linux/mm/mmap.c
<<
>>
Prefs
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#include <linux/slab.h>
  10#include <linux/backing-dev.h>
  11#include <linux/mm.h>
  12#include <linux/shm.h>
  13#include <linux/mman.h>
  14#include <linux/pagemap.h>
  15#include <linux/swap.h>
  16#include <linux/syscalls.h>
  17#include <linux/capability.h>
  18#include <linux/init.h>
  19#include <linux/file.h>
  20#include <linux/fs.h>
  21#include <linux/personality.h>
  22#include <linux/security.h>
  23#include <linux/ima.h>
  24#include <linux/hugetlb.h>
  25#include <linux/profile.h>
  26#include <linux/module.h>
  27#include <linux/mount.h>
  28#include <linux/mempolicy.h>
  29#include <linux/rmap.h>
  30#include <linux/mmu_notifier.h>
  31#include <linux/perf_event.h>
  32
  33#include <asm/uaccess.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlb.h>
  36#include <asm/mmu_context.h>
  37
  38#include "internal.h"
  39
  40#ifndef arch_mmap_check
  41#define arch_mmap_check(addr, len, flags)       (0)
  42#endif
  43
  44#ifndef arch_rebalance_pgtables
  45#define arch_rebalance_pgtables(addr, len)              (addr)
  46#endif
  47
  48static void unmap_region(struct mm_struct *mm,
  49                struct vm_area_struct *vma, struct vm_area_struct *prev,
  50                unsigned long start, unsigned long end);
  51
  52/*
  53 * WARNING: the debugging will use recursive algorithms so never enable this
  54 * unless you know what you are doing.
  55 */
  56#undef DEBUG_MM_RB
  57
  58/* description of effects of mapping type and prot in current implementation.
  59 * this is due to the limited x86 page protection hardware.  The expected
  60 * behavior is in parens:
  61 *
  62 * map_type     prot
  63 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  64 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  65 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  66 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  67 *              
  68 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  69 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  70 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  71 *
  72 */
  73pgprot_t protection_map[16] = {
  74        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  75        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  76};
  77
  78pgprot_t vm_get_page_prot(unsigned long vm_flags)
  79{
  80        return __pgprot(pgprot_val(protection_map[vm_flags &
  81                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  82                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
  83}
  84EXPORT_SYMBOL(vm_get_page_prot);
  85
  86int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  87int sysctl_overcommit_ratio = 50;       /* default is 50% */
  88int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  89struct percpu_counter vm_committed_as;
  90
  91/*
  92 * Check that a process has enough memory to allocate a new virtual
  93 * mapping. 0 means there is enough memory for the allocation to
  94 * succeed and -ENOMEM implies there is not.
  95 *
  96 * We currently support three overcommit policies, which are set via the
  97 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
  98 *
  99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 100 * Additional code 2002 Jul 20 by Robert Love.
 101 *
 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 103 *
 104 * Note this is a helper function intended to be used by LSMs which
 105 * wish to use this logic.
 106 */
 107int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 108{
 109        unsigned long free, allowed;
 110
 111        vm_acct_memory(pages);
 112
 113        /*
 114         * Sometimes we want to use more memory than we have
 115         */
 116        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 117                return 0;
 118
 119        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 120                unsigned long n;
 121
 122                free = global_page_state(NR_FILE_PAGES);
 123                free += nr_swap_pages;
 124
 125                /*
 126                 * Any slabs which are created with the
 127                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 128                 * which are reclaimable, under pressure.  The dentry
 129                 * cache and most inode caches should fall into this
 130                 */
 131                free += global_page_state(NR_SLAB_RECLAIMABLE);
 132
 133                /*
 134                 * Leave the last 3% for root
 135                 */
 136                if (!cap_sys_admin)
 137                        free -= free / 32;
 138
 139                if (free > pages)
 140                        return 0;
 141
 142                /*
 143                 * nr_free_pages() is very expensive on large systems,
 144                 * only call if we're about to fail.
 145                 */
 146                n = nr_free_pages();
 147
 148                /*
 149                 * Leave reserved pages. The pages are not for anonymous pages.
 150                 */
 151                if (n <= totalreserve_pages)
 152                        goto error;
 153                else
 154                        n -= totalreserve_pages;
 155
 156                /*
 157                 * Leave the last 3% for root
 158                 */
 159                if (!cap_sys_admin)
 160                        n -= n / 32;
 161                free += n;
 162
 163                if (free > pages)
 164                        return 0;
 165
 166                goto error;
 167        }
 168
 169        allowed = (totalram_pages - hugetlb_total_pages())
 170                * sysctl_overcommit_ratio / 100;
 171        /*
 172         * Leave the last 3% for root
 173         */
 174        if (!cap_sys_admin)
 175                allowed -= allowed / 32;
 176        allowed += total_swap_pages;
 177
 178        /* Don't let a single process grow too big:
 179           leave 3% of the size of this process for other processes */
 180        if (mm)
 181                allowed -= mm->total_vm / 32;
 182
 183        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 184                return 0;
 185error:
 186        vm_unacct_memory(pages);
 187
 188        return -ENOMEM;
 189}
 190
 191/*
 192 * Requires inode->i_mapping->i_mmap_lock
 193 */
 194static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 195                struct file *file, struct address_space *mapping)
 196{
 197        if (vma->vm_flags & VM_DENYWRITE)
 198                atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
 199        if (vma->vm_flags & VM_SHARED)
 200                mapping->i_mmap_writable--;
 201
 202        flush_dcache_mmap_lock(mapping);
 203        if (unlikely(vma->vm_flags & VM_NONLINEAR))
 204                list_del_init(&vma->shared.vm_set.list);
 205        else
 206                vma_prio_tree_remove(vma, &mapping->i_mmap);
 207        flush_dcache_mmap_unlock(mapping);
 208}
 209
 210/*
 211 * Unlink a file-based vm structure from its prio_tree, to hide
 212 * vma from rmap and vmtruncate before freeing its page tables.
 213 */
 214void unlink_file_vma(struct vm_area_struct *vma)
 215{
 216        struct file *file = vma->vm_file;
 217
 218        if (file) {
 219                struct address_space *mapping = file->f_mapping;
 220                spin_lock(&mapping->i_mmap_lock);
 221                __remove_shared_vm_struct(vma, file, mapping);
 222                spin_unlock(&mapping->i_mmap_lock);
 223        }
 224}
 225
 226/*
 227 * Close a vm structure and free it, returning the next.
 228 */
 229static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 230{
 231        struct vm_area_struct *next = vma->vm_next;
 232
 233        might_sleep();
 234        if (vma->vm_ops && vma->vm_ops->close)
 235                vma->vm_ops->close(vma);
 236        if (vma->vm_file) {
 237                fput(vma->vm_file);
 238                if (vma->vm_flags & VM_EXECUTABLE)
 239                        removed_exe_file_vma(vma->vm_mm);
 240        }
 241        mpol_put(vma_policy(vma));
 242        kmem_cache_free(vm_area_cachep, vma);
 243        return next;
 244}
 245
 246SYSCALL_DEFINE1(brk, unsigned long, brk)
 247{
 248        unsigned long rlim, retval;
 249        unsigned long newbrk, oldbrk;
 250        struct mm_struct *mm = current->mm;
 251        unsigned long min_brk;
 252
 253        down_write(&mm->mmap_sem);
 254
 255#ifdef CONFIG_COMPAT_BRK
 256        min_brk = mm->end_code;
 257#else
 258        min_brk = mm->start_brk;
 259#endif
 260        if (brk < min_brk)
 261                goto out;
 262
 263        /*
 264         * Check against rlimit here. If this check is done later after the test
 265         * of oldbrk with newbrk then it can escape the test and let the data
 266         * segment grow beyond its set limit the in case where the limit is
 267         * not page aligned -Ram Gupta
 268         */
 269        rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
 270        if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 271                        (mm->end_data - mm->start_data) > rlim)
 272                goto out;
 273
 274        newbrk = PAGE_ALIGN(brk);
 275        oldbrk = PAGE_ALIGN(mm->brk);
 276        if (oldbrk == newbrk)
 277                goto set_brk;
 278
 279        /* Always allow shrinking brk. */
 280        if (brk <= mm->brk) {
 281                if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 282                        goto set_brk;
 283                goto out;
 284        }
 285
 286        /* Check against existing mmap mappings. */
 287        if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 288                goto out;
 289
 290        /* Ok, looks good - let it rip. */
 291        if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 292                goto out;
 293set_brk:
 294        mm->brk = brk;
 295out:
 296        retval = mm->brk;
 297        up_write(&mm->mmap_sem);
 298        return retval;
 299}
 300
 301#ifdef DEBUG_MM_RB
 302static int browse_rb(struct rb_root *root)
 303{
 304        int i = 0, j;
 305        struct rb_node *nd, *pn = NULL;
 306        unsigned long prev = 0, pend = 0;
 307
 308        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 309                struct vm_area_struct *vma;
 310                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 311                if (vma->vm_start < prev)
 312                        printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
 313                if (vma->vm_start < pend)
 314                        printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 315                if (vma->vm_start > vma->vm_end)
 316                        printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
 317                i++;
 318                pn = nd;
 319                prev = vma->vm_start;
 320                pend = vma->vm_end;
 321        }
 322        j = 0;
 323        for (nd = pn; nd; nd = rb_prev(nd)) {
 324                j++;
 325        }
 326        if (i != j)
 327                printk("backwards %d, forwards %d\n", j, i), i = 0;
 328        return i;
 329}
 330
 331void validate_mm(struct mm_struct *mm)
 332{
 333        int bug = 0;
 334        int i = 0;
 335        struct vm_area_struct *tmp = mm->mmap;
 336        while (tmp) {
 337                tmp = tmp->vm_next;
