linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h>
  36#include <linux/pagevec.h>
  37
  38/*
  39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  40 * will look to see if it needs to force writeback or throttling.
  41 */
  42static long ratelimit_pages = 32;
  43
  44/*
  45 * When balance_dirty_pages decides that the caller needs to perform some
  46 * non-background writeback, this is how many pages it will attempt to write.
  47 * It should be somewhat larger than dirtied pages to ensure that reasonably
  48 * large amounts of I/O are submitted.
  49 */
  50static inline long sync_writeback_pages(unsigned long dirtied)
  51{
  52        if (dirtied < ratelimit_pages)
  53                dirtied = ratelimit_pages;
  54
  55        return dirtied + dirtied / 2;
  56}
  57
  58/* The following parameters are exported via /proc/sys/vm */
  59
  60/*
  61 * Start background writeback (via writeback threads) at this percentage
  62 */
  63int dirty_background_ratio = 10;
  64
  65/*
  66 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  67 * dirty_background_ratio * the amount of dirtyable memory
  68 */
  69unsigned long dirty_background_bytes;
  70
  71/*
  72 * free highmem will not be subtracted from the total free memory
  73 * for calculating free ratios if vm_highmem_is_dirtyable is true
  74 */
  75int vm_highmem_is_dirtyable;
  76
  77/*
  78 * The generator of dirty data starts writeback at this percentage
  79 */
  80int vm_dirty_ratio = 20;
  81
  82/*
  83 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  84 * vm_dirty_ratio * the amount of dirtyable memory
  85 */
  86unsigned long vm_dirty_bytes;
  87
  88/*
  89 * The interval between `kupdate'-style writebacks
  90 */
  91unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  92
  93/*
  94 * The longest time for which data is allowed to remain dirty
  95 */
  96unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  97
  98/*
  99 * Flag that makes the machine dump writes/reads and block dirtyings.
 100 */
 101int block_dump;
 102
 103/*
 104 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 105 * a full sync is triggered after this time elapses without any disk activity.
 106 */
 107int laptop_mode;
 108
 109EXPORT_SYMBOL(laptop_mode);
 110
 111/* End of sysctl-exported parameters */
 112
 113
 114/*
 115 * Scale the writeback cache size proportional to the relative writeout speeds.
 116 *
 117 * We do this by keeping a floating proportion between BDIs, based on page
 118 * writeback completions [end_page_writeback()]. Those devices that write out
 119 * pages fastest will get the larger share, while the slower will get a smaller
 120 * share.
 121 *
 122 * We use page writeout completions because we are interested in getting rid of
 123 * dirty pages. Having them written out is the primary goal.
 124 *
 125 * We introduce a concept of time, a period over which we measure these events,
 126 * because demand can/will vary over time. The length of this period itself is
 127 * measured in page writeback completions.
 128 *
 129 */
 130static struct prop_descriptor vm_completions;
 131static struct prop_descriptor vm_dirties;
 132
 133/*
 134 * couple the period to the dirty_ratio:
 135 *
 136 *   period/2 ~ roundup_pow_of_two(dirty limit)
 137 */
 138static int calc_period_shift(void)
 139{
 140        unsigned long dirty_total;
 141
 142        if (vm_dirty_bytes)
 143                dirty_total = vm_dirty_bytes / PAGE_SIZE;
 144        else
 145                dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
 146                                100;
 147        return 2 + ilog2(dirty_total - 1);
 148}
 149
 150/*
 151 * update the period when the dirty threshold changes.
 152 */
 153static void update_completion_period(void)
 154{
 155        int shift = calc_period_shift();
 156        prop_change_shift(&vm_completions, shift);
 157        prop_change_shift(&vm_dirties, shift);
 158}
 159
 160int dirty_background_ratio_handler(struct ctl_table *table, int write,
 161                void __user *buffer, size_t *lenp,
 162                loff_t *ppos)
 163{
 164        int ret;
 165
 166        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 167        if (ret == 0 && write)
 168                dirty_background_bytes = 0;
 169        return ret;
 170}
 171
 172int dirty_background_bytes_handler(struct ctl_table *table, int write,
 173                void __user *buffer, size_t *lenp,
 174                loff_t *ppos)
 175{
 176        int ret;
 177
 178        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 179        if (ret == 0 && write)
 180                dirty_background_ratio = 0;
 181        return ret;
 182}
 183
 184int dirty_ratio_handler(struct ctl_table *table, int write,
 185                void __user *buffer, size_t *lenp,
 186                loff_t *ppos)
 187{
 188        int old_ratio = vm_dirty_ratio;
 189        int ret;
 190
 191        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 192        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 193                update_completion_period();
 194                vm_dirty_bytes = 0;
 195        }
 196        return ret;
 197}
 198
 199
 200int dirty_bytes_handler(struct ctl_table *table, int write,
 201                void __user *buffer, size_t *lenp,
 202                loff_t *ppos)
 203{
 204        unsigned long old_bytes = vm_dirty_bytes;
 205        int ret;
 206
 207        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 208        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 209                update_completion_period();
 210                vm_dirty_ratio = 0;
 211        }
 212        return ret;
 213}
 214
 215/*
 216 * Increment the BDI's writeout completion count and the global writeout
 217 * completion count. Called from test_clear_page_writeback().
