linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59
  60#include <asm/io.h>
  61#include <asm/pgalloc.h>
  62#include <asm/uaccess.h>
  63#include <asm/tlb.h>
  64#include <asm/tlbflush.h>
  65#include <asm/pgtable.h>
  66
  67#include "internal.h"
  68
  69#ifndef CONFIG_NEED_MULTIPLE_NODES
  70/* use the per-pgdat data instead for discontigmem - mbligh */
  71unsigned long max_mapnr;
  72struct page *mem_map;
  73
  74EXPORT_SYMBOL(max_mapnr);
  75EXPORT_SYMBOL(mem_map);
  76#endif
  77
  78unsigned long num_physpages;
  79/*
  80 * A number of key systems in x86 including ioremap() rely on the assumption
  81 * that high_memory defines the upper bound on direct map memory, then end
  82 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  84 * and ZONE_HIGHMEM.
  85 */
  86void * high_memory;
  87
  88EXPORT_SYMBOL(num_physpages);
  89EXPORT_SYMBOL(high_memory);
  90
  91/*
  92 * Randomize the address space (stacks, mmaps, brk, etc.).
  93 *
  94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  95 *   as ancient (libc5 based) binaries can segfault. )
  96 */
  97int randomize_va_space __read_mostly =
  98#ifdef CONFIG_COMPAT_BRK
  99                                        1;
 100#else
 101                                        2;
 102#endif
 103
 104static int __init disable_randmaps(char *s)
 105{
 106        randomize_va_space = 0;
 107        return 1;
 108}
 109__setup("norandmaps", disable_randmaps);
 110
 111unsigned long zero_pfn __read_mostly;
 112unsigned long highest_memmap_pfn __read_mostly;
 113
 114/*
 115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 116 */
 117static int __init init_zero_pfn(void)
 118{
 119        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 120        return 0;
 121}
 122core_initcall(init_zero_pfn);
 123
 124/*
 125 * If a p?d_bad entry is found while walking page tables, report
 126 * the error, before resetting entry to p?d_none.  Usually (but
 127 * very seldom) called out from the p?d_none_or_clear_bad macros.
 128 */
 129
 130void pgd_clear_bad(pgd_t *pgd)
 131{
 132        pgd_ERROR(*pgd);
 133        pgd_clear(pgd);
 134}
 135
 136void pud_clear_bad(pud_t *pud)
 137{
 138        pud_ERROR(*pud);
 139        pud_clear(pud);
 140}
 141
 142void pmd_clear_bad(pmd_t *pmd)
 143{
 144        pmd_ERROR(*pmd);
 145        pmd_clear(pmd);
 146}
 147
 148/*
 149 * Note: this doesn't free the actual pages themselves. That
 150 * has been handled earlier when unmapping all the memory regions.
 151 */
 152static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 153                           unsigned long addr)
 154{
 155        pgtable_t token = pmd_pgtable(*pmd);
 156        pmd_clear(pmd);
 157        pte_free_tlb(tlb, token, addr);
 158        tlb->mm->nr_ptes--;
 159}
 160
 161static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 162                                unsigned long addr, unsigned long end,
 163                                unsigned long floor, unsigned long ceiling)
 164{
 165        pmd_t *pmd;
 166        unsigned long next;
 167        unsigned long start;
 168
 169        start = addr;
 170        pmd = pmd_offset(pud, addr);
 171        do {
 172                next = pmd_addr_end(addr, end);
 173                if (pmd_none_or_clear_bad(pmd))
 174                        continue;
 175                free_pte_range(tlb, pmd, addr);
 176        } while (pmd++, addr = next, addr != end);
 177
 178        start &= PUD_MASK;
 179        if (start < floor)
 180                return;
 181        if (ceiling) {
 182                ceiling &= PUD_MASK;
 183                if (!ceiling)
 184                        return;
 185        }
 186        if (end - 1 > ceiling - 1)
 187                return;
 188
 189        pmd = pmd_offset(pud, start);
 190        pud_clear(pud);
 191        pmd_free_tlb(tlb, pmd, start);
 192}
 193
 194static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 195                                unsigned long addr, unsigned long end,
 196                                unsigned long floor, unsigned long ceiling)
 197{
 198        pud_t *pud;
 199        unsigned long next;
 200        unsigned long start;
 201
 202        start = addr;
 203        pud = pud_offset(pgd, addr);
 204        do {
 205                next = pud_addr_end(addr, end);
 206                if (pud_none_or_clear_bad(pud))
 207                        continue;
 208                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 209        } while (pud++, addr = next, addr != end);
 210
 211        start &= PGDIR_MASK;
 212        if (start < floor)
 213                return;
 214        if (ceiling) {
 215                ceiling &= PGDIR_MASK;
 216                if (!ceiling)
 217                        return;
 218        }
 219        if (end - 1 > ceiling - 1)
 220                return;
 221
 222        pud = pud_offset(pgd, start);
 223        pgd_clear(pgd);
 224        pud_free_tlb(tlb, pud, start);
 225}
 226
 227/*
 228 * This function frees user-level page tables of a process.
 229 *
 230 * Must be called with pagetable lock held.
 231 */
 232void free_pgd_range(struct mmu_gather *tlb,
 233                        unsigned long addr, unsigned long end,
 234                        unsigned long floor, unsigned long ceiling)
 235{
 236        pgd_t *pgd;
 237        unsigned long next;
 238        unsigned long start;
 239
 240        /*
 241         * The next few lines have given us lots of grief...
 242         *
 243         * Why are we testing PMD* at this top level?  Because often
 244         * there will be no work to do at all, and we'd prefer not to
 245         * go all the way down to the bottom just to discover that.
 246         *
 247         * Why all these "- 1"s?  Because 0 represents both the bottom
 248         * of the address space and the top of it (using -1 for the
 249         * top wouldn't help much: the masks would do the wrong thing).
 250         * The rule is that addr 0 and floor 0 refer to the bottom of
 251         * the address space, but end 0 and ceiling 0 refer to the top
 252         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 253         * that end 0 case should be mythical).
 254         *
 255         * Wherever addr is brought up or ceiling brought down, we must
 256         * be careful to reject "the opposite 0" before it confuses the
 257         * subsequent tests.  But what about where end is brought down
 258         * by PMD_SIZE below? no, end can't go down to 0 there.
 259         *
 260         * Whereas we round start (addr) and ceiling down, by different
 261         * masks at different levels, in order to test whether a table
 262         * now has no other vmas using it, so can be freed, we don't
 263         * bother to round floor or end up - the tests don't need that.
 264         */
 265
 266        addr &= PMD_MASK;
 267        if (addr < floor) {
 268                addr += PMD_SIZE;
 269                if (!addr)
 270                        return;
 271        }
 272        if (ceiling) {
 273                ceiling &= PMD_MASK;
 274                if (!ceiling)
 275                        return;
 276        }
 277        if (end - 1 > ceiling - 1)
 278                end -= PMD_SIZE;
 279        if (addr > end - 1)
 280                return;
 281
 282        start = addr;
 283        pgd = pgd_offset(tlb->mm, addr);
 284        do {
 285                next = pgd_addr_end(addr, end);
 286                if (pgd_none_or_clear_bad(pgd))
 287                        continue;
 288                free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 289        } while (pgd++, addr = next, addr != end);
 290}
 291
 292void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 293                unsigned long floor, unsigned long ceiling)
 294{
 295        while (vma) {
 296                struct vm_area_struct *next = vma->vm_next;
 297                unsigned long addr = vma->vm_start;
 298
 299                /*
 300                 * Hide vma from rmap and truncate_pagecache before freeing
 301                 * pgtables
 302                 */
 303                anon_vma_unlink(vma);
 304                unlink_file_vma(vma);
 305
 306                if (is_vm_hugetlb_page(vma)) {
 307                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 308                                floor, next? next->vm_start: ceiling);
 309                } else {
 310                        /*
 311                         * Optimization: gather nearby vmas into one call down
 312                         */
 313                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 314                               && !is_vm_hugetlb_page(next)) {
 315                                vma = next;
 316                                next = vma->vm_next;
 317                                anon_vma_unlink(vma);
 318                                unlink_file_vma(vma);
 319                        }
 320                        free_pgd_range(tlb, addr, vma->vm_end,
 321                                floor, next? next->vm_start: ceiling);
 322                }
 323                vma = next;
 324        }
 325}
 326
 327int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 328{
 329        pgtable_t new = pte_alloc_one(mm, address);
 330        if (!new)
 331                return -ENOMEM;
 332
 333        /*
 334         * Ensure all pte setup (eg. pte page lock and page clearing) are
 335         * visible before the pte is made visible to other CPUs by being
 336         * put into page tables.
 337         *
 338         * The other side of the story is the pointer chasing in the page
 339         * table walking code (when walking the page table without locking;
 340         * ie. most of the time). Fortunately, these data accesses consist
 341         * of a chain of data-dependent loads, meaning most CPUs (alpha
 342         * being the notable exception) will already guarantee loads are
 343         * seen in-order. See the alpha page table accessors for the
 344         * smp_read_barrier_depends() barriers in page table walking code.
 345         */
 346        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 347
 348        spin_lock(&mm->page_table_lock);
 349        if (!pmd_present(*pmd)) {       /* Has another populated it ? */
 350                mm->nr_ptes++;
 351                pmd_populate(mm, pmd, new);
 352                new = NULL;
 353        }
 354        spin_unlock(&mm->page_table_lock);
 355        if (new)
 356                pte_free(mm, new);
 357        return 0;
 358}
 359
 360int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 361{
 362        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 363        if (!new)
 364                return -ENOMEM;
 365
 366        smp_wmb(); /* See comment in __pte_alloc */
 367
 368        spin_lock(&init_mm.page_table_lock);
 369        if (!pmd_present(*pmd)) {       /* Has another populated it ? */
 370                pmd_populate_kernel(&init_mm, pmd, new);
 371                new = NULL;
 372        }
 373        spin_unlock(&init_mm.page_table_lock);
 374        if (new)
 375                pte_free_kernel(&init_mm, new);
 376        return 0;
 377}
 378
 379static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
 380{
 381        if (file_rss)
 382                add_mm_counter(mm, file_rss, file_rss);
 383        if (anon_rss)
 384                add_mm_counter(mm, anon_rss, anon_rss);
 385}
 386
 387/*
 388 * This function is called to print an error when a bad pte
 389 * is found. For example, we might have a PFN-mapped pte in
 390 * a region that doesn't allow it.
 391 *
 392 * The calling function must still handle the error.
 393 */
 394static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 395                          pte_t pte, struct page *page)
 396{
 397        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 398        pud_t *pud = pud_offset(pgd, addr);
 399        pmd_t *pmd = pmd_offset(pud, addr);
 400        struct address_space *mapping;
 401        pgoff_t index;
 402        static unsigned long resume;
 403        static unsigned long nr_shown;
 404        static unsigned long nr_unshown;
 405
 406        /*
 407         * Allow a burst of 60 reports, then keep quiet for that minute;
 408         * or allow a steady drip of one report per second.
 409         */
 410        if (nr_shown == 60) {
 411                if (time_before(jiffies, resume)) {
 412                        nr_unshown++;
 413                        return;
 414                }
 415                if (nr_unshown) {
 416                        printk(KERN_ALERT
 417                                "BUG: Bad page map: %lu messages suppressed\n",
 418                                nr_unshown);
 419                        nr_unshown = 0;
 420                }
 421                nr_shown = 0;
 422        }
 423        if (nr_shown++ == 0)
 424                resume = jiffies + 60 * HZ;
 425
 426        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 427        index = linear_page_index(vma, addr);
 428
 429        printk(KERN_ALERT
 430                "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 431                current->comm,
 432                (long long)pte_val(pte), (long long)pmd_val(*pmd));
 433        if (page) {
 434                printk(KERN_ALERT
 435                "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
 436                page, (void *)page->flags, page_count(page),
 437                page_mapcount(page), page->mapping, page->index);
 438        }
 439        printk(KERN_ALERT
 440                "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 441                (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 442        /*
 443         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 444         */
 445        if (vma->vm_ops)
 446                print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 447                                (unsigned long)vma->vm_ops->fault);
 448        if (vma->vm_file && vma->vm_file->f_op)
 449                print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 450                                (unsigned long)vma->vm_file->f_op->mmap);
 451        dump_stack();
 452        add_taint(TAINT_BAD_PAGE);
 453}
 454
 455static inline int is_cow_mapping(unsigned int flags)
 456{
 457        return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 458}
 459
 460#ifndef is_zero_pfn
 461static inline int is_zero_pfn(unsigned long pfn)
 462{
 463        return pfn == zero_pfn;
 464}
 465#endif
 466
 467#ifndef my_zero_pfn
 468static inline unsigned long my_zero_pfn(unsigned long addr)
 469{
 470        return zero_pfn;
 471}
 472#endif
 473
 474/*
 475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 476 *
 477 * "Special" mappings do not wish to be associated with a "struct page" (either
 478 * it doesn't exist, or it exists but they don't want to touch it). In this
 479 * case, NULL is returned here. "Normal" mappings do have a struct page.
 480 *
 481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 482 * pte bit, in which case this function is trivial. Secondly, an architecture
 483 * may not have a spare pte bit, which requires a more complicated scheme,
 484 * described below.
 485 *
 486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 487 * special mapping (even if there are underlying and valid "struct pages").
 488 * COWed pages of a VM_PFNMAP are always normal.
 489 *
 490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 493 * mapping will always honor the rule
 494 *
 495 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 496 *
 497 * And for normal mappings this is false.