 338                i++;
 339        }
 340        if (i != mm->map_count)
 341                printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
 342        i = browse_rb(&mm->mm_rb);
 343        if (i != mm->map_count)
 344                printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
 345        BUG_ON(bug);
 346}
 347#else
 348#define validate_mm(mm) do { } while (0)
 349#endif
 350
 351static struct vm_area_struct *
 352find_vma_prepare(struct mm_struct *mm, unsigned long addr,
 353                struct vm_area_struct **pprev, struct rb_node ***rb_link,
 354                struct rb_node ** rb_parent)
 355{
 356        struct vm_area_struct * vma;
 357        struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
 358
 359        __rb_link = &mm->mm_rb.rb_node;
 360        rb_prev = __rb_parent = NULL;
 361        vma = NULL;
 362
 363        while (*__rb_link) {
 364                struct vm_area_struct *vma_tmp;
 365
 366                __rb_parent = *__rb_link;
 367                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 368
 369                if (vma_tmp->vm_end > addr) {
 370                        vma = vma_tmp;
 371                        if (vma_tmp->vm_start <= addr)
 372                                break;
 373                        __rb_link = &__rb_parent->rb_left;
 374                } else {
 375                        rb_prev = __rb_parent;
 376                        __rb_link = &__rb_parent->rb_right;
 377                }
 378        }
 379
 380        *pprev = NULL;
 381        if (rb_prev)
 382                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 383        *rb_link = __rb_link;
 384        *rb_parent = __rb_parent;
 385        return vma;
 386}
 387
 388static inline void
 389__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 390                struct vm_area_struct *prev, struct rb_node *rb_parent)
 391{
 392        if (prev) {
 393                vma->vm_next = prev->vm_next;
 394                prev->vm_next = vma;
 395        } else {
 396                mm->mmap = vma;
 397                if (rb_parent)
 398                        vma->vm_next = rb_entry(rb_parent,
 399                                        struct vm_area_struct, vm_rb);
 400                else
 401                        vma->vm_next = NULL;
 402        }
 403}
 404
 405void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 406                struct rb_node **rb_link, struct rb_node *rb_parent)
 407{
 408        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 409        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 410}
 411
 412static void __vma_link_file(struct vm_area_struct *vma)
 413{
 414        struct file *file;
 415
 416        file = vma->vm_file;
 417        if (file) {
 418                struct address_space *mapping = file->f_mapping;
 419
 420                if (vma->vm_flags & VM_DENYWRITE)
 421                        atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
 422                if (vma->vm_flags & VM_SHARED)
 423                        mapping->i_mmap_writable++;
 424
 425                flush_dcache_mmap_lock(mapping);
 426                if (unlikely(vma->vm_flags & VM_NONLINEAR))
 427                        vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 428                else
 429                        vma_prio_tree_insert(vma, &mapping->i_mmap);
 430                flush_dcache_mmap_unlock(mapping);
 431        }
 432}
 433
 434static void
 435__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 436        struct vm_area_struct *prev, struct rb_node **rb_link,
 437        struct rb_node *rb_parent)
 438{
 439        __vma_link_list(mm, vma, prev, rb_parent);
 440        __vma_link_rb(mm, vma, rb_link, rb_parent);
 441        __anon_vma_link(vma);
 442}
 443
 444static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 445                        struct vm_area_struct *prev, struct rb_node **rb_link,
 446                        struct rb_node *rb_parent)
 447{
 448        struct address_space *mapping = NULL;
 449
 450        if (vma->vm_file)
 451                mapping = vma->vm_file->f_mapping;
 452
 453        if (mapping) {
 454                spin_lock(&mapping->i_mmap_lock);
 455                vma->vm_truncate_count = mapping->truncate_count;
 456        }
 457        anon_vma_lock(vma);
 458
 459        __vma_link(mm, vma, prev, rb_link, rb_parent);
 460        __vma_link_file(vma);
 461
 462        anon_vma_unlock(vma);
 463        if (mapping)
 464                spin_unlock(&mapping->i_mmap_lock);
 465
 466        mm->map_count++;
 467        validate_mm(mm);
 468}
 469
 470/*
 471 * Helper for vma_adjust in the split_vma insert case:
 472 * insert vm structure into list and rbtree and anon_vma,
 473 * but it has already been inserted into prio_tree earlier.
 474 */
 475static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 476{
 477        struct vm_area_struct *__vma, *prev;
 478        struct rb_node **rb_link, *rb_parent;
 479
 480        __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
 481        BUG_ON(__vma && __vma->vm_start < vma->vm_end);
 482        __vma_link(mm, vma, prev, rb_link, rb_parent);
 483        mm->map_count++;
 484}
 485
 486static inline void
 487__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 488                struct vm_area_struct *prev)
 489{
 490        prev->vm_next = vma->vm_next;
 491        rb_erase(&vma->vm_rb, &mm->mm_rb);
 492        if (mm->mmap_cache == vma)
 493                mm->mmap_cache = prev;
 494}
 495
 496/*
 497 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 498 * is already present in an i_mmap tree without adjusting the tree.
 499 * The following helper function should be used when such adjustments
 500 * are necessary.  The "insert" vma (if any) is to be inserted
 501 * before we drop the necessary locks.
 502 */
 503void vma_adjust(struct vm_area_struct *vma, unsigned long start,
 504        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 505{
 506        struct mm_struct *mm = vma->vm_mm;
 507        struct vm_area_struct *next = vma->vm_next;
 508        struct vm_area_struct *importer = NULL;
 509        struct address_space *mapping = NULL;
 510        struct prio_tree_root *root = NULL;
 511        struct file *file = vma->vm_file;
 512        struct anon_vma *anon_vma = NULL;
 513        long adjust_next = 0;
 514        int remove_next = 0;
 515
 516        if (next && !insert) {
 517                if (end >= next->vm_end) {
 518                        /*
 519                         * vma expands, overlapping all the next, and
 520                         * perhaps the one after too (mprotect case 6).
 521                         */
 522again:                  remove_next = 1 + (end > next->vm_end);
 523                        end = next->vm_end;
 524                        anon_vma = next->anon_vma;
 525                        importer = vma;
 526                } else if (end > next->vm_start) {
 527                        /*
 528                         * vma expands, overlapping part of the next:
 529                         * mprotect case 5 shifting the boundary up.
 530                         */
 531                        adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 532                        anon_vma = next->anon_vma;
 533                        importer = vma;
 534                } else if (end < vma->vm_end) {
 535                        /*
 536                         * vma shrinks, and !insert tells it's not
 537                         * split_vma inserting another: so it must be
 538                         * mprotect case 4 shifting the boundary down.
 539                         */
 540                        adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 541                        anon_vma = next->anon_vma;
 542                        importer = next;
 543                }
 544        }
 545
 546        if (file) {
 547                mapping = file->f_mapping;
 548                if (!(vma->vm_flags & VM_NONLINEAR))
 549                        root = &mapping->i_mmap;
 550                spin_lock(&mapping->i_mmap_lock);
 551                if (importer &&
 552                    vma->vm_truncate_count != next->vm_truncate_count) {
 553                        /*
 554                         * unmap_mapping_range might be in progress:
 555                         * ensure that the expanding vma is rescanned.
 556                         */
 557                        importer->vm_truncate_count = 0;
 558                }
 559                if (insert) {
 560                        insert->vm_truncate_count = vma->vm_truncate_count;
 561                        /*
 562                         * Put into prio_tree now, so instantiated pages
 563                         * are visible to arm/parisc __flush_dcache_page
 564                         * throughout; but we cannot insert into address
 565                         * space until vma start or end is updated.
 566                         */
 567                        __vma_link_file(insert);
 568                }
 569        }
 570
 571        /*
 572         * When changing only vma->vm_end, we don't really need
 573         * anon_vma lock.
 574         */
 575        if (vma->anon_vma && (insert || importer || start != vma->vm_start))
 576                anon_vma = vma->anon_vma;
 577        if (anon_vma) {
 578                spin_lock(&anon_vma->lock);
 579                /*
 580                 * Easily overlooked: when mprotect shifts the boundary,
 581                 * make sure the expanding vma has anon_vma set if the
 582                 * shrinking vma had, to cover any anon pages imported.
 583                 */
 584                if (importer && !importer->anon_vma) {
 585                        importer->anon_vma = anon_vma;
 586                        __anon_vma_link(importer);
 587                }
 588        }
 589
 590        if (root) {
 591                flush_dcache_mmap_lock(mapping);
 592                vma_prio_tree_remove(vma, root);
 593                if (adjust_next)
 594                        vma_prio_tree_remove(next, root);
 595        }
 596
 597        vma->vm_start = start;
 598        vma->vm_end = end;
 599        vma->vm_pgoff = pgoff;
 600        if (adjust_next) {
 601                next->vm_start += adjust_next << PAGE_SHIFT;
 602                next->vm_pgoff += adjust_next;
 603        }
 604
 605        if (root) {
 606                if (adjust_next)
 607                        vma_prio_tree_insert(next, root);
 608                vma_prio_tree_insert(vma, root);
 609                flush_dcache_mmap_unlock(mapping);
 610        }
 611
 612        if (remove_next) {
 613                /*
 614                 * vma_merge has merged next into vma, and needs
 615                 * us to remove next before dropping the locks.
 616                 */
 617                __vma_unlink(mm, next, vma);
 618                if (file)
 619                        __remove_shared_vm_struct(next, file, mapping);
 620                if (next->anon_vma)
 621                        __anon_vma_merge(vma, next);
 622        } else if (insert) {
 623                /*
 624                 * split_vma has split insert from vma, and needs
 625                 * us to insert it before dropping the locks
 626                 * (it may either follow vma or precede it).
