flags);
 717        /*
 718         * Forget old LRU when this page_cgroup is *not* used. This Used bit
 719         * is guarded by lock_page() because the page is SwapCache.
 720         */
 721        if (!PageCgroupUsed(pc))
 722                mem_cgroup_del_lru_list(page, page_lru(page));
 723        spin_unlock_irqrestore(&zone->lru_lock, flags);
 724}
 725
 726static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
 727{
 728        unsigned long flags;
 729        struct zone *zone = page_zone(page);
 730        struct page_cgroup *pc = lookup_page_cgroup(page);
 731
 732        spin_lock_irqsave(&zone->lru_lock, flags);
 733        /* link when the page is linked to LRU but page_cgroup isn't */
 734        if (PageLRU(page) && !PageCgroupAcctLRU(pc))
 735                mem_cgroup_add_lru_list(page, page_lru(page));
 736        spin_unlock_irqrestore(&zone->lru_lock, flags);
 737}
 738
 739
 740void mem_cgroup_move_lists(struct page *page,
 741                           enum lru_list from, enum lru_list to)
 742{
 743        if (mem_cgroup_disabled())
 744                return;
 745        mem_cgroup_del_lru_list(page, from);
 746        mem_cgroup_add_lru_list(page, to);
 747}
 748
 749int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
 750{
 751        int ret;
 752        struct mem_cgroup *curr = NULL;
 753
 754        task_lock(task);
 755        rcu_read_lock();
 756        curr = try_get_mem_cgroup_from_mm(task->mm);
 757        rcu_read_unlock();
 758        task_unlock(task);
 759        if (!curr)
 760                return 0;
 761        if (curr->use_hierarchy)
 762                ret = css_is_ancestor(&curr->css, &mem->css);
 763        else
 764                ret = (curr == mem);
 765        css_put(&curr->css);
 766        return ret;
 767}
 768
 769/*
 770 * prev_priority control...this will be used in memory reclaim path.
 771 */
 772int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
 773{
 774        int prev_priority;
 775
 776        spin_lock(&mem->reclaim_param_lock);
 777        prev_priority = mem->prev_priority;
 778        spin_unlock(&mem->reclaim_param_lock);
 779
 780        return prev_priority;
 781}
 782
 783void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
 784{
 785        spin_lock(&mem->reclaim_param_lock);
 786        if (priority < mem->prev_priority)
 787                mem->prev_priority = priority;
 788        spin_unlock(&mem->reclaim_param_lock);
 789}
 790
 791void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
 792{
 793        spin_lock(&mem->reclaim_param_lock);
 794        mem->prev_priority = priority;
 795        spin_unlock(&mem->reclaim_param_lock);
 796}
 797
 798static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 799{
 800        unsigned long active;
 801        unsigned long inactive;
 802        unsigned long gb;
 803        unsigned long inactive_ratio;
 804
 805        inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
 806        active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
 807
 808        gb = (inactive + active) >> (30 - PAGE_SHIFT);
 809        if (gb)
 810                inactive_ratio = int_sqrt(10 * gb);
 811        else
 812                inactive_ratio = 1;
 813
 814        if (present_pages) {
 815                present_pages[0] = inactive;
 816                present_pages[1] = active;
 817        }
 818
 819        return inactive_ratio;
 820}
 821
 822int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
 823{
 824        unsigned long active;
 825        unsigned long inactive;
 826        unsigned long present_pages[2];
 827        unsigned long inactive_ratio;
 828
 829        inactive_ratio = calc_inactive_ratio(memcg, present_pages);
 830
 831        inactive = present_pages[0];
 832        active = present_pages[1];
 833
 834        if (inactive * inactive_ratio < active)
 835                return 1;
 836
 837        return 0;
 838}
 839
 840int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
 841{
 842        unsigned long active;
 843        unsigned long inactive;
 844
 845        inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
 846        active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
 847
 848        return (active > inactive);
 849}
 850
 851unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
 852                                       struct zone *zone,
 853                                       enum lru_list lru)
 854{
 855        int nid = zone->zone_pgdat->node_id;
 856        int zid = zone_idx(zone);
 857        struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 858
 859        return MEM_CGROUP_ZSTAT(mz, lru);
 860}
 861
 862struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
 863                                                      struct zone *zone)
 864{
 865        int nid = zone->zone_pgdat->node_id;
 866        int zid = zone_idx(zone);
 867        struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 868
 869        return &mz->reclaim_stat;
 870}
 871
 872struct zone_reclaim_stat *
 873mem_cgroup_get_reclaim_stat_from_page(struct page *page)
 874{
 875        struct page_cgroup *pc;
 876        struct mem_cgroup_per_zone *mz;
 877
 878        if (mem_cgroup_disabled())
 879                return NULL;
 880
 881        pc = lookup_page_cgroup(page);
 882        /*
 883         * Used bit is set without atomic ops but after smp_wmb().
 884         * For making pc->mem_cgroup visible, insert smp_rmb() here.
 885         */
 886        smp_rmb();
 887        if (!PageCgroupUsed(pc))
 888                return NULL;
 889
 890        mz = page_cgroup_zoneinfo(pc);
 891        if (!mz)
 892                return NULL;
 893
 894        return &mz->reclaim_stat;
 895}
 896
 897unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
 898                                        struct list_head *dst,
 899                                        unsigned long *scanned, int order,
 900                                        int mode, struct zone *z,
 901                                        struct mem_cgroup *mem_cont,
 902                                        int active, int file)
 903{
 904        unsigned long nr_taken = 0;
 905        struct page *page;
 906        unsigned long scan;
 907        LIST_HEAD(pc_list);
 908        struct list_head *src;
 909        struct page_cgroup *pc, *tmp;
 910        int nid = z->zone_pgdat->node_id;
 911        int zid = zone_idx(z);
 912        struct mem_cgroup_per_zone *mz;
 913        int lru = LRU_FILE * file + active;
 914        int ret;
 915
 916        BUG_ON(!mem_cont);
 917        mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 918        src = &mz->lists[lru];
 919
 920        scan = 0;
 921        list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
 922                if (scan >= nr_to_scan)
 923                        break;
 924
 925                page = pc->page;
 926                if (unlikely(!PageCgroupUsed(pc)))
 927                        continue;
 928                if (unlikely(!PageLRU(page)))
 929                        continue;
 930
 931                scan++;
 932                ret = __isolate_lru_page(page, mode, file);
 933                switch (ret) {
 934                case 0:
 935                        list_move(&page->lru, dst);
 936                        mem_cgroup_del_lru(page);
 937                        nr_taken++;
 938                        break;
 939                case -EBUSY:
 940                        /* we don't affect global LRU but rotate in our LRU */
 941                        mem_cgroup_rotate_lru_list(page, page_lru(page));
 942                        break;
 943                default:
 944                        break;
 945                }
 946        }
 947
 948        *scanned = scan;
 949        return nr_taken;
 950}
 951
 952#define mem_cgroup_from_res_counter(counter, member)    \
 953        container_of(counter, struct mem_cgroup, member)
 954
 955static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
 956{
 957        if (do_swap_account) {
 958                if (res_counter_check_under_limit(&mem->res) &&
 959                        res_counter_check_under_limit(&mem->memsw))
 960                        return true;
 961        } else
 962                if (res_counter_check_under_limit(&mem->res))
 963                        return true;
 964        return false;
 965}
 966
 967static unsigned int get_swappiness(struct mem_cgroup *memcg)
 968{
 969        struct cgroup *cgrp = memcg->css.cgroup;
 970        unsigned int swappiness;
 971
 972        /* root ? */
 973        if (cgrp->parent == NULL)
 974                return vm_swappiness;
 975
 976        spin_lock(&memcg->reclaim_param_lock);
 977        swappiness = memcg->swappiness;
 978        spin_unlock(&memcg->reclaim_param_lock);
 979
 980        return swappiness;
 981}
 982
 983static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
 984{
 985        int *val = data;
 986        (*val)++;
 987        return 0;
 988}
 989
 990/**
 991 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 992 * @memcg: The memory cgroup that went over limit
 993 * @p: Task that is going to be killed
 994 *
 995 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 996 * enabled
 997 */
 998void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 999{
1000        struct cgroup *task_cgrp;
1001        struct cgroup *mem_cgrp;
1002        /*
1003         * Need a buffer in BSS, can't rely on allocations. The code relies
1004         * on the assumption that OOM is serialized for memory controller.
1005         * If this assumption is broken, revisit this code.
1006         */
1007        static char memcg_name[PATH_MAX];
1008        int ret;
1009
1010        if (!memcg)
1011                return;
1012
1013
1014        rcu_read_lock();
1015
1016        mem_cgrp = memcg->css.cgroup;
1017        task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1018
1019        ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1020        if (ret < 0) {
1021                /*
1022                 * Unfortunately, we are unable to convert to a useful name
1023                 * But we'll still print out the usage information
1024                 */
1025                rcu_read_unlock();
1026                goto done;
1027        }
1028        rcu_read_unlock();
1029
1030        printk(KERN_INFO "Task in %s killed", memcg_name);
1031
1032        rcu_read_lock();
1033        ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1034        if (ret < 0) {
1035                rcu_read_unlock();
1036                goto done;
1037        }
1038        rcu_read_unlock();
1039
1040        /*
1041         * Continues from above, so we don't need an KERN_ level
1042         */
1043        printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1044done:
1045
1046        printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1047                res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1048                res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1049                res_counter_read_u64(&memcg->res, RES_FAILCNT));
1050        printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1051                "failcnt %llu\n",
1052                res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1053                res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1054                res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1055}
1056
1057/*
1058 * This function returns the number of memcg under hierarchy tree. Returns
1059 * 1(self count) if no children.