 498 *
 499 * This restricts such mappings to be a linear translation from virtual address
 500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 501 * as the vma is not a COW mapping; in that case, we know that all ptes are
 502 * special (because none can have been COWed).
 503 *
 504 *
 505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 506 *
 507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 508 * page" backing, however the difference is that _all_ pages with a struct
 509 * page (that is, those where pfn_valid is true) are refcounted and considered
 510 * normal pages by the VM. The disadvantage is that pages are refcounted
 511 * (which can be slower and simply not an option for some PFNMAP users). The
 512 * advantage is that we don't have to follow the strict linearity rule of
 513 * PFNMAP mappings in order to support COWable mappings.
 514 *
 515 */
 516#ifdef __HAVE_ARCH_PTE_SPECIAL
 517# define HAVE_PTE_SPECIAL 1
 518#else
 519# define HAVE_PTE_SPECIAL 0
 520#endif
 521struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 522                                pte_t pte)
 523{
 524        unsigned long pfn = pte_pfn(pte);
 525
 526        if (HAVE_PTE_SPECIAL) {
 527                if (likely(!pte_special(pte)))
 528                        goto check_pfn;
 529                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 530                        return NULL;
 531                if (!is_zero_pfn(pfn))
 532                        print_bad_pte(vma, addr, pte, NULL);
 533                return NULL;
 534        }
 535
 536        /* !HAVE_PTE_SPECIAL case follows: */
 537
 538        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 539                if (vma->vm_flags & VM_MIXEDMAP) {
 540                        if (!pfn_valid(pfn))
 541                                return NULL;
 542                        goto out;
 543                } else {
 544                        unsigned long off;
 545                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 546                        if (pfn == vma->vm_pgoff + off)
 547                                return NULL;
 548                        if (!is_cow_mapping(vma->vm_flags))
 549                                return NULL;
 550                }
 551        }
 552
 553        if (is_zero_pfn(pfn))
 554                return NULL;
 555check_pfn:
 556        if (unlikely(pfn > highest_memmap_pfn)) {
 557                print_bad_pte(vma, addr, pte, NULL);
 558                return NULL;
 559        }
 560
 561        /*
 562         * NOTE! We still have PageReserved() pages in the page tables.
 563         * eg. VDSO mappings can cause them to exist.
 564         */
 565out:
 566        return pfn_to_page(pfn);
 567}
 568
 569/*
 570 * copy one vm_area from one task to the other. Assumes the page tables
 571 * already present in the new task to be cleared in the whole range
 572 * covered by this vma.
 573 */
 574
 575static inline void
 576copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 577                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 578                unsigned long addr, int *rss)
 579{
 580        unsigned long vm_flags = vma->vm_flags;
 581        pte_t pte = *src_pte;
 582        struct page *page;
 583
 584        /* pte contains position in swap or file, so copy. */
 585        if (unlikely(!pte_present(pte))) {
 586                if (!pte_file(pte)) {
 587                        swp_entry_t entry = pte_to_swp_entry(pte);
 588
 589                        swap_duplicate(entry);
 590                        /* make sure dst_mm is on swapoff's mmlist. */
 591                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 592                                spin_lock(&mmlist_lock);
 593                                if (list_empty(&dst_mm->mmlist))
 594                                        list_add(&dst_mm->mmlist,
 595                                                 &src_mm->mmlist);
 596                                spin_unlock(&mmlist_lock);
 597                        }
 598                        if (is_write_migration_entry(entry) &&
 599                                        is_cow_mapping(vm_flags)) {
 600                                /*
 601                                 * COW mappings require pages in both parent
 602                                 * and child to be set to read.
 603                                 */
 604                                make_migration_entry_read(&entry);
 605                                pte = swp_entry_to_pte(entry);
 606                                set_pte_at(src_mm, addr, src_pte, pte);
 607                        }
 608                }
 609                goto out_set_pte;
 610        }
 611
 612        /*
 613         * If it's a COW mapping, write protect it both
 614         * in the parent and the child
 615         */
 616        if (is_cow_mapping(vm_flags)) {
 617                ptep_set_wrprotect(src_mm, addr, src_pte);
 618                pte = pte_wrprotect(pte);
 619        }
 620
 621        /*
 622         * If it's a shared mapping, mark it clean in
 623         * the child
 624         */
 625        if (vm_flags & VM_SHARED)
 626                pte = pte_mkclean(pte);
 627        pte = pte_mkold(pte);
 628
 629        page = vm_normal_page(vma, addr, pte);
 630        if (page) {
 631                get_page(page);
 632                page_dup_rmap(page);
 633                rss[PageAnon(page)]++;
 634        }
 635
 636out_set_pte:
 637        set_pte_at(dst_mm, addr, dst_pte, pte);
 638}
 639
 640static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 641                pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 642                unsigned long addr, unsigned long end)
 643{
 644        pte_t *orig_src_pte, *orig_dst_pte;
 645        pte_t *src_pte, *dst_pte;
 646        spinlock_t *src_ptl, *dst_ptl;
 647        int progress = 0;
 648        int rss[2];
 649
 650again:
 651        rss[1] = rss[0] = 0;
 652        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 653        if (!dst_pte)
 654                return -ENOMEM;
 655        src_pte = pte_offset_map_nested(src_pmd, addr);
 656        src_ptl = pte_lockptr(src_mm, src_pmd);
 657        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 658        orig_src_pte = src_pte;
 659        orig_dst_pte = dst_pte;
 660        arch_enter_lazy_mmu_mode();
 661
 662        do {
 663                /*
 664                 * We are holding two locks at this point - either of them
 665                 * could generate latencies in another task on another CPU.
 666                 */
 667                if (progress >= 32) {
 668                        progress = 0;
 669                        if (need_resched() ||
 670                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 671                                break;
 672                }
 673                if (pte_none(*src_pte)) {
 674                        progress++;
 675                        continue;
 676                }
 677                copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
 678                progress += 8;
 679        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 680
 681        arch_leave_lazy_mmu_mode();
 682        spin_unlock(src_ptl);
 683        pte_unmap_nested(orig_src_pte);
 684        add_mm_rss(dst_mm, rss[0], rss[1]);
 685        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 686        cond_resched();
 687        if (addr != end)
 688                goto again;
 689        return 0;
 690}
 691
 692static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 693                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 694                unsigned long addr, unsigned long end)
 695{
 696        pmd_t *src_pmd, *dst_pmd;
 697        unsigned long next;
 698
 699        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 700        if (!dst_pmd)
 701                return -ENOMEM;
 702        src_pmd = pmd_offset(src_pud, addr);
 703        do {
 704                next = pmd_addr_end(addr, end);
 705                if (pmd_none_or_clear_bad(src_pmd))
 706                        continue;
 707                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 708                                                vma, addr, next))
 709                        return -ENOMEM;
 710        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 711        return 0;
 712}
 713
 714static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 715                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 716                unsigned long addr, unsigned long end)
 717{
 718        pud_t *src_pud, *dst_pud;
 719        unsigned long next;
 720
 721        dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 722        if (!dst_pud)
 723                return -ENOMEM;
 724        src_pud = pud_offset(src_pgd, addr);
 725        do {
 726                next = pud_addr_end(addr, end);
 727                if (pud_none_or_clear_bad(src_pud))
 728                        continue;
 729                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 730                                                vma, addr, next))
 731                        return -ENOMEM;
 732        } while (dst_pud++, src_pud++, addr = next, addr != end);
 733        return 0;
 734}
 735
 736int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 737                struct vm_area_struct *vma)
 738{
 739        pgd_t *src_pgd, *dst_pgd;
 740        unsigned long next;
 741        unsigned long addr = vma->vm_start;
 742        unsigned long end = vma->vm_end;
 743        int ret;
 744
 745        /*
 746         * Don't copy ptes where a page fault will fill them correctly.
 747         * Fork becomes much lighter when there are big shared or private
 748         * readonly mappings. The tradeoff is that copy_page_range is more
 749         * efficient than faulting.
 750         */
 751        if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
 752                if (!vma->anon_vma)
 753                        return 0;
 754        }
 755
 756        if (is_vm_hugetlb_page(vma))
 757                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 758
 759        if (unlikely(is_pfn_mapping(vma))) {
 760                /*
 761                 * We do not free on error cases below as remove_vma
 762                 * gets called on error from higher level routine
 763                 */
 764                ret = track_pfn_vma_copy(vma);
 765                if (ret)
 766                        return ret;
 767        }
 768
 769        /*
 770         * We need to invalidate the secondary MMU mappings only when
 771         * there could be a permission downgrade on the ptes of the
 772         * parent mm. And a permission downgrade will only happen if
 773         * is_cow_mapping() returns true.
 774         */
 775        if (is_cow_mapping(vma->vm_flags))
 776                mmu_notifier_invalidate_range_start(src_mm, addr, end);
 777
 778        ret = 0;
 779        dst_pgd = pgd_offset(dst_mm, addr);
 780        src_pgd = pgd_offset(src_mm, addr);
 781        do {
 782                next = pgd_addr_end(addr, end);
 783                if (pgd_none_or_clear_bad(src_pgd))
 784                        continue;
 785                if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
 786                                            vma, addr, next))) {
 787                        ret = -ENOMEM;
 788                        break;
 789                }
 790        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
 791
 792        if (is_cow_mapping(vma->vm_flags))
 793                mmu_notifier_invalidate_range_end(src_mm,
 794                                                  vma->vm_start, end);
 795        return ret;
 796}
 797
 798static unsigned long zap_pte_range(struct mmu_gather *tlb,
 799                                struct vm_area_struct *vma, pmd_t *pmd,
 800                                unsigned long addr, unsigned long end,
 801                                long *zap_work, struct zap_details *details)
 802{
 803        struct mm_struct *mm = tlb->mm;
 804        pte_t *pte;
 805        spinlock_t *ptl;
 806        int file_rss = 0;
 807        int anon_rss = 0;
 808
 809        pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 810        arch_enter_lazy_mmu_mode();
 811        do {
 812                pte_t ptent = *pte;
 813                if (pte_none(ptent)) {
 814                        (*zap_work)--;
 815                        continue;
 816                }
 817
 818                (*zap_work) -= PAGE_SIZE;
 819
 820                if (pte_present(ptent)) {
 821                        struct page *page;
 822
 823                        page = vm_normal_page(vma, addr, ptent);
 824                        if (unlikely(details) && page) {
 825                                /*
 826                                 * unmap_shared_mapping_pages() wants to
 827                                 * invalidate cache without truncating:
 828                                 * unmap shared but keep private pages.
 829                                 */
 830                                if (details->check_mapping &&
 831                                    details->check_mapping != page->mapping)
 832                                        continue;
 833                                /*
 834                                 * Each page->index must be checked when
 835                                 * invalidating or truncating nonlinear.
 836                                 */
 837                                if (details->nonlinear_vma &&
 838                                    (page->index < details->first_index ||
 839                                     page->index > details->last_index))
 840                                        continue;
 841                        }
 842                        ptent = ptep_get_and_clear_full(mm, addr, pte,
 843                                                        tlb->fullmm);
 844                        tlb_remove_tlb_entry(tlb, pte, addr);
 845                        if (unlikely(!page))
 846                                continue;
 847                        if (unlikely(details) && details->nonlinear_vma
 848                            && linear_page_index(details->nonlinear_vma,
 849                                                addr) != page->index)
 850                                set_pte_at(mm, addr, pte,
 851                                           pgoff_to_pte(page->index));
 852                        if (PageAnon(page))
 853                                anon_rss--;
 854                        else {
 855                                if (pte_dirty(ptent))
 856                                        set_page_dirty(page);
 857                                if (pte_young(ptent) &&
 858                                    likely(!VM_SequentialReadHint(vma)))
 859                                        mark_page_accessed(page);
 860                                file_rss--;
 861                        }
 862                        page_remove_rmap(page);
 863                        if (unlikely(page_mapcount(page) < 0))
 864                                print_bad_pte(vma, addr, ptent, page);
 865                        tlb_remove_page(tlb, page);
 866                        continue;
 867                }
 868                /*
 869                 * If details->check_mapping, we leave swap entries;
 870                 * if details->nonlinear_vma, we leave file entries.