 627                 */
 628                __insert_vm_struct(mm, insert);
 629        }
 630
 631        if (anon_vma)
 632                spin_unlock(&anon_vma->lock);
 633        if (mapping)
 634                spin_unlock(&mapping->i_mmap_lock);
 635
 636        if (remove_next) {
 637                if (file) {
 638                        fput(file);
 639                        if (next->vm_flags & VM_EXECUTABLE)
 640                                removed_exe_file_vma(mm);
 641                }
 642                mm->map_count--;
 643                mpol_put(vma_policy(next));
 644                kmem_cache_free(vm_area_cachep, next);
 645                /*
 646                 * In mprotect's case 6 (see comments on vma_merge),
 647                 * we must remove another next too. It would clutter
 648                 * up the code too much to do both in one go.
 649                 */
 650                if (remove_next == 2) {
 651                        next = vma->vm_next;
 652                        goto again;
 653                }
 654        }
 655
 656        validate_mm(mm);
 657}
 658
 659/*
 660 * If the vma has a ->close operation then the driver probably needs to release
 661 * per-vma resources, so we don't attempt to merge those.
 662 */
 663static inline int is_mergeable_vma(struct vm_area_struct *vma,
 664                        struct file *file, unsigned long vm_flags)
 665{
 666        /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
 667        if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
 668                return 0;
 669        if (vma->vm_file != file)
 670                return 0;
 671        if (vma->vm_ops && vma->vm_ops->close)
 672                return 0;
 673        return 1;
 674}
 675
 676static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 677                                        struct anon_vma *anon_vma2)
 678{
 679        return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
 680}
 681
 682/*
 683 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 684 * in front of (at a lower virtual address and file offset than) the vma.
 685 *
 686 * We cannot merge two vmas if they have differently assigned (non-NULL)
 687 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 688 *
 689 * We don't check here for the merged mmap wrapping around the end of pagecache
 690 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 691 * wrap, nor mmaps which cover the final page at index -1UL.
 692 */
 693static int
 694can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 695        struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 696{
 697        if (is_mergeable_vma(vma, file, vm_flags) &&
 698            is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
 699                if (vma->vm_pgoff == vm_pgoff)
 700                        return 1;
 701        }
 702        return 0;
 703}
 704
 705/*
 706 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 707 * beyond (at a higher virtual address and file offset than) the vma.
 708 *
 709 * We cannot merge two vmas if they have differently assigned (non-NULL)
 710 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 711 */
 712static int
 713can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 714        struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 715{
 716        if (is_mergeable_vma(vma, file, vm_flags) &&
 717            is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
 718                pgoff_t vm_pglen;
 719                vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 720                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 721                        return 1;
 722        }
 723        return 0;
 724}
 725
 726/*
 727 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 728 * whether that can be merged with its predecessor or its successor.
 729 * Or both (it neatly fills a hole).
 730 *
 731 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 732 * certain not to be mapped by the time vma_merge is called; but when
 733 * called for mprotect, it is certain to be already mapped (either at
 734 * an offset within prev, or at the start of next), and the flags of
 735 * this area are about to be changed to vm_flags - and the no-change
 736 * case has already been eliminated.
 737 *
 738 * The following mprotect cases have to be considered, where AAAA is
 739 * the area passed down from mprotect_fixup, never extending beyond one
 740 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 741 *
 742 *     AAAA             AAAA                AAAA          AAAA
 743 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 744 *    cannot merge    might become    might become    might become
 745 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 746 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 747 *    mremap move:                                    PPPPNNNNNNNN 8
 748 *        AAAA
 749 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 750 *    might become    case 1 below    case 2 below    case 3 below
 751 *
 752 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 753 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 754 */
 755struct vm_area_struct *vma_merge(struct mm_struct *mm,
 756                        struct vm_area_struct *prev, unsigned long addr,
 757                        unsigned long end, unsigned long vm_flags,
 758                        struct anon_vma *anon_vma, struct file *file,
 759                        pgoff_t pgoff, struct mempolicy *policy)
 760{
 761        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 762        struct vm_area_struct *area, *next;
 763
 764        /*
 765         * We later require that vma->vm_flags == vm_flags,
 766         * so this tests vma->vm_flags & VM_SPECIAL, too.
 767         */
 768        if (vm_flags & VM_SPECIAL)
 769                return NULL;
 770
 771        if (prev)
 772                next = prev->vm_next;
 773        else
 774                next = mm->mmap;
 775        area = next;
 776        if (next && next->vm_end == end)                /* cases 6, 7, 8 */
 777                next = next->vm_next;
 778
 779        /*
 780         * Can it merge with the predecessor?
 781         */
 782        if (prev && prev->vm_end == addr &&
 783                        mpol_equal(vma_policy(prev), policy) &&
 784                        can_vma_merge_after(prev, vm_flags,
 785                                                anon_vma, file, pgoff)) {
 786                /*
 787                 * OK, it can.  Can we now merge in the successor as well?
 788                 */
 789                if (next && end == next->vm_start &&
 790                                mpol_equal(policy, vma_policy(next)) &&
 791                                can_vma_merge_before(next, vm_flags,
 792                                        anon_vma, file, pgoff+pglen) &&
 793                                is_mergeable_anon_vma(prev->anon_vma,
 794                                                      next->anon_vma)) {
 795                                                        /* cases 1, 6 */
 796                        vma_adjust(prev, prev->vm_start,
 797                                next->vm_end, prev->vm_pgoff, NULL);
 798                } else                                  /* cases 2, 5, 7 */
 799                        vma_adjust(prev, prev->vm_start,
 800                                end, prev->vm_pgoff, NULL);
 801                return prev;
 802        }
 803
 804        /*
 805         * Can this new request be merged in front of next?
 806         */
 807        if (next && end == next->vm_start &&
 808                        mpol_equal(policy, vma_policy(next)) &&
 809                        can_vma_merge_before(next, vm_flags,
 810                                        anon_vma, file, pgoff+pglen)) {
 811                if (prev && addr < prev->vm_end)        /* case 4 */
 812                        vma_adjust(prev, prev->vm_start,
 813                                addr, prev->vm_pgoff, NULL);
 814                else                                    /* cases 3, 8 */
 815                        vma_adjust(area, addr, next->vm_end,
 816                                next->vm_pgoff - pglen, NULL);
 817                return area;
 818        }
 819
 820        return NULL;
 821}
 822
 823/*
 824 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 825 * neighbouring vmas for a suitable anon_vma, before it goes off
 826 * to allocate a new anon_vma.  It checks because a repetitive
 827 * sequence of mprotects and faults may otherwise lead to distinct
 828 * anon_vmas being allocated, preventing vma merge in subsequent
 829 * mprotect.
 830 */
 831struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 832{
 833        struct vm_area_struct *near;
 834        unsigned long vm_flags;
 835
 836        near = vma->vm_next;
 837        if (!near)
 838                goto try_prev;
 839
 840        /*
 841         * Since only mprotect tries to remerge vmas, match flags
 842         * which might be mprotected into each other later on.
 843         * Neither mlock nor madvise tries to remerge at present,
 844         * so leave their flags as obstructing a merge.
 845         */
 846        vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
 847        vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
 848
 849        if (near->anon_vma && vma->vm_end == near->vm_start &&
 850                        mpol_equal(vma_policy(vma), vma_policy(near)) &&
 851                        can_vma_merge_before(near, vm_flags,
 852                                NULL, vma->vm_file, vma->vm_pgoff +
 853                                ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
 854                return near->anon_vma;
 855try_prev:
 856        /*
 857         * It is potentially slow to have to call find_vma_prev here.
 858         * But it's only on the first write fault on the vma, not
 859         * every time, and we could devise a way to avoid it later
 860         * (e.g. stash info in next's anon_vma_node when assigning
 861         * an anon_vma, or when trying vma_merge).  Another time.
 862         */
 863        BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
 864        if (!near)
 865                goto none;
 866
 867        vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
 868        vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
 869
 870        if (near->anon_vma && near->vm_end == vma->vm_start &&
 871                        mpol_equal(vma_policy(near), vma_policy(vma)) &&
 872                        can_vma_merge_after(near, vm_flags,
 873                                NULL, vma->vm_file, vma->vm_pgoff))
 874                return near->anon_vma;
 875none:
 876        /*
 877         * There's no absolute need to look only at touching neighbours:
 878         * we could search further afield for "compatible" anon_vmas.
 879         * But it would probably just be a waste of time searching,
 880         * or lead to too many vmas hanging off the same anon_vma.
 881         * We're trying to allow mprotect remerging later on,
 882         * not trying to minimize memory used for anon_vmas.
 883         */
 884        return NULL;
 885}
 886
 887#ifdef CONFIG_PROC_FS
 888void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 889                                                struct file *file, long pages)
 890{
 891        const unsigned long stack_flags
 892                = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 893
 894        if (file) {
 895                mm->shared_vm += pages;
 896                if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 897                        mm->exec_vm += pages;
 898        } else if (flags & stack_flags)
 899                mm->stack_vm += pages;
 900        if (flags & (VM_RESERVED|VM_IO))
 901                mm->reserved_vm += pages;
 902}
 903#endif /* CONFIG_PROC_FS */
 904
 905/*
 906 * The caller must hold down_write(&current->mm->mmap_sem).
 907 */
 908
 909unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 910                        unsigned long len, unsigned long prot,
 911                        unsigned long flags, unsigned long pgoff)
 912{
 913        struct mm_struct * mm = current->mm;
 914        struct inode *inode;
 915        unsigned int vm_flags;
 916        int error;
 917        unsigned long reqprot = prot;
 918
 919        /*
 920         * Does the application expect PROT_READ to imply PROT_EXEC?
 921         *
 922         * (the exception is when the underlying filesystem is noexec
 923         *  mounted, in which case we dont add PROT_EXEC.)