 218 */
 219static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 220{
 221        __prop_inc_percpu_max(&vm_completions, &bdi->completions,
 222                              bdi->max_prop_frac);
 223}
 224
 225void bdi_writeout_inc(struct backing_dev_info *bdi)
 226{
 227        unsigned long flags;
 228
 229        local_irq_save(flags);
 230        __bdi_writeout_inc(bdi);
 231        local_irq_restore(flags);
 232}
 233EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 234
 235void task_dirty_inc(struct task_struct *tsk)
 236{
 237        prop_inc_single(&vm_dirties, &tsk->dirties);
 238}
 239
 240/*
 241 * Obtain an accurate fraction of the BDI's portion.
 242 */
 243static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 244                long *numerator, long *denominator)
 245{
 246        if (bdi_cap_writeback_dirty(bdi)) {
 247                prop_fraction_percpu(&vm_completions, &bdi->completions,
 248                                numerator, denominator);
 249        } else {
 250                *numerator = 0;
 251                *denominator = 1;
 252        }
 253}
 254
 255/*
 256 * Clip the earned share of dirty pages to that which is actually available.
 257 * This avoids exceeding the total dirty_limit when the floating averages
 258 * fluctuate too quickly.
 259 */
 260static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
 261                unsigned long dirty, unsigned long *pbdi_dirty)
 262{
 263        unsigned long avail_dirty;
 264
 265        avail_dirty = global_page_state(NR_FILE_DIRTY) +
 266                 global_page_state(NR_WRITEBACK) +
 267                 global_page_state(NR_UNSTABLE_NFS) +
 268                 global_page_state(NR_WRITEBACK_TEMP);
 269
 270        if (avail_dirty < dirty)
 271                avail_dirty = dirty - avail_dirty;
 272        else
 273                avail_dirty = 0;
 274
 275        avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
 276                bdi_stat(bdi, BDI_WRITEBACK);
 277
 278        *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
 279}
 280
 281static inline void task_dirties_fraction(struct task_struct *tsk,
 282                long *numerator, long *denominator)
 283{
 284        prop_fraction_single(&vm_dirties, &tsk->dirties,
 285                                numerator, denominator);
 286}
 287
 288/*
 289 * scale the dirty limit
 290 *
 291 * task specific dirty limit:
 292 *
 293 *   dirty -= (dirty/8) * p_{t}
 294 */
 295static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
 296{
 297        long numerator, denominator;
 298        unsigned long dirty = *pdirty;
 299        u64 inv = dirty >> 3;
 300
 301        task_dirties_fraction(tsk, &numerator, &denominator);
 302        inv *= numerator;
 303        do_div(inv, denominator);
 304
 305        dirty -= inv;
 306        if (dirty < *pdirty/2)
 307                dirty = *pdirty/2;
 308
 309        *pdirty = dirty;
 310}
 311
 312/*
 313 *
 314 */
 315static unsigned int bdi_min_ratio;
 316
 317int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 318{
 319        int ret = 0;
 320
 321        spin_lock_bh(&bdi_lock);
 322        if (min_ratio > bdi->max_ratio) {
 323                ret = -EINVAL;
 324        } else {
 325                min_ratio -= bdi->min_ratio;
 326                if (bdi_min_ratio + min_ratio < 100) {
 327                        bdi_min_ratio += min_ratio;
 328                        bdi->min_ratio += min_ratio;
 329                } else {
 330                        ret = -EINVAL;
 331                }
 332        }
 333        spin_unlock_bh(&bdi_lock);
 334
 335        return ret;
 336}
 337
 338int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 339{
 340        int ret = 0;
 341
 342        if (max_ratio > 100)
 343                return -EINVAL;
 344
 345        spin_lock_bh(&bdi_lock);
 346        if (bdi->min_ratio > max_ratio) {
 347                ret = -EINVAL;
 348        } else {
 349                bdi->max_ratio = max_ratio;
 350                bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 351        }
 352        spin_unlock_bh(&bdi_lock);
 353
 354        return ret;
 355}
 356EXPORT_SYMBOL(bdi_set_max_ratio);
 357
 358/*
 359 * Work out the current dirty-memory clamping and background writeout
 360 * thresholds.
 361 *
 362 * The main aim here is to lower them aggressively if there is a lot of mapped
 363 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 364 * pages.  It is better to clamp down on writers than to start swapping, and
 365 * performing lots of scanning.
 366 *
 367 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 368 *
 369 * We don't permit the clamping level to fall below 5% - that is getting rather
 370 * excessive.
 371 *
 372 * We make sure that the background writeout level is below the adjusted
 373 * clamping level.
 374 */
 375
 376static unsigned long highmem_dirtyable_memory(unsigned long total)
 377{
 378#ifdef CONFIG_HIGHMEM
 379        int node;
 380        unsigned long x = 0;
 381
 382        for_each_node_state(node, N_HIGH_MEMORY) {
 383                struct zone *z =
 384                        &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 385
 386                x += zone_page_state(z, NR_FREE_PAGES) +
 387                     zone_reclaimable_pages(z);
 388        }
 389        /*
 390         * Make sure that the number of highmem pages is never larger
 391         * than the number of the total dirtyable memory. This can only
 392         * occur in very strange VM situations but we want to make sure
 393         * that this does not occur.