 871                 */
 872                if (unlikely(details))
 873                        continue;
 874                if (pte_file(ptent)) {
 875                        if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
 876                                print_bad_pte(vma, addr, ptent, NULL);
 877                } else if
 878                  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
 879                        print_bad_pte(vma, addr, ptent, NULL);
 880                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 881        } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
 882
 883        add_mm_rss(mm, file_rss, anon_rss);
 884        arch_leave_lazy_mmu_mode();
 885        pte_unmap_unlock(pte - 1, ptl);
 886
 887        return addr;
 888}
 889
 890static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
 891                                struct vm_area_struct *vma, pud_t *pud,
 892                                unsigned long addr, unsigned long end,
 893                                long *zap_work, struct zap_details *details)
 894{
 895        pmd_t *pmd;
 896        unsigned long next;
 897
 898        pmd = pmd_offset(pud, addr);
 899        do {
 900                next = pmd_addr_end(addr, end);
 901                if (pmd_none_or_clear_bad(pmd)) {
 902                        (*zap_work)--;
 903                        continue;
 904                }
 905                next = zap_pte_range(tlb, vma, pmd, addr, next,
 906                                                zap_work, details);
 907        } while (pmd++, addr = next, (addr != end && *zap_work > 0));
 908
 909        return addr;
 910}
 911
 912static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
 913                                struct vm_area_struct *vma, pgd_t *pgd,
 914                                unsigned long addr, unsigned long end,
 915                                long *zap_work, struct zap_details *details)
 916{
 917        pud_t *pud;
 918        unsigned long next;
 919
 920        pud = pud_offset(pgd, addr);
 921        do {
 922                next = pud_addr_end(addr, end);
 923                if (pud_none_or_clear_bad(pud)) {
 924                        (*zap_work)--;
 925                        continue;
 926                }
 927                next = zap_pmd_range(tlb, vma, pud, addr, next,
 928                                                zap_work, details);
 929        } while (pud++, addr = next, (addr != end && *zap_work > 0));
 930
 931        return addr;
 932}
 933
 934static unsigned long unmap_page_range(struct mmu_gather *tlb,
 935                                struct vm_area_struct *vma,
 936                                unsigned long addr, unsigned long end,
 937                                long *zap_work, struct zap_details *details)
 938{
 939        pgd_t *pgd;
 940        unsigned long next;
 941
 942        if (details && !details->check_mapping && !details->nonlinear_vma)
 943                details = NULL;
 944
 945        BUG_ON(addr >= end);
 946        tlb_start_vma(tlb, vma);
 947        pgd = pgd_offset(vma->vm_mm, addr);
 948        do {
 949                next = pgd_addr_end(addr, end);
 950                if (pgd_none_or_clear_bad(pgd)) {
 951                        (*zap_work)--;
 952                        continue;
 953                }
 954                next = zap_pud_range(tlb, vma, pgd, addr, next,
 955                                                zap_work, details);
 956        } while (pgd++, addr = next, (addr != end && *zap_work > 0));
 957        tlb_end_vma(tlb, vma);
 958
 959        return addr;
 960}
 961
 962#ifdef CONFIG_PREEMPT
 963# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
 964#else
 965/* No preempt: go for improved straight-line efficiency */
 966# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
 967#endif
 968
 969/**
 970 * unmap_vmas - unmap a range of memory covered by a list of vma's
 971 * @tlbp: address of the caller's struct mmu_gather
 972 * @vma: the starting vma
 973 * @start_addr: virtual address at which to start unmapping
 974 * @end_addr: virtual address at which to end unmapping
 975 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 976 * @details: details of nonlinear truncation or shared cache invalidation
 977 *
 978 * Returns the end address of the unmapping (restart addr if interrupted).
 979 *
 980 * Unmap all pages in the vma list.
 981 *
 982 * We aim to not hold locks for too long (for scheduling latency reasons).
 983 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
 984 * return the ending mmu_gather to the caller.
 985 *
 986 * Only addresses between `start' and `end' will be unmapped.
 987 *
 988 * The VMA list must be sorted in ascending virtual address order.
 989 *
 990 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 991 * range after unmap_vmas() returns.  So the only responsibility here is to
 992 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 993 * drops the lock and schedules.
 994 */
 995unsigned long unmap_vmas(struct mmu_gather **tlbp,
 996                struct vm_area_struct *vma, unsigned long start_addr,
 997                unsigned long end_addr, unsigned long *nr_accounted,
 998                struct zap_details *details)
 999{
1000        long zap_work = ZAP_BLOCK_SIZE;
1001        unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
1002        int tlb_start_valid = 0;
1003        unsigned long start = start_addr;
1004        spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1005        int fullmm = (*tlbp)->fullmm;
1006        struct mm_struct *mm = vma->vm_mm;
1007
1008        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1009        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1010                unsigned long end;
1011
1012                start = max(vma->vm_start, start_addr);
1013                if (start >= vma->vm_end)
1014                        continue;
1015                end = min(vma->vm_end, end_addr);
1016                if (end <= vma->vm_start)
1017                        continue;
1018
1019                if (vma->vm_flags & VM_ACCOUNT)
1020                        *nr_accounted += (end - start) >> PAGE_SHIFT;
1021
1022                if (unlikely(is_pfn_mapping(vma)))
1023                        untrack_pfn_vma(vma, 0, 0);
1024
1025                while (start != end) {
1026                        if (!tlb_start_valid) {
1027                                tlb_start = start;
1028                                tlb_start_valid = 1;
1029                        }
1030
1031                        if (unlikely(is_vm_hugetlb_page(vma))) {
1032                                /*
1033                                 * It is undesirable to test vma->vm_file as it
1034                                 * should be non-null for valid hugetlb area.
1035                                 * However, vm_file will be NULL in the error
1036                                 * cleanup path of do_mmap_pgoff. When
1037                                 * hugetlbfs ->mmap method fails,
1038                                 * do_mmap_pgoff() nullifies vma->vm_file
1039                                 * before calling this function to clean up.
1040                                 * Since no pte has actually been setup, it is
1041                                 * safe to do nothing in this case.
1042                                 */
1043                                if (vma->vm_file) {
1044                                        unmap_hugepage_range(vma, start, end, NULL);
1045                                        zap_work -= (end - start) /
1046                                        pages_per_huge_page(hstate_vma(vma));
1047                                }
1048
1049                                start = end;
1050                        } else
1051                                start = unmap_page_range(*tlbp, vma,
1052                                                start, end, &zap_work, details);
1053
1054                        if (zap_work > 0) {
1055                                BUG_ON(start != end);
1056                                break;
1057                        }
1058
1059                        tlb_finish_mmu(*tlbp, tlb_start, start);
1060
1061                        if (need_resched() ||
1062                                (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1063                                if (i_mmap_lock) {
1064                                        *tlbp = NULL;
1065                                        goto out;
1066                                }
1067                                cond_resched();
1068                        }
1069
1070                        *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1071                        tlb_start_valid = 0;
1072                        zap_work = ZAP_BLOCK_SIZE;
1073                }
1074        }
1075out:
1076        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1077        return start;   /* which is now the end (or restart) address */
1078}
1079
1080/**
1081 * zap_page_range - remove user pages in a given range
1082 * @vma: vm_area_struct holding the applicable pages
1083 * @address: starting address of pages to zap
1084 * @size: number of bytes to zap
1085 * @details: details of nonlinear truncation or shared cache invalidation
1086 */
1087unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1088                unsigned long size, struct zap_details *details)
1089{
1090        struct mm_struct *mm = vma->vm_mm;
1091        struct mmu_gather *tlb;
1092        unsigned long end = address + size;
1093        unsigned long nr_accounted = 0;
1094
1095        lru_add_drain();
1096        tlb = tlb_gather_mmu(mm, 0);
1097        update_hiwater_rss(mm);
1098        end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1099        if (tlb)
1100                tlb_finish_mmu(tlb, address, end);
1101        return end;
1102}
1103
1104/**
1105 * zap_vma_ptes - remove ptes mapping the vma
1106 * @vma: vm_area_struct holding ptes to be zapped
1107 * @address: starting address of pages to zap
1108 * @size: number of bytes to zap
1109 *
1110 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1111 *
1112 * The entire address range must be fully contained within the vma.
1113 *
1114 * Returns 0 if successful.
1115 */
1116int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1117                unsigned long size)
1118{
1119        if (address < vma->vm_start || address + size > vma->vm_end ||
1120                        !(vma->vm_flags & VM_PFNMAP))
1121                return -1;
1122        zap_page_range(vma, address, size, NULL);
1123        return 0;
1124}
1125EXPORT_SYMBOL_GPL(zap_vma_ptes);
1126
1127/*
1128 * Do a quick page-table lookup for a single page.
1129 */
1130struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1131                        unsigned int flags)
1132{
1133        pgd_t *pgd;
1134        pud_t *pud;
1135        pmd_t *pmd;
1136        pte_t *ptep, pte;
1137        spinlock_t *ptl;
1138        struct page *page;
1139        struct mm_struct *mm = vma->vm_mm;
1140
1141        page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1142        if (!IS_ERR(page)) {
1143                BUG_ON(flags & FOLL_GET);
1144                goto out;
1145        }
1146
1147        page = NULL;
1148        pgd = pgd_offset(mm, address);
1149        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1150                goto no_page_table;
1151
1152        pud = pud_offset(pgd, address);
1153        if (pud_none(*pud))
1154                goto no_page_table;
1155        if (pud_huge(*pud)) {
1156                BUG_ON(flags & FOLL_GET);
1157                page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1158                goto out;
1159        }
1160        if (unlikely(pud_bad(*pud)))
1161                goto no_page_table;
1162
1163        pmd = pmd_offset(pud, address);
1164        if (pmd_none(*pmd))
1165                goto no_page_table;
1166        if (pmd_huge(*pmd)) {
1167                BUG_ON(flags & FOLL_GET);
1168                page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1169                goto out;
1170        }
1171        if (unlikely(pmd_bad(*pmd)))
1172                goto no_page_table;
1173
1174        ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1175
1176        pte = *ptep;
1177        if (!pte_present(pte))
1178                goto no_page;
1179        if ((flags & FOLL_WRITE) && !pte_write(pte))
1180                goto unlock;
1181
1182        page = vm_normal_page(vma, address, pte);
1183        if (unlikely(!page)) {
1184                if ((flags & FOLL_DUMP) ||
1185                    !is_zero_pfn(pte_pfn(pte)))
1186                        goto bad_page;
1187                page = pte_page(pte);
1188        }
1189
1190        if (flags & FOLL_GET)
1191                get_page(page);
1192        if (flags & FOLL_TOUCH) {
1193                if ((flags & FOLL_WRITE) &&
1194                    !pte_dirty(pte) && !PageDirty(page))
1195                        set_page_dirty(page);
1196                /*
1197                 * pte_mkyoung() would be more correct here, but atomic care
1198                 * is needed to avoid losing the dirty bit: it is easier to use
1199                 * mark_page_accessed().
1200                 */
1201                mark_page_accessed(page);
1202        }
1203unlock:
1204        pte_unmap_unlock(ptep, ptl);
1205out:
1206        return page;
1207
1208bad_page:
1209        pte_unmap_unlock(ptep, ptl);
1210        return ERR_PTR(-EFAULT);
1211
1212no_page:
1213        pte_unmap_unlock(ptep, ptl);
1214        if (!pte_none(pte))
1215                return page;
1216
1217no_page_table:
1218        /*
1219         * When core dumping an enormous anonymous area that nobody
1220         * has touched so far, we don't want to allocate unnecessary pages or
1221         * page tables.  Return error instead of NULL to skip handle_mm_fault,
1222         * then get_dump_page() will return NULL to leave a hole in the dump.
1223         * But we can only make this optimization where a hole would surely
1224         * be zero-filled if handle_mm_fault() actually did handle it.
1225         */
1226        if ((flags & FOLL_DUMP) &&
1227            (!vma->vm_ops || !vma->vm_ops->fault))
1228                return ERR_PTR(-EFAULT);
1229        return page;
1230}
1231
1232int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1233                     unsigned long start, int nr_pages, unsigned int gup_flags,
1234                     struct page **pages, struct vm_area_struct **vmas)
1235{
1236        int i;
1237        unsigned long vm_flags;
1238
1239        if (nr_pages <= 0)
1240                return 0;
1241
1242        VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1243
1244        /* 
1245         * Require read or write permissions.
1246         * If FOLL_FORCE is set, we only require the "MAY" flags.
1247         */
1248        vm_flags  = (gup_flags & FOLL_WRITE) ?
1249                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1250        vm_flags &= (gup_flags & FOLL_FORCE) ?
1251                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1252        i = 0;
1253
1254        do {
1255                struct vm_area_struct *vma;
1256
1257                vma = find_extend_vma(mm, start);
1258                if (!vma && in_gate_area(tsk, start)) {
1259                        unsigned long pg = start & PAGE_MASK;
1260                        struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1261                        pgd_t *pgd;
1262                        pud_t *pud;
1263                        pmd_t *pmd;
1264                        pte_t *pte;
1265
1266                        /* user gate pages are read-only */
1267                        if (gup_flags & FOLL_WRITE)
1268                                return i ? : -EFAULT;
1269                        if (pg > TASK_SIZE)
1270                                pgd = pgd_offset_k(pg);
1271                        else
1272                                pgd = pgd_offset_gate(mm, pg);
1273                        BUG_ON(pgd_none(*pgd));
1274                        pud = pud_offset(pgd, pg);
1275                        BUG_ON(pud_none(*pud));
1276                        pmd = pmd_offset(pud, pg);
1277                        if (pmd_none(*pmd))
1278                                return i ? : -EFAULT;
1279                        pte = pte_offset_map(pmd, pg);
1280                        if (pte_none(*pte)) {
1281                                pte_unmap(pte);
1282                                return i ? : -EFAULT;
1283                        }
1284                        if (pages) {
1285                                struct page *page = vm_normal_page(gate_vma, start, *pte);
1286                                pages[i] = page;
1287                                if (page)
1288                                        get_page(page);
1289                        }
1290                        pte_unmap(pte);
1291                        if (vmas)
1292                                vmas[i] = gate_vma;
1293                        i++;
1294                        start += PAGE_SIZE;
1295                        nr_pages--;
1296                        continue;
1297                }
1298
1299                if (!vma ||
1300                    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1301                    !(vm_flags & vma->vm_flags))
1302                        return i ? : -EFAULT;
1303
1304                if (is_vm_hugetlb_page(vma)) {
1305                        i = follow_hugetlb_page(mm, vma, pages, vmas,
1306                                        &start, &nr_pages, i, gup_flags);
1307                        continue;
1308                }
1309
1310                do {
1311                        struct page *page;
1312                        unsigned int foll_flags = gup_flags;
1313
1314                        /*
1315                         * If we have a pending SIGKILL, don't keep faulting
1316                         * pages and potentially allocating memory.
1317                         */
1318                        if (unlikely(fatal_signal_pending(current)))
1319                                return i ? i : -ERESTARTSYS;
1320
1321                        cond_resched();
1322                        while (!(page = follow_page(vma, start, foll_flags))) {
1323                                int ret;
1324
1325                                ret = handle_mm_fault(mm, vma, start,
1326                                        (foll_flags & FOLL_WRITE) ?