1060 */
1061static int mem_cgroup_count_children(struct mem_cgroup *mem)
1062{
1063        int num = 0;
1064        mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1065        return num;
1066}
1067
1068/*
1069 * Visit the first child (need not be the first child as per the ordering
1070 * of the cgroup list, since we track last_scanned_child) of @mem and use
1071 * that to reclaim free pages from.
1072 */
1073static struct mem_cgroup *
1074mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1075{
1076        struct mem_cgroup *ret = NULL;
1077        struct cgroup_subsys_state *css;
1078        int nextid, found;
1079
1080        if (!root_mem->use_hierarchy) {
1081                css_get(&root_mem->css);
1082                ret = root_mem;
1083        }
1084
1085        while (!ret) {
1086                rcu_read_lock();
1087                nextid = root_mem->last_scanned_child + 1;
1088                css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1089                                   &found);
1090                if (css && css_tryget(css))
1091                        ret = container_of(css, struct mem_cgroup, css);
1092
1093                rcu_read_unlock();
1094                /* Updates scanning parameter */
1095                spin_lock(&root_mem->reclaim_param_lock);
1096                if (!css) {
1097                        /* this means start scan from ID:1 */
1098                        root_mem->last_scanned_child = 0;
1099                } else
1100                        root_mem->last_scanned_child = found;
1101                spin_unlock(&root_mem->reclaim_param_lock);
1102        }
1103
1104        return ret;
1105}
1106
1107/*
1108 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1109 * we reclaimed from, so that we don't end up penalizing one child extensively
1110 * based on its position in the children list.
1111 *
1112 * root_mem is the original ancestor that we've been reclaim from.
1113 *
1114 * We give up and return to the caller when we visit root_mem twice.
1115 * (other groups can be removed while we're walking....)
1116 *
1117 * If shrink==true, for avoiding to free too much, this returns immedieately.
1118 */
1119static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1120                                                struct zone *zone,
1121                                                gfp_t gfp_mask,
1122                                                unsigned long reclaim_options)
1123{
1124        struct mem_cgroup *victim;
1125        int ret, total = 0;
1126        int loop = 0;
1127        bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1128        bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1129        bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1130        unsigned long excess = mem_cgroup_get_excess(root_mem);
1131
1132        /* If memsw_is_minimum==1, swap-out is of-no-use. */
1133        if (root_mem->memsw_is_minimum)
1134                noswap = true;
1135
1136        while (1) {
1137                victim = mem_cgroup_select_victim(root_mem);
1138                if (victim == root_mem) {
1139                        loop++;
1140                        if (loop >= 2) {
1141                                /*
1142                                 * If we have not been able to reclaim
1143                                 * anything, it might because there are
1144                                 * no reclaimable pages under this hierarchy
1145                                 */
1146                                if (!check_soft || !total) {
1147                                        css_put(&victim->css);
1148                                        break;
1149                                }
1150                                /*
1151                                 * We want to do more targetted reclaim.
1152                                 * excess >> 2 is not to excessive so as to
1153                                 * reclaim too much, nor too less that we keep
1154                                 * coming back to reclaim from this cgroup
1155                                 */
1156                                if (total >= (excess >> 2) ||
1157                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1158                                        css_put(&victim->css);
1159                                        break;
1160                                }
1161                        }
1162                }
1163                if (!mem_cgroup_local_usage(&victim->stat)) {
1164                        /* this cgroup's local usage == 0 */
1165                        css_put(&victim->css);
1166                        continue;
1167                }
1168                /* we use swappiness of local cgroup */
1169                if (check_soft)
1170                        ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1171                                noswap, get_swappiness(victim), zone,
1172                                zone->zone_pgdat->node_id);
1173                else
1174                        ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1175                                                noswap, get_swappiness(victim));
1176                css_put(&victim->css);
1177                /*
1178                 * At shrinking usage, we can't check we should stop here or
1179                 * reclaim more. It's depends on callers. last_scanned_child
1180                 * will work enough for keeping fairness under tree.
1181                 */
1182                if (shrink)
1183                        return ret;
1184                total += ret;
1185                if (check_soft) {
1186                        if (res_counter_check_under_soft_limit(&root_mem->res))
1187                                return total;
1188                } else if (mem_cgroup_check_under_limit(root_mem))
1189                        return 1 + total;
1190        }
1191        return total;
1192}
1193
1194bool mem_cgroup_oom_called(struct task_struct *task)
1195{
1196        bool ret = false;
1197        struct mem_cgroup *mem;
1198        struct mm_struct *mm;
1199
1200        rcu_read_lock();
1201        mm = task->mm;
1202        if (!mm)
1203                mm = &init_mm;
1204        mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1205        if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1206                ret = true;
1207        rcu_read_unlock();
1208        return ret;
1209}
1210
1211static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1212{
1213        mem->last_oom_jiffies = jiffies;
1214        return 0;
1215}
1216
1217static void record_last_oom(struct mem_cgroup *mem)
1218{
1219        mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1220}
1221
1222/*
1223 * Currently used to update mapped file statistics, but the routine can be
1224 * generalized to update other statistics as well.
1225 */
1226void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1227{
1228        struct mem_cgroup *mem;
1229        struct mem_cgroup_stat *stat;
1230        struct mem_cgroup_stat_cpu *cpustat;
1231        int cpu;
1232        struct page_cgroup *pc;
1233
1234        if (!page_is_file_cache(page))
1235                return;
1236
1237        pc = lookup_page_cgroup(page);
1238        if (unlikely(!pc))
1239                return;
1240
1241        lock_page_cgroup(pc);
1242        mem = pc->mem_cgroup;
1243        if (!mem)
1244                goto done;
1245
1246        if (!PageCgroupUsed(pc))
1247                goto done;
1248
1249        /*
1250         * Preemption is already disabled, we don't need get_cpu()
1251         */
1252        cpu = smp_processor_id();
1253        stat = &mem->stat;
1254        cpustat = &stat->cpustat[cpu];
1255
1256        __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1257done:
1258        unlock_page_cgroup(pc);
1259}
1260
1261/*
1262 * Unlike exported interface, "oom" parameter is added. if oom==true,
1263 * oom-killer can be invoked.
1264 */
1265static int __mem_cgroup_try_charge(struct mm_struct *mm,
1266                        gfp_t gfp_mask, struct mem_cgroup **memcg,
1267                        bool oom, struct page *page)
1268{
1269        struct mem_cgroup *mem, *mem_over_limit;
1270        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1271        struct res_counter *fail_res;
1272
1273        if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1274                /* Don't account this! */
1275                *memcg = NULL;
1276                return 0;
1277        }
1278
1279        /*
1280         * We always charge the cgroup the mm_struct belongs to.
1281         * The mm_struct's mem_cgroup changes on task migration if the
1282         * thread group leader migrates. It's possible that mm is not
1283         * set, if so charge the init_mm (happens for pagecache usage).
1284         */
1285        mem = *memcg;
1286        if (likely(!mem)) {
1287                mem = try_get_mem_cgroup_from_mm(mm);
1288                *memcg = mem;
1289        } else {
1290                css_get(&mem->css);
1291        }
1292        if (unlikely(!mem))
1293                return 0;
1294
1295        VM_BUG_ON(css_is_removed(&mem->css));
1296
1297        while (1) {
1298                int ret = 0;
1299                unsigned long flags = 0;
1300
1301                if (mem_cgroup_is_root(mem))
1302                        goto done;
1303                ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1304                if (likely(!ret)) {
1305                        if (!do_swap_account)
1306                                break;
1307                        ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1308                                                        &fail_res);
1309                        if (likely(!ret))
1310                                break;
1311                        /* mem+swap counter fails */
1312                        res_counter_uncharge(&mem->res, PAGE_SIZE);
1313                        flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1314                        mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1315                                                                        memsw);
1316                } else
1317                        /* mem counter fails */
1318                        mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1319                                                                        res);
1320
1321                if (!(gfp_mask & __GFP_WAIT))
1322                        goto nomem;
1323
1324                ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1325                                                gfp_mask, flags);
1326                if (ret)
1327                        continue;
1328
1329                /*
1330                 * try_to_free_mem_cgroup_pages() might not give us a full
1331                 * picture of reclaim. Some pages are reclaimed and might be
1332                 * moved to swap cache or just unmapped from the cgroup.
1333                 * Check the limit again to see if the reclaim reduced the
1334                 * current usage of the cgroup before giving up
1335                 *
1336                 */
1337                if (mem_cgroup_check_under_limit(mem_over_limit))
1338                        continue;
1339
1340                if (!nr_retries--) {
1341                        if (oom) {
1342                                mutex_lock(&memcg_tasklist);
1343                                mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1344                                mutex_unlock(&memcg_tasklist);
1345                                record_last_oom(mem_over_limit);
1346                        }
1347                        goto nomem;
1348                }
1349        }
1350        /*
1351         * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1352         * if they exceeds softlimit.
