linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/syscalls.h>
  16#include <linux/sched.h>
  17#include <linux/module.h>
  18#include <linux/rmap.h>
  19#include <linux/mmzone.h>
  20#include <linux/hugetlb.h>
  21
  22#include "internal.h"
  23
  24int can_do_mlock(void)
  25{
  26        if (capable(CAP_IPC_LOCK))
  27                return 1;
  28        if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  29                return 1;
  30        return 0;
  31}
  32EXPORT_SYMBOL(can_do_mlock);
  33
  34/*
  35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  36 * in vmscan and, possibly, the fault path; and to support semi-accurate
  37 * statistics.
  38 *
  39 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  41 * The unevictable list is an LRU sibling list to the [in]active lists.
  42 * PageUnevictable is set to indicate the unevictable state.
  43 *
  44 * When lazy mlocking via vmscan, it is important to ensure that the
  45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  46 * may have mlocked a page that is being munlocked. So lazy mlock must take
  47 * the mmap_sem for read, and verify that the vma really is locked
  48 * (see mm/rmap.c).
  49 */
  50
  51/*
  52 *  LRU accounting for clear_page_mlock()
  53 */
  54void __clear_page_mlock(struct page *page)
  55{
  56        VM_BUG_ON(!PageLocked(page));
  57
  58        if (!page->mapping) {   /* truncated ? */
  59                return;
  60        }
  61
  62        dec_zone_page_state(page, NR_MLOCK);
  63        count_vm_event(UNEVICTABLE_PGCLEARED);
  64        if (!isolate_lru_page(page)) {
  65                putback_lru_page(page);
  66        } else {
  67                /*
  68                 * We lost the race. the page already moved to evictable list.
  69                 */
  70                if (PageUnevictable(page))
  71                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  72        }
  73}
  74
  75/*
  76 * Mark page as mlocked if not already.
  77 * If page on LRU, isolate and putback to move to unevictable list.
  78 */
  79void mlock_vma_page(struct page *page)
  80{
  81        BUG_ON(!PageLocked(page));
  82
  83        if (!TestSetPageMlocked(page)) {
  84                inc_zone_page_state(page, NR_MLOCK);
  85                count_vm_event(UNEVICTABLE_PGMLOCKED);
  86                if (!isolate_lru_page(page))
  87                        putback_lru_page(page);
  88        }
  89}
  90
  91/*
  92 * called from munlock()/munmap() path with page supposedly on the LRU.
  93 *
  94 * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
  95 * [in try_to_munlock()] and then attempt to isolate the page.  We must
  96 * isolate the page to keep others from messing with its unevictable
  97 * and mlocked state while trying to munlock.  However, we pre-clear the
  98 * mlocked state anyway as we might lose the isolation race and we might
  99 * not get another chance to clear PageMlocked.  If we successfully
 100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
 101 * mapping the page, it will restore the PageMlocked state, unless the page
 102 * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
 103 * perhaps redundantly.
 104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
 105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
 106 * either of which will restore the PageMlocked state by calling
 107 * mlock_vma_page() above, if it can grab the vma's mmap sem.
 108 */
 109static void munlock_vma_page(struct page *page)
 110{
 111        BUG_ON(!PageLocked(page));
 112
 113        if (TestClearPageMlocked(page)) {
 114                dec_zone_page_state(page, NR_MLOCK);
 115                if (!isolate_lru_page(page)) {
 116                        int ret = try_to_munlock(page);
 117                        /*
 118                         * did try_to_unlock() succeed or punt?
 119                         */
 120                        if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
 121                                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 122
 123                        putback_lru_page(page);
 124                } else {
 125                        /*
 126                         * We lost the race.  let try_to_unmap() deal
 127                         * with it.  At least we get the page state and
 128                         * mlock stats right.  However, page is still on
 129                         * the noreclaim list.  We'll fix that up when
 130                         * the page is eventually freed or we scan the
 131                         * noreclaim list.