1327                                        FAULT_FLAG_WRITE : 0);
1328
1329                                if (ret & VM_FAULT_ERROR) {
1330                                        if (ret & VM_FAULT_OOM)
1331                                                return i ? i : -ENOMEM;
1332                                        if (ret &
1333                                            (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1334                                                return i ? i : -EFAULT;
1335                                        BUG();
1336                                }
1337                                if (ret & VM_FAULT_MAJOR)
1338                                        tsk->maj_flt++;
1339                                else
1340                                        tsk->min_flt++;
1341
1342                                /*
1343                                 * The VM_FAULT_WRITE bit tells us that
1344                                 * do_wp_page has broken COW when necessary,
1345                                 * even if maybe_mkwrite decided not to set
1346                                 * pte_write. We can thus safely do subsequent
1347                                 * page lookups as if they were reads. But only
1348                                 * do so when looping for pte_write is futile:
1349                                 * in some cases userspace may also be wanting
1350                                 * to write to the gotten user page, which a
1351                                 * read fault here might prevent (a readonly
1352                                 * page might get reCOWed by userspace write).
1353                                 */
1354                                if ((ret & VM_FAULT_WRITE) &&
1355                                    !(vma->vm_flags & VM_WRITE))
1356                                        foll_flags &= ~FOLL_WRITE;
1357
1358                                cond_resched();
1359                        }
1360                        if (IS_ERR(page))
1361                                return i ? i : PTR_ERR(page);
1362                        if (pages) {
1363                                pages[i] = page;
1364
1365                                flush_anon_page(vma, page, start);
1366                                flush_dcache_page(page);
1367                        }
1368                        if (vmas)
1369                                vmas[i] = vma;
1370                        i++;
1371                        start += PAGE_SIZE;
1372                        nr_pages--;
1373                } while (nr_pages && start < vma->vm_end);
1374        } while (nr_pages);
1375        return i;
1376}
1377
1378/**
1379 * get_user_pages() - pin user pages in memory
1380 * @tsk:        task_struct of target task
1381 * @mm:         mm_struct of target mm
1382 * @start:      starting user address
1383 * @nr_pages:   number of pages from start to pin
1384 * @write:      whether pages will be written to by the caller
1385 * @force:      whether to force write access even if user mapping is
1386 *              readonly. This will result in the page being COWed even
1387 *              in MAP_SHARED mappings. You do not want this.
1388 * @pages:      array that receives pointers to the pages pinned.
1389 *              Should be at least nr_pages long. Or NULL, if caller
1390 *              only intends to ensure the pages are faulted in.
1391 * @vmas:       array of pointers to vmas corresponding to each page.
1392 *              Or NULL if the caller does not require them.
1393 *
1394 * Returns number of pages pinned. This may be fewer than the number
1395 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1396 * were pinned, returns -errno. Each page returned must be released
1397 * with a put_page() call when it is finished with. vmas will only
1398 * remain valid while mmap_sem is held.
1399 *
1400 * Must be called with mmap_sem held for read or write.
1401 *
1402 * get_user_pages walks a process's page tables and takes a reference to
1403 * each struct page that each user address corresponds to at a given
1404 * instant. That is, it takes the page that would be accessed if a user
1405 * thread accesses the given user virtual address at that instant.
1406 *
1407 * This does not guarantee that the page exists in the user mappings when
1408 * get_user_pages returns, and there may even be a completely different
1409 * page there in some cases (eg. if mmapped pagecache has been invalidated
1410 * and subsequently re faulted). However it does guarantee that the page
1411 * won't be freed completely. And mostly callers simply care that the page
1412 * contains data that was valid *at some point in time*. Typically, an IO
1413 * or similar operation cannot guarantee anything stronger anyway because
1414 * locks can't be held over the syscall boundary.
1415 *
1416 * If write=0, the page must not be written to. If the page is written to,
1417 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1418 * after the page is finished with, and before put_page is called.
1419 *
1420 * get_user_pages is typically used for fewer-copy IO operations, to get a
1421 * handle on the memory by some means other than accesses via the user virtual
1422 * addresses. The pages may be submitted for DMA to devices or accessed via
1423 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1424 * use the correct cache flushing APIs.
1425 *
1426 * See also get_user_pages_fast, for performance critical applications.
1427 */
1428int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1429                unsigned long start, int nr_pages, int write, int force,
1430                struct page **pages, struct vm_area_struct **vmas)
1431{
1432        int flags = FOLL_TOUCH;
1433
1434        if (pages)
1435                flags |= FOLL_GET;
1436        if (write)
1437                flags |= FOLL_WRITE;
1438        if (force)
1439                flags |= FOLL_FORCE;
1440
1441        return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1442}
1443EXPORT_SYMBOL(get_user_pages);
1444
1445/**
1446 * get_dump_page() - pin user page in memory while writing it to core dump
1447 * @addr: user address
1448 *
1449 * Returns struct page pointer of user page pinned for dump,
1450 * to be freed afterwards by page_cache_release() or put_page().
1451 *
1452 * Returns NULL on any kind of failure - a hole must then be inserted into
1453 * the corefile, to preserve alignment with its headers; and also returns
1454 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1455 * allowing a hole to be left in the corefile to save diskspace.
1456 *
1457 * Called without mmap_sem, but after all other threads have been killed.
1458 */
1459#ifdef CONFIG_ELF_CORE
1460struct page *get_dump_page(unsigned long addr)
1461{
1462        struct vm_area_struct *vma;
1463        struct page *page;
1464
1465        if (__get_user_pages(current, current->mm, addr, 1,
1466                        FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1467                return NULL;
1468        flush_cache_page(vma, addr, page_to_pfn(page));
1469        return page;
1470}
1471#endif /* CONFIG_ELF_CORE */
1472
1473pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1474                        spinlock_t **ptl)
1475{
1476        pgd_t * pgd = pgd_offset(mm, addr);
1477        pud_t * pud = pud_alloc(mm, pgd, addr);
1478        if (pud) {
1479                pmd_t * pmd = pmd_alloc(mm, pud, addr);
1480                if (pmd)
1481                        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1482        }
1483        return NULL;
1484}
1485
1486/*
1487 * This is the old fallback for page remapping.
1488 *
1489 * For historical reasons, it only allows reserved pages. Only
1490 * old drivers should use this, and they needed to mark their
1491 * pages reserved for the old functions anyway.
1492 */
1493static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1494                        struct page *page, pgprot_t prot)
1495{
1496        struct mm_struct *mm = vma->vm_mm;
1497        int retval;
1498        pte_t *pte;
1499        spinlock_t *ptl;
1500
1501        retval = -EINVAL;
1502        if (PageAnon(page))
1503                goto out;
1504        retval = -ENOMEM;
1505        flush_dcache_page(page);
1506        pte = get_locked_pte(mm, addr, &ptl);
1507        if (!pte)
1508                goto out;
1509        retval = -EBUSY;
1510        if (!pte_none(*pte))
1511                goto out_unlock;
1512
1513        /* Ok, finally just insert the thing.. */
1514        get_page(page);
1515        inc_mm_counter(mm, file_rss);
1516        page_add_file_rmap(page);
1517        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1518
1519        retval = 0;
1520        pte_unmap_unlock(pte, ptl);
1521        return retval;
1522out_unlock:
1523        pte_unmap_unlock(pte, ptl);
1524out:
1525        return retval;
1526}
1527
1528/**
1529 * vm_insert_page - insert single page into user vma
1530 * @vma: user vma to map to
1531 * @addr: target user address of this page
1532 * @page: source kernel page
1533 *
1534 * This allows drivers to insert individual pages they've allocated
1535 * into a user vma.
1536 *
1537 * The page has to be a nice clean _individual_ kernel allocation.
1538 * If you allocate a compound page, you need to have marked it as
1539 * such (__GFP_COMP), or manually just split the page up yourself
1540 * (see split_page()).
1541 *
1542 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1543 * took an arbitrary page protection parameter. This doesn't allow
1544 * that. Your vma protection will have to be set up correctly, which
1545 * means that if you want a shared writable mapping, you'd better
1546 * ask for a shared writable mapping!
1547 *
1548 * The page does not need to be reserved.
1549 */
1550int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1551                        struct page *page)
1552{
1553        if (addr < vma->vm_start || addr >= vma->vm_end)
1554                return -EFAULT;
1555        if (!page_count(page))
1556                return -EINVAL;
1557        vma->vm_flags |= VM_INSERTPAGE;
1558        return insert_page(vma, addr, page, vma->vm_page_prot);
1559}
1560EXPORT_SYMBOL(vm_insert_page);
1561
1562static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1563                        unsigned long pfn, pgprot_t prot)
1564{
1565        struct mm_struct *mm = vma->vm_mm;
1566        int retval;
1567        pte_t *pte, entry;
1568        spinlock_t *ptl;
1569
1570        retval = -ENOMEM;
1571        pte = get_locked_pte(mm, addr, &ptl);
1572        if (!pte)
1573                goto out;
1574        retval = -EBUSY;
1575        if (!pte_none(*pte))
1576                goto out_unlock;
1577
1578        /* Ok, finally just insert the thing.. */
1579        entry = pte_mkspecial(pfn_pte(pfn, prot));
1580        set_pte_at(mm, addr, pte, entry);
1581        update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1582
1583        retval = 0;
1584out_unlock:
1585        pte_unmap_unlock(pte, ptl);
1586out:
1587        return retval;
1588}
1589
1590/**
1591 * vm_insert_pfn - insert single pfn into user vma
1592 * @vma: user vma to map to
1593 * @addr: target user address of this page
1594 * @pfn: source kernel pfn
1595 *
1596 * Similar to vm_inert_page, this allows drivers to insert individual pages
1597 * they've allocated into a user vma. Same comments apply.
1598 *
1599 * This function should only be called from a vm_ops->fault handler, and
1600 * in that case the handler should return NULL.
1601 *
1602 * vma cannot be a COW mapping.
1603 *
1604 * As this is called only for pages that do not currently exist, we
1605 * do not need to flush old virtual caches or the TLB.
1606 */
1607int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1608                        unsigned long pfn)
1609{
1610        int ret;
1611        pgprot_t pgprot = vma->vm_page_prot;
1612        /*
1613         * Technically, architectures with pte_special can avoid all these
1614         * restrictions (same for remap_pfn_range).  However we would like
1615         * consistency in testing and feature parity among all, so we should
1616         * try to keep these invariants in place for everybody.
1617         */
1618        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1619        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1620                                                (VM_PFNMAP|VM_MIXEDMAP));
1621        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1622        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1623
1624        if (addr < vma->vm_start || addr >= vma->vm_end)
1625                return -EFAULT;
1626        if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1627                return -EINVAL;
1628
1629        ret = insert_pfn(vma, addr, pfn, pgprot);
1630
1631        if (ret)
1632                untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1633
1634        return ret;
1635}
1636EXPORT_SYMBOL(vm_insert_pfn);
1637
1638int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1639                        unsigned long pfn)
1640{
1641        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1642
1643        if (addr < vma->vm_start || addr >= vma->vm_end)
1644                return -EFAULT;
1645
1646        /*
1647         * If we don't have pte special, then we have to use the pfn_valid()
1648         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1649         * refcount the page if pfn_valid is true (hence insert_page rather
1650         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1651         * without pte special, it would there be refcounted as a normal page.
1652         */
1653        if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1654                struct page *page;
1655
1656                page = pfn_to_page(pfn);
1657                return insert_page(vma, addr, page, vma->vm_page_prot);
1658        }
1659        return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660}
1661EXPORT_SYMBOL(vm_insert_mixed);
1662
1663/*
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1667 */
1668static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669                        unsigned long addr, unsigned long end,
1670                        unsigned long pfn, pgprot_t prot)
1671{
1672        pte_t *pte;
1673        spinlock_t *ptl;
1674
1675        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676        if (!pte)
1677                return -ENOMEM;
1678        arch_enter_lazy_mmu_mode();
1679        do {
1680                BUG_ON(!pte_none(*pte));
1681                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682                pfn++;
1683        } while (pte++, addr += PAGE_SIZE, addr != end);
1684        arch_leave_lazy_mmu_mode();
1685        pte_unmap_unlock(pte - 1, ptl);
1686        return 0;
1687}
1688
1689static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690                        unsigned long addr, unsigned long end,
1691                        unsigned long pfn, pgprot_t prot)
1692{
1693        pmd_t *pmd;
1694        unsigned long next;
1695
1696        pfn -= addr >> PAGE_SHIFT;
1697        pmd = pmd_alloc(mm, pud, addr);
1698        if (!pmd)
1699                return -ENOMEM;
1700        do {
1701                next = pmd_addr_end(addr, end);
1702                if (remap_pte_range(mm, pmd, addr, next,
1703                                pfn + (addr >> PAGE_SHIFT), prot))
1704                        return -ENOMEM;
1705        } while (pmd++, addr = next, addr != end);
1706        return 0;
1707}
1708
1709static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1710                        unsigned long addr, unsigned long end,
1711                        unsigned long pfn, pgprot_t prot)
1712{
1713        pud_t *pud;
1714        unsigned long next;
1715
1716        pfn -= addr >> PAGE_SHIFT;
1717        pud = pud_alloc(mm, pgd, addr);
1718        if (!pud)
1719                return -ENOMEM;
1720        do {
1721                next = pud_addr_end(addr, end);
1722                if (remap_pmd_range(mm, pud, addr, next,
1723                                pfn + (addr >> PAGE_SHIFT), prot))
1724                        return -ENOMEM;
1725        } while (pud++, addr = next, addr != end);
1726        return 0;
1727}
1728
1729/**
1730 * remap_pfn_range - remap kernel memory to userspace
1731 * @vma: user vma to map to
1732 * @addr: target user address to start at
1733 * @pfn: physical address of kernel memory
1734 * @size: size of map area
1735 * @prot: page protection flags for this mapping
1736 *
1737 *  Note: this is only safe if the mm semaphore is held when called.