1353         */
1354        if (mem_cgroup_soft_limit_check(mem))
1355                mem_cgroup_update_tree(mem, page);
1356done:
1357        return 0;
1358nomem:
1359        css_put(&mem->css);
1360        return -ENOMEM;
1361}
1362
1363/*
1364 * A helper function to get mem_cgroup from ID. must be called under
1365 * rcu_read_lock(). The caller must check css_is_removed() or some if
1366 * it's concern. (dropping refcnt from swap can be called against removed
1367 * memcg.)
1368 */
1369static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1370{
1371        struct cgroup_subsys_state *css;
1372
1373        /* ID 0 is unused ID */
1374        if (!id)
1375                return NULL;
1376        css = css_lookup(&mem_cgroup_subsys, id);
1377        if (!css)
1378                return NULL;
1379        return container_of(css, struct mem_cgroup, css);
1380}
1381
1382static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1383{
1384        struct mem_cgroup *mem;
1385        struct page_cgroup *pc;
1386        unsigned short id;
1387        swp_entry_t ent;
1388
1389        VM_BUG_ON(!PageLocked(page));
1390
1391        if (!PageSwapCache(page))
1392                return NULL;
1393
1394        pc = lookup_page_cgroup(page);
1395        lock_page_cgroup(pc);
1396        if (PageCgroupUsed(pc)) {
1397                mem = pc->mem_cgroup;
1398                if (mem && !css_tryget(&mem->css))
1399                        mem = NULL;
1400        } else {
1401                ent.val = page_private(page);
1402                id = lookup_swap_cgroup(ent);
1403                rcu_read_lock();
1404                mem = mem_cgroup_lookup(id);
1405                if (mem && !css_tryget(&mem->css))
1406                        mem = NULL;
1407                rcu_read_unlock();
1408        }
1409        unlock_page_cgroup(pc);
1410        return mem;
1411}
1412
1413/*
1414 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1415 * USED state. If already USED, uncharge and return.
1416 */
1417
1418static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1419                                     struct page_cgroup *pc,
1420                                     enum charge_type ctype)
1421{
1422        /* try_charge() can return NULL to *memcg, taking care of it. */
1423        if (!mem)
1424                return;
1425
1426        lock_page_cgroup(pc);
1427        if (unlikely(PageCgroupUsed(pc))) {
1428                unlock_page_cgroup(pc);
1429                if (!mem_cgroup_is_root(mem)) {
1430                        res_counter_uncharge(&mem->res, PAGE_SIZE);
1431                        if (do_swap_account)
1432                                res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1433                }
1434                css_put(&mem->css);
1435                return;
1436        }
1437
1438        pc->mem_cgroup = mem;
1439        /*
1440         * We access a page_cgroup asynchronously without lock_page_cgroup().
1441         * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1442         * is accessed after testing USED bit. To make pc->mem_cgroup visible
1443         * before USED bit, we need memory barrier here.
1444         * See mem_cgroup_add_lru_list(), etc.
1445         */
1446        smp_wmb();
1447        switch (ctype) {
1448        case MEM_CGROUP_CHARGE_TYPE_CACHE:
1449        case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1450                SetPageCgroupCache(pc);
1451                SetPageCgroupUsed(pc);
1452                break;
1453        case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1454                ClearPageCgroupCache(pc);
1455                SetPageCgroupUsed(pc);
1456                break;
1457        default:
1458                break;
1459        }
1460
1461        mem_cgroup_charge_statistics(mem, pc, true);
1462
1463        unlock_page_cgroup(pc);
1464}
1465
1466/**
1467 * mem_cgroup_move_account - move account of the page
1468 * @pc: page_cgroup of the page.
1469 * @from: mem_cgroup which the page is moved from.
1470 * @to: mem_cgroup which the page is moved to. @from != @to.
1471 *
1472 * The caller must confirm following.
1473 * - page is not on LRU (isolate_page() is useful.)
1474 *
1475 * returns 0 at success,
1476 * returns -EBUSY when lock is busy or "pc" is unstable.
1477 *
1478 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1479 * new cgroup. It should be done by a caller.
1480 */
1481
1482static int mem_cgroup_move_account(struct page_cgroup *pc,
1483        struct mem_cgroup *from, struct mem_cgroup *to)
1484{
1485        struct mem_cgroup_per_zone *from_mz, *to_mz;
1486        int nid, zid;
1487        int ret = -EBUSY;
1488        struct page *page;
1489        int cpu;
1490        struct mem_cgroup_stat *stat;
1491        struct mem_cgroup_stat_cpu *cpustat;
1492
1493        VM_BUG_ON(from == to);
1494        VM_BUG_ON(PageLRU(pc->page));
1495
1496        nid = page_cgroup_nid(pc);
1497        zid = page_cgroup_zid(pc);
1498        from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1499        to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1500
1501        if (!trylock_page_cgroup(pc))
1502                return ret;
1503
1504        if (!PageCgroupUsed(pc))
1505                goto out;
1506
1507        if (pc->mem_cgroup != from)
1508                goto out;
1509
1510        if (!mem_cgroup_is_root(from))
1511                res_counter_uncharge(&from->res, PAGE_SIZE);
1512        mem_cgroup_charge_statistics(from, pc, false);
1513
1514        page = pc->page;
1515        if (page_is_file_cache(page) && page_mapped(page)) {
1516                cpu = smp_processor_id();
1517                /* Update mapped_file data for mem_cgroup "from" */
1518                stat = &from->stat;
1519                cpustat = &stat->cpustat[cpu];
1520                __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1521                                                -1);
1522
1523                /* Update mapped_file data for mem_cgroup "to" */
1524                stat = &to->stat;
1525                cpustat = &stat->cpustat[cpu];
1526                __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1527                                                1);
1528        }
1529
1530        if (do_swap_account && !mem_cgroup_is_root(from))
1531                res_counter_uncharge(&from->memsw, PAGE_SIZE);
1532        css_put(&from->css);
1533
1534        css_get(&to->css);
1535        pc->mem_cgroup = to;
1536        mem_cgroup_charge_statistics(to, pc, true);
1537        ret = 0;
1538out:
1539        unlock_page_cgroup(pc);
1540        /*
1541         * We charges against "to" which may not have any tasks. Then, "to"
1542         * can be under rmdir(). But in current implementation, caller of
1543         * this function is just force_empty() and it's garanteed that
1544         * "to" is never removed. So, we don't check rmdir status here.
1545         */
1546        return ret;
1547}
1548
1549/*
1550 * move charges to its parent.
1551 */
1552
1553static int mem_cgroup_move_parent(struct page_cgroup *pc,
1554                                  struct mem_cgroup *child,
1555                                  gfp_t gfp_mask)
1556{
1557        struct page *page = pc->page;
1558        struct cgroup *cg = child->css.cgroup;
1559        struct cgroup *pcg = cg->parent;
1560        struct mem_cgroup *parent;
1561        int ret;
1562
1563        /* Is ROOT ? */
1564        if (!pcg)
1565                return -EINVAL;
1566
1567
1568        parent = mem_cgroup_from_cont(pcg);
1569
1570
1571        ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1572        if (ret || !parent)
1573                return ret;
1574
1575        if (!get_page_unless_zero(page)) {
1576                ret = -EBUSY;
1577                goto uncharge;
1578        }
1579
1580        ret = isolate_lru_page(page);
1581
1582        if (ret)
1583                goto cancel;
1584
1585        ret = mem_cgroup_move_account(pc, child, parent);
1586
1587        putback_lru_page(page);
1588        if (!ret) {
1589                put_page(page);
1590                /* drop extra refcnt by try_charge() */
1591                css_put(&parent->css);
1592                return 0;
1593        }
1594
1595cancel:
1596        put_page(page);
1597uncharge:
1598        /* drop extra refcnt by try_charge() */
1599        css_put(&parent->css);
1600        /* uncharge if move fails */
1601        if (!mem_cgroup_is_root(parent)) {
1602                res_counter_uncharge(&parent->res, PAGE_SIZE);
1603                if (do_swap_account)
1604                        res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1605        }
1606        return ret;
1607}
1608
1609/*
1610 * Charge the memory controller for page usage.
1611 * Return
1612 * 0 if the charge was successful
1613 * < 0 if the cgroup is over its limit
1614 */
1615static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1616                                gfp_t gfp_mask, enum charge_type ctype,
1617                                struct mem_cgroup *memcg)
1618{
1619        struct mem_cgroup *mem;
1620        struct page_cgroup *pc;
1621        int ret;
1622
1623        pc = lookup_page_cgroup(page);
1624        /* can happen at boot */
1625        if (unlikely(!pc))
1626                return 0;
1627        prefetchw(pc);
1628
1629        mem = memcg;
1630        ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1631        if (ret || !mem)
1632                return ret;
1633
1634        __mem_cgroup_commit_charge(mem, pc, ctype);
1635        return 0;
1636}
1637
1638int mem_cgroup_newpage_charge(struct page *page,
1639                              struct mm_struct *mm, gfp_t gfp_mask)
1640{
1641        if (mem_cgroup_disabled())
1642                return 0;
1643        if (PageCompound(page))
1644                return 0;
1645        /*
1646         * If already mapped, we don't have to account.
1647         * If page cache, page->mapping has address_space.
1648         * But page->mapping may have out-of-use anon_vma pointer,
1649         * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1650         * is NULL.