 394         */
 395        return min(x, total);
 396#else
 397        return 0;
 398#endif
 399}
 400
 401/**
 402 * determine_dirtyable_memory - amount of memory that may be used
 403 *
 404 * Returns the numebr of pages that can currently be freed and used
 405 * by the kernel for direct mappings.
 406 */
 407unsigned long determine_dirtyable_memory(void)
 408{
 409        unsigned long x;
 410
 411        x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
 412
 413        if (!vm_highmem_is_dirtyable)
 414                x -= highmem_dirtyable_memory(x);
 415
 416        return x + 1;   /* Ensure that we never return 0 */
 417}
 418
 419void
 420get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
 421                 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
 422{
 423        unsigned long background;
 424        unsigned long dirty;
 425        unsigned long available_memory = determine_dirtyable_memory();
 426        struct task_struct *tsk;
 427
 428        if (vm_dirty_bytes)
 429                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 430        else {
 431                int dirty_ratio;
 432
 433                dirty_ratio = vm_dirty_ratio;
 434                if (dirty_ratio < 5)
 435                        dirty_ratio = 5;
 436                dirty = (dirty_ratio * available_memory) / 100;
 437        }
 438
 439        if (dirty_background_bytes)
 440                background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 441        else
 442                background = (dirty_background_ratio * available_memory) / 100;
 443
 444        if (background >= dirty)
 445                background = dirty / 2;
 446        tsk = current;
 447        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 448                background += background / 4;
 449                dirty += dirty / 4;
 450        }
 451        *pbackground = background;
 452        *pdirty = dirty;
 453
 454        if (bdi) {
 455                u64 bdi_dirty;
 456                long numerator, denominator;
 457
 458                /*
 459                 * Calculate this BDI's share of the dirty ratio.
 460                 */
 461                bdi_writeout_fraction(bdi, &numerator, &denominator);
 462
 463                bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 464                bdi_dirty *= numerator;
 465                do_div(bdi_dirty, denominator);
 466                bdi_dirty += (dirty * bdi->min_ratio) / 100;
 467                if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 468                        bdi_dirty = dirty * bdi->max_ratio / 100;
 469
 470                *pbdi_dirty = bdi_dirty;
 471                clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
 472                task_dirty_limit(current, pbdi_dirty);
 473        }
 474}
 475
 476/*
 477 * balance_dirty_pages() must be called by processes which are generating dirty
 478 * data.  It looks at the number of dirty pages in the machine and will force
 479 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 480 * If we're over `background_thresh' then the writeback threads are woken to
 481 * perform some writeout.
 482 */
 483static void balance_dirty_pages(struct address_space *mapping,
 484                                unsigned long write_chunk)
 485{
 486        long nr_reclaimable, bdi_nr_reclaimable;
 487        long nr_writeback, bdi_nr_writeback;
 488        unsigned long background_thresh;
 489        unsigned long dirty_thresh;
 490        unsigned long bdi_thresh;
 491        unsigned long pages_written = 0;
 492        unsigned long pause = 1;
 493
 494        struct backing_dev_info *bdi = mapping->backing_dev_info;
 495
 496        for (;;) {
 497                struct writeback_control wbc = {
 498                        .bdi            = bdi,
 499                        .sync_mode      = WB_SYNC_NONE,
 500                        .older_than_this = NULL,
 501                        .nr_to_write    = write_chunk,
 502                        .range_cyclic   = 1,
 503                };
 504
 505                get_dirty_limits(&background_thresh, &dirty_thresh,
 506                                &bdi_thresh, bdi);
 507
 508                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 509                                        global_page_state(NR_UNSTABLE_NFS);
 510                nr_writeback = global_page_state(NR_WRITEBACK);
 511
 512                bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 513                bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 514
 515                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 516                        break;
 517
 518                /*
 519                 * Throttle it only when the background writeback cannot
 520                 * catch-up. This avoids (excessively) small writeouts
 521                 * when the bdi limits are ramping up.
 522                 */
 523                if (nr_reclaimable + nr_writeback <
 524                                (background_thresh + dirty_thresh) / 2)
 525                        break;
 526
 527                if (!bdi->dirty_exceeded)
 528                        bdi->dirty_exceeded = 1;
 529
 530                /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 531                 * Unstable writes are a feature of certain networked
 532                 * filesystems (i.e. NFS) in which data may have been
 533                 * written to the server's write cache, but has not yet
 534                 * been flushed to permanent storage.
 535                 * Only move pages to writeback if this bdi is over its
 536                 * threshold otherwise wait until the disk writes catch
 537                 * up.
 538                 */
 539                if (bdi_nr_reclaimable > bdi_thresh) {
 540                        writeback_inodes_wbc(&wbc);
 541                        pages_written += write_chunk - wbc.nr_to_write;
 542                        get_dirty_limits(&background_thresh, &dirty_thresh,
 543                                       &bdi_thresh, bdi);
 544                }
 545
 546                /*
 547                 * In order to avoid the stacked BDI deadlock we need
 548                 * to ensure we accurately count the 'dirty' pages when
 549                 * the threshold is low.
 550                 *
 551                 * Otherwise it would be possible to get thresh+n pages
 552                 * reported dirty, even though there are thresh-m pages
 553                 * actually dirty; with m+n sitting in the percpu
 554                 * deltas.
