linux/mm/readahead.c
<<
>>
Prefs
   1/*
   2 * mm/readahead.c - address_space-level file readahead.
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 09Apr2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/fs.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/blkdev.h>
  15#include <linux/backing-dev.h>
  16#include <linux/task_io_accounting_ops.h>
  17#include <linux/pagevec.h>
  18#include <linux/pagemap.h>
  19
  20/*
  21 * Initialise a struct file's readahead state.  Assumes that the caller has
  22 * memset *ra to zero.
  23 */
  24void
  25file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  26{
  27        ra->ra_pages = mapping->backing_dev_info->ra_pages;
  28        ra->prev_pos = -1;
  29}
  30EXPORT_SYMBOL_GPL(file_ra_state_init);
  31
  32#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  33
  34/*
  35 * see if a page needs releasing upon read_cache_pages() failure
  36 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  37 *   before calling, such as the NFS fs marking pages that are cached locally
  38 *   on disk, thus we need to give the fs a chance to clean up in the event of
  39 *   an error
  40 */
  41static void read_cache_pages_invalidate_page(struct address_space *mapping,
  42                                             struct page *page)
  43{
  44        if (page_has_private(page)) {
  45                if (!trylock_page(page))
  46                        BUG();
  47                page->mapping = mapping;
  48                do_invalidatepage(page, 0);
  49                page->mapping = NULL;
  50                unlock_page(page);
  51        }
  52        page_cache_release(page);
  53}
  54
  55/*
  56 * release a list of pages, invalidating them first if need be
  57 */
  58static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  59                                              struct list_head *pages)
  60{
  61        struct page *victim;
  62
  63        while (!list_empty(pages)) {
  64                victim = list_to_page(pages);
  65                list_del(&victim->lru);
  66                read_cache_pages_invalidate_page(mapping, victim);
  67        }
  68}
  69
  70/**
  71 * read_cache_pages - populate an address space with some pages & start reads against them
  72 * @mapping: the address_space
  73 * @pages: The address of a list_head which contains the target pages.  These
  74 *   pages have their ->index populated and are otherwise uninitialised.
  75 * @filler: callback routine for filling a single page.
  76 * @data: private data for the callback routine.
  77 *
  78 * Hides the details of the LRU cache etc from the filesystems.
  79 */
  80int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  81                        int (*filler)(void *, struct page *), void *data)
  82{
  83        struct page *page;
  84        int ret = 0;
  85
  86        while (!list_empty(pages)) {
  87                page = list_to_page(pages);
  88                list_del(&page->lru);
  89                if (add_to_page_cache_lru(page, mapping,
  90                                        page->index, GFP_KERNEL)) {
  91                        read_cache_pages_invalidate_page(mapping, page);
  92                        continue;
  93                }
  94                page_cache_release(page);
  95
  96                ret = filler(data, page);
  97                if (unlikely(ret)) {
  98                        read_cache_pages_invalidate_pages(mapping, pages);
  99                        break;
 100                }
 101                task_io_account_read(PAGE_CACHE_SIZE);
 102        }
 103        return ret;
 104}
 105
 106EXPORT_SYMBOL(read_cache_pages);
 107
 108static int read_pages(struct address_space *mapping, struct file *filp,
 109                struct list_head *pages, unsigned nr_pages)
 110{
 111        unsigned page_idx;
 112        int ret;
 113
 114        if (mapping->a_ops->readpages) {
 115                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 116                /* Clean up the remaining pages */
 117                put_pages_list(pages);
 118                goto out;
 119        }
 120
 121        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 122                struct page *page = list_to_page(pages);
 123                list_del(&page->lru);
 124                if (!add_to_page_cache_lru(page, mapping,
 125                                        page->index, GFP_KERNEL)) {
 126                        mapping->a_ops->readpage(filp, page);
 127                }
 128                page_cache_release(page);
 129        }
 130        ret = 0;
 131out:
 132        return ret;
 133}
 134
 135/*
 136 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
 137 * the pages first, then submits them all for I/O. This avoids the very bad
 138 * behaviour which would occur if page allocations are causing VM writeback.
 139 * We really don't want to intermingle reads and writes like that.