1651         */
1652        if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1653                return 0;
1654        if (unlikely(!mm))
1655                mm = &init_mm;
1656        return mem_cgroup_charge_common(page, mm, gfp_mask,
1657                                MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1658}
1659
1660static void
1661__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1662                                        enum charge_type ctype);
1663
1664int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1665                                gfp_t gfp_mask)
1666{
1667        struct mem_cgroup *mem = NULL;
1668        int ret;
1669
1670        if (mem_cgroup_disabled())
1671                return 0;
1672        if (PageCompound(page))
1673                return 0;
1674        /*
1675         * Corner case handling. This is called from add_to_page_cache()
1676         * in usual. But some FS (shmem) precharges this page before calling it
1677         * and call add_to_page_cache() with GFP_NOWAIT.
1678         *
1679         * For GFP_NOWAIT case, the page may be pre-charged before calling
1680         * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1681         * charge twice. (It works but has to pay a bit larger cost.)
1682         * And when the page is SwapCache, it should take swap information
1683         * into account. This is under lock_page() now.
1684         */
1685        if (!(gfp_mask & __GFP_WAIT)) {
1686                struct page_cgroup *pc;
1687
1688
1689                pc = lookup_page_cgroup(page);
1690                if (!pc)
1691                        return 0;
1692                lock_page_cgroup(pc);
1693                if (PageCgroupUsed(pc)) {
1694                        unlock_page_cgroup(pc);
1695                        return 0;
1696                }
1697                unlock_page_cgroup(pc);
1698        }
1699
1700        if (unlikely(!mm && !mem))
1701                mm = &init_mm;
1702
1703        if (page_is_file_cache(page))
1704                return mem_cgroup_charge_common(page, mm, gfp_mask,
1705                                MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1706
1707        /* shmem */
1708        if (PageSwapCache(page)) {
1709                ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1710                if (!ret)
1711                        __mem_cgroup_commit_charge_swapin(page, mem,
1712                                        MEM_CGROUP_CHARGE_TYPE_SHMEM);
1713        } else
1714                ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1715                                        MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1716
1717        return ret;
1718}
1719
1720/*
1721 * While swap-in, try_charge -> commit or cancel, the page is locked.
1722 * And when try_charge() successfully returns, one refcnt to memcg without
1723 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1724 * "commit()" or removed by "cancel()"
1725 */
1726int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1727                                 struct page *page,
1728                                 gfp_t mask, struct mem_cgroup **ptr)
1729{
1730        struct mem_cgroup *mem;
1731        int ret;
1732
1733        if (mem_cgroup_disabled())
1734                return 0;
1735
1736        if (!do_swap_account)
1737                goto charge_cur_mm;
1738        /*
1739         * A racing thread's fault, or swapoff, may have already updated
1740         * the pte, and even removed page from swap cache: return success
1741         * to go on to do_swap_page()'s pte_same() test, which should fail.
1742         */
1743        if (!PageSwapCache(page))
1744                return 0;
1745        mem = try_get_mem_cgroup_from_swapcache(page);
1746        if (!mem)
1747                goto charge_cur_mm;
1748        *ptr = mem;
1749        ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1750        /* drop extra refcnt from tryget */
1751        css_put(&mem->css);
1752        return ret;
1753charge_cur_mm:
1754        if (unlikely(!mm))
1755                mm = &init_mm;
1756        return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1757}
1758
1759static void
1760__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1761                                        enum charge_type ctype)
1762{
1763        struct page_cgroup *pc;
1764
1765        if (mem_cgroup_disabled())
1766                return;
1767        if (!ptr)
1768                return;
1769        cgroup_exclude_rmdir(&ptr->css);
1770        pc = lookup_page_cgroup(page);
1771        mem_cgroup_lru_del_before_commit_swapcache(page);
1772        __mem_cgroup_commit_charge(ptr, pc, ctype);
1773        mem_cgroup_lru_add_after_commit_swapcache(page);
1774        /*
1775         * Now swap is on-memory. This means this page may be
1776         * counted both as mem and swap....double count.
1777         * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1778         * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1779         * may call delete_from_swap_cache() before reach here.
1780         */
1781        if (do_swap_account && PageSwapCache(page)) {
1782                swp_entry_t ent = {.val = page_private(page)};
1783                unsigned short id;
1784                struct mem_cgroup *memcg;
1785
1786                id = swap_cgroup_record(ent, 0);
1787                rcu_read_lock();
1788                memcg = mem_cgroup_lookup(id);
1789                if (memcg) {
1790                        /*
1791                         * This recorded memcg can be obsolete one. So, avoid
1792                         * calling css_tryget
1793                         */
1794                        if (!mem_cgroup_is_root(memcg))
1795                                res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1796                        mem_cgroup_swap_statistics(memcg, false);
1797                        mem_cgroup_put(memcg);
1798                }
1799                rcu_read_unlock();
1800        }
1801        /*
1802         * At swapin, we may charge account against cgroup which has no tasks.
1803         * So, rmdir()->pre_destroy() can be called while we do this charge.
1804         * In that case, we need to call pre_destroy() again. check it here.
1805         */
1806        cgroup_release_and_wakeup_rmdir(&ptr->css);
1807}
1808
1809void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1810{
1811        __mem_cgroup_commit_charge_swapin(page, ptr,
1812                                        MEM_CGROUP_CHARGE_TYPE_MAPPED);
1813}
1814
1815void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1816{
1817        if (mem_cgroup_disabled())
1818                return;
1819        if (!mem)
1820                return;
1821        if (!mem_cgroup_is_root(mem)) {
1822                res_counter_uncharge(&mem->res, PAGE_SIZE);
1823                if (do_swap_account)
1824                        res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1825        }
1826        css_put(&mem->css);
1827}
1828
1829
1830/*
1831 * uncharge if !page_mapped(page)
1832 */
1833static struct mem_cgroup *
1834__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1835{
1836        struct page_cgroup *pc;
1837        struct mem_cgroup *mem = NULL;
1838        struct mem_cgroup_per_zone *mz;
1839
1840        if (mem_cgroup_disabled())
1841                return NULL;
1842
1843        if (PageSwapCache(page))
1844                return NULL;
1845
1846        /*
1847         * Check if our page_cgroup is valid
1848         */
1849        pc = lookup_page_cgroup(page);
1850        if (unlikely(!pc || !PageCgroupUsed(pc)))
1851                return NULL;
1852
1853        lock_page_cgroup(pc);
1854
1855        mem = pc->mem_cgroup;
1856
1857        if (!PageCgroupUsed(pc))
1858                goto unlock_out;
1859
1860        switch (ctype) {
1861        case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1862        case MEM_CGROUP_CHARGE_TYPE_DROP:
1863                if (page_mapped(page))
1864                        goto unlock_out;
1865                break;
1866        case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1867                if (!PageAnon(page)) {  /* Shared memory */
1868                        if (page->mapping && !page_is_file_cache(page))
1869                                goto unlock_out;
1870                } else if (page_mapped(page)) /* Anon */
1871                                goto unlock_out;
1872                break;
1873        default:
1874                break;
1875        }
1876
1877        if (!mem_cgroup_is_root(mem)) {
1878                res_counter_uncharge(&mem->res, PAGE_SIZE);
1879                if (do_swap_account &&
1880                                (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1881                        res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1882        }
1883        if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1884                mem_cgroup_swap_statistics(mem, true);
1885        mem_cgroup_charge_statistics(mem, pc, false);
1886
1887        ClearPageCgroupUsed(pc);
1888        /*
1889         * pc->mem_cgroup is not cleared here. It will be accessed when it's
1890         * freed from LRU. This is safe because uncharged page is expected not
1891         * to be reused (freed soon). Exception is SwapCache, it's handled by
1892         * special functions.
1893         */
1894
1895        mz = page_cgroup_zoneinfo(pc);
1896        unlock_page_cgroup(pc);
1897
1898        if (mem_cgroup_soft_limit_check(mem))
1899                mem_cgroup_update_tree(mem, page);
1900        /* at swapout, this memcg will be accessed to record to swap */
1901        if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1902                css_put(&mem->css);
1903
1904        return mem;
1905
1906unlock_out:
1907        unlock_page_cgroup(pc);
1908        return NULL;
1909}
1910
1911void mem_cgroup_uncharge_page(struct page *page)
1912{
1913        /* early check. */
1914        if (page_mapped(page))
1915                return;
1916        if (page->mapping && !PageAnon(page))
1917                return;
1918        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1919}
1920
1921void mem_cgroup_uncharge_cache_page(struct page *page)
1922{
1923        VM_BUG_ON(page_mapped(page));
1924        VM_BUG_ON(page->mapping);
1925        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1926}
1927
1928#ifdef CONFIG_SWAP
1929/*
1930 * called after __delete_from_swap_cache() and drop "page" account.
1931 * memcg information is recorded to swap_cgroup of "ent"
1932 */
1933void
1934mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1935{
1936        struct mem_cgroup *memcg;
1937        int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1938
1939        if (!swapout) /* this was a swap cache but the swap is unused ! */
1940                ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1941
1942        memcg = __mem_cgroup_uncharge_common(page, ctype);
1943
1944        /* record memcg information */
1945        if (do_swap_account && swapout && memcg) {
1946                swap_cgroup_record(ent, css_id(&memcg->css));
1947                mem_cgroup_get(memcg);
1948        }
1949        if (swapout && memcg)
1950                css_put(&memcg->css);
1951}
1952#endif
1953
1954#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1955/*
1956 * called from swap_entry_free(). remove record in swap_cgroup and
1957 * uncharge "memsw" account.