 555                 */
 556                if (bdi_thresh < 2*bdi_stat_error(bdi)) {
 557                        bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 558                        bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
 559                } else if (bdi_nr_reclaimable) {
 560                        bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 561                        bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 562                }
 563
 564                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 565                        break;
 566                if (pages_written >= write_chunk)
 567                        break;          /* We've done our duty */
 568
 569                __set_current_state(TASK_INTERRUPTIBLE);
 570                io_schedule_timeout(pause);
 571
 572                /*
 573                 * Increase the delay for each loop, up to our previous
 574                 * default of taking a 100ms nap.
 575                 */
 576                pause <<= 1;
 577                if (pause > HZ / 10)
 578                        pause = HZ / 10;
 579        }
 580
 581        if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
 582                        bdi->dirty_exceeded)
 583                bdi->dirty_exceeded = 0;
 584
 585        if (writeback_in_progress(bdi))
 586                return;
 587
 588        /*
 589         * In laptop mode, we wait until hitting the higher threshold before
 590         * starting background writeout, and then write out all the way down
 591         * to the lower threshold.  So slow writers cause minimal disk activity.
 592         *
 593         * In normal mode, we start background writeout at the lower
 594         * background_thresh, to keep the amount of dirty memory low.
 595         */
 596        if ((laptop_mode && pages_written) ||
 597            (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
 598                               + global_page_state(NR_UNSTABLE_NFS))
 599                                          > background_thresh)))
 600                bdi_start_writeback(bdi, NULL, 0);
 601}
 602
 603void set_page_dirty_balance(struct page *page, int page_mkwrite)
 604{
 605        if (set_page_dirty(page) || page_mkwrite) {
 606                struct address_space *mapping = page_mapping(page);
 607
 608                if (mapping)
 609                        balance_dirty_pages_ratelimited(mapping);
 610        }
 611}
 612
 613static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
 614
 615/**
 616 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 617 * @mapping: address_space which was dirtied
 618 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 619 *
 620 * Processes which are dirtying memory should call in here once for each page
 621 * which was newly dirtied.  The function will periodically check the system's
 622 * dirty state and will initiate writeback if needed.
 623 *
 624 * On really big machines, get_writeback_state is expensive, so try to avoid
 625 * calling it too often (ratelimiting).  But once we're over the dirty memory
 626 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 627 * from overshooting the limit by (ratelimit_pages) each.
 628 */
 629void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 630                                        unsigned long nr_pages_dirtied)
 631{
 632        unsigned long ratelimit;
 633        unsigned long *p;
 634
 635        ratelimit = ratelimit_pages;
 636        if (mapping->backing_dev_info->dirty_exceeded)
 637                ratelimit = 8;
 638
 639        /*
 640         * Check the rate limiting. Also, we do not want to throttle real-time
 641         * tasks in balance_dirty_pages(). Period.
 642         */
 643        preempt_disable();
 644        p =  &__get_cpu_var(bdp_ratelimits);
 645        *p += nr_pages_dirtied;
 646        if (unlikely(*p >= ratelimit)) {
 647                ratelimit = sync_writeback_pages(*p);
 648                *p = 0;
 649                preempt_enable();
 650                balance_dirty_pages(mapping, ratelimit);
 651                return;
 652        }
 653        preempt_enable();
 654}
 655EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 656
 657void throttle_vm_writeout(gfp_t gfp_mask)
 658{
 659        unsigned long background_thresh;
 660        unsigned long dirty_thresh;
 661
 662        for ( ; ; ) {
 663                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 664
 665                /*
 666                 * Boost the allowable dirty threshold a bit for page
 667                 * allocators so they don't get DoS'ed by heavy writers
 668                 */
 669                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 670
 671                if (global_page_state(NR_UNSTABLE_NFS) +
 672                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
 673                                break;
 674                congestion_wait(BLK_RW_ASYNC, HZ/10);
 675
 676                /*
 677                 * The caller might hold locks which can prevent IO completion
 678                 * or progress in the filesystem.  So we cannot just sit here
 679                 * waiting for IO to complete.
 680                 */
 681                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 682                        break;
 683        }
 684}
 685
 686static void laptop_timer_fn(unsigned long unused);
 687
 688static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
 689
 690/*
 691 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 692 */
 693int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 694        void __user *buffer, size_t *length, loff_t *ppos)
 695{
 696        proc_dointvec(table, write, buffer, length, ppos);
 697        return 0;
 698}
 699
 700static void do_laptop_sync(struct work_struct *work)
 701{
 702        wakeup_flusher_threads(0);
 703        kfree(work);
 704}
 705
 706static void laptop_timer_fn(unsigned long unused)
 707{
 708        struct work_struct *work;
 709
 710        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 711        if (work) {
 712                INIT_WORK(work, do_laptop_sync);
 713                schedule_work(work);
 714        }
 715}
 716
 717/*
 718 * We've spun up the disk and we're in laptop mode: schedule writeback
 719 * of all dirty data a few seconds from now.  If the flush is already scheduled
 720 * then push it back - the user is still using the disk.
 721 */
 722void laptop_io_completion(void)
 723{
 724        mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
 725}
 726
 727/*
 728 * We're in laptop mode and we've just synced. The sync's writes will have
 729 * caused another writeback to be scheduled by laptop_io_completion.