 140 *
 141 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 142 */
 143static int
 144__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
 145                        pgoff_t offset, unsigned long nr_to_read,
 146                        unsigned long lookahead_size)
 147{
 148        struct inode *inode = mapping->host;
 149        struct page *page;
 150        unsigned long end_index;        /* The last page we want to read */
 151        LIST_HEAD(page_pool);
 152        int page_idx;
 153        int ret = 0;
 154        loff_t isize = i_size_read(inode);
 155
 156        if (isize == 0)
 157                goto out;
 158
 159        end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
 160
 161        /*
 162         * Preallocate as many pages as we will need.
 163         */
 164        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 165                pgoff_t page_offset = offset + page_idx;
 166
 167                if (page_offset > end_index)
 168                        break;
 169
 170                rcu_read_lock();
 171                page = radix_tree_lookup(&mapping->page_tree, page_offset);
 172                rcu_read_unlock();
 173                if (page)
 174                        continue;
 175
 176                page = page_cache_alloc_cold(mapping);
 177                if (!page)
 178                        break;
 179                page->index = page_offset;
 180                list_add(&page->lru, &page_pool);
 181                if (page_idx == nr_to_read - lookahead_size)
 182                        SetPageReadahead(page);
 183                ret++;
 184        }
 185
 186        /*
 187         * Now start the IO.  We ignore I/O errors - if the page is not
 188         * uptodate then the caller will launch readpage again, and
 189         * will then handle the error.
 190         */
 191        if (ret)
 192                read_pages(mapping, filp, &page_pool, ret);
 193        BUG_ON(!list_empty(&page_pool));
 194out:
 195        return ret;
 196}
 197
 198/*
 199 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 200 * memory at once.
 201 */
 202int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 203                pgoff_t offset, unsigned long nr_to_read)
 204{
 205        int ret = 0;
 206
 207        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 208                return -EINVAL;
 209
 210        nr_to_read = max_sane_readahead(nr_to_read);
 211        while (nr_to_read) {
 212                int err;
 213
 214                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
 215
 216                if (this_chunk > nr_to_read)
 217                        this_chunk = nr_to_read;
 218                err = __do_page_cache_readahead(mapping, filp,
 219                                                offset, this_chunk, 0);
 220                if (err < 0) {
 221                        ret = err;
 222                        break;
 223                }
 224                ret += err;
 225                offset += this_chunk;
 226                nr_to_read -= this_chunk;
 227        }
 228        return ret;
 229}
 230
 231/*
 232 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
 233 * sensible upper limit.
 234 */
 235unsigned long max_sane_readahead(unsigned long nr)
 236{
 237        return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
 238                + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
 239}
 240
 241/*
 242 * Submit IO for the read-ahead request in file_ra_state.
 243 */
 244unsigned long ra_submit(struct file_ra_state *ra,
 245                       struct address_space *mapping, struct file *filp)
 246{
 247        int actual;
 248
 249        actual = __do_page_cache_readahead(mapping, filp,
 250                                        ra->start, ra->size, ra->async_size);
 251
 252        return actual;
 253}
 254
 255/*
 256 * Set the initial window size, round to next power of 2 and square
 257 * for small size, x 4 for medium, and x 2 for large
 258 * for 128k (32 page) max ra
 259 * 1-8 page = 32k initial, > 8 page = 128k initial
 260 */
 261static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 262{
 263        unsigned long newsize = roundup_pow_of_two(size);
 264
 265        if (newsize <= max / 32)
 266                newsize = newsize * 4;
 267        else if (newsize <= max / 4)
 268                newsize = newsize * 2;
 269        else
 270                newsize = max;
 271
 272        return newsize;
 273}
 274
 275/*
 276 *  Get the previous window size, ramp it up, and
 277 *  return it as the new window size.
 278 */
 279static unsigned long get_next_ra_size(struct file_ra_state *ra,
 280                                                unsigned long max)
 281{
 282        unsigned long cur = ra->size;
 283        unsigned long newsize;
 284
 285        if (cur < max / 16)
 286                newsize = 4 * cur;
 287        else
 288                newsize = 2 * cur;
 289
 290        return min(newsize, max);
 291}
 292
 293/*
 294 * On-demand readahead design.