 924         */
 925        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 926                if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 927                        prot |= PROT_EXEC;
 928
 929        if (!len)
 930                return -EINVAL;
 931
 932        if (!(flags & MAP_FIXED))
 933                addr = round_hint_to_min(addr);
 934
 935        error = arch_mmap_check(addr, len, flags);
 936        if (error)
 937                return error;
 938
 939        /* Careful about overflows.. */
 940        len = PAGE_ALIGN(len);
 941        if (!len || len > TASK_SIZE)
 942                return -ENOMEM;
 943
 944        /* offset overflow? */
 945        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 946               return -EOVERFLOW;
 947
 948        /* Too many mappings? */
 949        if (mm->map_count > sysctl_max_map_count)
 950                return -ENOMEM;
 951
 952        if (flags & MAP_HUGETLB) {
 953                struct user_struct *user = NULL;
 954                if (file)
 955                        return -EINVAL;
 956
 957                /*
 958                 * VM_NORESERVE is used because the reservations will be
 959                 * taken when vm_ops->mmap() is called
 960                 * A dummy user value is used because we are not locking
 961                 * memory so no accounting is necessary
 962                 */
 963                len = ALIGN(len, huge_page_size(&default_hstate));
 964                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
 965                                                &user, HUGETLB_ANONHUGE_INODE);
 966                if (IS_ERR(file))
 967                        return PTR_ERR(file);
 968        }
 969
 970        /* Obtain the address to map to. we verify (or select) it and ensure
 971         * that it represents a valid section of the address space.
 972         */
 973        addr = get_unmapped_area(file, addr, len, pgoff, flags);
 974        if (addr & ~PAGE_MASK)
 975                return addr;
 976
 977        /* Do simple checking here so the lower-level routines won't have
 978         * to. we assume access permissions have been handled by the open
 979         * of the memory object, so we don't do any here.
 980         */
 981        vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
 982                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 983
 984        if (flags & MAP_LOCKED)
 985                if (!can_do_mlock())
 986                        return -EPERM;
 987
 988        /* mlock MCL_FUTURE? */
 989        if (vm_flags & VM_LOCKED) {
 990                unsigned long locked, lock_limit;
 991                locked = len >> PAGE_SHIFT;
 992                locked += mm->locked_vm;
 993                lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 994                lock_limit >>= PAGE_SHIFT;
 995                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
 996                        return -EAGAIN;
 997        }
 998
 999        inode = file ? file->f_path.dentry->d_inode : NULL;
1000
1001        if (file) {
1002                switch (flags & MAP_TYPE) {
1003                case MAP_SHARED:
1004                        if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1005                                return -EACCES;
1006
1007                        /*
1008                         * Make sure we don't allow writing to an append-only
1009                         * file..
1010                         */
1011                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1012                                return -EACCES;
1013
1014                        /*
1015                         * Make sure there are no mandatory locks on the file.
1016                         */
1017                        if (locks_verify_locked(inode))
1018                                return -EAGAIN;
1019
1020                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1021                        if (!(file->f_mode & FMODE_WRITE))
1022                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1023
1024                        /* fall through */
1025                case MAP_PRIVATE:
1026                        if (!(file->f_mode & FMODE_READ))
1027                                return -EACCES;
1028                        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1029                                if (vm_flags & VM_EXEC)
1030                                        return -EPERM;
1031                                vm_flags &= ~VM_MAYEXEC;
1032                        }
1033
1034                        if (!file->f_op || !file->f_op->mmap)
1035                                return -ENODEV;
1036                        break;
1037
1038                default:
1039                        return -EINVAL;
1040                }
1041        } else {
1042                switch (flags & MAP_TYPE) {
1043                case MAP_SHARED:
1044                        /*
1045                         * Ignore pgoff.
1046                         */
1047                        pgoff = 0;
1048                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1049                        break;
1050                case MAP_PRIVATE:
1051                        /*
1052                         * Set pgoff according to addr for anon_vma.
1053                         */
1054                        pgoff = addr >> PAGE_SHIFT;
1055                        break;
1056                default:
1057                        return -EINVAL;
1058                }
1059        }
1060
1061        error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1062        if (error)
1063                return error;
1064        error = ima_file_mmap(file, prot);
1065        if (error)
1066                return error;
1067
1068        return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1069}
1070EXPORT_SYMBOL(do_mmap_pgoff);
1071
1072/*
1073 * Some shared mappigns will want the pages marked read-only
1074 * to track write events. If so, we'll downgrade vm_page_prot
1075 * to the private version (using protection_map[] without the
1076 * VM_SHARED bit).
1077 */
1078int vma_wants_writenotify(struct vm_area_struct *vma)
1079{
1080        unsigned int vm_flags = vma->vm_flags;
1081
1082        /* If it was private or non-writable, the write bit is already clear */
1083        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1084                return 0;
1085
1086        /* The backer wishes to know when pages are first written to? */
1087        if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1088                return 1;
1089
1090        /* The open routine did something to the protections already? */
1091        if (pgprot_val(vma->vm_page_prot) !=
1092            pgprot_val(vm_get_page_prot(vm_flags)))
1093                return 0;
1094
1095        /* Specialty mapping? */
1096        if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1097                return 0;
1098
1099        /* Can the mapping track the dirty pages? */
1100        return vma->vm_file && vma->vm_file->f_mapping &&
1101                mapping_cap_account_dirty(vma->vm_file->f_mapping);
1102}
1103
1104/*
1105 * We account for memory if it's a private writeable mapping,
1106 * not hugepages and VM_NORESERVE wasn't set.
1107 */
1108static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1109{
1110        /*
1111         * hugetlb has its own accounting separate from the core VM
1112         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1113         */
1114        if (file && is_file_hugepages(file))
1115                return 0;
1116
1117        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1118}
1119
1120unsigned long mmap_region(struct file *file, unsigned long addr,
1121                          unsigned long len, unsigned long flags,
1122                          unsigned int vm_flags, unsigned long pgoff)
1123{
1124        struct mm_struct *mm = current->mm;
1125        struct vm_area_struct *vma, *prev;
1126        int correct_wcount = 0;
1127        int error;
1128        struct rb_node **rb_link, *rb_parent;
1129        unsigned long charged = 0;
1130        struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1131
1132        /* Clear old maps */
1133        error = -ENOMEM;
1134munmap_back:
1135        vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1136        if (vma && vma->vm_start < addr + len) {
1137                if (do_munmap(mm, addr, len))
1138                        return -ENOMEM;
1139                goto munmap_back;
1140        }
1141
1142        /* Check against address space limit. */
1143        if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1144                return -ENOMEM;
1145
1146        /*
1147         * Set 'VM_NORESERVE' if we should not account for the
1148         * memory use of this mapping.
1149         */
1150        if ((flags & MAP_NORESERVE)) {
1151                /* We honor MAP_NORESERVE if allowed to overcommit */
1152                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1153                        vm_flags |= VM_NORESERVE;
1154
1155                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1156                if (file && is_file_hugepages(file))
1157                        vm_flags |= VM_NORESERVE;
1158        }
1159
1160        /*
1161         * Private writable mapping: check memory availability
1162         */
1163        if (accountable_mapping(file, vm_flags)) {
1164                charged = len >> PAGE_SHIFT;
1165                if (security_vm_enough_memory(charged))
1166                        return -ENOMEM;
1167                vm_flags |= VM_ACCOUNT;
1168        }
1169
1170        /*
1171         * Can we just expand an old mapping?
1172         */
1173        vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1174        if (vma)
1175                goto out;
1176
1177        /*
1178         * Determine the object being mapped and call the appropriate
1179         * specific mapper. the address has already been validated, but
1180         * not unmapped, but the maps are removed from the list.
1181         */
1182        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1183        if (!vma) {
1184                error = -ENOMEM;
1185                goto unacct_error;
1186        }
1187
1188        vma->vm_mm = mm;
1189        vma->vm_start = addr;
1190        vma->vm_end = addr + len;
1191        vma->vm_flags = vm_flags;
1192        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1193        vma->vm_pgoff = pgoff;
1194
1195        if (file) {
1196                error = -EINVAL;
1197                if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1198                        goto free_vma;
1199                if (vm_flags & VM_DENYWRITE) {
1200                        error = deny_write_access(file);
1201                        if (error)
1202                                goto free_vma;
1203                        correct_wcount = 1;
1204                }
1205                vma->vm_file = file;
1206                get_file(file);
1207                error = file->f_op->mmap(file, vma);
1208                if (error)
1209                        goto unmap_and_free_vma;
1210                if (vm_flags & VM_EXECUTABLE)
1211                        added_exe_file_vma(mm);
1212
1213                /* Can addr have changed??
1214                 *
1215                 * Answer: Yes, several device drivers can do it in their
1216                 *         f_op->mmap method. -DaveM
1217                 */
1218                addr = vma->vm_start;
1219                pgoff = vma->vm_pgoff;
1220                vm_flags = vma->vm_flags;
1221        } else if (vm_flags & VM_SHARED) {
1222                error = shmem_zero_setup(vma);
1223                if (error)
1224                        goto free_vma;
1225        }
1226
1227        if (vma_wants_writenotify(vma))
1228                vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1229
1230        vma_link(mm, vma, prev, rb_link, rb_parent);
1231        file = vma->vm_file;
1232
1233        /* Once vma denies write, undo our temporary denial count */
1234        if (correct_wcount)
1235                atomic_inc(&inode->i_writecount);
1236out:
1237        perf_event_mmap(vma);
1238
1239        mm->total_vm += len >> PAGE_SHIFT;
1240        vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1241        if (vm_flags & VM_LOCKED) {
1242                /*
1243                 * makes pages present; downgrades, drops, reacquires mmap_sem
1244                 */
1245                long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1246                if (nr_pages < 0)
1247                        return nr_pages;        /* vma gone! */
1248                mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1249        } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1250                make_pages_present(addr, addr + len);
1251        return addr;
1252
1253unmap_and_free_vma:
1254        if (correct_wcount)
1255                atomic_inc(&inode->i_writecount);
1256        vma->vm_file = NULL;
1257        fput(file);
1258
1259        /* Undo any partial mapping done by a device driver. */
1260        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1261        charged = 0;
1262free_vma:
1263        kmem_cache_free(vm_area_cachep, vma);
1264unacct_error:
1265        if (charged)
1266                vm_unacct_memory(charged);
1267        return error;
1268}
1269
1270/* Get an address range which is currently unmapped.