 730 * Nothing needs to be written back anymore, so we unschedule the writeback.
 731 */
 732void laptop_sync_completion(void)
 733{
 734        del_timer(&laptop_mode_wb_timer);
 735}
 736
 737/*
 738 * If ratelimit_pages is too high then we can get into dirty-data overload
 739 * if a large number of processes all perform writes at the same time.
 740 * If it is too low then SMP machines will call the (expensive)
 741 * get_writeback_state too often.
 742 *
 743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 745 * thresholds before writeback cuts in.
 746 *
 747 * But the limit should not be set too high.  Because it also controls the
 748 * amount of memory which the balance_dirty_pages() caller has to write back.
 749 * If this is too large then the caller will block on the IO queue all the
 750 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 751 * will write six megabyte chunks, max.
 752 */
 753
 754void writeback_set_ratelimit(void)
 755{
 756        ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 757        if (ratelimit_pages < 16)
 758                ratelimit_pages = 16;
 759        if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 760                ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 761}
 762
 763static int __cpuinit
 764ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 765{
 766        writeback_set_ratelimit();
 767        return NOTIFY_DONE;
 768}
 769
 770static struct notifier_block __cpuinitdata ratelimit_nb = {
 771        .notifier_call  = ratelimit_handler,
 772        .next           = NULL,
 773};
 774
 775/*
 776 * Called early on to tune the page writeback dirty limits.
 777 *
 778 * We used to scale dirty pages according to how total memory
 779 * related to pages that could be allocated for buffers (by
 780 * comparing nr_free_buffer_pages() to vm_total_pages.
 781 *
 782 * However, that was when we used "dirty_ratio" to scale with
 783 * all memory, and we don't do that any more. "dirty_ratio"
 784 * is now applied to total non-HIGHPAGE memory (by subtracting
 785 * totalhigh_pages from vm_total_pages), and as such we can't
 786 * get into the old insane situation any more where we had
 787 * large amounts of dirty pages compared to a small amount of
 788 * non-HIGHMEM memory.
 789 *
 790 * But we might still want to scale the dirty_ratio by how
 791 * much memory the box has..
 792 */
 793void __init page_writeback_init(void)
 794{
 795        int shift;
 796
 797        writeback_set_ratelimit();
 798        register_cpu_notifier(&ratelimit_nb);
 799
 800        shift = calc_period_shift();
 801        prop_descriptor_init(&vm_completions, shift);
 802        prop_descriptor_init(&vm_dirties, shift);
 803}
 804
 805/**
 806 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 807 * @mapping: address space structure to write
 808 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 809 * @writepage: function called for each page
 810 * @data: data passed to writepage function
 811 *
 812 * If a page is already under I/O, write_cache_pages() skips it, even
 813 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 814 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 815 * and msync() need to guarantee that all the data which was dirty at the time
 816 * the call was made get new I/O started against them.  If wbc->sync_mode is
 817 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 818 * existing IO to complete.
 819 */
 820int write_cache_pages(struct address_space *mapping,
 821                      struct writeback_control *wbc, writepage_t writepage,
 822                      void *data)
 823{
 824        struct backing_dev_info *bdi = mapping->backing_dev_info;
 825        int ret = 0;
 826        int done = 0;
 827        struct pagevec pvec;
 828        int nr_pages;
 829        pgoff_t uninitialized_var(writeback_index);
 830        pgoff_t index;
 831        pgoff_t end;            /* Inclusive */
 832        pgoff_t done_index;
 833        int cycled;
 834        int range_whole = 0;
 835        long nr_to_write = wbc->nr_to_write;
 836
 837        if (wbc->nonblocking && bdi_write_congested(bdi)) {
 838                wbc->encountered_congestion = 1;
 839                return 0;
 840        }
 841
 842        pagevec_init(&pvec, 0);
 843        if (wbc->range_cyclic) {
 844                writeback_index = mapping->writeback_index; /* prev offset */
 845                index = writeback_index;
 846                if (index == 0)
 847                        cycled = 1;
 848                else
 849                        cycled = 0;
 850                end = -1;
 851        } else {
 852                index = wbc->range_start >> PAGE_CACHE_SHIFT;
 853                end = wbc->range_end >> PAGE_CACHE_SHIFT;
 854                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 855                        range_whole = 1;
 856                cycled = 1; /* ignore range_cyclic tests */
 857        }
 858retry:
 859        done_index = index;
 860        while (!done && (index <= end)) {
 861                int i;
 862
 863                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 864                              PAGECACHE_TAG_DIRTY,
 865                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 866                if (nr_pages == 0)
 867                        break;
 868
 869                for (i = 0; i < nr_pages; i++) {
 870                        struct page *page = pvec.pages[i];
 871
 872                        /*
 873                         * At this point, the page may be truncated or
 874                         * invalidated (changing page->mapping to NULL), or
 875                         * even swizzled back from swapper_space to tmpfs file
 876                         * mapping. However, page->index will not change
 877                         * because we have a reference on the page.
 878                         */
 879                        if (page->index > end) {
 880                                /*
 881                                 * can't be range_cyclic (1st pass) because
 882                                 * end == -1 in that case.