1738 */
1739int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1740                    unsigned long pfn, unsigned long size, pgprot_t prot)
1741{
1742        pgd_t *pgd;
1743        unsigned long next;
1744        unsigned long end = addr + PAGE_ALIGN(size);
1745        struct mm_struct *mm = vma->vm_mm;
1746        int err;
1747
1748        /*
1749         * Physically remapped pages are special. Tell the
1750         * rest of the world about it:
1751         *   VM_IO tells people not to look at these pages
1752         *      (accesses can have side effects).
1753         *   VM_RESERVED is specified all over the place, because
1754         *      in 2.4 it kept swapout's vma scan off this vma; but
1755         *      in 2.6 the LRU scan won't even find its pages, so this
1756         *      flag means no more than count its pages in reserved_vm,
1757         *      and omit it from core dump, even when VM_IO turned off.
1758         *   VM_PFNMAP tells the core MM that the base pages are just
1759         *      raw PFN mappings, and do not have a "struct page" associated
1760         *      with them.
1761         *
1762         * There's a horrible special case to handle copy-on-write
1763         * behaviour that some programs depend on. We mark the "original"
1764         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765         */
1766        if (addr == vma->vm_start && end == vma->vm_end) {
1767                vma->vm_pgoff = pfn;
1768                vma->vm_flags |= VM_PFN_AT_MMAP;
1769        } else if (is_cow_mapping(vma->vm_flags))
1770                return -EINVAL;
1771
1772        vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1773
1774        err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1775        if (err) {
1776                /*
1777                 * To indicate that track_pfn related cleanup is not
1778                 * needed from higher level routine calling unmap_vmas
1779                 */
1780                vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1781                vma->vm_flags &= ~VM_PFN_AT_MMAP;
1782                return -EINVAL;
1783        }
1784
1785        BUG_ON(addr >= end);
1786        pfn -= addr >> PAGE_SHIFT;
1787        pgd = pgd_offset(mm, addr);
1788        flush_cache_range(vma, addr, end);
1789        do {
1790                next = pgd_addr_end(addr, end);
1791                err = remap_pud_range(mm, pgd, addr, next,
1792                                pfn + (addr >> PAGE_SHIFT), prot);
1793                if (err)
1794                        break;
1795        } while (pgd++, addr = next, addr != end);
1796
1797        if (err)
1798                untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1799
1800        return err;
1801}
1802EXPORT_SYMBOL(remap_pfn_range);
1803
1804static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1805                                     unsigned long addr, unsigned long end,
1806                                     pte_fn_t fn, void *data)
1807{
1808        pte_t *pte;
1809        int err;
1810        pgtable_t token;
1811        spinlock_t *uninitialized_var(ptl);
1812
1813        pte = (mm == &init_mm) ?
1814                pte_alloc_kernel(pmd, addr) :
1815                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1816        if (!pte)
1817                return -ENOMEM;
1818
1819        BUG_ON(pmd_huge(*pmd));
1820
1821        arch_enter_lazy_mmu_mode();
1822
1823        token = pmd_pgtable(*pmd);
1824
1825        do {
1826                err = fn(pte++, token, addr, data);
1827                if (err)
1828                        break;
1829        } while (addr += PAGE_SIZE, addr != end);
1830
1831        arch_leave_lazy_mmu_mode();
1832
1833        if (mm != &init_mm)
1834                pte_unmap_unlock(pte-1, ptl);
1835        return err;
1836}
1837
1838static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1839                                     unsigned long addr, unsigned long end,
1840                                     pte_fn_t fn, void *data)
1841{
1842        pmd_t *pmd;
1843        unsigned long next;
1844        int err;
1845
1846        BUG_ON(pud_huge(*pud));
1847
1848        pmd = pmd_alloc(mm, pud, addr);
1849        if (!pmd)
1850                return -ENOMEM;
1851        do {
1852                next = pmd_addr_end(addr, end);
1853                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1854                if (err)
1855                        break;
1856        } while (pmd++, addr = next, addr != end);
1857        return err;
1858}
1859
1860static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1861                                     unsigned long addr, unsigned long end,
1862                                     pte_fn_t fn, void *data)
1863{
1864        pud_t *pud;
1865        unsigned long next;
1866        int err;
1867
1868        pud = pud_alloc(mm, pgd, addr);
1869        if (!pud)
1870                return -ENOMEM;
1871        do {
1872                next = pud_addr_end(addr, end);
1873                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1874                if (err)
1875                        break;
1876        } while (pud++, addr = next, addr != end);
1877        return err;
1878}
1879
1880/*
1881 * Scan a region of virtual memory, filling in page tables as necessary
1882 * and calling a provided function on each leaf page table.
1883 */
1884int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1885                        unsigned long size, pte_fn_t fn, void *data)
1886{
1887        pgd_t *pgd;
1888        unsigned long next;
1889        unsigned long start = addr, end = addr + size;
1890        int err;
1891
1892        BUG_ON(addr >= end);
1893        mmu_notifier_invalidate_range_start(mm, start, end);
1894        pgd = pgd_offset(mm, addr);
1895        do {
1896                next = pgd_addr_end(addr, end);
1897                err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1898                if (err)
1899                        break;
1900        } while (pgd++, addr = next, addr != end);
1901        mmu_notifier_invalidate_range_end(mm, start, end);
1902        return err;
1903}
1904EXPORT_SYMBOL_GPL(apply_to_page_range);
1905
1906/*
1907 * handle_pte_fault chooses page fault handler according to an entry
1908 * which was read non-atomically.  Before making any commitment, on
1909 * those architectures or configurations (e.g. i386 with PAE) which
1910 * might give a mix of unmatched parts, do_swap_page and do_file_page
1911 * must check under lock before unmapping the pte and proceeding
1912 * (but do_wp_page is only called after already making such a check;
1913 * and do_anonymous_page and do_no_page can safely check later on).
1914 */
1915static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1916                                pte_t *page_table, pte_t orig_pte)
1917{
1918        int same = 1;
1919#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1920        if (sizeof(pte_t) > sizeof(unsigned long)) {
1921                spinlock_t *ptl = pte_lockptr(mm, pmd);
1922                spin_lock(ptl);
1923                same = pte_same(*page_table, orig_pte);
1924                spin_unlock(ptl);
1925        }
1926#endif
1927        pte_unmap(page_table);
1928        return same;
1929}
1930
1931/*
1932 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1933 * servicing faults for write access.  In the normal case, do always want
1934 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1935 * that do not have writing enabled, when used by access_process_vm.
1936 */
1937static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1938{
1939        if (likely(vma->vm_flags & VM_WRITE))
1940                pte = pte_mkwrite(pte);
1941        return pte;
1942}
1943
1944static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1945{
1946        /*
1947         * If the source page was a PFN mapping, we don't have
1948         * a "struct page" for it. We do a best-effort copy by
1949         * just copying from the original user address. If that
1950         * fails, we just zero-fill it. Live with it.
1951         */
1952        if (unlikely(!src)) {
1953                void *kaddr = kmap_atomic(dst, KM_USER0);
1954                void __user *uaddr = (void __user *)(va & PAGE_MASK);
1955
1956                /*
1957                 * This really shouldn't fail, because the page is there
1958                 * in the page tables. But it might just be unreadable,
1959                 * in which case we just give up and fill the result with
1960                 * zeroes.
1961                 */
1962                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1963                        memset(kaddr, 0, PAGE_SIZE);
1964                kunmap_atomic(kaddr, KM_USER0);
1965                flush_dcache_page(dst);
1966        } else
1967                copy_user_highpage(dst, src, va, vma);
1968}
1969
1970/*
1971 * This routine handles present pages, when users try to write
1972 * to a shared page. It is done by copying the page to a new address
1973 * and decrementing the shared-page counter for the old page.
1974 *
1975 * Note that this routine assumes that the protection checks have been
1976 * done by the caller (the low-level page fault routine in most cases).
1977 * Thus we can safely just mark it writable once we've done any necessary
1978 * COW.
1979 *
1980 * We also mark the page dirty at this point even though the page will
1981 * change only once the write actually happens. This avoids a few races,
1982 * and potentially makes it more efficient.
1983 *
1984 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1985 * but allow concurrent faults), with pte both mapped and locked.
1986 * We return with mmap_sem still held, but pte unmapped and unlocked.
1987 */
1988static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989                unsigned long address, pte_t *page_table, pmd_t *pmd,
1990                spinlock_t *ptl, pte_t orig_pte)
1991{
1992        struct page *old_page, *new_page;
1993        pte_t entry;
1994        int reuse = 0, ret = 0;
1995        int page_mkwrite = 0;
1996        struct page *dirty_page = NULL;
1997
1998        old_page = vm_normal_page(vma, address, orig_pte);
1999        if (!old_page) {
2000                /*
2001                 * VM_MIXEDMAP !pfn_valid() case
2002                 *
2003                 * We should not cow pages in a shared writeable mapping.
2004                 * Just mark the pages writable as we can't do any dirty
2005                 * accounting on raw pfn maps.
2006                 */
2007                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2008                                     (VM_WRITE|VM_SHARED))
2009                        goto reuse;
2010                goto gotten;
2011        }
2012
2013        /*
2014         * Take out anonymous pages first, anonymous shared vmas are
2015         * not dirty accountable.
2016         */
2017        if (PageAnon(old_page) && !PageKsm(old_page)) {
2018                if (!trylock_page(old_page)) {
2019                        page_cache_get(old_page);
2020                        pte_unmap_unlock(page_table, ptl);
2021                        lock_page(old_page);
2022                        page_table = pte_offset_map_lock(mm, pmd, address,
2023                                                         &ptl);
2024                        if (!pte_same(*page_table, orig_pte)) {
2025                                unlock_page(old_page);
2026                                page_cache_release(old_page);
2027                                goto unlock;
2028                        }
2029                        page_cache_release(old_page);
2030                }
2031                reuse = reuse_swap_page(old_page);
2032                unlock_page(old_page);
2033        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2034                                        (VM_WRITE|VM_SHARED))) {
2035                /*
2036                 * Only catch write-faults on shared writable pages,
2037                 * read-only shared pages can get COWed by
2038                 * get_user_pages(.write=1, .force=1).
2039                 */
2040                if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2041                        struct vm_fault vmf;
2042                        int tmp;
2043
2044                        vmf.virtual_address = (void __user *)(address &
2045                                                                PAGE_MASK);
2046                        vmf.pgoff = old_page->index;
2047                        vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2048                        vmf.page = old_page;
2049
2050                        /*
2051                         * Notify the address space that the page is about to
2052                         * become writable so that it can prohibit this or wait
2053                         * for the page to get into an appropriate state.
2054                         *
2055                         * We do this without the lock held, so that it can
2056                         * sleep if it needs to.
2057                         */
2058                        page_cache_get(old_page);
2059                        pte_unmap_unlock(page_table, ptl);
2060
2061                        tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2062                        if (unlikely(tmp &
2063                                        (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2064                                ret = tmp;
2065                                goto unwritable_page;
2066                        }
2067                        if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2068                                lock_page(old_page);
2069                                if (!old_page->mapping) {
2070                                        ret = 0; /* retry the fault */
2071                                        unlock_page(old_page);
2072                                        goto unwritable_page;
2073                                }
2074                        } else
2075                                VM_BUG_ON(!PageLocked(old_page));
2076
2077                        /*
2078                         * Since we dropped the lock we need to revalidate
2079                         * the PTE as someone else may have changed it.  If
2080                         * they did, we just return, as we can count on the
2081                         * MMU to tell us if they didn't also make it writable.
2082                         */
2083                        page_table = pte_offset_map_lock(mm, pmd, address,
2084                                                         &ptl);
2085                        if (!pte_same(*page_table, orig_pte)) {
2086                                unlock_page(old_page);
2087                                page_cache_release(old_page);
2088                                goto unlock;
2089                        }
2090
2091                        page_mkwrite = 1;
2092                }
2093                dirty_page = old_page;
2094                get_page(dirty_page);
2095                reuse = 1;
2096        }
2097
2098        if (reuse) {
2099reuse:
2100                flush_cache_page(vma, address, pte_pfn(orig_pte));
2101                entry = pte_mkyoung(orig_pte);
2102                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2103                if (ptep_set_access_flags(vma, address, page_table, entry,1))
2104                        update_mmu_cache(vma, address, entry);
2105                ret |= VM_FAULT_WRITE;
2106                goto unlock;
2107        }
2108
2109        /*
2110         * Ok, we need to copy. Oh, well..
2111         */
2112        page_cache_get(old_page);
2113gotten:
2114        pte_unmap_unlock(page_table, ptl);
2115
2116        if (unlikely(anon_vma_prepare(vma)))
2117                goto oom;
2118
2119        if (is_zero_pfn(pte_pfn(orig_pte))) {
2120                new_page = alloc_zeroed_user_highpage_movable(vma, address);
2121                if (!new_page)
2122                        goto oom;
2123        } else {
2124                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2125                if (!new_page)
2126                        goto oom;
2127                cow_user_page(new_page, old_page, address, vma);
2128        }
2129        __SetPageUptodate(new_page);
2130
2131        /*
2132         * Don't let another task, with possibly unlocked vma,
2133         * keep the mlocked page.