 295 *
 296 * The fields in struct file_ra_state represent the most-recently-executed
 297 * readahead attempt:
 298 *
 299 *                        |<----- async_size ---------|
 300 *     |------------------- size -------------------->|
 301 *     |==================#===========================|
 302 *     ^start             ^page marked with PG_readahead
 303 *
 304 * To overlap application thinking time and disk I/O time, we do
 305 * `readahead pipelining': Do not wait until the application consumed all
 306 * readahead pages and stalled on the missing page at readahead_index;
 307 * Instead, submit an asynchronous readahead I/O as soon as there are
 308 * only async_size pages left in the readahead window. Normally async_size
 309 * will be equal to size, for maximum pipelining.
 310 *
 311 * In interleaved sequential reads, concurrent streams on the same fd can
 312 * be invalidating each other's readahead state. So we flag the new readahead
 313 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 314 * indicator. The flag won't be set on already cached pages, to avoid the
 315 * readahead-for-nothing fuss, saving pointless page cache lookups.
 316 *
 317 * prev_pos tracks the last visited byte in the _previous_ read request.
 318 * It should be maintained by the caller, and will be used for detecting
 319 * small random reads. Note that the readahead algorithm checks loosely
 320 * for sequential patterns. Hence interleaved reads might be served as
 321 * sequential ones.
 322 *
 323 * There is a special-case: if the first page which the application tries to
 324 * read happens to be the first page of the file, it is assumed that a linear
 325 * read is about to happen and the window is immediately set to the initial size
 326 * based on I/O request size and the max_readahead.
 327 *
 328 * The code ramps up the readahead size aggressively at first, but slow down as
 329 * it approaches max_readhead.
 330 */
 331
 332/*
 333 * Count contiguously cached pages from @offset-1 to @offset-@max,
 334 * this count is a conservative estimation of
 335 *      - length of the sequential read sequence, or
 336 *      - thrashing threshold in memory tight systems
 337 */
 338static pgoff_t count_history_pages(struct address_space *mapping,
 339                                   struct file_ra_state *ra,
 340                                   pgoff_t offset, unsigned long max)
 341{
 342        pgoff_t head;
 343
 344        rcu_read_lock();
 345        head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
 346        rcu_read_unlock();
 347
 348        return offset - 1 - head;
 349}
 350
 351/*
 352 * page cache context based read-ahead
 353 */
 354static int try_context_readahead(struct address_space *mapping,
 355                                 struct file_ra_state *ra,
 356                                 pgoff_t offset,
 357                                 unsigned long req_size,
 358                                 unsigned long max)
 359{
 360        pgoff_t size;
 361
 362        size = count_history_pages(mapping, ra, offset, max);
 363
 364        /*
 365         * no history pages:
 366         * it could be a random read
 367         */
 368        if (!size)
 369                return 0;
 370
 371        /*
 372         * starts from beginning of file:
 373         * it is a strong indication of long-run stream (or whole-file-read)
 374         */
 375        if (size >= offset)
 376                size *= 2;
 377
 378        ra->start = offset;
 379        ra->size = get_init_ra_size(size + req_size, max);
 380        ra->async_size = ra->size;
 381
 382        return 1;
 383}
 384
 385/*
 386 * A minimal readahead algorithm for trivial sequential/random reads.
 387 */
 388static unsigned long
 389ondemand_readahead(struct address_space *mapping,
 390                   struct file_ra_state *ra, struct file *filp,
 391                   bool hit_readahead_marker, pgoff_t offset,
 392                   unsigned long req_size)
 393{
 394        unsigned long max = max_sane_readahead(ra->ra_pages);
 395
 396        /*
 397         * start of file
 398         */
 399        if (!offset)
 400                goto initial_readahead;
 401
 402        /*
 403         * It's the expected callback offset, assume sequential access.
 404         * Ramp up sizes, and push forward the readahead window.
 405         */
 406        if ((offset == (ra->start + ra->size - ra->async_size) ||
 407             offset == (ra->start + ra->size))) {
 408                ra->start += ra->size;
 409                ra->size = get_next_ra_size(ra, max);
 410                ra->async_size = ra->size;
 411                goto readit;
 412        }
 413
 414        /*
 415         * Hit a marked page without valid readahead state.
 416         * E.g. interleaved reads.
 417         * Query the pagecache for async_size, which normally equals to
 418         * readahead size. Ramp it up and use it as the new readahead size.