1958 */
1959void mem_cgroup_uncharge_swap(swp_entry_t ent)
1960{
1961        struct mem_cgroup *memcg;
1962        unsigned short id;
1963
1964        if (!do_swap_account)
1965                return;
1966
1967        id = swap_cgroup_record(ent, 0);
1968        rcu_read_lock();
1969        memcg = mem_cgroup_lookup(id);
1970        if (memcg) {
1971                /*
1972                 * We uncharge this because swap is freed.
1973                 * This memcg can be obsolete one. We avoid calling css_tryget
1974                 */
1975                if (!mem_cgroup_is_root(memcg))
1976                        res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1977                mem_cgroup_swap_statistics(memcg, false);
1978                mem_cgroup_put(memcg);
1979        }
1980        rcu_read_unlock();
1981}
1982#endif
1983
1984/*
1985 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1986 * page belongs to.
1987 */
1988int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1989{
1990        struct page_cgroup *pc;
1991        struct mem_cgroup *mem = NULL;
1992        int ret = 0;
1993
1994        if (mem_cgroup_disabled())
1995                return 0;
1996
1997        pc = lookup_page_cgroup(page);
1998        lock_page_cgroup(pc);
1999        if (PageCgroupUsed(pc)) {
2000                mem = pc->mem_cgroup;
2001                css_get(&mem->css);
2002        }
2003        unlock_page_cgroup(pc);
2004
2005        if (mem) {
2006                ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2007                                                page);
2008                css_put(&mem->css);
2009        }
2010        *ptr = mem;
2011        return ret;
2012}
2013
2014/* remove redundant charge if migration failed*/
2015void mem_cgroup_end_migration(struct mem_cgroup *mem,
2016                struct page *oldpage, struct page *newpage)
2017{
2018        struct page *target, *unused;
2019        struct page_cgroup *pc;
2020        enum charge_type ctype;
2021
2022        if (!mem)
2023                return;
2024        cgroup_exclude_rmdir(&mem->css);
2025        /* at migration success, oldpage->mapping is NULL. */
2026        if (oldpage->mapping) {
2027                target = oldpage;
2028                unused = NULL;
2029        } else {
2030                target = newpage;
2031                unused = oldpage;
2032        }
2033
2034        if (PageAnon(target))
2035                ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2036        else if (page_is_file_cache(target))
2037                ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2038        else
2039                ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2040
2041        /* unused page is not on radix-tree now. */
2042        if (unused)
2043                __mem_cgroup_uncharge_common(unused, ctype);
2044
2045        pc = lookup_page_cgroup(target);
2046        /*
2047         * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2048         * So, double-counting is effectively avoided.
2049         */
2050        __mem_cgroup_commit_charge(mem, pc, ctype);
2051
2052        /*
2053         * Both of oldpage and newpage are still under lock_page().
2054         * Then, we don't have to care about race in radix-tree.
2055         * But we have to be careful that this page is unmapped or not.
2056         *
2057         * There is a case for !page_mapped(). At the start of
2058         * migration, oldpage was mapped. But now, it's zapped.
2059         * But we know *target* page is not freed/reused under us.
2060         * mem_cgroup_uncharge_page() does all necessary checks.
2061         */
2062        if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2063                mem_cgroup_uncharge_page(target);
2064        /*
2065         * At migration, we may charge account against cgroup which has no tasks
2066         * So, rmdir()->pre_destroy() can be called while we do this charge.
2067         * In that case, we need to call pre_destroy() again. check it here.
2068         */
2069        cgroup_release_and_wakeup_rmdir(&mem->css);
2070}
2071
2072/*
2073 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2074 * Calling hierarchical_reclaim is not enough because we should update
2075 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2076 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2077 * not from the memcg which this page would be charged to.
2078 * try_charge_swapin does all of these works properly.
2079 */
2080int mem_cgroup_shmem_charge_fallback(struct page *page,
2081                            struct mm_struct *mm,
2082                            gfp_t gfp_mask)
2083{
2084        struct mem_cgroup *mem = NULL;
2085        int ret;
2086
2087        if (mem_cgroup_disabled())
2088                return 0;
2089
2090        ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2091        if (!ret)
2092                mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2093
2094        return ret;
2095}
2096
2097static DEFINE_MUTEX(set_limit_mutex);
2098
2099static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2100                                unsigned long long val)
2101{
2102        int retry_count;
2103        int progress;
2104        u64 memswlimit;
2105        int ret = 0;
2106        int children = mem_cgroup_count_children(memcg);
2107        u64 curusage, oldusage;
2108
2109        /*
2110         * For keeping hierarchical_reclaim simple, how long we should retry
2111         * is depends on callers. We set our retry-count to be function
2112         * of # of children which we should visit in this loop.
2113         */
2114        retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2115
2116        oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2117
2118        while (retry_count) {
2119                if (signal_pending(current)) {
2120                        ret = -EINTR;
2121                        break;
2122                }
2123                /*
2124                 * Rather than hide all in some function, I do this in
2125                 * open coded manner. You see what this really does.
2126                 * We have to guarantee mem->res.limit < mem->memsw.limit.
2127                 */
2128                mutex_lock(&set_limit_mutex);
2129                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2130                if (memswlimit < val) {
2131                        ret = -EINVAL;
2132                        mutex_unlock(&set_limit_mutex);
2133                        break;
2134                }
2135                ret = res_counter_set_limit(&memcg->res, val);
2136                if (!ret) {
2137                        if (memswlimit == val)
2138                                memcg->memsw_is_minimum = true;
2139                        else
2140                                memcg->memsw_is_minimum = false;
2141                }
2142                mutex_unlock(&set_limit_mutex);
2143
2144                if (!ret)
2145                        break;
2146
2147                progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2148                                                GFP_KERNEL,
2149                                                MEM_CGROUP_RECLAIM_SHRINK);
2150                curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2151                /* Usage is reduced ? */
2152                if (curusage >= oldusage)
2153                        retry_count--;
2154                else
2155                        oldusage = curusage;
2156        }
2157
2158        return ret;
2159}
2160
2161static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2162                                        unsigned long long val)
2163{
2164        int retry_count;
2165        u64 memlimit, oldusage, curusage;
2166        int children = mem_cgroup_count_children(memcg);
2167        int ret = -EBUSY;
2168
2169        /* see mem_cgroup_resize_res_limit */
2170        retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2171        oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2172        while (retry_count) {
2173                if (signal_pending(current)) {
2174                        ret = -EINTR;
2175                        break;
2176                }
2177                /*
2178                 * Rather than hide all in some function, I do this in
2179                 * open coded manner. You see what this really does.
2180                 * We have to guarantee mem->res.limit < mem->memsw.limit.
2181                 */
2182                mutex_lock(&set_limit_mutex);
2183                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2184                if (memlimit > val) {
2185                        ret = -EINVAL;
2186                        mutex_unlock(&set_limit_mutex);
2187                        break;
2188                }
2189                ret = res_counter_set_limit(&memcg->memsw, val);
2190                if (!ret) {
2191                        if (memlimit == val)
2192                                memcg->memsw_is_minimum = true;
2193                        else
2194                                memcg->memsw_is_minimum = false;
2195                }
2196                mutex_unlock(&set_limit_mutex);
2197
2198                if (!ret)
2199                        break;
2200
2201                mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2202                                                MEM_CGROUP_RECLAIM_NOSWAP |
2203                                                MEM_CGROUP_RECLAIM_SHRINK);
2204                curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2205                /* Usage is reduced ? */
2206                if (curusage >= oldusage)
2207                        retry_count--;
2208                else
2209                        oldusage = curusage;
2210        }
2211        return ret;
2212}
2213
2214unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2215                                                gfp_t gfp_mask, int nid,
2216                                                int zid)
2217{
2218        unsigned long nr_reclaimed = 0;
2219        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2220        unsigned long reclaimed;
2221        int loop = 0;
2222        struct mem_cgroup_tree_per_zone *mctz;
2223        unsigned long long excess;
2224
2225        if (order > 0)
2226                return 0;
2227
2228        mctz = soft_limit_tree_node_zone(nid, zid);
2229        /*
2230         * This loop can run a while, specially if mem_cgroup's continuously
2231         * keep exceeding their soft limit and putting the system under
2232         * pressure
2233         */
2234        do {
2235                if (next_mz)
2236                        mz = next_mz;
2237                else
2238                        mz = mem_cgroup_largest_soft_limit_node(mctz);
2239                if (!mz)
2240                        break;
2241
2242                reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2243                                                gfp_mask,
2244                                                MEM_CGROUP_RECLAIM_SOFT);
2245                nr_reclaimed += reclaimed;
2246                spin_lock(&mctz->lock);
2247
2248                /*
2249                 * If we failed to reclaim anything from this memory cgroup
2250                 * it is time to move on to the next cgroup
2251                 */
2252                next_mz = NULL;
2253                if (!reclaimed) {
2254                        do {
2255                                /*
2256                                 * Loop until we find yet another one.
2257                                 *
2258                                 * By the time we get the soft_limit lock
2259                                 * again, someone might have aded the
2260                                 * group back on the RB tree. Iterate to
2261                                 * make sure we get a different mem.