 883                                 */
 884                                done = 1;
 885                                break;
 886                        }
 887
 888                        done_index = page->index + 1;
 889
 890                        lock_page(page);
 891
 892                        /*
 893                         * Page truncated or invalidated. We can freely skip it
 894                         * then, even for data integrity operations: the page
 895                         * has disappeared concurrently, so there could be no
 896                         * real expectation of this data interity operation
 897                         * even if there is now a new, dirty page at the same
 898                         * pagecache address.
 899                         */
 900                        if (unlikely(page->mapping != mapping)) {
 901continue_unlock:
 902                                unlock_page(page);
 903                                continue;
 904                        }
 905
 906                        if (!PageDirty(page)) {
 907                                /* someone wrote it for us */
 908                                goto continue_unlock;
 909                        }
 910
 911                        if (PageWriteback(page)) {
 912                                if (wbc->sync_mode != WB_SYNC_NONE)
 913                                        wait_on_page_writeback(page);
 914                                else
 915                                        goto continue_unlock;
 916                        }
 917
 918                        BUG_ON(PageWriteback(page));
 919                        if (!clear_page_dirty_for_io(page))
 920                                goto continue_unlock;
 921
 922                        ret = (*writepage)(page, wbc, data);
 923                        if (unlikely(ret)) {
 924                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
 925                                        unlock_page(page);
 926                                        ret = 0;
 927                                } else {
 928                                        /*
 929                                         * done_index is set past this page,
 930                                         * so media errors will not choke
 931                                         * background writeout for the entire
 932                                         * file. This has consequences for
 933                                         * range_cyclic semantics (ie. it may
 934                                         * not be suitable for data integrity
 935                                         * writeout).
 936                                         */
 937                                        done = 1;
 938                                        break;
 939                                }
 940                        }
 941
 942                        if (nr_to_write > 0) {
 943                                nr_to_write--;
 944                                if (nr_to_write == 0 &&
 945                                    wbc->sync_mode == WB_SYNC_NONE) {
 946                                        /*
 947                                         * We stop writing back only if we are
 948                                         * not doing integrity sync. In case of
 949                                         * integrity sync we have to keep going
 950                                         * because someone may be concurrently
 951                                         * dirtying pages, and we might have
 952                                         * synced a lot of newly appeared dirty
 953                                         * pages, but have not synced all of the
 954                                         * old dirty pages.
 955                                         */
 956                                        done = 1;
 957                                        break;
 958                                }
 959                        }
 960
 961                        if (wbc->nonblocking && bdi_write_congested(bdi)) {
 962                                wbc->encountered_congestion = 1;
 963                                done = 1;
 964                                break;
 965                        }
 966                }
 967                pagevec_release(&pvec);
 968                cond_resched();
 969        }
 970        if (!cycled && !done) {
 971                /*
 972                 * range_cyclic:
 973                 * We hit the last page and there is more work to be done: wrap
 974                 * back to the start of the file
 975                 */
 976                cycled = 1;
 977                index = 0;
 978                end = writeback_index - 1;
 979                goto retry;
 980        }
 981        if (!wbc->no_nrwrite_index_update) {
 982                if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
 983                        mapping->writeback_index = done_index;
 984                wbc->nr_to_write = nr_to_write;
 985        }
 986
 987        return ret;
 988}
 989EXPORT_SYMBOL(write_cache_pages);
 990
 991/*
 992 * Function used by generic_writepages to call the real writepage
 993 * function and set the mapping flags on error
 994 */
 995static int __writepage(struct page *page, struct writeback_control *wbc,
 996                       void *data)
 997{
 998        struct address_space *mapping = data;
 999        int ret = mapping->a_ops->writepage(page, wbc);
1000        mapping_set_error(mapping, ret);
1001        return ret;
1002}
1003
1004/**
1005 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1006 * @mapping: address space structure to write
1007 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1008 *
1009 * This is a library function, which implements the writepages()
1010 * address_space_operation.
1011 */
1012int generic_writepages(struct address_space *mapping,
1013                       struct writeback_control *wbc)
1014{
1015        /* deal with chardevs and other special file */
1016        if (!mapping->a_ops->writepage)
1017                return 0;
1018
1019        return write_cache_pages(mapping, wbc, __writepage, mapping);
1020}
1021
1022EXPORT_SYMBOL(generic_writepages);
1023
1024int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1025{
1026        int ret;
1027
1028        if (wbc->nr_to_write <= 0)
1029                return 0;
1030        if (mapping->a_ops->writepages)
1031                ret = mapping->a_ops->writepages(mapping, wbc);
1032        else
1033                ret = generic_writepages(mapping, wbc);
1034        return ret;
1035}
1036
1037/**
1038 * write_one_page - write out a single page and optionally wait on I/O
1039 * @page: the page to write
1040 * @wait: if true, wait on writeout
1041 *
1042 * The page must be locked by the caller and will be unlocked upon return.
1043 *
1044 * write_one_page() returns a negative error code if I/O failed.