1271 * For shmat() with addr=0.
1272 *
1273 * Ugly calling convention alert:
1274 * Return value with the low bits set means error value,
1275 * ie
1276 *      if (ret & ~PAGE_MASK)
1277 *              error = ret;
1278 *
1279 * This function "knows" that -ENOMEM has the bits set.
1280 */
1281#ifndef HAVE_ARCH_UNMAPPED_AREA
1282unsigned long
1283arch_get_unmapped_area(struct file *filp, unsigned long addr,
1284                unsigned long len, unsigned long pgoff, unsigned long flags)
1285{
1286        struct mm_struct *mm = current->mm;
1287        struct vm_area_struct *vma;
1288        unsigned long start_addr;
1289
1290        if (len > TASK_SIZE)
1291                return -ENOMEM;
1292
1293        if (flags & MAP_FIXED)
1294                return addr;
1295
1296        if (addr) {
1297                addr = PAGE_ALIGN(addr);
1298                vma = find_vma(mm, addr);
1299                if (TASK_SIZE - len >= addr &&
1300                    (!vma || addr + len <= vma->vm_start))
1301                        return addr;
1302        }
1303        if (len > mm->cached_hole_size) {
1304                start_addr = addr = mm->free_area_cache;
1305        } else {
1306                start_addr = addr = TASK_UNMAPPED_BASE;
1307                mm->cached_hole_size = 0;
1308        }
1309
1310full_search:
1311        for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1312                /* At this point:  (!vma || addr < vma->vm_end). */
1313                if (TASK_SIZE - len < addr) {
1314                        /*
1315                         * Start a new search - just in case we missed
1316                         * some holes.
1317                         */
1318                        if (start_addr != TASK_UNMAPPED_BASE) {
1319                                addr = TASK_UNMAPPED_BASE;
1320                                start_addr = addr;
1321                                mm->cached_hole_size = 0;
1322                                goto full_search;
1323                        }
1324                        return -ENOMEM;
1325                }
1326                if (!vma || addr + len <= vma->vm_start) {
1327                        /*
1328                         * Remember the place where we stopped the search:
1329                         */
1330                        mm->free_area_cache = addr + len;
1331                        return addr;
1332                }
1333                if (addr + mm->cached_hole_size < vma->vm_start)
1334                        mm->cached_hole_size = vma->vm_start - addr;
1335                addr = vma->vm_end;
1336        }
1337}
1338#endif  
1339
1340void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1341{
1342        /*
1343         * Is this a new hole at the lowest possible address?
1344         */
1345        if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1346                mm->free_area_cache = addr;
1347                mm->cached_hole_size = ~0UL;
1348        }
1349}
1350
1351/*
1352 * This mmap-allocator allocates new areas top-down from below the
1353 * stack's low limit (the base):
1354 */
1355#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1356unsigned long
1357arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1358                          const unsigned long len, const unsigned long pgoff,
1359                          const unsigned long flags)
1360{
1361        struct vm_area_struct *vma;
1362        struct mm_struct *mm = current->mm;
1363        unsigned long addr = addr0;
1364
1365        /* requested length too big for entire address space */
1366        if (len > TASK_SIZE)
1367                return -ENOMEM;
1368
1369        if (flags & MAP_FIXED)
1370                return addr;
1371
1372        /* requesting a specific address */
1373        if (addr) {
1374                addr = PAGE_ALIGN(addr);
1375                vma = find_vma(mm, addr);
1376                if (TASK_SIZE - len >= addr &&
1377                                (!vma || addr + len <= vma->vm_start))
1378                        return addr;
1379        }
1380
1381        /* check if free_area_cache is useful for us */
1382        if (len <= mm->cached_hole_size) {
1383                mm->cached_hole_size = 0;
1384                mm->free_area_cache = mm->mmap_base;
1385        }
1386
1387        /* either no address requested or can't fit in requested address hole */
1388        addr = mm->free_area_cache;
1389
1390        /* make sure it can fit in the remaining address space */
1391        if (addr > len) {
1392                vma = find_vma(mm, addr-len);
1393                if (!vma || addr <= vma->vm_start)
1394                        /* remember the address as a hint for next time */
1395                        return (mm->free_area_cache = addr-len);
1396        }
1397
1398        if (mm->mmap_base < len)
1399                goto bottomup;
1400
1401        addr = mm->mmap_base-len;
1402
1403        do {
1404                /*
1405                 * Lookup failure means no vma is above this address,
1406                 * else if new region fits below vma->vm_start,
1407                 * return with success:
1408                 */
1409                vma = find_vma(mm, addr);
1410                if (!vma || addr+len <= vma->vm_start)
1411                        /* remember the address as a hint for next time */
1412                        return (mm->free_area_cache = addr);
1413
1414                /* remember the largest hole we saw so far */
1415                if (addr + mm->cached_hole_size < vma->vm_start)
1416                        mm->cached_hole_size = vma->vm_start - addr;
1417
1418                /* try just below the current vma->vm_start */
1419                addr = vma->vm_start-len;
1420        } while (len < vma->vm_start);
1421
1422bottomup:
1423        /*
1424         * A failed mmap() very likely causes application failure,
1425         * so fall back to the bottom-up function here. This scenario
1426         * can happen with large stack limits and large mmap()
1427         * allocations.
1428         */
1429        mm->cached_hole_size = ~0UL;
1430        mm->free_area_cache = TASK_UNMAPPED_BASE;
1431        addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1432        /*
1433         * Restore the topdown base:
1434         */
1435        mm->free_area_cache = mm->mmap_base;
1436        mm->cached_hole_size = ~0UL;
1437
1438        return addr;
1439}
1440#endif
1441
1442void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1443{
1444        /*
1445         * Is this a new hole at the highest possible address?
1446         */
1447        if (addr > mm->free_area_cache)
1448                mm->free_area_cache = addr;
1449
1450        /* dont allow allocations above current base */
1451        if (mm->free_area_cache > mm->mmap_base)
1452                mm->free_area_cache = mm->mmap_base;
1453}
1454
1455unsigned long
1456get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1457                unsigned long pgoff, unsigned long flags)
1458{
1459        unsigned long (*get_area)(struct file *, unsigned long,
1460                                  unsigned long, unsigned long, unsigned long);
1461
1462        get_area = current->mm->get_unmapped_area;
1463        if (file && file->f_op && file->f_op->get_unmapped_area)
1464                get_area = file->f_op->get_unmapped_area;
1465        addr = get_area(file, addr, len, pgoff, flags);
1466        if (IS_ERR_VALUE(addr))
1467                return addr;
1468
1469        if (addr > TASK_SIZE - len)
1470                return -ENOMEM;
1471        if (addr & ~PAGE_MASK)
1472                return -EINVAL;
1473
1474        return arch_rebalance_pgtables(addr, len);
1475}
1476
1477EXPORT_SYMBOL(get_unmapped_area);
1478
1479/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1480struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1481{
1482        struct vm_area_struct *vma = NULL;
1483
1484        if (mm) {
1485                /* Check the cache first. */
1486                /* (Cache hit rate is typically around 35%.) */
1487                vma = mm->mmap_cache;
1488                if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1489                        struct rb_node * rb_node;
1490
1491                        rb_node = mm->mm_rb.rb_node;
1492                        vma = NULL;
1493
1494                        while (rb_node) {
1495                                struct vm_area_struct * vma_tmp;
1496
1497                                vma_tmp = rb_entry(rb_node,
1498                                                struct vm_area_struct, vm_rb);
1499
1500                                if (vma_tmp->vm_end > addr) {
1501                                        vma = vma_tmp;
1502                                        if (vma_tmp->vm_start <= addr)
1503                                                break;
1504                                        rb_node = rb_node->rb_left;
1505                                } else
1506                                        rb_node = rb_node->rb_right;
1507                        }
1508                        if (vma)
1509                                mm->mmap_cache = vma;
1510                }
1511        }
1512        return vma;
1513}
1514
1515EXPORT_SYMBOL(find_vma);
1516
1517/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1518struct vm_area_struct *
1519find_vma_prev(struct mm_struct *mm, unsigned long addr,
1520                        struct vm_area_struct **pprev)
1521{
1522        struct vm_area_struct *vma = NULL, *prev = NULL;
1523        struct rb_node *rb_node;
1524        if (!mm)
1525                goto out;
1526
1527        /* Guard against addr being lower than the first VMA */
1528        vma = mm->mmap;
1529
1530        /* Go through the RB tree quickly. */
1531        rb_node = mm->mm_rb.rb_node;
1532
1533        while (rb_node) {
1534                struct vm_area_struct *vma_tmp;
1535                vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1536
1537                if (addr < vma_tmp->vm_end) {
1538                        rb_node = rb_node->rb_left;
1539                } else {
1540                        prev = vma_tmp;
1541                        if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1542                                break;
1543                        rb_node = rb_node->rb_right;
1544                }
1545        }
1546
1547out:
1548        *pprev = prev;
1549        return prev ? prev->vm_next : vma;
1550}
1551
1552/*
1553 * Verify that the stack growth is acceptable and
1554 * update accounting. This is shared with both the
1555 * grow-up and grow-down cases.