 132                         */
 133                        if (PageUnevictable(page))
 134                                count_vm_event(UNEVICTABLE_PGSTRANDED);
 135                        else
 136                                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 137                }
 138        }
 139}
 140
 141/**
 142 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
 143 * @vma:   target vma
 144 * @start: start address
 145 * @end:   end address
 146 *
 147 * This takes care of making the pages present too.
 148 *
 149 * return 0 on success, negative error code on error.
 150 *
 151 * vma->vm_mm->mmap_sem must be held for at least read.
 152 */
 153static long __mlock_vma_pages_range(struct vm_area_struct *vma,
 154                                    unsigned long start, unsigned long end)
 155{
 156        struct mm_struct *mm = vma->vm_mm;
 157        unsigned long addr = start;
 158        struct page *pages[16]; /* 16 gives a reasonable batch */
 159        int nr_pages = (end - start) / PAGE_SIZE;
 160        int ret = 0;
 161        int gup_flags;
 162
 163        VM_BUG_ON(start & ~PAGE_MASK);
 164        VM_BUG_ON(end   & ~PAGE_MASK);
 165        VM_BUG_ON(start < vma->vm_start);
 166        VM_BUG_ON(end   > vma->vm_end);
 167        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 168
 169        gup_flags = FOLL_TOUCH | FOLL_GET;
 170        if (vma->vm_flags & VM_WRITE)
 171                gup_flags |= FOLL_WRITE;
 172
 173        while (nr_pages > 0) {
 174                int i;
 175
 176                cond_resched();
 177
 178                /*
 179                 * get_user_pages makes pages present if we are
 180                 * setting mlock. and this extra reference count will
 181                 * disable migration of this page.  However, page may
 182                 * still be truncated out from under us.
 183                 */
 184                ret = __get_user_pages(current, mm, addr,
 185                                min_t(int, nr_pages, ARRAY_SIZE(pages)),
 186                                gup_flags, pages, NULL);
 187                /*
 188                 * This can happen for, e.g., VM_NONLINEAR regions before
 189                 * a page has been allocated and mapped at a given offset,
 190                 * or for addresses that map beyond end of a file.
 191                 * We'll mlock the pages if/when they get faulted in.
 192                 */
 193                if (ret < 0)
 194                        break;
 195
 196                lru_add_drain();        /* push cached pages to LRU */
 197
 198                for (i = 0; i < ret; i++) {
 199                        struct page *page = pages[i];
 200
 201                        if (page->mapping) {
 202                                /*
 203                                 * That preliminary check is mainly to avoid
 204                                 * the pointless overhead of lock_page on the
 205                                 * ZERO_PAGE: which might bounce very badly if
 206                                 * there is contention.  However, we're still
 207                                 * dirtying its cacheline with get/put_page:
 208                                 * we'll add another __get_user_pages flag to
 209                                 * avoid it if that case turns out to matter.
 210                                 */
 211                                lock_page(page);
 212                                /*
 213                                 * Because we lock page here and migration is
 214                                 * blocked by the elevated reference, we need
 215                                 * only check for file-cache page truncation.
 216                                 */
 217                                if (page->mapping)
 218                                        mlock_vma_page(page);
 219                                unlock_page(page);
 220                        }
 221                        put_page(page); /* ref from get_user_pages() */
 222                }
 223
 224                addr += ret * PAGE_SIZE;
 225                nr_pages -= ret;
 226                ret = 0;
 227        }
 228
 229        return ret;     /* 0 or negative error code */
 230}
 231
 232/*
 233 * convert get_user_pages() return value to posix mlock() error
 234 */
 235static int __mlock_posix_error_return(long retval)
 236{
 237        if (retval == -EFAULT)
 238                retval = -ENOMEM;
 239        else if (retval == -ENOMEM)
 240                retval = -EAGAIN;
 241        return retval;
 242}
 243
 244/**
 245 * mlock_vma_pages_range() - mlock pages in specified vma range.
 246 * @vma - the vma containing the specfied address range
 247 * @start - starting address in @vma to mlock
 248 * @end   - end address [+1] in @vma to mlock
 249 *
 250 * For mmap()/mremap()/expansion of mlocked vma.