1045 */
1046int write_one_page(struct page *page, int wait)
1047{
1048        struct address_space *mapping = page->mapping;
1049        int ret = 0;
1050        struct writeback_control wbc = {
1051                .sync_mode = WB_SYNC_ALL,
1052                .nr_to_write = 1,
1053        };
1054
1055        BUG_ON(!PageLocked(page));
1056
1057        if (wait)
1058                wait_on_page_writeback(page);
1059
1060        if (clear_page_dirty_for_io(page)) {
1061                page_cache_get(page);
1062                ret = mapping->a_ops->writepage(page, &wbc);
1063                if (ret == 0 && wait) {
1064                        wait_on_page_writeback(page);
1065                        if (PageError(page))
1066                                ret = -EIO;
1067                }
1068                page_cache_release(page);
1069        } else {
1070                unlock_page(page);
1071        }
1072        return ret;
1073}
1074EXPORT_SYMBOL(write_one_page);
1075
1076/*
1077 * For address_spaces which do not use buffers nor write back.
1078 */
1079int __set_page_dirty_no_writeback(struct page *page)
1080{
1081        if (!PageDirty(page))
1082                SetPageDirty(page);
1083        return 0;
1084}
1085
1086/*
1087 * Helper function for set_page_dirty family.
1088 * NOTE: This relies on being atomic wrt interrupts.
1089 */
1090void account_page_dirtied(struct page *page, struct address_space *mapping)
1091{
1092        if (mapping_cap_account_dirty(mapping)) {
1093                __inc_zone_page_state(page, NR_FILE_DIRTY);
1094                __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1095                task_dirty_inc(current);
1096                task_io_account_write(PAGE_CACHE_SIZE);
1097        }
1098}
1099
1100/*
1101 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1102 * its radix tree.
1103 *
1104 * This is also used when a single buffer is being dirtied: we want to set the
1105 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1106 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1107 *
1108 * Most callers have locked the page, which pins the address_space in memory.
1109 * But zap_pte_range() does not lock the page, however in that case the
1110 * mapping is pinned by the vma's ->vm_file reference.
1111 *
1112 * We take care to handle the case where the page was truncated from the
1113 * mapping by re-checking page_mapping() inside tree_lock.
1114 */
1115int __set_page_dirty_nobuffers(struct page *page)
1116{
1117        if (!TestSetPageDirty(page)) {
1118                struct address_space *mapping = page_mapping(page);
1119                struct address_space *mapping2;
1120
1121                if (!mapping)
1122                        return 1;
1123
1124                spin_lock_irq(&mapping->tree_lock);
1125                mapping2 = page_mapping(page);
1126                if (mapping2) { /* Race with truncate? */
1127                        BUG_ON(mapping2 != mapping);
1128                        WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1129                        account_page_dirtied(page, mapping);
1130                        radix_tree_tag_set(&mapping->page_tree,
1131                                page_index(page), PAGECACHE_TAG_DIRTY);
1132                }
1133                spin_unlock_irq(&mapping->tree_lock);
1134                if (mapping->host) {
1135                        /* !PageAnon && !swapper_space */
1136                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1137                }
1138                return 1;
1139        }
1140        return 0;
1141}
1142EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1143
1144/*
1145 * When a writepage implementation decides that it doesn't want to write this
1146 * page for some reason, it should redirty the locked page via
1147 * redirty_page_for_writepage() and it should then unlock the page and return 0
1148 */
1149int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1150{
1151        wbc->pages_skipped++;
1152        return __set_page_dirty_nobuffers(page);
1153}
1154EXPORT_SYMBOL(redirty_page_for_writepage);
1155
1156/*
1157 * Dirty a page.
1158 *
1159 * For pages with a mapping this should be done under the page lock
1160 * for the benefit of asynchronous memory errors who prefer a consistent
1161 * dirty state. This rule can be broken in some special cases,
1162 * but should be better not to.
1163 *
1164 * If the mapping doesn't provide a set_page_dirty a_op, then
1165 * just fall through and assume that it wants buffer_heads.
1166 */
1167int set_page_dirty(struct page *page)
1168{
1169        struct address_space *mapping = page_mapping(page);
1170
1171        if (likely(mapping)) {
1172                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1173#ifdef CONFIG_BLOCK
1174                if (!spd)
1175                        spd = __set_page_dirty_buffers;
1176#endif
1177                return (*spd)(page);
1178        }
1179        if (!PageDirty(page)) {
1180                if (!TestSetPageDirty(page))
1181                        return 1;
1182        }
1183        return 0;
1184}
1185EXPORT_SYMBOL(set_page_dirty);
1186
1187/*
1188 * set_page_dirty() is racy if the caller has no reference against
1189 * page->mapping->host, and if the page is unlocked.  This is because another
1190 * CPU could truncate the page off the mapping and then free the mapping.
1191 *
1192 * Usually, the page _is_ locked, or the caller is a user-space process which
1193 * holds a reference on the inode by having an open file.
1194 *
1195 * In other cases, the page should be locked before running set_page_dirty().
1196 */
1197int set_page_dirty_lock(struct page *page)
1198{
1199        int ret;
1200
1201        lock_page_nosync(page);
1202        ret = set_page_dirty(page);
1203        unlock_page(page);
1204        return ret;
1205}
1206EXPORT_SYMBOL(set_page_dirty_lock);
1207
1208/*
1209 * Clear a page's dirty flag, while caring for dirty memory accounting.
1210 * Returns true if the page was previously dirty.
1211 *
1212 * This is for preparing to put the page under writeout.  We leave the page
1213 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1214 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1215 * implementation will run either set_page_writeback() or set_page_dirty(),
1216 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1217 * back into sync.