 419         */
 420        if (hit_readahead_marker) {
 421                pgoff_t start;
 422
 423                rcu_read_lock();
 424                start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
 425                rcu_read_unlock();
 426
 427                if (!start || start - offset > max)
 428                        return 0;
 429
 430                ra->start = start;
 431                ra->size = start - offset;      /* old async_size */
 432                ra->size += req_size;
 433                ra->size = get_next_ra_size(ra, max);
 434                ra->async_size = ra->size;
 435                goto readit;
 436        }
 437
 438        /*
 439         * oversize read
 440         */
 441        if (req_size > max)
 442                goto initial_readahead;
 443
 444        /*
 445         * sequential cache miss
 446         */
 447        if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
 448                goto initial_readahead;
 449
 450        /*
 451         * Query the page cache and look for the traces(cached history pages)
 452         * that a sequential stream would leave behind.
 453         */
 454        if (try_context_readahead(mapping, ra, offset, req_size, max))
 455                goto readit;
 456
 457        /*
 458         * standalone, small random read
 459         * Read as is, and do not pollute the readahead state.
 460         */
 461        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 462
 463initial_readahead:
 464        ra->start = offset;
 465        ra->size = get_init_ra_size(req_size, max);
 466        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 467
 468readit:
 469        /*
 470         * Will this read hit the readahead marker made by itself?
 471         * If so, trigger the readahead marker hit now, and merge
 472         * the resulted next readahead window into the current one.
 473         */
 474        if (offset == ra->start && ra->size == ra->async_size) {
 475                ra->async_size = get_next_ra_size(ra, max);
 476                ra->size += ra->async_size;
 477        }
 478
 479        return ra_submit(ra, mapping, filp);
 480}
 481
 482/**
 483 * page_cache_sync_readahead - generic file readahead
 484 * @mapping: address_space which holds the pagecache and I/O vectors
 485 * @ra: file_ra_state which holds the readahead state
 486 * @filp: passed on to ->readpage() and ->readpages()
 487 * @offset: start offset into @mapping, in pagecache page-sized units
 488 * @req_size: hint: total size of the read which the caller is performing in
 489 *            pagecache pages
 490 *
 491 * page_cache_sync_readahead() should be called when a cache miss happened:
 492 * it will submit the read.  The readahead logic may decide to piggyback more
 493 * pages onto the read request if access patterns suggest it will improve
 494 * performance.
 495 */
 496void page_cache_sync_readahead(struct address_space *mapping,
 497                               struct file_ra_state *ra, struct file *filp,
 498                               pgoff_t offset, unsigned long req_size)
 499{
 500        /* no read-ahead */
 501        if (!ra->ra_pages)
 502                return;
 503
 504        /* do read-ahead */
 505        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 506}
 507EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 508
 509/**
 510 * page_cache_async_readahead - file readahead for marked pages
 511 * @mapping: address_space which holds the pagecache and I/O vectors
 512 * @ra: file_ra_state which holds the readahead state
 513 * @filp: passed on to ->readpage() and ->readpages()
 514 * @page: the page at @offset which has the PG_readahead flag set
 515 * @offset: start offset into @mapping, in pagecache page-sized units
 516 * @req_size: hint: total size of the read which the caller is performing in
 517 *            pagecache pages
 518 *
 519 * page_cache_async_ondemand() should be called when a page is used which
 520 * has the PG_readahead flag; this is a marker to suggest that the application
 521 * has used up enough of the readahead window that we should start pulling in
 522 * more pages.
 523 */
 524void
 525page_cache_async_readahead(struct address_space *mapping,
 526                           struct file_ra_state *ra, struct file *filp,
 527                           struct page *page, pgoff_t offset,
 528                           unsigned long req_size)
 529{
 530        /* no read-ahead */
 531        if (!ra->ra_pages)
 532                return;
 533
 534        /*
 535         * Same bit is used for PG_readahead and PG_reclaim.
 536         */
 537        if (PageWriteback(page))
 538                return;
 539
 540        ClearPageReadahead(page);
 541
 542        /*
 543         * Defer asynchronous read-ahead on IO congestion.
 544         */
 545        if (bdi_read_congested(mapping->backing_dev_info))
 546                return;
 547
 548        /* do read-ahead */
 549        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 550}
 551EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 552