linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2005 Hugh Dickins.
  10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  12 *
  13 * Extended attribute support for tmpfs:
  14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  16 *
  17 * tiny-shmem:
  18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  19 *
  20 * This file is released under the GPL.
  21 */
  22
  23#include <linux/fs.h>
  24#include <linux/init.h>
  25#include <linux/vfs.h>
  26#include <linux/mount.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/swap.h>
  32#include <linux/ima.h>
  33
  34static struct vfsmount *shm_mnt;
  35
  36#ifdef CONFIG_SHMEM
  37/*
  38 * This virtual memory filesystem is heavily based on the ramfs. It
  39 * extends ramfs by the ability to use swap and honor resource limits
  40 * which makes it a completely usable filesystem.
  41 */
  42
  43#include <linux/xattr.h>
  44#include <linux/exportfs.h>
  45#include <linux/generic_acl.h>
  46#include <linux/mman.h>
  47#include <linux/string.h>
  48#include <linux/slab.h>
  49#include <linux/backing-dev.h>
  50#include <linux/shmem_fs.h>
  51#include <linux/writeback.h>
  52#include <linux/blkdev.h>
  53#include <linux/security.h>
  54#include <linux/swapops.h>
  55#include <linux/mempolicy.h>
  56#include <linux/namei.h>
  57#include <linux/ctype.h>
  58#include <linux/migrate.h>
  59#include <linux/highmem.h>
  60#include <linux/seq_file.h>
  61#include <linux/magic.h>
  62
  63#include <asm/uaccess.h>
  64#include <asm/div64.h>
  65#include <asm/pgtable.h>
  66
  67/*
  68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
  69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
  70 *
  71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
  72 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
  73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
  74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
  75 *
  76 * We use / and * instead of shifts in the definitions below, so that the swap
  77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
  78 */
  79#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
  80#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
  81
  82#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
  83#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
  84
  85#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
  86#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
  87
  88#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
  92#define SHMEM_PAGEIN     VM_READ
  93#define SHMEM_TRUNCATE   VM_WRITE
  94
  95/* Definition to limit shmem_truncate's steps between cond_rescheds */
  96#define LATENCY_LIMIT    64
  97
  98/* Pretend that each entry is of this size in directory's i_size */
  99#define BOGO_DIRENT_SIZE 20
 100
 101/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
 102enum sgp_type {
 103        SGP_READ,       /* don't exceed i_size, don't allocate page */
 104        SGP_CACHE,      /* don't exceed i_size, may allocate page */
 105        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 106        SGP_WRITE,      /* may exceed i_size, may allocate page */
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112        return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 118}
 119#endif
 120
 121static int shmem_getpage(struct inode *inode, unsigned long idx,
 122                         struct page **pagep, enum sgp_type sgp, int *type);
 123
 124static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
 125{
 126        /*
 127         * The above definition of ENTRIES_PER_PAGE, and the use of
 128         * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
 129         * might be reconsidered if it ever diverges from PAGE_SIZE.
 130         *
 131         * Mobility flags are masked out as swap vectors cannot move
 132         */
 133        return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
 134                                PAGE_CACHE_SHIFT-PAGE_SHIFT);
 135}
 136
 137static inline void shmem_dir_free(struct page *page)
 138{
 139        __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
 140}
 141
 142static struct page **shmem_dir_map(struct page *page)
 143{
 144        return (struct page **)kmap_atomic(page, KM_USER0);
 145}
 146
 147static inline void shmem_dir_unmap(struct page **dir)
 148{
 149        kunmap_atomic(dir, KM_USER0);
 150}
 151
 152static swp_entry_t *shmem_swp_map(struct page *page)
 153{
 154        return (swp_entry_t *)kmap_atomic(page, KM_USER1);
 155}
 156
 157static inline void shmem_swp_balance_unmap(void)
 158{
 159        /*
 160         * When passing a pointer to an i_direct entry, to code which
 161         * also handles indirect entries and so will shmem_swp_unmap,
 162         * we must arrange for the preempt count to remain in balance.
 163         * What kmap_atomic of a lowmem page does depends on config
 164         * and architecture, so pretend to kmap_atomic some lowmem page.
 165         */
 166        (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
 167}
 168
 169static inline void shmem_swp_unmap(swp_entry_t *entry)
 170{
 171        kunmap_atomic(entry, KM_USER1);
 172}
 173
 174static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 175{
 176        return sb->s_fs_info;
 177}
 178
 179/*
 180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 181 * for shared memory and for shared anonymous (/dev/zero) mappings
 182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 183 * consistent with the pre-accounting of private mappings ...
 184 */
 185static inline int shmem_acct_size(unsigned long flags, loff_t size)
 186{
 187        return (flags & VM_NORESERVE) ?