2134         */
2135        if ((vma->vm_flags & VM_LOCKED) && old_page) {
2136                lock_page(old_page);    /* for LRU manipulation */
2137                clear_page_mlock(old_page);
2138                unlock_page(old_page);
2139        }
2140
2141        if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2142                goto oom_free_new;
2143
2144        /*
2145         * Re-check the pte - we dropped the lock
2146         */
2147        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2148        if (likely(pte_same(*page_table, orig_pte))) {
2149                if (old_page) {
2150                        if (!PageAnon(old_page)) {
2151                                dec_mm_counter(mm, file_rss);
2152                                inc_mm_counter(mm, anon_rss);
2153                        }
2154                } else
2155                        inc_mm_counter(mm, anon_rss);
2156                flush_cache_page(vma, address, pte_pfn(orig_pte));
2157                entry = mk_pte(new_page, vma->vm_page_prot);
2158                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2159                /*
2160                 * Clear the pte entry and flush it first, before updating the
2161                 * pte with the new entry. This will avoid a race condition
2162                 * seen in the presence of one thread doing SMC and another
2163                 * thread doing COW.
2164                 */
2165                ptep_clear_flush(vma, address, page_table);
2166                page_add_new_anon_rmap(new_page, vma, address);
2167                /*
2168                 * We call the notify macro here because, when using secondary
2169                 * mmu page tables (such as kvm shadow page tables), we want the
2170                 * new page to be mapped directly into the secondary page table.
2171                 */
2172                set_pte_at_notify(mm, address, page_table, entry);
2173                update_mmu_cache(vma, address, entry);
2174                if (old_page) {
2175                        /*
2176                         * Only after switching the pte to the new page may
2177                         * we remove the mapcount here. Otherwise another
2178                         * process may come and find the rmap count decremented
2179                         * before the pte is switched to the new page, and
2180                         * "reuse" the old page writing into it while our pte
2181                         * here still points into it and can be read by other
2182                         * threads.
2183                         *
2184                         * The critical issue is to order this
2185                         * page_remove_rmap with the ptp_clear_flush above.
2186                         * Those stores are ordered by (if nothing else,)
2187                         * the barrier present in the atomic_add_negative
2188                         * in page_remove_rmap.
2189                         *
2190                         * Then the TLB flush in ptep_clear_flush ensures that
2191                         * no process can access the old page before the
2192                         * decremented mapcount is visible. And the old page
2193                         * cannot be reused until after the decremented
2194                         * mapcount is visible. So transitively, TLBs to
2195                         * old page will be flushed before it can be reused.
2196                         */
2197                        page_remove_rmap(old_page);
2198                }
2199
2200                /* Free the old page.. */
2201                new_page = old_page;
2202                ret |= VM_FAULT_WRITE;
2203        } else
2204                mem_cgroup_uncharge_page(new_page);
2205
2206        if (new_page)
2207                page_cache_release(new_page);
2208        if (old_page)
2209                page_cache_release(old_page);
2210unlock:
2211        pte_unmap_unlock(page_table, ptl);
2212        if (dirty_page) {
2213                /*
2214                 * Yes, Virginia, this is actually required to prevent a race
2215                 * with clear_page_dirty_for_io() from clearing the page dirty
2216                 * bit after it clear all dirty ptes, but before a racing
2217                 * do_wp_page installs a dirty pte.
2218                 *
2219                 * do_no_page is protected similarly.
2220                 */
2221                if (!page_mkwrite) {
2222                        wait_on_page_locked(dirty_page);
2223                        set_page_dirty_balance(dirty_page, page_mkwrite);
2224                }
2225                put_page(dirty_page);
2226                if (page_mkwrite) {
2227                        struct address_space *mapping = dirty_page->mapping;
2228
2229                        set_page_dirty(dirty_page);
2230                        unlock_page(dirty_page);
2231                        page_cache_release(dirty_page);
2232                        if (mapping)    {
2233                                /*
2234                                 * Some device drivers do not set page.mapping
2235                                 * but still dirty their pages
2236                                 */
2237                                balance_dirty_pages_ratelimited(mapping);
2238                        }
2239                }
2240
2241                /* file_update_time outside page_lock */
2242                if (vma->vm_file)
2243                        file_update_time(vma->vm_file);
2244        }
2245        return ret;
2246oom_free_new:
2247        page_cache_release(new_page);
2248oom:
2249        if (old_page) {
2250                if (page_mkwrite) {
2251                        unlock_page(old_page);
2252                        page_cache_release(old_page);
2253                }
2254                page_cache_release(old_page);
2255        }
2256        return VM_FAULT_OOM;
2257
2258unwritable_page:
2259        page_cache_release(old_page);
2260        return ret;
2261}
2262
2263/*
2264 * Helper functions for unmap_mapping_range().
2265 *
2266 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2267 *
2268 * We have to restart searching the prio_tree whenever we drop the lock,
2269 * since the iterator is only valid while the lock is held, and anyway
2270 * a later vma might be split and reinserted earlier while lock dropped.
2271 *
2272 * The list of nonlinear vmas could be handled more efficiently, using
2273 * a placeholder, but handle it in the same way until a need is shown.
2274 * It is important to search the prio_tree before nonlinear list: a vma
2275 * may become nonlinear and be shifted from prio_tree to nonlinear list
2276 * while the lock is dropped; but never shifted from list to prio_tree.
2277 *
2278 * In order to make forward progress despite restarting the search,
2279 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2280 * quickly skip it next time around.  Since the prio_tree search only
2281 * shows us those vmas affected by unmapping the range in question, we
2282 * can't efficiently keep all vmas in step with mapping->truncate_count:
2283 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2284 * mapping->truncate_count and vma->vm_truncate_count are protected by
2285 * i_mmap_lock.
2286 *
2287 * In order to make forward progress despite repeatedly restarting some
2288 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2289 * and restart from that address when we reach that vma again.  It might
2290 * have been split or merged, shrunk or extended, but never shifted: so
2291 * restart_addr remains valid so long as it remains in the vma's range.
2292 * unmap_mapping_range forces truncate_count to leap over page-aligned
2293 * values so we can save vma's restart_addr in its truncate_count field.
2294 */
2295#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2296
2297static void reset_vma_truncate_counts(struct address_space *mapping)
2298{
2299        struct vm_area_struct *vma;
2300        struct prio_tree_iter iter;
2301
2302        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2303                vma->vm_truncate_count = 0;
2304        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2305                vma->vm_truncate_count = 0;
2306}
2307
2308static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2309                unsigned long start_addr, unsigned long end_addr,
2310                struct zap_details *details)
2311{
2312        unsigned long restart_addr;
2313        int need_break;
2314
2315        /*
2316         * files that support invalidating or truncating portions of the
2317         * file from under mmaped areas must have their ->fault function
2318         * return a locked page (and set VM_FAULT_LOCKED in the return).
2319         * This provides synchronisation against concurrent unmapping here.
2320         */
2321
2322again:
2323        restart_addr = vma->vm_truncate_count;
2324        if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2325                start_addr = restart_addr;
2326                if (start_addr >= end_addr) {
2327                        /* Top of vma has been split off since last time */
2328                        vma->vm_truncate_count = details->truncate_count;
2329                        return 0;
2330                }
2331        }
2332
2333        restart_addr = zap_page_range(vma, start_addr,
2334                                        end_addr - start_addr, details);
2335        need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2336
2337        if (restart_addr >= end_addr) {
2338                /* We have now completed this vma: mark it so */
2339                vma->vm_truncate_count = details->truncate_count;
2340                if (!need_break)
2341                        return 0;
2342        } else {
2343                /* Note restart_addr in vma's truncate_count field */
2344                vma->vm_truncate_count = restart_addr;
2345                if (!need_break)
2346                        goto again;
2347        }
2348
2349        spin_unlock(details->i_mmap_lock);
2350        cond_resched();
2351        spin_lock(details->i_mmap_lock);
2352        return -EINTR;
2353}
2354
2355static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2356                                            struct zap_details *details)
2357{
2358        struct vm_area_struct *vma;
2359        struct prio_tree_iter iter;
2360        pgoff_t vba, vea, zba, zea;
2361
2362restart:
2363        vma_prio_tree_foreach(vma, &iter, root,
2364                        details->first_index, details->last_index) {
2365                /* Skip quickly over those we have already dealt with */
2366                if (vma->vm_truncate_count == details->truncate_count)
2367                        continue;
2368
2369                vba = vma->vm_pgoff;
2370                vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2371                /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2372                zba = details->first_index;
2373                if (zba < vba)
2374                        zba = vba;
2375                zea = details->last_index;
2376                if (zea > vea)
2377                        zea = vea;
2378
2379                if (unmap_mapping_range_vma(vma,
2380                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2381                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2382                                details) < 0)
2383                        goto restart;
2384        }
2385}
2386
2387static inline void unmap_mapping_range_list(struct list_head *head,
2388                                            struct zap_details *details)
2389{
2390        struct vm_area_struct *vma;
2391
2392        /*
2393         * In nonlinear VMAs there is no correspondence between virtual address
2394         * offset and file offset.  So we must perform an exhaustive search
2395         * across *all* the pages in each nonlinear VMA, not just the pages
2396         * whose virtual address lies outside the file truncation point.
2397         */
2398restart:
2399        list_for_each_entry(vma, head, shared.vm_set.list) {
2400                /* Skip quickly over those we have already dealt with */
2401                if (vma->vm_truncate_count == details->truncate_count)
2402                        continue;
2403                details->nonlinear_vma = vma;
2404                if (unmap_mapping_range_vma(vma, vma->vm_start,
2405                                        vma->vm_end, details) < 0)
2406                        goto restart;
2407        }
2408}
2409
2410/**
2411 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2412 * @mapping: the address space containing mmaps to be unmapped.
2413 * @holebegin: byte in first page to unmap, relative to the start of
2414 * the underlying file.  This will be rounded down to a PAGE_SIZE
2415 * boundary.  Note that this is different from truncate_pagecache(), which
2416 * must keep the partial page.  In contrast, we must get rid of
2417 * partial pages.
2418 * @holelen: size of prospective hole in bytes.  This will be rounded
2419 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2420 * end of the file.
2421 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2422 * but 0 when invalidating pagecache, don't throw away private data.
2423 */
2424void unmap_mapping_range(struct address_space *mapping,
2425                loff_t const holebegin, loff_t const holelen, int even_cows)
2426{
2427        struct zap_details details;
2428        pgoff_t hba = holebegin >> PAGE_SHIFT;
2429        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430
2431        /* Check for overflow. */
2432        if (sizeof(holelen) > sizeof(hlen)) {
2433                long long holeend =
2434                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2435                if (holeend & ~(long long)ULONG_MAX)
2436                        hlen = ULONG_MAX - hba + 1;
2437        }
2438
2439        details.check_mapping = even_cows? NULL: mapping;
2440        details.nonlinear_vma = NULL;
2441        details.first_index = hba;
2442        details.last_index = hba + hlen - 1;
2443        if (details.last_index < details.first_index)
2444                details.last_index = ULONG_MAX;
2445        details.i_mmap_lock = &mapping->i_mmap_lock;
2446
2447        spin_lock(&mapping->i_mmap_lock);
2448
2449        /* Protect against endless unmapping loops */
2450        mapping->truncate_count++;
2451        if (unlikely(is_restart_addr(mapping->truncate_count))) {
2452                if (mapping->truncate_count == 0)
2453                        reset_vma_truncate_counts(mapping);
2454                mapping->truncate_count++;
2455        }
2456        details.truncate_count = mapping->truncate_count;
2457
2458        if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2459                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2460        if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2461                unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2462        spin_unlock(&mapping->i_mmap_lock);
2463}
2464EXPORT_SYMBOL(unmap_mapping_range);
2465
2466int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2467{
2468        struct address_space *mapping = inode->i_mapping;
2469
2470        /*
2471         * If the underlying filesystem is not going to provide
2472         * a way to truncate a range of blocks (punch a hole) -
2473         * we should return failure right now.
2474         */
2475        if (!inode->i_op->truncate_range)
2476                return -ENOSYS;
2477
2478        mutex_lock(&inode->i_mutex);
2479        down_write(&inode->i_alloc_sem);
2480        unmap_mapping_range(mapping, offset, (end - offset), 1);
2481        truncate_inode_pages_range(mapping, offset, end);
2482        unmap_mapping_range(mapping, offset, (end - offset), 1);
2483        inode->i_op->truncate_range(inode, offset, end);
2484        up_write(&inode->i_alloc_sem);
2485        mutex_unlock(&inode->i_mutex);
2486
2487        return 0;
2488}
2489
2490/*
2491 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2492 * but allow concurrent faults), and pte mapped but not yet locked.
2493 * We return with mmap_sem still held, but pte unmapped and unlocked.
2494 */
2495static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2496                unsigned long address, pte_t *page_table, pmd_t *pmd,
2497                unsigned int flags, pte_t orig_pte)
2498{
2499        spinlock_t *ptl;
2500        struct page *page;
2501        swp_entry_t entry;
2502        pte_t pte;
2503        struct mem_cgroup *ptr = NULL;
2504        int ret = 0;
2505
2506        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2507                goto out;
2508
2509        entry = pte_to_swp_entry(orig_pte);
2510        if (unlikely(non_swap_entry(entry))) {
2511                if (is_migration_entry(entry)) {
2512                        migration_entry_wait(mm, pmd, address);
2513                } else if (is_hwpoison_entry(entry)) {
2514                        ret = VM_FAULT_HWPOISON;
2515                } else {
2516                        print_bad_pte(vma, address, orig_pte, NULL);
2517                        ret = VM_FAULT_OOM;
2518                }
2519                goto out;
2520        }
2521        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2522        page = lookup_swap_cache(entry);
2523        if (!page) {
2524                grab_swap_token(mm); /* Contend for token _before_ read-in */
2525                page = swapin_readahead(entry,
2526                                        GFP_HIGHUSER_MOVABLE, vma, address);
2527                if (!page) {
2528                        /*
2529                         * Back out if somebody else faulted in this pte
2530                         * while we released the pte lock.