1556 */
1557static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1558{
1559        struct mm_struct *mm = vma->vm_mm;
1560        struct rlimit *rlim = current->signal->rlim;
1561        unsigned long new_start;
1562
1563        /* address space limit tests */
1564        if (!may_expand_vm(mm, grow))
1565                return -ENOMEM;
1566
1567        /* Stack limit test */
1568        if (size > rlim[RLIMIT_STACK].rlim_cur)
1569                return -ENOMEM;
1570
1571        /* mlock limit tests */
1572        if (vma->vm_flags & VM_LOCKED) {
1573                unsigned long locked;
1574                unsigned long limit;
1575                locked = mm->locked_vm + grow;
1576                limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1577                if (locked > limit && !capable(CAP_IPC_LOCK))
1578                        return -ENOMEM;
1579        }
1580
1581        /* Check to ensure the stack will not grow into a hugetlb-only region */
1582        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1583                        vma->vm_end - size;
1584        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1585                return -EFAULT;
1586
1587        /*
1588         * Overcommit..  This must be the final test, as it will
1589         * update security statistics.
1590         */
1591        if (security_vm_enough_memory_mm(mm, grow))
1592                return -ENOMEM;
1593
1594        /* Ok, everything looks good - let it rip */
1595        mm->total_vm += grow;
1596        if (vma->vm_flags & VM_LOCKED)
1597                mm->locked_vm += grow;
1598        vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1599        return 0;
1600}
1601
1602#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1603/*
1604 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1605 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1606 */
1607#ifndef CONFIG_IA64
1608static
1609#endif
1610int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1611{
1612        int error;
1613
1614        if (!(vma->vm_flags & VM_GROWSUP))
1615                return -EFAULT;
1616
1617        /*
1618         * We must make sure the anon_vma is allocated
1619         * so that the anon_vma locking is not a noop.
1620         */
1621        if (unlikely(anon_vma_prepare(vma)))
1622                return -ENOMEM;
1623        anon_vma_lock(vma);
1624
1625        /*
1626         * vma->vm_start/vm_end cannot change under us because the caller
1627         * is required to hold the mmap_sem in read mode.  We need the
1628         * anon_vma lock to serialize against concurrent expand_stacks.
1629         * Also guard against wrapping around to address 0.
1630         */
1631        if (address < PAGE_ALIGN(address+4))
1632                address = PAGE_ALIGN(address+4);
1633        else {
1634                anon_vma_unlock(vma);
1635                return -ENOMEM;
1636        }
1637        error = 0;
1638
1639        /* Somebody else might have raced and expanded it already */
1640        if (address > vma->vm_end) {
1641                unsigned long size, grow;
1642
1643                size = address - vma->vm_start;
1644                grow = (address - vma->vm_end) >> PAGE_SHIFT;
1645
1646                error = acct_stack_growth(vma, size, grow);
1647                if (!error)
1648                        vma->vm_end = address;
1649        }
1650        anon_vma_unlock(vma);
1651        return error;
1652}
1653#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1654
1655/*
1656 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1657 */
1658static int expand_downwards(struct vm_area_struct *vma,
1659                                   unsigned long address)
1660{
1661        int error;
1662
1663        /*
1664         * We must make sure the anon_vma is allocated
1665         * so that the anon_vma locking is not a noop.
1666         */
1667        if (unlikely(anon_vma_prepare(vma)))
1668                return -ENOMEM;
1669
1670        address &= PAGE_MASK;
1671        error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1672        if (error)
1673                return error;
1674
1675        anon_vma_lock(vma);
1676
1677        /*
1678         * vma->vm_start/vm_end cannot change under us because the caller
1679         * is required to hold the mmap_sem in read mode.  We need the
1680         * anon_vma lock to serialize against concurrent expand_stacks.
1681         */
1682
1683        /* Somebody else might have raced and expanded it already */
1684        if (address < vma->vm_start) {
1685                unsigned long size, grow;
1686
1687                size = vma->vm_end - address;
1688                grow = (vma->vm_start - address) >> PAGE_SHIFT;
1689
1690                error = acct_stack_growth(vma, size, grow);
1691                if (!error) {
1692                        vma->vm_start = address;
1693                        vma->vm_pgoff -= grow;
1694                }
1695        }
1696        anon_vma_unlock(vma);
1697        return error;
1698}
1699
1700int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1701{
1702        return expand_downwards(vma, address);
1703}
1704
1705#ifdef CONFIG_STACK_GROWSUP
1706int expand_stack(struct vm_area_struct *vma, unsigned long address)
1707{
1708        return expand_upwards(vma, address);
1709}
1710
1711struct vm_area_struct *
1712find_extend_vma(struct mm_struct *mm, unsigned long addr)
1713{
1714        struct vm_area_struct *vma, *prev;
1715
1716        addr &= PAGE_MASK;
1717        vma = find_vma_prev(mm, addr, &prev);
1718        if (vma && (vma->vm_start <= addr))
1719                return vma;
1720        if (!prev || expand_stack(prev, addr))
1721                return NULL;
1722        if (prev->vm_flags & VM_LOCKED) {
1723                if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1724                        return NULL;    /* vma gone! */
1725        }
1726        return prev;
1727}
1728#else
1729int expand_stack(struct vm_area_struct *vma, unsigned long address)
1730{
1731        return expand_downwards(vma, address);
1732}
1733
1734struct vm_area_struct *
1735find_extend_vma(struct mm_struct * mm, unsigned long addr)
1736{
1737        struct vm_area_struct * vma;
1738        unsigned long start;
1739
1740        addr &= PAGE_MASK;
1741        vma = find_vma(mm,addr);
1742        if (!vma)
1743                return NULL;
1744        if (vma->vm_start <= addr)
1745                return vma;
1746        if (!(vma->vm_flags & VM_GROWSDOWN))
1747                return NULL;
1748        start = vma->vm_start;
1749        if (expand_stack(vma, addr))
1750                return NULL;
1751        if (vma->vm_flags & VM_LOCKED) {
1752                if (mlock_vma_pages_range(vma, addr, start) < 0)
1753                        return NULL;    /* vma gone! */
1754        }
1755        return vma;
1756}
1757#endif
1758
1759/*
1760 * Ok - we have the memory areas we should free on the vma list,
1761 * so release them, and do the vma updates.
1762 *
1763 * Called with the mm semaphore held.
1764 */
1765static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1766{
1767        /* Update high watermark before we lower total_vm */
1768        update_hiwater_vm(mm);
1769        do {
1770                long nrpages = vma_pages(vma);
1771
1772                mm->total_vm -= nrpages;
1773                vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1774                vma = remove_vma(vma);
1775        } while (vma);
1776        validate_mm(mm);
1777}
1778
1779/*
1780 * Get rid of page table information in the indicated region.
1781 *
1782 * Called with the mm semaphore held.
1783 */
1784static void unmap_region(struct mm_struct *mm,
1785                struct vm_area_struct *vma, struct vm_area_struct *prev,
1786                unsigned long start, unsigned long end)
1787{
1788        struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1789        struct mmu_gather *tlb;
1790        unsigned long nr_accounted = 0;
1791
1792        lru_add_drain();
1793        tlb = tlb_gather_mmu(mm, 0);
1794        update_hiwater_rss(mm);
1795        unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1796        vm_unacct_memory(nr_accounted);
1797        free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1798                                 next? next->vm_start: 0);
1799        tlb_finish_mmu(tlb, start, end);
1800}
1801
1802/*
1803 * Create a list of vma's touched by the unmap, removing them from the mm's
1804 * vma list as we go..
1805 */
1806static void
1807detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1808        struct vm_area_struct *prev, unsigned long end)
1809{
1810        struct vm_area_struct **insertion_point;
1811        struct vm_area_struct *tail_vma = NULL;
1812        unsigned long addr;
1813
1814        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1815        do {
1816                rb_erase(&vma->vm_rb, &mm->mm_rb);
1817                mm->map_count--;
1818                tail_vma = vma;
1819                vma = vma->vm_next;
1820        } while (vma && vma->vm_start < end);
1821        *insertion_point = vma;
1822        tail_vma->vm_next = NULL;
1823        if (mm->unmap_area == arch_unmap_area)
1824                addr = prev ? prev->vm_end : mm->mmap_base;
1825        else
1826                addr = vma ?  vma->vm_start : mm->mmap_base;
1827        mm->unmap_area(mm, addr);
1828        mm->mmap_cache = NULL;          /* Kill the cache. */
1829}
1830
1831/*
1832 * Split a vma into two pieces at address 'addr', a new vma is allocated
1833 * either for the first part or the tail.
1834 */
1835int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1836              unsigned long addr, int new_below)
1837{
1838        struct mempolicy *pol;
1839        struct vm_area_struct *new;
1840
1841        if (is_vm_hugetlb_page(vma) && (addr &
1842                                        ~(huge_page_mask(hstate_vma(vma)))))
1843                return -EINVAL;
1844
1845        if (mm->map_count >= sysctl_max_map_count)
1846                return -ENOMEM;
1847
1848        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1849        if (!new)
1850                return -ENOMEM;
1851
1852        /* most fields are the same, copy all, and then fixup */
1853        *new = *vma;
1854
1855        if (new_below)
1856                new->vm_end = addr;
1857        else {
1858                new->vm_start = addr;
1859                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1860        }
1861
1862        pol = mpol_dup(vma_policy(vma));
1863        if (IS_ERR(pol)) {
1864                kmem_cache_free(vm_area_cachep, new);
1865                return PTR_ERR(pol);
1866        }
1867        vma_set_policy(new, pol);
1868
1869        if (new->vm_file) {
1870                get_file(new->vm_file);
1871                if (vma->vm_flags & VM_EXECUTABLE)
1872                        added_exe_file_vma(mm);
1873        }
1874
1875        if (new->vm_ops && new->vm_ops->open)
1876                new->vm_ops->open(new);
1877
1878        if (new_below)
1879                vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1880                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
1881        else
1882                vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1883
1884        return 0;
1885}
1886
1887/* Munmap is split into 2 main parts -- this part which finds
1888 * what needs doing, and the areas themselves, which do the
1889 * work.  This now handles partial unmappings.