 251 *
 252 * return 0 on success for "normal" vmas.
 253 *
 254 * return number of pages [> 0] to be removed from locked_vm on success
 255 * of "special" vmas.
 256 */
 257long mlock_vma_pages_range(struct vm_area_struct *vma,
 258                        unsigned long start, unsigned long end)
 259{
 260        int nr_pages = (end - start) / PAGE_SIZE;
 261        BUG_ON(!(vma->vm_flags & VM_LOCKED));
 262
 263        /*
 264         * filter unlockable vmas
 265         */
 266        if (vma->vm_flags & (VM_IO | VM_PFNMAP))
 267                goto no_mlock;
 268
 269        if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
 270                        is_vm_hugetlb_page(vma) ||
 271                        vma == get_gate_vma(current))) {
 272
 273                __mlock_vma_pages_range(vma, start, end);
 274
 275                /* Hide errors from mmap() and other callers */
 276                return 0;
 277        }
 278
 279        /*
 280         * User mapped kernel pages or huge pages:
 281         * make these pages present to populate the ptes, but
 282         * fall thru' to reset VM_LOCKED--no need to unlock, and
 283         * return nr_pages so these don't get counted against task's
 284         * locked limit.  huge pages are already counted against
 285         * locked vm limit.
 286         */
 287        make_pages_present(start, end);
 288
 289no_mlock:
 290        vma->vm_flags &= ~VM_LOCKED;    /* and don't come back! */
 291        return nr_pages;                /* error or pages NOT mlocked */
 292}
 293
 294/*
 295 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 296 * @vma - vma containing range to be munlock()ed.
 297 * @start - start address in @vma of the range
 298 * @end - end of range in @vma.
 299 *
 300 *  For mremap(), munmap() and exit().
 301 *
 302 * Called with @vma VM_LOCKED.
 303 *
 304 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 305 * deal with this.
 306 *
 307 * We don't save and restore VM_LOCKED here because pages are
 308 * still on lru.  In unmap path, pages might be scanned by reclaim
 309 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 310 * free them.  This will result in freeing mlocked pages.
 311 */
 312void munlock_vma_pages_range(struct vm_area_struct *vma,
 313                             unsigned long start, unsigned long end)
 314{
 315        unsigned long addr;
 316
 317        lru_add_drain();
 318        vma->vm_flags &= ~VM_LOCKED;
 319
 320        for (addr = start; addr < end; addr += PAGE_SIZE) {
 321                struct page *page;
 322                /*
 323                 * Although FOLL_DUMP is intended for get_dump_page(),
 324                 * it just so happens that its special treatment of the
 325                 * ZERO_PAGE (returning an error instead of doing get_page)
 326                 * suits munlock very well (and if somehow an abnormal page
 327                 * has sneaked into the range, we won't oops here: great).
 328                 */
 329                page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 330                if (page && !IS_ERR(page)) {
 331                        lock_page(page);
 332                        /*
 333                         * Like in __mlock_vma_pages_range(),
 334                         * because we lock page here and migration is
 335                         * blocked by the elevated reference, we need
 336                         * only check for file-cache page truncation.
 337                         */
 338                        if (page->mapping)
 339                                munlock_vma_page(page);
 340                        unlock_page(page);
 341                        put_page(page);
 342                }
 343                cond_resched();
 344        }
 345}
 346
 347/*
 348 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 349 *
 350 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 351 * munlock is a no-op.  However, for some special vmas, we go ahead and
 352 * populate the ptes via make_pages_present().
 353 *
 354 * For vmas that pass the filters, merge/split as appropriate.