2262                                 * mem_cgroup_largest_soft_limit_node returns
2263                                 * NULL if no other cgroup is present on
2264                                 * the tree
2265                                 */
2266                                next_mz =
2267                                __mem_cgroup_largest_soft_limit_node(mctz);
2268                                if (next_mz == mz) {
2269                                        css_put(&next_mz->mem->css);
2270                                        next_mz = NULL;
2271                                } else /* next_mz == NULL or other memcg */
2272                                        break;
2273                        } while (1);
2274                }
2275                __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2276                excess = res_counter_soft_limit_excess(&mz->mem->res);
2277                /*
2278                 * One school of thought says that we should not add
2279                 * back the node to the tree if reclaim returns 0.
2280                 * But our reclaim could return 0, simply because due
2281                 * to priority we are exposing a smaller subset of
2282                 * memory to reclaim from. Consider this as a longer
2283                 * term TODO.
2284                 */
2285                /* If excess == 0, no tree ops */
2286                __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2287                spin_unlock(&mctz->lock);
2288                css_put(&mz->mem->css);
2289                loop++;
2290                /*
2291                 * Could not reclaim anything and there are no more
2292                 * mem cgroups to try or we seem to be looping without
2293                 * reclaiming anything.
2294                 */
2295                if (!nr_reclaimed &&
2296                        (next_mz == NULL ||
2297                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2298                        break;
2299        } while (!nr_reclaimed);
2300        if (next_mz)
2301                css_put(&next_mz->mem->css);
2302        return nr_reclaimed;
2303}
2304
2305/*
2306 * This routine traverse page_cgroup in given list and drop them all.
2307 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2308 */
2309static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2310                                int node, int zid, enum lru_list lru)
2311{
2312        struct zone *zone;
2313        struct mem_cgroup_per_zone *mz;
2314        struct page_cgroup *pc, *busy;
2315        unsigned long flags, loop;
2316        struct list_head *list;
2317        int ret = 0;
2318
2319        zone = &NODE_DATA(node)->node_zones[zid];
2320        mz = mem_cgroup_zoneinfo(mem, node, zid);
2321        list = &mz->lists[lru];
2322
2323        loop = MEM_CGROUP_ZSTAT(mz, lru);
2324        /* give some margin against EBUSY etc...*/
2325        loop += 256;
2326        busy = NULL;
2327        while (loop--) {
2328                ret = 0;
2329                spin_lock_irqsave(&zone->lru_lock, flags);
2330                if (list_empty(list)) {
2331                        spin_unlock_irqrestore(&zone->lru_lock, flags);
2332                        break;
2333                }
2334                pc = list_entry(list->prev, struct page_cgroup, lru);
2335                if (busy == pc) {
2336                        list_move(&pc->lru, list);
2337                        busy = 0;
2338                        spin_unlock_irqrestore(&zone->lru_lock, flags);
2339                        continue;
2340                }
2341                spin_unlock_irqrestore(&zone->lru_lock, flags);
2342
2343                ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2344                if (ret == -ENOMEM)
2345                        break;
2346
2347                if (ret == -EBUSY || ret == -EINVAL) {
2348                        /* found lock contention or "pc" is obsolete. */
2349                        busy = pc;
2350                        cond_resched();
2351                } else
2352                        busy = NULL;
2353        }
2354
2355        if (!ret && !list_empty(list))
2356                return -EBUSY;
2357        return ret;
2358}
2359
2360/*
2361 * make mem_cgroup's charge to be 0 if there is no task.
2362 * This enables deleting this mem_cgroup.
2363 */
2364static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2365{
2366        int ret;
2367        int node, zid, shrink;
2368        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2369        struct cgroup *cgrp = mem->css.cgroup;
2370
2371        css_get(&mem->css);
2372
2373        shrink = 0;
2374        /* should free all ? */
2375        if (free_all)
2376                goto try_to_free;
2377move_account:
2378        while (mem->res.usage > 0) {
2379                ret = -EBUSY;
2380                if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2381                        goto out;
2382                ret = -EINTR;
2383                if (signal_pending(current))
2384                        goto out;
2385                /* This is for making all *used* pages to be on LRU. */
2386                lru_add_drain_all();
2387                ret = 0;
2388                for_each_node_state(node, N_HIGH_MEMORY) {
2389                        for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2390                                enum lru_list l;
2391                                for_each_lru(l) {
2392                                        ret = mem_cgroup_force_empty_list(mem,
2393                                                        node, zid, l);
2394                                        if (ret)
2395                                                break;
2396                                }
2397                        }
2398                        if (ret)
2399                                break;
2400                }
2401                /* it seems parent cgroup doesn't have enough mem */
2402                if (ret == -ENOMEM)
2403                        goto try_to_free;
2404                cond_resched();
2405        }
2406        ret = 0;
2407out:
2408        css_put(&mem->css);
2409        return ret;
2410
2411try_to_free:
2412        /* returns EBUSY if there is a task or if we come here twice. */
2413        if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2414                ret = -EBUSY;
2415                goto out;
2416        }
2417        /* we call try-to-free pages for make this cgroup empty */
2418        lru_add_drain_all();
2419        /* try to free all pages in this cgroup */
2420        shrink = 1;
2421        while (nr_retries && mem->res.usage > 0) {
2422                int progress;
2423
2424                if (signal_pending(current)) {
2425                        ret = -EINTR;
2426                        goto out;
2427                }
2428                progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2429                                                false, get_swappiness(mem));
2430                if (!progress) {
2431                        nr_retries--;
2432                        /* maybe some writeback is necessary */
2433                        congestion_wait(BLK_RW_ASYNC, HZ/10);
2434                }
2435
2436        }
2437        lru_add_drain();
2438        /* try move_account...there may be some *locked* pages. */
2439        if (mem->res.usage)
2440                goto move_account;
2441        ret = 0;
2442        goto out;
2443}
2444
2445int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2446{
2447        return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2448}
2449
2450
2451static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2452{
2453        return mem_cgroup_from_cont(cont)->use_hierarchy;
2454}
2455
2456static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2457                                        u64 val)
2458{
2459        int retval = 0;
2460        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2461        struct cgroup *parent = cont->parent;
2462        struct mem_cgroup *parent_mem = NULL;
2463
2464        if (parent)
2465                parent_mem = mem_cgroup_from_cont(parent);
2466
2467        cgroup_lock();
2468        /*
2469         * If parent's use_hiearchy is set, we can't make any modifications
2470         * in the child subtrees. If it is unset, then the change can
2471         * occur, provided the current cgroup has no children.
2472         *
2473         * For the root cgroup, parent_mem is NULL, we allow value to be
2474         * set if there are no children.
2475         */
2476        if ((!parent_mem || !parent_mem->use_hierarchy) &&
2477                                (val == 1 || val == 0)) {
2478                if (list_empty(&cont->children))
2479                        mem->use_hierarchy = val;
2480                else
2481                        retval = -EBUSY;
2482        } else
2483                retval = -EINVAL;
2484        cgroup_unlock();
2485
2486        return retval;
2487}
2488
2489struct mem_cgroup_idx_data {
2490        s64 val;
2491        enum mem_cgroup_stat_index idx;
2492};
2493
2494static int
2495mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2496{
2497        struct mem_cgroup_idx_data *d = data;
2498        d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2499        return 0;
2500}
2501
2502static void
2503mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2504                                enum mem_cgroup_stat_index idx, s64 *val)
2505{
2506        struct mem_cgroup_idx_data d;
2507        d.idx = idx;
2508        d.val = 0;
2509        mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2510        *val = d.val;
2511}
2512
2513static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2514{
2515        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2516        u64 idx_val, val;
2517        int type, name;
2518
2519        type = MEMFILE_TYPE(cft->private);
2520        name = MEMFILE_ATTR(cft->private);
2521        switch (type) {
2522        case _MEM:
2523                if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2524                        mem_cgroup_get_recursive_idx_stat(mem,
2525                                MEM_CGROUP_STAT_CACHE, &idx_val);
2526                        val = idx_val;
2527                        mem_cgroup_get_recursive_idx_stat(mem,
2528                                MEM_CGROUP_STAT_RSS, &idx_val);
2529                        val += idx_val;
2530                        val <<= PAGE_SHIFT;
2531                } else
2532                        val = res_counter_read_u64(&mem->res, name);
2533                break;
2534        case _MEMSWAP:
2535                if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2536                        mem_cgroup_get_recursive_idx_stat(mem,
2537                                MEM_CGROUP_STAT_CACHE, &idx_val);
2538                        val = idx_val;
2539                        mem_cgroup_get_recursive_idx_stat(mem,
2540                                MEM_CGROUP_STAT_RSS, &idx_val);
2541                        val += idx_val;
2542                        mem_cgroup_get_recursive_idx_stat(mem,
2543                                MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2544                        val <<= PAGE_SHIFT;
2545                } else
2546                        val = res_counter_read_u64(&mem->memsw, name);
2547                break;
2548        default:
2549                BUG();
2550                break;
2551        }
2552        return val;
2553}
2554/*
2555 * The user of this function is...
2556 * RES_LIMIT.