1890 * Jeremy Fitzhardinge <jeremy@goop.org>
1891 */
1892int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1893{
1894        unsigned long end;
1895        struct vm_area_struct *vma, *prev, *last;
1896
1897        if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1898                return -EINVAL;
1899
1900        if ((len = PAGE_ALIGN(len)) == 0)
1901                return -EINVAL;
1902
1903        /* Find the first overlapping VMA */
1904        vma = find_vma_prev(mm, start, &prev);
1905        if (!vma)
1906                return 0;
1907        /* we have  start < vma->vm_end  */
1908
1909        /* if it doesn't overlap, we have nothing.. */
1910        end = start + len;
1911        if (vma->vm_start >= end)
1912                return 0;
1913
1914        /*
1915         * If we need to split any vma, do it now to save pain later.
1916         *
1917         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1918         * unmapped vm_area_struct will remain in use: so lower split_vma
1919         * places tmp vma above, and higher split_vma places tmp vma below.
1920         */
1921        if (start > vma->vm_start) {
1922                int error = split_vma(mm, vma, start, 0);
1923                if (error)
1924                        return error;
1925                prev = vma;
1926        }
1927
1928        /* Does it split the last one? */
1929        last = find_vma(mm, end);
1930        if (last && end > last->vm_start) {
1931                int error = split_vma(mm, last, end, 1);
1932                if (error)
1933                        return error;
1934        }
1935        vma = prev? prev->vm_next: mm->mmap;
1936
1937        /*
1938         * unlock any mlock()ed ranges before detaching vmas
1939         */
1940        if (mm->locked_vm) {
1941                struct vm_area_struct *tmp = vma;
1942                while (tmp && tmp->vm_start < end) {
1943                        if (tmp->vm_flags & VM_LOCKED) {
1944                                mm->locked_vm -= vma_pages(tmp);
1945                                munlock_vma_pages_all(tmp);
1946                        }
1947                        tmp = tmp->vm_next;
1948                }
1949        }
1950
1951        /*
1952         * Remove the vma's, and unmap the actual pages
1953         */
1954        detach_vmas_to_be_unmapped(mm, vma, prev, end);
1955        unmap_region(mm, vma, prev, start, end);
1956
1957        /* Fix up all other VM information */
1958        remove_vma_list(mm, vma);
1959
1960        return 0;
1961}
1962
1963EXPORT_SYMBOL(do_munmap);
1964
1965SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1966{
1967        int ret;
1968        struct mm_struct *mm = current->mm;
1969
1970        profile_munmap(addr);
1971
1972        down_write(&mm->mmap_sem);
1973        ret = do_munmap(mm, addr, len);
1974        up_write(&mm->mmap_sem);
1975        return ret;
1976}
1977
1978static inline void verify_mm_writelocked(struct mm_struct *mm)
1979{
1980#ifdef CONFIG_DEBUG_VM
1981        if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1982                WARN_ON(1);
1983                up_read(&mm->mmap_sem);
1984        }
1985#endif
1986}
1987
1988/*
1989 *  this is really a simplified "do_mmap".  it only handles
1990 *  anonymous maps.  eventually we may be able to do some
1991 *  brk-specific accounting here.
1992 */
1993unsigned long do_brk(unsigned long addr, unsigned long len)
1994{
1995        struct mm_struct * mm = current->mm;
1996        struct vm_area_struct * vma, * prev;
1997        unsigned long flags;
1998        struct rb_node ** rb_link, * rb_parent;
1999        pgoff_t pgoff = addr >> PAGE_SHIFT;
2000        int error;
2001
2002        len = PAGE_ALIGN(len);
2003        if (!len)
2004                return addr;
2005
2006        if ((addr + len) > TASK_SIZE || (addr + len) < addr)
2007                return -EINVAL;
2008
2009        if (is_hugepage_only_range(mm, addr, len))
2010                return -EINVAL;
2011
2012        error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2013        if (error)
2014                return error;
2015
2016        flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2017
2018        error = arch_mmap_check(addr, len, flags);
2019        if (error)
2020                return error;
2021
2022        /*
2023         * mlock MCL_FUTURE?
2024         */
2025        if (mm->def_flags & VM_LOCKED) {
2026                unsigned long locked, lock_limit;
2027                locked = len >> PAGE_SHIFT;
2028                locked += mm->locked_vm;
2029                lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2030                lock_limit >>= PAGE_SHIFT;
2031                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2032                        return -EAGAIN;
2033        }
2034
2035        /*
2036         * mm->mmap_sem is required to protect against another thread
2037         * changing the mappings in case we sleep.
2038         */
2039        verify_mm_writelocked(mm);
2040
2041        /*
2042         * Clear old maps.  this also does some error checking for us
2043         */
2044 munmap_back:
2045        vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2046        if (vma && vma->vm_start < addr + len) {
2047                if (do_munmap(mm, addr, len))
2048                        return -ENOMEM;
2049                goto munmap_back;
2050        }
2051
2052        /* Check against address space limits *after* clearing old maps... */
2053        if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2054                return -ENOMEM;
2055
2056        if (mm->map_count > sysctl_max_map_count)
2057                return -ENOMEM;
2058
2059        if (security_vm_enough_memory(len >> PAGE_SHIFT))
2060                return -ENOMEM;
2061
2062        /* Can we just expand an old private anonymous mapping? */
2063        vma = vma_merge(mm, prev, addr, addr + len, flags,
2064                                        NULL, NULL, pgoff, NULL);
2065        if (vma)
2066                goto out;
2067
2068        /*
2069         * create a vma struct for an anonymous mapping
2070         */
2071        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2072        if (!vma) {
2073                vm_unacct_memory(len >> PAGE_SHIFT);
2074                return -ENOMEM;
2075        }
2076
2077        vma->vm_mm = mm;
2078        vma->vm_start = addr;
2079        vma->vm_end = addr + len;
2080        vma->vm_pgoff = pgoff;
2081        vma->vm_flags = flags;
2082        vma->vm_page_prot = vm_get_page_prot(flags);
2083        vma_link(mm, vma, prev, rb_link, rb_parent);
2084out:
2085        mm->total_vm += len >> PAGE_SHIFT;
2086        if (flags & VM_LOCKED) {
2087                if (!mlock_vma_pages_range(vma, addr, addr + len))
2088                        mm->locked_vm += (len >> PAGE_SHIFT);
2089        }
2090        return addr;
2091}
2092
2093EXPORT_SYMBOL(do_brk);
2094
2095/* Release all mmaps. */
2096void exit_mmap(struct mm_struct *mm)
2097{
2098        struct mmu_gather *tlb;
2099        struct vm_area_struct *vma;
2100        unsigned long nr_accounted = 0;
2101        unsigned long end;
2102
2103        /* mm's last user has gone, and its about to be pulled down */
2104        mmu_notifier_release(mm);
2105
2106        if (mm->locked_vm) {
2107                vma = mm->mmap;
2108                while (vma) {
2109                        if (vma->vm_flags & VM_LOCKED)
2110                                munlock_vma_pages_all(vma);
2111                        vma = vma->vm_next;
2112                }
2113        }
2114
2115        arch_exit_mmap(mm);
2116
2117        vma = mm->mmap;
2118        if (!vma)       /* Can happen if dup_mmap() received an OOM */
2119                return;
2120
2121        lru_add_drain();
2122        flush_cache_mm(mm);
2123        tlb = tlb_gather_mmu(mm, 1);
2124        /* update_hiwater_rss(mm) here? but nobody should be looking */
2125        /* Use -1 here to ensure all VMAs in the mm are unmapped */
2126        end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2127        vm_unacct_memory(nr_accounted);
2128
2129        free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2130        tlb_finish_mmu(tlb, 0, end);
2131
2132        /*
2133         * Walk the list again, actually closing and freeing it,
2134         * with preemption enabled, without holding any MM locks.
2135         */
2136        while (vma)
2137                vma = remove_vma(vma);
2138
2139        BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2140}
2141
2142/* Insert vm structure into process list sorted by address
2143 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2144 * then i_mmap_lock is taken here.
2145 */
2146int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2147{
2148        struct vm_area_struct * __vma, * prev;
2149        struct rb_node ** rb_link, * rb_parent;
2150
2151        /*
2152         * The vm_pgoff of a purely anonymous vma should be irrelevant
2153         * until its first write fault, when page's anon_vma and index
2154         * are set.  But now set the vm_pgoff it will almost certainly
2155         * end up with (unless mremap moves it elsewhere before that
2156         * first wfault), so /proc/pid/maps tells a consistent story.
2157         *
2158         * By setting it to reflect the virtual start address of the
2159         * vma, merges and splits can happen in a seamless way, just
2160         * using the existing file pgoff checks and manipulations.
2161         * Similarly in do_mmap_pgoff and in do_brk.
2162         */
2163        if (!vma->vm_file) {
2164                BUG_ON(vma->anon_vma);
2165                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2166        }
2167        __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2168        if (__vma && __vma->vm_start < vma->vm_end)
2169                return -ENOMEM;
2170        if ((vma->vm_flags & VM_ACCOUNT) &&
2171             security_vm_enough_memory_mm(mm, vma_pages(vma)))
2172                return -ENOMEM;
2173        vma_link(mm, vma, prev, rb_link, rb_parent);
2174        return 0;
2175}
2176
2177/*
2178 * Copy the vma structure to a new location in the same mm,
2179 * prior to moving page table entries, to effect an mremap move.
2180 */
2181struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2182        unsigned long addr, unsigned long len, pgoff_t pgoff)
2183{
2184        struct vm_area_struct *vma = *vmap;
2185        unsigned long vma_start = vma->vm_start;
2186        struct mm_struct *mm = vma->vm_mm;
2187        struct vm_area_struct *new_vma, *prev;
2188        struct rb_node **rb_link, *rb_parent;
2189        struct mempolicy *pol;
2190
2191        /*
2192         * If anonymous vma has not yet been faulted, update new pgoff
2193         * to match new location, to increase its chance of merging.