 355 */
 356static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 357        unsigned long start, unsigned long end, unsigned int newflags)
 358{
 359        struct mm_struct *mm = vma->vm_mm;
 360        pgoff_t pgoff;
 361        int nr_pages;
 362        int ret = 0;
 363        int lock = newflags & VM_LOCKED;
 364
 365        if (newflags == vma->vm_flags ||
 366                        (vma->vm_flags & (VM_IO | VM_PFNMAP)))
 367                goto out;       /* don't set VM_LOCKED,  don't count */
 368
 369        if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
 370                        is_vm_hugetlb_page(vma) ||
 371                        vma == get_gate_vma(current)) {
 372                if (lock)
 373                        make_pages_present(start, end);
 374                goto out;       /* don't set VM_LOCKED,  don't count */
 375        }
 376
 377        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 378        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 379                          vma->vm_file, pgoff, vma_policy(vma));
 380        if (*prev) {
 381                vma = *prev;
 382                goto success;
 383        }
 384
 385        if (start != vma->vm_start) {
 386                ret = split_vma(mm, vma, start, 1);
 387                if (ret)
 388                        goto out;
 389        }
 390
 391        if (end != vma->vm_end) {
 392                ret = split_vma(mm, vma, end, 0);
 393                if (ret)
 394                        goto out;
 395        }
 396
 397success:
 398        /*
 399         * Keep track of amount of locked VM.
 400         */
 401        nr_pages = (end - start) >> PAGE_SHIFT;
 402        if (!lock)
 403                nr_pages = -nr_pages;
 404        mm->locked_vm += nr_pages;
 405
 406        /*
 407         * vm_flags is protected by the mmap_sem held in write mode.
 408         * It's okay if try_to_unmap_one unmaps a page just after we
 409         * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
 410         */
 411
 412        if (lock) {
 413                vma->vm_flags = newflags;
 414                ret = __mlock_vma_pages_range(vma, start, end);
 415                if (ret < 0)
 416                        ret = __mlock_posix_error_return(ret);
 417        } else {
 418                munlock_vma_pages_range(vma, start, end);
 419        }
 420
 421out:
 422        *prev = vma;
 423        return ret;
 424}
 425
 426static int do_mlock(unsigned long start, size_t len, int on)
 427{
 428        unsigned long nstart, end, tmp;
 429        struct vm_area_struct * vma, * prev;
 430        int error;
 431
 432        len = PAGE_ALIGN(len);
 433        end = start + len;
 434        if (end < start)
 435                return -EINVAL;
 436        if (end == start)
 437                return 0;
 438        vma = find_vma_prev(current->mm, start, &prev);
 439        if (!vma || vma->vm_start > start)
 440                return -ENOMEM;
 441
 442        if (start > vma->vm_start)
 443                prev = vma;
 444
 445        for (nstart = start ; ; ) {
 446                unsigned int newflags;
 447
 448                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 449
 450                newflags = vma->vm_flags | VM_LOCKED;
 451                if (!on)
 452                        newflags &= ~VM_LOCKED;
 453
 454                tmp = vma->vm_end;
 455                if (tmp > end)
 456                        tmp = end;
 457                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 458                if (error)
 459                        break;
 460                nstart = tmp;
 461                if (nstart < prev->vm_end)
 462                        nstart = prev->vm_end;
 463                if (nstart >= end)
 464                        break;
 465
 466                vma = prev->vm_next;
 467                if (!vma || vma->vm_start != nstart) {
 468                        error = -ENOMEM;
 469                        break;
 470                }
 471        }
 472        return error;
 473}
 474
 475SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 476{
 477        unsigned long locked;
 478        unsigned long lock_limit;
 479        int error = -ENOMEM;
 480
 481        if (!can_do_mlock())
 482                return -EPERM;
 483
 484        lru_add_drain_all();    /* flush pagevec */
 485
 486        down_write(&current->mm->mmap_sem);
 487        len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 488        start &= PAGE_MASK;
 489
 490        locked = len >> PAGE_SHIFT;
 491        locked += current->mm->locked_vm;
 492
 493        lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 494        lock_limit >>= PAGE_SHIFT;
 495