2557 */
2558static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2559                            const char *buffer)
2560{
2561        struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2562        int type, name;
2563        unsigned long long val;
2564        int ret;
2565
2566        type = MEMFILE_TYPE(cft->private);
2567        name = MEMFILE_ATTR(cft->private);
2568        switch (name) {
2569        case RES_LIMIT:
2570                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2571                        ret = -EINVAL;
2572                        break;
2573                }
2574                /* This function does all necessary parse...reuse it */
2575                ret = res_counter_memparse_write_strategy(buffer, &val);
2576                if (ret)
2577                        break;
2578                if (type == _MEM)
2579                        ret = mem_cgroup_resize_limit(memcg, val);
2580                else
2581                        ret = mem_cgroup_resize_memsw_limit(memcg, val);
2582                break;
2583        case RES_SOFT_LIMIT:
2584                ret = res_counter_memparse_write_strategy(buffer, &val);
2585                if (ret)
2586                        break;
2587                /*
2588                 * For memsw, soft limits are hard to implement in terms
2589                 * of semantics, for now, we support soft limits for
2590                 * control without swap
2591                 */
2592                if (type == _MEM)
2593                        ret = res_counter_set_soft_limit(&memcg->res, val);
2594                else
2595                        ret = -EINVAL;
2596                break;
2597        default:
2598                ret = -EINVAL; /* should be BUG() ? */
2599                break;
2600        }
2601        return ret;
2602}
2603
2604static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2605                unsigned long long *mem_limit, unsigned long long *memsw_limit)
2606{
2607        struct cgroup *cgroup;
2608        unsigned long long min_limit, min_memsw_limit, tmp;
2609
2610        min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2611        min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2612        cgroup = memcg->css.cgroup;
2613        if (!memcg->use_hierarchy)
2614                goto out;
2615
2616        while (cgroup->parent) {
2617                cgroup = cgroup->parent;
2618                memcg = mem_cgroup_from_cont(cgroup);
2619                if (!memcg->use_hierarchy)
2620                        break;
2621                tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2622                min_limit = min(min_limit, tmp);
2623                tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2624                min_memsw_limit = min(min_memsw_limit, tmp);
2625        }
2626out:
2627        *mem_limit = min_limit;
2628        *memsw_limit = min_memsw_limit;
2629        return;
2630}
2631
2632static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2633{
2634        struct mem_cgroup *mem;
2635        int type, name;
2636
2637        mem = mem_cgroup_from_cont(cont);
2638        type = MEMFILE_TYPE(event);
2639        name = MEMFILE_ATTR(event);
2640        switch (name) {
2641        case RES_MAX_USAGE:
2642                if (type == _MEM)
2643                        res_counter_reset_max(&mem->res);
2644                else
2645                        res_counter_reset_max(&mem->memsw);
2646                break;
2647        case RES_FAILCNT:
2648                if (type == _MEM)
2649                        res_counter_reset_failcnt(&mem->res);
2650                else
2651                        res_counter_reset_failcnt(&mem->memsw);
2652                break;
2653        }
2654
2655        return 0;
2656}
2657
2658
2659/* For read statistics */
2660enum {
2661        MCS_CACHE,
2662        MCS_RSS,
2663        MCS_MAPPED_FILE,
2664        MCS_PGPGIN,
2665        MCS_PGPGOUT,
2666        MCS_SWAP,
2667        MCS_INACTIVE_ANON,
2668        MCS_ACTIVE_ANON,
2669        MCS_INACTIVE_FILE,
2670        MCS_ACTIVE_FILE,
2671        MCS_UNEVICTABLE,
2672        NR_MCS_STAT,
2673};
2674
2675struct mcs_total_stat {
2676        s64 stat[NR_MCS_STAT];
2677};
2678
2679struct {
2680        char *local_name;
2681        char *total_name;
2682} memcg_stat_strings[NR_MCS_STAT] = {
2683        {"cache", "total_cache"},
2684        {"rss", "total_rss"},
2685        {"mapped_file", "total_mapped_file"},
2686        {"pgpgin", "total_pgpgin"},
2687        {"pgpgout", "total_pgpgout"},
2688        {"swap", "total_swap"},
2689        {"inactive_anon", "total_inactive_anon"},
2690        {"active_anon", "total_active_anon"},
2691        {"inactive_file", "total_inactive_file"},
2692        {"active_file", "total_active_file"},
2693        {"unevictable", "total_unevictable"}
2694};
2695
2696
2697static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2698{
2699        struct mcs_total_stat *s = data;
2700        s64 val;
2701
2702        /* per cpu stat */
2703        val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2704        s->stat[MCS_CACHE] += val * PAGE_SIZE;
2705        val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2706        s->stat[MCS_RSS] += val * PAGE_SIZE;
2707        val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2708        s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2709        val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2710        s->stat[MCS_PGPGIN] += val;
2711        val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2712        s->stat[MCS_PGPGOUT] += val;
2713        if (do_swap_account) {
2714                val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2715                s->stat[MCS_SWAP] += val * PAGE_SIZE;
2716        }
2717
2718        /* per zone stat */
2719        val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2720        s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2721        val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2722        s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2723        val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2724        s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2725        val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2726        s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2727        val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2728        s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2729        return 0;
2730}
2731
2732static void
2733mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2734{
2735        mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2736}
2737
2738static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2739                                 struct cgroup_map_cb *cb)
2740{
2741        struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2742        struct mcs_total_stat mystat;
2743        int i;
2744
2745        memset(&mystat, 0, sizeof(mystat));
2746        mem_cgroup_get_local_stat(mem_cont, &mystat);
2747
2748        for (i = 0; i < NR_MCS_STAT; i++) {
2749                if (i == MCS_SWAP && !do_swap_account)
2750                        continue;
2751                cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2752        }
2753
2754        /* Hierarchical information */
2755        {
2756                unsigned long long limit, memsw_limit;
2757                memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2758                cb->fill(cb, "hierarchical_memory_limit", limit);
2759                if (do_swap_account)
2760                        cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2761        }
2762
2763        memset(&mystat, 0, sizeof(mystat));
2764        mem_cgroup_get_total_stat(mem_cont, &mystat);
2765        for (i = 0; i < NR_MCS_STAT; i++) {
2766                if (i == MCS_SWAP && !do_swap_account)
2767                        continue;
2768                cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2769        }
2770
2771#ifdef CONFIG_DEBUG_VM
2772        cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2773
2774        {
2775                int nid, zid;
2776                struct mem_cgroup_per_zone *mz;
2777                unsigned long recent_rotated[2] = {0, 0};
2778                unsigned long recent_scanned[2] = {0, 0};
2779
2780                for_each_online_node(nid)
2781                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2782                                mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2783
2784                                recent_rotated[0] +=
2785                                        mz->reclaim_stat.recent_rotated[0];
2786                                recent_rotated[1] +=
2787                                        mz->reclaim_stat.recent_rotated[1];
2788                                recent_scanned[0] +=
2789                                        mz->reclaim_stat.recent_scanned[0];
2790                                recent_scanned[1] +=
2791                                        mz->reclaim_stat.recent_scanned[1];
2792                        }
2793                cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2794                cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2795                cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2796                cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2797        }
2798#endif
2799
2800        return 0;
2801}
2802
2803static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2804{
2805        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2806
2807        return get_swappiness(memcg);
2808}
2809
2810static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2811                                       u64 val)
2812{
2813        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2814        struct mem_cgroup *parent;
2815
2816        if (val > 100)
2817                return -EINVAL;
2818
2819        if (cgrp->parent == NULL)
2820                return -EINVAL;
2821
2822        parent = mem_cgroup_from_cont(cgrp->parent);
2823
2824        cgroup_lock();
2825
2826        /* If under hierarchy, only empty-root can set this value */
2827        if ((parent->use_hierarchy) ||
2828            (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2829                cgroup_unlock();
2830                return -EINVAL;
2831        }
2832
2833        spin_lock(&memcg->reclaim_param_lock);
2834        memcg->swappiness = val;
2835        spin_unlock(&memcg->reclaim_param_lock);
2836
2837        cgroup_unlock();
2838
2839        return 0;
2840}
2841
2842
2843static struct cftype mem_cgroup_files[] = {
2844        {
2845                .name = "usage_in_bytes",
2846                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2847                .read_u64 = mem_cgroup_read,
2848        },
2849        {
2850                .name = "max_usage_in_bytes",
2851                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2852                .trigger = mem_cgroup_reset,
2853                .read_u64 = mem_cgroup_read,
2854        },
2855        {
2856                .name = "limit_in_bytes",
2857                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2858                .write_string = mem_cgroup_write,
2859                .read_u64 = mem_cgroup_read,
2860        },
2861        {
2862                .name = "soft_limit_in_bytes",
2863                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2864                .write_string = mem_cgroup_write,
2865                .read_u64 = mem_cgroup_read,
2866        },
2867        {
2868                .name = "failcnt",
2869                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2870                .trigger = mem_cgroup_reset,
2871                .read_u64 = mem_cgroup_read,
2872        },
2873        {
2874                .name = "stat",
2875                .read_map = mem_control_stat_show,
2876        },
2877        {
2878                .name = "force_empty",
2879                .trigger = mem_cgroup_force_empty_write,
2880        },
2881        {
2882                .name = "use_hierarchy",
2883                .write_u64 = mem_cgroup_hierarchy_write,
2884                .read_u64 = mem_cgroup_hierarchy_read,
2885        },
2886        {
2887                .name = "swappiness",
2888                .read_u64 = mem_cgroup_swappiness_read,
2889                .write_u64 = mem_cgroup_swappiness_write,
2890        },
2891};
2892
2893#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2894static struct cftype memsw_cgroup_files[] = {
2895        {
2896                .name = "memsw.usage_in_bytes",
2897                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2898                .read_u64 = mem_cgroup_read,
2899        },
2900        {
2901                .name = "memsw.max_usage_in_bytes",
2902                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2903                .trigger = mem_cgroup_reset,
2904                .read_u64 = mem_cgroup_read,
2905        },
2906        {
2907                .name = "memsw.limit_in_bytes",
2908                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2909                .write_string = mem_cgroup_write,
2910                .read_u64 = mem_cgroup_read,
2911        },
2912        {
2913                .name = "memsw.failcnt",
2914                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2915                .trigger = mem_cgroup_reset,
2916                .read_u64 = mem_cgroup_read,
2917        },
2918};
2919
2920static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2921{
2922        if (!do_swap_account)
2923                return 0;
2924        return cgroup_add_files(cont, ss, memsw_cgroup_files,
2925                                ARRAY_SIZE(memsw_cgroup_files));
2926};
2927#else
2928static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2929{
2930        return 0;
2931}
2932#endif
2933
2934static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2935{
2936        struct mem_cgroup_per_node *pn;
2937        struct mem_cgroup_per_zone *mz;
2938        enum lru_list l;
2939        int zone, tmp = node;
2940        /*
2941         * This routine is called against possible nodes.