2194         */
2195        if (!vma->vm_file && !vma->anon_vma)
2196                pgoff = addr >> PAGE_SHIFT;
2197
2198        find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2199        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2200                        vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2201        if (new_vma) {
2202                /*
2203                 * Source vma may have been merged into new_vma
2204                 */
2205                if (vma_start >= new_vma->vm_start &&
2206                    vma_start < new_vma->vm_end)
2207                        *vmap = new_vma;
2208        } else {
2209                new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2210                if (new_vma) {
2211                        *new_vma = *vma;
2212                        pol = mpol_dup(vma_policy(vma));
2213                        if (IS_ERR(pol)) {
2214                                kmem_cache_free(vm_area_cachep, new_vma);
2215                                return NULL;
2216                        }
2217                        vma_set_policy(new_vma, pol);
2218                        new_vma->vm_start = addr;
2219                        new_vma->vm_end = addr + len;
2220                        new_vma->vm_pgoff = pgoff;
2221                        if (new_vma->vm_file) {
2222                                get_file(new_vma->vm_file);
2223                                if (vma->vm_flags & VM_EXECUTABLE)
2224                                        added_exe_file_vma(mm);
2225                        }
2226                        if (new_vma->vm_ops && new_vma->vm_ops->open)
2227                                new_vma->vm_ops->open(new_vma);
2228                        vma_link(mm, new_vma, prev, rb_link, rb_parent);
2229                }
2230        }
2231        return new_vma;
2232}
2233
2234/*
2235 * Return true if the calling process may expand its vm space by the passed
2236 * number of pages
2237 */
2238int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2239{
2240        unsigned long cur = mm->total_vm;       /* pages */
2241        unsigned long lim;
2242
2243        lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2244
2245        if (cur + npages > lim)
2246                return 0;
2247        return 1;
2248}
2249
2250
2251static int special_mapping_fault(struct vm_area_struct *vma,
2252                                struct vm_fault *vmf)
2253{
2254        pgoff_t pgoff;
2255        struct page **pages;
2256
2257        /*
2258         * special mappings have no vm_file, and in that case, the mm
2259         * uses vm_pgoff internally. So we have to subtract it from here.
2260         * We are allowed to do this because we are the mm; do not copy
2261         * this code into drivers!
2262         */
2263        pgoff = vmf->pgoff - vma->vm_pgoff;
2264
2265        for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2266                pgoff--;
2267
2268        if (*pages) {
2269                struct page *page = *pages;
2270                get_page(page);
2271                vmf->page = page;
2272                return 0;
2273        }
2274
2275        return VM_FAULT_SIGBUS;
2276}
2277
2278/*
2279 * Having a close hook prevents vma merging regardless of flags.
2280 */
2281static void special_mapping_close(struct vm_area_struct *vma)
2282{
2283}
2284
2285static const struct vm_operations_struct special_mapping_vmops = {
2286        .close = special_mapping_close,
2287        .fault = special_mapping_fault,
2288};
2289
2290/*
2291 * Called with mm->mmap_sem held for writing.
2292 * Insert a new vma covering the given region, with the given flags.
2293 * Its pages are supplied by the given array of struct page *.
2294 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2295 * The region past the last page supplied will always produce SIGBUS.
2296 * The array pointer and the pages it points to are assumed to stay alive
2297 * for as long as this mapping might exist.
2298 */
2299int install_special_mapping(struct mm_struct *mm,
2300                            unsigned long addr, unsigned long len,
2301                            unsigned long vm_flags, struct page **pages)
2302{
2303        struct vm_area_struct *vma;
2304
2305        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2306        if (unlikely(vma == NULL))
2307                return -ENOMEM;
2308
2309        vma->vm_mm = mm;
2310        vma->vm_start = addr;
2311        vma->vm_end = addr + len;
2312
2313        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2314        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2315
2316        vma->vm_ops = &special_mapping_vmops;
2317        vma->vm_private_data = pages;
2318
2319        if (unlikely(insert_vm_struct(mm, vma))) {
2320                kmem_cache_free(vm_area_cachep, vma);
2321                return -ENOMEM;
2322        }
2323
2324        mm->total_vm += len >> PAGE_SHIFT;
2325
2326        perf_event_mmap(vma);
2327
2328        return 0;
2329}
2330
2331static DEFINE_MUTEX(mm_all_locks_mutex);
2332
2333static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2334{
2335        if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2336                /*
2337                 * The LSB of head.next can't change from under us
2338                 * because we hold the mm_all_locks_mutex.
2339                 */
2340                spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2341                /*
2342                 * We can safely modify head.next after taking the
2343                 * anon_vma->lock. If some other vma in this mm shares
2344                 * the same anon_vma we won't take it again.
2345                 *
2346                 * No need of atomic instructions here, head.next
2347                 * can't change from under us thanks to the
2348                 * anon_vma->lock.
2349                 */
2350                if (__test_and_set_bit(0, (unsigned long *)
2351                                       &anon_vma->head.next))
2352                        BUG();
2353        }
2354}
2355
2356static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2357{
2358        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2359                /*
2360                 * AS_MM_ALL_LOCKS can't change from under us because
2361                 * we hold the mm_all_locks_mutex.
2362                 *
2363                 * Operations on ->flags have to be atomic because
2364                 * even if AS_MM_ALL_LOCKS is stable thanks to the
2365                 * mm_all_locks_mutex, there may be other cpus
2366                 * changing other bitflags in parallel to us.
2367                 */
2368                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2369                        BUG();
2370                spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2371        }
2372}
2373
2374/*
2375 * This operation locks against the VM for all pte/vma/mm related
2376 * operations that could ever happen on a certain mm. This includes
2377 * vmtruncate, try_to_unmap, and all page faults.
2378 *
2379 * The caller must take the mmap_sem in write mode before calling
2380 * mm_take_all_locks(). The caller isn't allowed to release the
2381 * mmap_sem until mm_drop_all_locks() returns.
2382 *
2383 * mmap_sem in write mode is required in order to block all operations
2384 * that could modify pagetables and free pages without need of
2385 * altering the vma layout (for example populate_range() with
2386 * nonlinear vmas). It's also needed in write mode to avoid new
2387 * anon_vmas to be associated with existing vmas.
2388 *
2389 * A single task can't take more than one mm_take_all_locks() in a row
2390 * or it would deadlock.
2391 *
2392 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2393 * mapping->flags avoid to take the same lock twice, if more than one
2394 * vma in this mm is backed by the same anon_vma or address_space.
2395 *
2396 * We can take all the locks in random order because the VM code
2397 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2398 * takes more than one of them in a row. Secondly we're protected
2399 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2400 *
2401 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2402 * that may have to take thousand of locks.
2403 *
2404 * mm_take_all_locks() can fail if it's interrupted by signals.
2405 */
2406int mm_take_all_locks(struct mm_struct *mm)
2407{
2408        struct vm_area_struct *vma;
2409        int ret = -EINTR;
2410
2411        BUG_ON(down_read_trylock(&mm->mmap_sem));
2412
2413        mutex_lock(&mm_all_locks_mutex);
2414
2415        for (vma = mm->mmap; vma; vma = vma->vm_next) {
2416                if (signal_pending(current))
2417                        goto out_unlock;
2418                if (vma->vm_file && vma->vm_file->f_mapping)
2419                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
2420        }
2421
2422        for (vma = mm->mmap; vma; vma = vma->vm_next) {
2423                if (signal_pending(current))
2424                        goto out_unlock;
2425                if (vma->anon_vma)
2426                        vm_lock_anon_vma(mm, vma->anon_vma);
2427        }
2428
2429        ret = 0;
2430
2431out_unlock:
2432        if (ret)
2433                mm_drop_all_locks(mm);
2434
2435        return ret;
2436}
2437
2438static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2439{
2440        if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2441                /*
2442                 * The LSB of head.next can't change to 0 from under
2443                 * us because we hold the mm_all_locks_mutex.
2444                 *
2445                 * We must however clear the bitflag before unlocking
2446                 * the vma so the users using the anon_vma->head will
2447                 * never see our bitflag.
2448                 *
2449                 * No need of atomic instructions here, head.next
2450                 * can't change from under us until we release the
2451                 * anon_vma->lock.
2452                 */
2453                if (!__test_and_clear_bit(0, (unsigned long *)
2454                                          &anon_vma->head.next))
2455                        BUG();
2456                spin_unlock(&anon_vma->lock);
2457        }
2458}
2459
2460static void vm_unlock_mapping(struct address_space *mapping)
2461{
2462        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2463                /*
2464                 * AS_MM_ALL_LOCKS can't change to 0 from under us
2465                 * because we hold the mm_all_locks_mutex.
2466                 */
2467                spin_unlock(&mapping->i_mmap_lock);
2468                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2469                                        &mapping->flags))
2470                        BUG();
2471        }
2472}
2473
2474/*
2475 * The mmap_sem cannot be released by the caller until
2476 * mm_drop_all_locks() returns.
2477 */
2478void mm_drop_all_locks(struct mm_struct *mm)
2479{
2480        struct vm_area_struct *vma;
2481
2482        BUG_ON(down_read_trylock(&mm->mmap_sem));
2483        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2484
2485        for (vma = mm->mmap; vma; vma = vma->vm_next) {
2486                if (vma->anon_vma)
2487                        vm_unlock_anon_vma(vma->anon_vma);
2488                if (vma->vm_file && vma->vm_file->f_mapping)
2489                        vm_unlock_mapping(vma->vm_file->f_mapping);
2490        }
2491
2492        mutex_unlock(&mm_all_locks_mutex);
2493}
2494
2495/*
2496 * initialise the VMA slab
2497 */
2498void __init mmap_init(void)
2499{
2500        int ret;
2501
2502        ret = percpu_counter_init(&vm_committed_as, 0);
2503        VM_BUG_ON(ret);
2504}
2505