2531                         */
2532                        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2533                        if (likely(pte_same(*page_table, orig_pte)))
2534                                ret = VM_FAULT_OOM;
2535                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2536                        goto unlock;
2537                }
2538
2539                /* Had to read the page from swap area: Major fault */
2540                ret = VM_FAULT_MAJOR;
2541                count_vm_event(PGMAJFAULT);
2542        } else if (PageHWPoison(page)) {
2543                ret = VM_FAULT_HWPOISON;
2544                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2545                goto out_release;
2546        }
2547
2548        lock_page(page);
2549        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2550
2551        if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2552                ret = VM_FAULT_OOM;
2553                goto out_page;
2554        }
2555
2556        /*
2557         * Back out if somebody else already faulted in this pte.
2558         */
2559        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2560        if (unlikely(!pte_same(*page_table, orig_pte)))
2561                goto out_nomap;
2562
2563        if (unlikely(!PageUptodate(page))) {
2564                ret = VM_FAULT_SIGBUS;
2565                goto out_nomap;
2566        }
2567
2568        /*
2569         * The page isn't present yet, go ahead with the fault.
2570         *
2571         * Be careful about the sequence of operations here.
2572         * To get its accounting right, reuse_swap_page() must be called
2573         * while the page is counted on swap but not yet in mapcount i.e.
2574         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2575         * must be called after the swap_free(), or it will never succeed.
2576         * Because delete_from_swap_page() may be called by reuse_swap_page(),
2577         * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2578         * in page->private. In this case, a record in swap_cgroup  is silently
2579         * discarded at swap_free().
2580         */
2581
2582        inc_mm_counter(mm, anon_rss);
2583        pte = mk_pte(page, vma->vm_page_prot);
2584        if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2585                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2586                flags &= ~FAULT_FLAG_WRITE;
2587        }
2588        flush_icache_page(vma, page);
2589        set_pte_at(mm, address, page_table, pte);
2590        page_add_anon_rmap(page, vma, address);
2591        /* It's better to call commit-charge after rmap is established */
2592        mem_cgroup_commit_charge_swapin(page, ptr);
2593
2594        swap_free(entry);
2595        if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2596                try_to_free_swap(page);
2597        unlock_page(page);
2598
2599        if (flags & FAULT_FLAG_WRITE) {
2600                ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2601                if (ret & VM_FAULT_ERROR)
2602                        ret &= VM_FAULT_ERROR;
2603                goto out;
2604        }
2605
2606        /* No need to invalidate - it was non-present before */
2607        update_mmu_cache(vma, address, pte);
2608unlock:
2609        pte_unmap_unlock(page_table, ptl);
2610out:
2611        return ret;
2612out_nomap:
2613        mem_cgroup_cancel_charge_swapin(ptr);
2614        pte_unmap_unlock(page_table, ptl);
2615out_page:
2616        unlock_page(page);
2617out_release:
2618        page_cache_release(page);
2619        return ret;
2620}
2621
2622/*
2623 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2624 * but allow concurrent faults), and pte mapped but not yet locked.
2625 * We return with mmap_sem still held, but pte unmapped and unlocked.
2626 */
2627static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2628                unsigned long address, pte_t *page_table, pmd_t *pmd,
2629                unsigned int flags)
2630{
2631        struct page *page;
2632        spinlock_t *ptl;
2633        pte_t entry;
2634
2635        if (!(flags & FAULT_FLAG_WRITE)) {
2636                entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2637                                                vma->vm_page_prot));
2638                ptl = pte_lockptr(mm, pmd);
2639                spin_lock(ptl);
2640                if (!pte_none(*page_table))
2641                        goto unlock;
2642                goto setpte;
2643        }
2644
2645        /* Allocate our own private page. */
2646        pte_unmap(page_table);
2647
2648        if (unlikely(anon_vma_prepare(vma)))
2649                goto oom;
2650        page = alloc_zeroed_user_highpage_movable(vma, address);
2651        if (!page)
2652                goto oom;
2653        __SetPageUptodate(page);
2654
2655        if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2656                goto oom_free_page;
2657
2658        entry = mk_pte(page, vma->vm_page_prot);
2659        if (vma->vm_flags & VM_WRITE)
2660                entry = pte_mkwrite(pte_mkdirty(entry));
2661
2662        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2663        if (!pte_none(*page_table))
2664                goto release;
2665
2666        inc_mm_counter(mm, anon_rss);
2667        page_add_new_anon_rmap(page, vma, address);
2668setpte:
2669        set_pte_at(mm, address, page_table, entry);
2670
2671        /* No need to invalidate - it was non-present before */
2672        update_mmu_cache(vma, address, entry);
2673unlock:
2674        pte_unmap_unlock(page_table, ptl);
2675        return 0;
2676release:
2677        mem_cgroup_uncharge_page(page);
2678        page_cache_release(page);
2679        goto unlock;
2680oom_free_page:
2681        page_cache_release(page);
2682oom:
2683        return VM_FAULT_OOM;
2684}
2685
2686/*
2687 * __do_fault() tries to create a new page mapping. It aggressively
2688 * tries to share with existing pages, but makes a separate copy if
2689 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2690 * the next page fault.
2691 *
2692 * As this is called only for pages that do not currently exist, we
2693 * do not need to flush old virtual caches or the TLB.
2694 *
2695 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696 * but allow concurrent faults), and pte neither mapped nor locked.
2697 * We return with mmap_sem still held, but pte unmapped and unlocked.
2698 */
2699static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2700                unsigned long address, pmd_t *pmd,
2701                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2702{
2703        pte_t *page_table;
2704        spinlock_t *ptl;
2705        struct page *page;
2706        pte_t entry;
2707        int anon = 0;
2708        int charged = 0;
2709        struct page *dirty_page = NULL;
2710        struct vm_fault vmf;
2711        int ret;
2712        int page_mkwrite = 0;
2713
2714        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2715        vmf.pgoff = pgoff;
2716        vmf.flags = flags;
2717        vmf.page = NULL;
2718
2719        ret = vma->vm_ops->fault(vma, &vmf);
2720        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2721                return ret;
2722
2723        if (unlikely(PageHWPoison(vmf.page))) {
2724                if (ret & VM_FAULT_LOCKED)
2725                        unlock_page(vmf.page);
2726                return VM_FAULT_HWPOISON;
2727        }
2728
2729        /*
2730         * For consistency in subsequent calls, make the faulted page always
2731         * locked.
2732         */
2733        if (unlikely(!(ret & VM_FAULT_LOCKED)))
2734                lock_page(vmf.page);
2735        else
2736                VM_BUG_ON(!PageLocked(vmf.page));
2737
2738        /*
2739         * Should we do an early C-O-W break?
2740         */
2741        page = vmf.page;
2742        if (flags & FAULT_FLAG_WRITE) {
2743                if (!(vma->vm_flags & VM_SHARED)) {
2744                        anon = 1;
2745                        if (unlikely(anon_vma_prepare(vma))) {
2746                                ret = VM_FAULT_OOM;
2747                                goto out;
2748                        }
2749                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2750                                                vma, address);
2751                        if (!page) {
2752                                ret = VM_FAULT_OOM;
2753                                goto out;
2754                        }
2755                        if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2756                                ret = VM_FAULT_OOM;
2757                                page_cache_release(page);
2758                                goto out;
2759                        }
2760                        charged = 1;
2761                        /*
2762                         * Don't let another task, with possibly unlocked vma,
2763                         * keep the mlocked page.
2764                         */
2765                        if (vma->vm_flags & VM_LOCKED)
2766                                clear_page_mlock(vmf.page);
2767                        copy_user_highpage(page, vmf.page, address, vma);
2768                        __SetPageUptodate(page);
2769                } else {
2770                        /*
2771                         * If the page will be shareable, see if the backing
2772                         * address space wants to know that the page is about
2773                         * to become writable
2774                         */
2775                        if (vma->vm_ops->page_mkwrite) {
2776                                int tmp;
2777
2778                                unlock_page(page);
2779                                vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2780                                tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2781                                if (unlikely(tmp &
2782                                          (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2783                                        ret = tmp;
2784                                        goto unwritable_page;
2785                                }
2786                                if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2787                                        lock_page(page);
2788                                        if (!page->mapping) {
2789                                                ret = 0; /* retry the fault */
2790                                                unlock_page(page);
2791                                                goto unwritable_page;
2792                                        }
2793                                } else
2794                                        VM_BUG_ON(!PageLocked(page));
2795                                page_mkwrite = 1;
2796                        }
2797                }
2798
2799        }
2800
2801        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2802
2803        /*
2804         * This silly early PAGE_DIRTY setting removes a race
2805         * due to the bad i386 page protection. But it's valid
2806         * for other architectures too.
2807         *
2808         * Note that if FAULT_FLAG_WRITE is set, we either now have
2809         * an exclusive copy of the page, or this is a shared mapping,
2810         * so we can make it writable and dirty to avoid having to
2811         * handle that later.
2812         */
2813        /* Only go through if we didn't race with anybody else... */
2814        if (likely(pte_same(*page_table, orig_pte))) {
2815                flush_icache_page(vma, page);
2816                entry = mk_pte(page, vma->vm_page_prot);
2817                if (flags & FAULT_FLAG_WRITE)
2818                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2819                if (anon) {
2820                        inc_mm_counter(mm, anon_rss);
2821                        page_add_new_anon_rmap(page, vma, address);
2822                } else {
2823                        inc_mm_counter(mm, file_rss);
2824                        page_add_file_rmap(page);
2825                        if (flags & FAULT_FLAG_WRITE) {
2826                                dirty_page = page;
2827                                get_page(dirty_page);
2828                        }
2829                }
2830                set_pte_at(mm, address, page_table, entry);
2831
2832                /* no need to invalidate: a not-present page won't be cached */
2833                update_mmu_cache(vma, address, entry);
2834        } else {
2835                if (charged)
2836                        mem_cgroup_uncharge_page(page);
2837                if (anon)
2838                        page_cache_release(page);
2839                else
2840                        anon = 1; /* no anon but release faulted_page */
2841        }
2842
2843        pte_unmap_unlock(page_table, ptl);
2844
2845out:
2846        if (dirty_page) {
2847                struct address_space *mapping = page->mapping;
2848
2849                if (set_page_dirty(dirty_page))
2850                        page_mkwrite = 1;
2851                unlock_page(dirty_page);
2852                put_page(dirty_page);
2853                if (page_mkwrite && mapping) {
2854                        /*
2855                         * Some device drivers do not set page.mapping but still
2856                         * dirty their pages
2857                         */
2858                        balance_dirty_pages_ratelimited(mapping);
2859                }
2860
2861                /* file_update_time outside page_lock */
2862                if (vma->vm_file)
2863                        file_update_time(vma->vm_file);
2864        } else {
2865                unlock_page(vmf.page);
2866                if (anon)
2867                        page_cache_release(vmf.page);
2868        }
2869
2870        return ret;
2871
2872unwritable_page:
2873        page_cache_release(page);
2874        return ret;
2875}
2876
2877static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2878                unsigned long address, pte_t *page_table, pmd_t *pmd,
2879                unsigned int flags, pte_t orig_pte)
2880{
2881        pgoff_t pgoff = (((address & PAGE_MASK)
2882                        - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2883
2884        pte_unmap(page_table);
2885        return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2886}
2887
2888/*
2889 * Fault of a previously existing named mapping. Repopulate the pte
2890 * from the encoded file_pte if possible. This enables swappable
2891 * nonlinear vmas.
2892 *
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with mmap_sem still held, but pte unmapped and unlocked.
2896 */
2897static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2898                unsigned long address, pte_t *page_table, pmd_t *pmd,
2899                unsigned int flags, pte_t orig_pte)
2900{
2901        pgoff_t pgoff;
2902
2903        flags |= FAULT_FLAG_NONLINEAR;
2904
2905        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2906                return 0;
2907
2908        if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2909                /*
2910                 * Page table corrupted: show pte and kill process.
2911                 */
2912                print_bad_pte(vma, address, orig_pte, NULL);
2913                return VM_FAULT_OOM;
2914        }
2915
2916        pgoff = pte_to_pgoff(orig_pte);
2917        return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2918}
2919
2920/*
2921 * These routines also need to handle stuff like marking pages dirty
2922 * and/or accessed for architectures that don't do it in hardware (most
2923 * RISC architectures).  The early dirtying is also good on the i386.
2924 *
2925 * There is also a hook called "update_mmu_cache()" that architectures
2926 * with external mmu caches can use to update those (ie the Sparc or
2927 * PowerPC hashed page tables that act as extended TLBs).
2928 *
2929 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2930 * but allow concurrent faults), and pte mapped but not yet locked.
2931 * We return with mmap_sem still held, but pte unmapped and unlocked.