 496        /* check against resource limits */
 497        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 498                error = do_mlock(start, len, 1);
 499        up_write(&current->mm->mmap_sem);
 500        return error;
 501}
 502
 503SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 504{
 505        int ret;
 506
 507        down_write(&current->mm->mmap_sem);
 508        len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 509        start &= PAGE_MASK;
 510        ret = do_mlock(start, len, 0);
 511        up_write(&current->mm->mmap_sem);
 512        return ret;
 513}
 514
 515static int do_mlockall(int flags)
 516{
 517        struct vm_area_struct * vma, * prev = NULL;
 518        unsigned int def_flags = 0;
 519
 520        if (flags & MCL_FUTURE)
 521                def_flags = VM_LOCKED;
 522        current->mm->def_flags = def_flags;
 523        if (flags == MCL_FUTURE)
 524                goto out;
 525
 526        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 527                unsigned int newflags;
 528
 529                newflags = vma->vm_flags | VM_LOCKED;
 530                if (!(flags & MCL_CURRENT))
 531                        newflags &= ~VM_LOCKED;
 532
 533                /* Ignore errors */
 534                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 535        }
 536out:
 537        return 0;
 538}
 539
 540SYSCALL_DEFINE1(mlockall, int, flags)
 541{
 542        unsigned long lock_limit;
 543        int ret = -EINVAL;
 544
 545        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
 546                goto out;
 547
 548        ret = -EPERM;
 549        if (!can_do_mlock())
 550                goto out;
 551
 552        lru_add_drain_all();    /* flush pagevec */
 553
 554        down_write(&current->mm->mmap_sem);
 555
 556        lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 557        lock_limit >>= PAGE_SHIFT;
 558
 559        ret = -ENOMEM;
 560        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 561            capable(CAP_IPC_LOCK))
 562                ret = do_mlockall(flags);
 563        up_write(&current->mm->mmap_sem);
 564out:
 565        return ret;
 566}
 567
 568SYSCALL_DEFINE0(munlockall)
 569{
 570        int ret;
 571
 572        down_write(&current->mm->mmap_sem);
 573        ret = do_mlockall(0);
 574        up_write(&current->mm->mmap_sem);
 575        return ret;
 576}
 577
 578/*
 579 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 580 * shm segments) get accounted against the user_struct instead.
 581 */
 582static DEFINE_SPINLOCK(shmlock_user_lock);
 583
 584int user_shm_lock(size_t size, struct user_struct *user)
 585{
 586        unsigned long lock_limit, locked;
 587        int allowed = 0;
 588
 589        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 590        lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 591        if (lock_limit == RLIM_INFINITY)
 592                allowed = 1;
 593        lock_limit >>= PAGE_SHIFT;
 594        spin_lock(&shmlock_user_lock);
 595        if (!allowed &&
 596            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 597                goto out;
 598        get_uid(user);
 599        user->locked_shm += locked;
 600        allowed = 1;
 601out:
 602        spin_unlock(&shmlock_user_lock);
 603        return allowed;
 604}
 605
 606void user_shm_unlock(size_t size, struct user_struct *user)
 607{
 608        spin_lock(&shmlock_user_lock);
 609        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 610        spin_unlock(&shmlock_user_lock);
 611        free_uid(user);
 612}
 613
 614int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
 615                          size_t size)
 616{
 617        unsigned long lim, vm, pgsz;
 618        int error = -ENOMEM;
 619
 620        pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
 621
 622        down_write(&mm->mmap_sem);
 623
 624        lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
 625        vm   = mm->total_vm + pgsz;
 626        if (lim < vm)
 627                goto out;
 628
 629        lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
 630        vm   = mm->locked_vm + pgsz;
 631        if (lim < vm)
 632                goto out;
 633
 634        mm->total_vm  += pgsz;
 635        mm->locked_vm += pgsz;
 636
 637        error = 0;
 638 out:
 639        up_write(&mm->mmap_sem);
 640        return error;
 641}
 642
 643void refund_locked_memory(struct mm_struct *mm, size_t size)
 644{
 645        unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
 646
 647        down_write(&mm->mmap_sem);
 648
 649        mm->total_vm  -= pgsz;
 650        mm->locked_vm -= pgsz;
 651
 652        up_write(&mm->mmap_sem);
 653}
 654