2942         * But it's BUG to call kmalloc() against offline node.
2943         *
2944         * TODO: this routine can waste much memory for nodes which will
2945         *       never be onlined. It's better to use memory hotplug callback
2946         *       function.
2947         */
2948        if (!node_state(node, N_NORMAL_MEMORY))
2949                tmp = -1;
2950        pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2951        if (!pn)
2952                return 1;
2953
2954        mem->info.nodeinfo[node] = pn;
2955        memset(pn, 0, sizeof(*pn));
2956
2957        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2958                mz = &pn->zoneinfo[zone];
2959                for_each_lru(l)
2960                        INIT_LIST_HEAD(&mz->lists[l]);
2961                mz->usage_in_excess = 0;
2962                mz->on_tree = false;
2963                mz->mem = mem;
2964        }
2965        return 0;
2966}
2967
2968static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2969{
2970        kfree(mem->info.nodeinfo[node]);
2971}
2972
2973static int mem_cgroup_size(void)
2974{
2975        int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2976        return sizeof(struct mem_cgroup) + cpustat_size;
2977}
2978
2979static struct mem_cgroup *mem_cgroup_alloc(void)
2980{
2981        struct mem_cgroup *mem;
2982        int size = mem_cgroup_size();
2983
2984        if (size < PAGE_SIZE)
2985                mem = kmalloc(size, GFP_KERNEL);
2986        else
2987                mem = vmalloc(size);
2988
2989        if (mem)
2990                memset(mem, 0, size);
2991        return mem;
2992}
2993
2994/*
2995 * At destroying mem_cgroup, references from swap_cgroup can remain.
2996 * (scanning all at force_empty is too costly...)
2997 *
2998 * Instead of clearing all references at force_empty, we remember
2999 * the number of reference from swap_cgroup and free mem_cgroup when
3000 * it goes down to 0.
3001 *
3002 * Removal of cgroup itself succeeds regardless of refs from swap.
3003 */
3004
3005static void __mem_cgroup_free(struct mem_cgroup *mem)
3006{
3007        int node;
3008
3009        mem_cgroup_remove_from_trees(mem);
3010        free_css_id(&mem_cgroup_subsys, &mem->css);
3011
3012        for_each_node_state(node, N_POSSIBLE)
3013                free_mem_cgroup_per_zone_info(mem, node);
3014
3015        if (mem_cgroup_size() < PAGE_SIZE)
3016                kfree(mem);
3017        else
3018                vfree(mem);
3019}
3020
3021static void mem_cgroup_get(struct mem_cgroup *mem)
3022{
3023        atomic_inc(&mem->refcnt);
3024}
3025
3026static void mem_cgroup_put(struct mem_cgroup *mem)
3027{
3028        if (atomic_dec_and_test(&mem->refcnt)) {
3029                struct mem_cgroup *parent = parent_mem_cgroup(mem);
3030                __mem_cgroup_free(mem);
3031                if (parent)
3032                        mem_cgroup_put(parent);
3033        }
3034}
3035
3036/*
3037 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3038 */
3039static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3040{
3041        if (!mem->res.parent)
3042                return NULL;
3043        return mem_cgroup_from_res_counter(mem->res.parent, res);
3044}
3045
3046#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3047static void __init enable_swap_cgroup(void)
3048{
3049        if (!mem_cgroup_disabled() && really_do_swap_account)
3050                do_swap_account = 1;
3051}
3052#else
3053static void __init enable_swap_cgroup(void)
3054{
3055}
3056#endif
3057
3058static int mem_cgroup_soft_limit_tree_init(void)
3059{
3060        struct mem_cgroup_tree_per_node *rtpn;
3061        struct mem_cgroup_tree_per_zone *rtpz;
3062        int tmp, node, zone;
3063
3064        for_each_node_state(node, N_POSSIBLE) {
3065                tmp = node;
3066                if (!node_state(node, N_NORMAL_MEMORY))
3067                        tmp = -1;
3068                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3069                if (!rtpn)
3070                        return 1;
3071
3072                soft_limit_tree.rb_tree_per_node[node] = rtpn;
3073
3074                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3075                        rtpz = &rtpn->rb_tree_per_zone[zone];
3076                        rtpz->rb_root = RB_ROOT;
3077                        spin_lock_init(&rtpz->lock);
3078                }
3079        }
3080        return 0;
3081}
3082
3083static struct cgroup_subsys_state * __ref
3084mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3085{
3086        struct mem_cgroup *mem, *parent;
3087        long error = -ENOMEM;
3088        int node;
3089
3090        mem = mem_cgroup_alloc();
3091        if (!mem)
3092                return ERR_PTR(error);
3093
3094        for_each_node_state(node, N_POSSIBLE)
3095                if (alloc_mem_cgroup_per_zone_info(mem, node))
3096                        goto free_out;
3097
3098        /* root ? */
3099        if (cont->parent == NULL) {
3100                enable_swap_cgroup();
3101                parent = NULL;
3102                root_mem_cgroup = mem;
3103                if (mem_cgroup_soft_limit_tree_init())
3104                        goto free_out;
3105
3106        } else {
3107                parent = mem_cgroup_from_cont(cont->parent);
3108                mem->use_hierarchy = parent->use_hierarchy;
3109        }
3110
3111        if (parent && parent->use_hierarchy) {
3112                res_counter_init(&mem->res, &parent->res);
3113                res_counter_init(&mem->memsw, &parent->memsw);
3114                /*
3115                 * We increment refcnt of the parent to ensure that we can
3116                 * safely access it on res_counter_charge/uncharge.
3117                 * This refcnt will be decremented when freeing this
3118                 * mem_cgroup(see mem_cgroup_put).
3119                 */
3120                mem_cgroup_get(parent);
3121        } else {
3122                res_counter_init(&mem->res, NULL);
3123                res_counter_init(&mem->memsw, NULL);
3124        }
3125        mem->last_scanned_child = 0;
3126        spin_lock_init(&mem->reclaim_param_lock);
3127
3128        if (parent)
3129                mem->swappiness = get_swappiness(parent);
3130        atomic_set(&mem->refcnt, 1);
3131        return &mem->css;
3132free_out:
3133        __mem_cgroup_free(mem);
3134        root_mem_cgroup = NULL;
3135        return ERR_PTR(error);
3136}
3137
3138static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3139                                        struct cgroup *cont)
3140{
3141        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3142
3143        return mem_cgroup_force_empty(mem, false);
3144}
3145
3146static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3147                                struct cgroup *cont)
3148{
3149        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3150
3151        mem_cgroup_put(mem);
3152}
3153
3154static int mem_cgroup_populate(struct cgroup_subsys *ss,
3155                                struct cgroup *cont)
3156{
3157        int ret;
3158
3159        ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3160                                ARRAY_SIZE(mem_cgroup_files));
3161
3162        if (!ret)
3163                ret = register_memsw_files(cont, ss);
3164        return ret;
3165}
3166
3167static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3168                                struct cgroup *cont,
3169                                struct cgroup *old_cont,
3170                                struct task_struct *p,
3171                                bool threadgroup)
3172{
3173        mutex_lock(&memcg_tasklist);
3174        /*
3175         * FIXME: It's better to move charges of this process from old
3176         * memcg to new memcg. But it's just on TODO-List now.
3177         */
3178        mutex_unlock(&memcg_tasklist);
3179}
3180
3181struct cgroup_subsys mem_cgroup_subsys = {
3182        .name = "memory",
3183        .subsys_id = mem_cgroup_subsys_id,
3184        .create = mem_cgroup_create,
3185        .pre_destroy = mem_cgroup_pre_destroy,
3186        .destroy = mem_cgroup_destroy,
3187        .populate = mem_cgroup_populate,
3188        .attach = mem_cgroup_move_task,
3189        .early_init = 0,
3190        .use_id = 1,
3191};
3192
3193#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3194
3195static int __init disable_swap_account(char *s)
3196{
3197        really_do_swap_account = 0;
3198        return 1;
3199}
3200__setup("noswapaccount", disable_swap_account);
3201#endif
3202