2932 */
2933static inline int handle_pte_fault(struct mm_struct *mm,
2934                struct vm_area_struct *vma, unsigned long address,
2935                pte_t *pte, pmd_t *pmd, unsigned int flags)
2936{
2937        pte_t entry;
2938        spinlock_t *ptl;
2939
2940        entry = *pte;
2941        if (!pte_present(entry)) {
2942                if (pte_none(entry)) {
2943                        if (vma->vm_ops) {
2944                                if (likely(vma->vm_ops->fault))
2945                                        return do_linear_fault(mm, vma, address,
2946                                                pte, pmd, flags, entry);
2947                        }
2948                        return do_anonymous_page(mm, vma, address,
2949                                                 pte, pmd, flags);
2950                }
2951                if (pte_file(entry))
2952                        return do_nonlinear_fault(mm, vma, address,
2953                                        pte, pmd, flags, entry);
2954                return do_swap_page(mm, vma, address,
2955                                        pte, pmd, flags, entry);
2956        }
2957
2958        ptl = pte_lockptr(mm, pmd);
2959        spin_lock(ptl);
2960        if (unlikely(!pte_same(*pte, entry)))
2961                goto unlock;
2962        if (flags & FAULT_FLAG_WRITE) {
2963                if (!pte_write(entry))
2964                        return do_wp_page(mm, vma, address,
2965                                        pte, pmd, ptl, entry);
2966                entry = pte_mkdirty(entry);
2967        }
2968        entry = pte_mkyoung(entry);
2969        if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2970                update_mmu_cache(vma, address, entry);
2971        } else {
2972                /*
2973                 * This is needed only for protection faults but the arch code
2974                 * is not yet telling us if this is a protection fault or not.
2975                 * This still avoids useless tlb flushes for .text page faults
2976                 * with threads.
2977                 */
2978                if (flags & FAULT_FLAG_WRITE)
2979                        flush_tlb_page(vma, address);
2980        }
2981unlock:
2982        pte_unmap_unlock(pte, ptl);
2983        return 0;
2984}
2985
2986/*
2987 * By the time we get here, we already hold the mm semaphore
2988 */
2989int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2990                unsigned long address, unsigned int flags)
2991{
2992        pgd_t *pgd;
2993        pud_t *pud;
2994        pmd_t *pmd;
2995        pte_t *pte;
2996
2997        __set_current_state(TASK_RUNNING);
2998
2999        count_vm_event(PGFAULT);
3000
3001        if (unlikely(is_vm_hugetlb_page(vma)))
3002                return hugetlb_fault(mm, vma, address, flags);
3003
3004        pgd = pgd_offset(mm, address);
3005        pud = pud_alloc(mm, pgd, address);
3006        if (!pud)
3007                return VM_FAULT_OOM;
3008        pmd = pmd_alloc(mm, pud, address);
3009        if (!pmd)
3010                return VM_FAULT_OOM;
3011        pte = pte_alloc_map(mm, pmd, address);
3012        if (!pte)
3013                return VM_FAULT_OOM;
3014
3015        return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3016}
3017
3018#ifndef __PAGETABLE_PUD_FOLDED
3019/*
3020 * Allocate page upper directory.
3021 * We've already handled the fast-path in-line.
3022 */
3023int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3024{
3025        pud_t *new = pud_alloc_one(mm, address);
3026        if (!new)
3027                return -ENOMEM;
3028
3029        smp_wmb(); /* See comment in __pte_alloc */
3030
3031        spin_lock(&mm->page_table_lock);
3032        if (pgd_present(*pgd))          /* Another has populated it */
3033                pud_free(mm, new);
3034        else
3035                pgd_populate(mm, pgd, new);
3036        spin_unlock(&mm->page_table_lock);
3037        return 0;
3038}
3039#endif /* __PAGETABLE_PUD_FOLDED */
3040
3041#ifndef __PAGETABLE_PMD_FOLDED
3042/*
3043 * Allocate page middle directory.
3044 * We've already handled the fast-path in-line.
3045 */
3046int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3047{
3048        pmd_t *new = pmd_alloc_one(mm, address);
3049        if (!new)
3050                return -ENOMEM;
3051
3052        smp_wmb(); /* See comment in __pte_alloc */
3053
3054        spin_lock(&mm->page_table_lock);
3055#ifndef __ARCH_HAS_4LEVEL_HACK
3056        if (pud_present(*pud))          /* Another has populated it */
3057                pmd_free(mm, new);
3058        else
3059                pud_populate(mm, pud, new);
3060#else
3061        if (pgd_present(*pud))          /* Another has populated it */
3062                pmd_free(mm, new);
3063        else
3064                pgd_populate(mm, pud, new);
3065#endif /* __ARCH_HAS_4LEVEL_HACK */
3066        spin_unlock(&mm->page_table_lock);
3067        return 0;
3068}
3069#endif /* __PAGETABLE_PMD_FOLDED */
3070
3071int make_pages_present(unsigned long addr, unsigned long end)
3072{
3073        int ret, len, write;
3074        struct vm_area_struct * vma;
3075
3076        vma = find_vma(current->mm, addr);
3077        if (!vma)
3078                return -ENOMEM;
3079        write = (vma->vm_flags & VM_WRITE) != 0;
3080        BUG_ON(addr >= end);
3081        BUG_ON(end > vma->vm_end);
3082        len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3083        ret = get_user_pages(current, current->mm, addr,
3084                        len, write, 0, NULL, NULL);
3085        if (ret < 0)
3086                return ret;
3087        return ret == len ? 0 : -EFAULT;
3088}
3089
3090#if !defined(__HAVE_ARCH_GATE_AREA)
3091
3092#if defined(AT_SYSINFO_EHDR)
3093static struct vm_area_struct gate_vma;
3094
3095static int __init gate_vma_init(void)
3096{
3097        gate_vma.vm_mm = NULL;
3098        gate_vma.vm_start = FIXADDR_USER_START;
3099        gate_vma.vm_end = FIXADDR_USER_END;
3100        gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3101        gate_vma.vm_page_prot = __P101;
3102        /*
3103         * Make sure the vDSO gets into every core dump.
3104         * Dumping its contents makes post-mortem fully interpretable later
3105         * without matching up the same kernel and hardware config to see
3106         * what PC values meant.
3107         */
3108        gate_vma.vm_flags |= VM_ALWAYSDUMP;
3109        return 0;
3110}
3111__initcall(gate_vma_init);
3112#endif
3113
3114struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3115{
3116#ifdef AT_SYSINFO_EHDR
3117        return &gate_vma;
3118#else
3119        return NULL;
3120#endif
3121}
3122
3123int in_gate_area_no_task(unsigned long addr)
3124{
3125#ifdef AT_SYSINFO_EHDR
3126        if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3127                return 1;
3128#endif
3129        return 0;
3130}
3131
3132#endif  /* __HAVE_ARCH_GATE_AREA */
3133
3134static int follow_pte(struct mm_struct *mm, unsigned long address,
3135                pte_t **ptepp, spinlock_t **ptlp)
3136{
3137        pgd_t *pgd;
3138        pud_t *pud;
3139        pmd_t *pmd;
3140        pte_t *ptep;
3141
3142        pgd = pgd_offset(mm, address);
3143        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3144                goto out;
3145
3146        pud = pud_offset(pgd, address);
3147        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3148                goto out;
3149
3150        pmd = pmd_offset(pud, address);
3151        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3152                goto out;
3153
3154        /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3155        if (pmd_huge(*pmd))
3156                goto out;
3157
3158        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3159        if (!ptep)
3160                goto out;
3161        if (!pte_present(*ptep))
3162                goto unlock;
3163        *ptepp = ptep;
3164        return 0;
3165unlock:
3166        pte_unmap_unlock(ptep, *ptlp);
3167out:
3168        return -EINVAL;
3169}
3170
3171/**
3172 * follow_pfn - look up PFN at a user virtual address
3173 * @vma: memory mapping
3174 * @address: user virtual address
3175 * @pfn: location to store found PFN
3176 *
3177 * Only IO mappings and raw PFN mappings are allowed.
3178 *
3179 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3180 */
3181int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3182        unsigned long *pfn)
3183{
3184        int ret = -EINVAL;
3185        spinlock_t *ptl;
3186        pte_t *ptep;
3187
3188        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3189                return ret;
3190
3191        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3192        if (ret)
3193                return ret;
3194        *pfn = pte_pfn(*ptep);
3195        pte_unmap_unlock(ptep, ptl);
3196        return 0;
3197}
3198EXPORT_SYMBOL(follow_pfn);
3199
3200#ifdef CONFIG_HAVE_IOREMAP_PROT
3201int follow_phys(struct vm_area_struct *vma,
3202                unsigned long address, unsigned int flags,
3203                unsigned long *prot, resource_size_t *phys)
3204{
3205        int ret = -EINVAL;
3206        pte_t *ptep, pte;
3207        spinlock_t *ptl;
3208
3209        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3210                goto out;
3211
3212        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3213                goto out;
3214        pte = *ptep;
3215
3216        if ((flags & FOLL_WRITE) && !pte_write(pte))
3217                goto unlock;
3218
3219        *prot = pgprot_val(pte_pgprot(pte));
3220        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3221
3222        ret = 0;
3223unlock:
3224        pte_unmap_unlock(ptep, ptl);
3225out:
3226        return ret;
3227}
3228
3229int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3230                        void *buf, int len, int write)
3231{
3232        resource_size_t phys_addr;
3233        unsigned long prot = 0;
3234        void __iomem *maddr;
3235        int offset = addr & (PAGE_SIZE-1);
3236
3237        if (follow_phys(vma, addr, write, &prot, &phys_addr))
3238                return -EINVAL;
3239
3240        maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3241        if (write)
3242                memcpy_toio(maddr + offset, buf, len);
3243        else
3244                memcpy_fromio(buf, maddr + offset, len);
3245        iounmap(maddr);
3246
3247        return len;
3248}
3249#endif
3250
3251/*
3252 * Access another process' address space.
3253 * Source/target buffer must be kernel space,
3254 * Do not walk the page table directly, use get_user_pages
3255 */
3256int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3257{
3258        struct mm_struct *mm;
3259        struct vm_area_struct *vma;
3260        void *old_buf = buf;
3261
3262        mm = get_task_mm(tsk);
3263        if (!mm)
3264                return 0;
3265
3266        down_read(&mm->mmap_sem);
3267        /* ignore errors, just check how much was successfully transferred */
3268        while (len) {
3269                int bytes, ret, offset;
3270                void *maddr;
3271                struct page *page = NULL;
3272
3273                ret = get_user_pages(tsk, mm, addr, 1,
3274                                write, 1, &page, &vma);
3275                if (ret <= 0) {
3276                        /*
3277                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
3278                         * we can access using slightly different code.
3279                         */
3280#ifdef CONFIG_HAVE_IOREMAP_PROT
3281                        vma = find_vma(mm, addr);
3282                        if (!vma)
3283                                break;
3284                        if (vma->vm_ops && vma->vm_ops->access)
3285                                ret = vma->vm_ops->access(vma, addr, buf,
3286                                                          len, write);
3287                        if (ret <= 0)
3288#endif
3289                                break;
3290                        bytes = ret;
3291                } else {
3292                        bytes = len;
3293                        offset = addr & (PAGE_SIZE-1);
3294                        if (bytes > PAGE_SIZE-offset)
3295                                bytes = PAGE_SIZE-offset;
3296
3297                        maddr = kmap(page);
3298                        if (write) {
3299                                copy_to_user_page(vma, page, addr,
3300                                                  maddr + offset, buf, bytes);
3301                                set_page_dirty_lock(page);
3302                        } else {
3303                                copy_from_user_page(vma, page, addr,
3304                                                    buf, maddr + offset, bytes);
3305                        }
3306                        kunmap(page);
3307                        page_cache_release(page);
3308                }
3309                len -= bytes;
3310                buf += bytes;
3311                addr += bytes;
3312        }
3313        up_read(&mm->mmap_sem);
3314        mmput(mm);
3315
3316        return buf - old_buf;
3317}
3318
3319/*
3320 * Print the name of a VMA.
3321 */
3322void print_vma_addr(char *prefix, unsigned long ip)
3323{
3324        struct mm_struct *mm = current->mm;
3325        struct vm_area_struct *vma;
3326
3327        /*
3328         * Do not print if we are in atomic
3329         * contexts (in exception stacks, etc.):
3330         */
3331        if (preempt_count())
3332                return;
3333
3334        down_read(&mm->mmap_sem);
3335        vma = find_vma(mm, ip);
3336        if (vma && vma->vm_file) {
3337                struct file *f = vma->vm_file;
3338                char *buf = (char *)__get_free_page(GFP_KERNEL);
3339                if (buf) {
3340                        char *p, *s;
3341
3342                        p = d_path(&f->f_path, buf, PAGE_SIZE);
3343                        if (IS_ERR(p))
3344                                p = "?";
3345                        s = strrchr(p, '/');
3346                        if (s)
3347                                p = s+1;
3348                        printk("%s%s[%lx+%lx]", prefix, p,
3349                                        vma->vm_start,
3350                                        vma->vm_end - vma->vm_start);
3351                        free_page((unsigned long)buf);
3352                }
3353        }
3354        up_read(&current->mm->mmap_sem);
3355}
3356
3357#ifdef CONFIG_PROVE_LOCKING
3358void might_fault(void)
3359{
3360        /*
3361         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3362         * holding the mmap_sem, this is safe because kernel memory doesn't
3363         * get paged out, therefore we'll never actually fault, and the
3364         * below annotations will generate false positives.
3365         */
3366        if (segment_eq(get_fs(), KERNEL_DS))
3367                return;
3368
3369        might_sleep();
3370        /*
3371         * it would be nicer only to annotate paths which are not under
3372         * pagefault_disable, however that requires a larger audit and
3373         * providing helpers like get_user_atomic.
3374         */
3375        if (!in_atomic() && current->mm)
3376                might_lock_read(&current->mm->mmap_sem);
3377}
3378EXPORT_SYMBOL(might_fault);
3379#endif
3380