1218 *
1219 * This incoherency between the page's dirty flag and radix-tree tag is
1220 * unfortunate, but it only exists while the page is locked.
1221 */
1222int clear_page_dirty_for_io(struct page *page)
1223{
1224        struct address_space *mapping = page_mapping(page);
1225
1226        BUG_ON(!PageLocked(page));
1227
1228        ClearPageReclaim(page);
1229        if (mapping && mapping_cap_account_dirty(mapping)) {
1230                /*
1231                 * Yes, Virginia, this is indeed insane.
1232                 *
1233                 * We use this sequence to make sure that
1234                 *  (a) we account for dirty stats properly
1235                 *  (b) we tell the low-level filesystem to
1236                 *      mark the whole page dirty if it was
1237                 *      dirty in a pagetable. Only to then
1238                 *  (c) clean the page again and return 1 to
1239                 *      cause the writeback.
1240                 *
1241                 * This way we avoid all nasty races with the
1242                 * dirty bit in multiple places and clearing
1243                 * them concurrently from different threads.
1244                 *
1245                 * Note! Normally the "set_page_dirty(page)"
1246                 * has no effect on the actual dirty bit - since
1247                 * that will already usually be set. But we
1248                 * need the side effects, and it can help us
1249                 * avoid races.
1250                 *
1251                 * We basically use the page "master dirty bit"
1252                 * as a serialization point for all the different
1253                 * threads doing their things.
1254                 */
1255                if (page_mkclean(page))
1256                        set_page_dirty(page);
1257                /*
1258                 * We carefully synchronise fault handlers against
1259                 * installing a dirty pte and marking the page dirty
1260                 * at this point. We do this by having them hold the
1261                 * page lock at some point after installing their
1262                 * pte, but before marking the page dirty.
1263                 * Pages are always locked coming in here, so we get
1264                 * the desired exclusion. See mm/memory.c:do_wp_page()
1265                 * for more comments.
1266                 */
1267                if (TestClearPageDirty(page)) {
1268                        dec_zone_page_state(page, NR_FILE_DIRTY);
1269                        dec_bdi_stat(mapping->backing_dev_info,
1270                                        BDI_RECLAIMABLE);
1271                        return 1;
1272                }
1273                return 0;
1274        }
1275        return TestClearPageDirty(page);
1276}
1277EXPORT_SYMBOL(clear_page_dirty_for_io);
1278
1279int test_clear_page_writeback(struct page *page)
1280{
1281        struct address_space *mapping = page_mapping(page);
1282        int ret;
1283
1284        if (mapping) {
1285                struct backing_dev_info *bdi = mapping->backing_dev_info;
1286                unsigned long flags;
1287
1288                spin_lock_irqsave(&mapping->tree_lock, flags);
1289                ret = TestClearPageWriteback(page);
1290                if (ret) {
1291                        radix_tree_tag_clear(&mapping->page_tree,
1292                                                page_index(page),
1293                                                PAGECACHE_TAG_WRITEBACK);
1294                        if (bdi_cap_account_writeback(bdi)) {
1295                                __dec_bdi_stat(bdi, BDI_WRITEBACK);
1296                                __bdi_writeout_inc(bdi);
1297                        }
1298                }
1299                spin_unlock_irqrestore(&mapping->tree_lock, flags);
1300        } else {
1301                ret = TestClearPageWriteback(page);
1302        }
1303        if (ret)
1304                dec_zone_page_state(page, NR_WRITEBACK);
1305        return ret;
1306}
1307
1308int test_set_page_writeback(struct page *page)
1309{
1310        struct address_space *mapping = page_mapping(page);
1311        int ret;
1312
1313        if (mapping) {
1314                struct backing_dev_info *bdi = mapping->backing_dev_info;
1315                unsigned long flags;
1316
1317                spin_lock_irqsave(&mapping->tree_lock, flags);
1318                ret = TestSetPageWriteback(page);
1319                if (!ret) {
1320                        radix_tree_tag_set(&mapping->page_tree,
1321                                                page_index(page),
1322                                                PAGECACHE_TAG_WRITEBACK);
1323                        if (bdi_cap_account_writeback(bdi))
1324                                __inc_bdi_stat(bdi, BDI_WRITEBACK);
1325                }
1326                if (!PageDirty(page))
1327                        radix_tree_tag_clear(&mapping->page_tree,
1328                                                page_index(page),
1329                                                PAGECACHE_TAG_DIRTY);
1330                spin_unlock_irqrestore(&mapping->tree_lock, flags);
1331        } else {
1332                ret = TestSetPageWriteback(page);
1333        }
1334        if (!ret)
1335                inc_zone_page_state(page, NR_WRITEBACK);
1336        return ret;
1337
1338}
1339EXPORT_SYMBOL(test_set_page_writeback);
1340
1341/*
1342 * Return true if any of the pages in the mapping are marked with the
1343 * passed tag.
1344 */
1345int mapping_tagged(struct address_space *mapping, int tag)
1346{
1347        int ret;
1348        rcu_read_lock();
1349        ret = radix_tree_tagged(&mapping->page_tree, tag);
1350        rcu_read_unlock();
1351        return ret;
1352}
1353EXPORT_SYMBOL(mapping_tagged);
1354