 188                0 : security_vm_enough_memory_kern(VM_ACCT(size));
 189}
 190
 191static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 192{
 193        if (!(flags & VM_NORESERVE))
 194                vm_unacct_memory(VM_ACCT(size));
 195}
 196
 197/*
 198 * ... whereas tmpfs objects are accounted incrementally as
 199 * pages are allocated, in order to allow huge sparse files.
 200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 202 */
 203static inline int shmem_acct_block(unsigned long flags)
 204{
 205        return (flags & VM_NORESERVE) ?
 206                security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 207}
 208
 209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 210{
 211        if (flags & VM_NORESERVE)
 212                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 213}
 214
 215static const struct super_operations shmem_ops;
 216static const struct address_space_operations shmem_aops;
 217static const struct file_operations shmem_file_operations;
 218static const struct inode_operations shmem_inode_operations;
 219static const struct inode_operations shmem_dir_inode_operations;
 220static const struct inode_operations shmem_special_inode_operations;
 221static const struct vm_operations_struct shmem_vm_ops;
 222
 223static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 224        .ra_pages       = 0,    /* No readahead */
 225        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 226        .unplug_io_fn   = default_unplug_io_fn,
 227};
 228
 229static LIST_HEAD(shmem_swaplist);
 230static DEFINE_MUTEX(shmem_swaplist_mutex);
 231
 232static void shmem_free_blocks(struct inode *inode, long pages)
 233{
 234        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 235        if (sbinfo->max_blocks) {
 236                spin_lock(&sbinfo->stat_lock);
 237                sbinfo->free_blocks += pages;
 238                inode->i_blocks -= pages*BLOCKS_PER_PAGE;
 239                spin_unlock(&sbinfo->stat_lock);
 240        }
 241}
 242
 243static int shmem_reserve_inode(struct super_block *sb)
 244{
 245        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 246        if (sbinfo->max_inodes) {
 247                spin_lock(&sbinfo->stat_lock);
 248                if (!sbinfo->free_inodes) {
 249                        spin_unlock(&sbinfo->stat_lock);
 250                        return -ENOSPC;
 251                }
 252                sbinfo->free_inodes--;
 253                spin_unlock(&sbinfo->stat_lock);
 254        }
 255        return 0;
 256}
 257
 258static void shmem_free_inode(struct super_block *sb)
 259{
 260        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 261        if (sbinfo->max_inodes) {
 262                spin_lock(&sbinfo->stat_lock);
 263                sbinfo->free_inodes++;
 264                spin_unlock(&sbinfo->stat_lock);
 265        }
 266}
 267
 268/**
 269 * shmem_recalc_inode - recalculate the size of an inode
 270 * @inode: inode to recalc
 271 *
 272 * We have to calculate the free blocks since the mm can drop
 273 * undirtied hole pages behind our back.
 274 *
 275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 277 *
 278 * It has to be called with the spinlock held.
 279 */
 280static void shmem_recalc_inode(struct inode *inode)
 281{
 282        struct shmem_inode_info *info = SHMEM_I(inode);
 283        long freed;
 284
 285        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 286        if (freed > 0) {
 287                info->alloced -= freed;
 288                shmem_unacct_blocks(info->flags, freed);
 289                shmem_free_blocks(inode, freed);
 290        }
 291}
 292
 293/**
 294 * shmem_swp_entry - find the swap vector position in the info structure
 295 * @info:  info structure for the inode
 296 * @index: index of the page to find
 297 * @page:  optional page to add to the structure. Has to be preset to
 298 *         all zeros
 299 *
 300 * If there is no space allocated yet it will return NULL when
 301 * page is NULL, else it will use the page for the needed block,
 302 * setting it to NULL on return to indicate that it has been used.
 303 *
 304 * The swap vector is organized the following way:
 305 *
 306 * There are SHMEM_NR_DIRECT entries directly stored in the
 307 * shmem_inode_info structure. So small files do not need an addional
 308 * allocation.
 309 *
 310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
 311 * i_indirect which points to a page which holds in the first half
 312 * doubly indirect blocks, in the second half triple indirect blocks:
 313 *
 314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
 315 * following layout (for SHMEM_NR_DIRECT == 16):
 316 *
 317 * i_indirect -> dir --> 16-19
 318 *            |      +-> 20-23
 319 *            |
 320 *            +-->dir2 --> 24-27
 321 *            |        +-> 28-31
 322 *            |        +-> 32-35
 323 *            |        +-> 36-39
 324 *            |
 325 *            +-->dir3 --> 40-43
 326 *                     +-> 44-47
 327 *                     +-> 48-51
 328 *                     +-> 52-55
 329 */
 330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
 331{
 332        unsigned long offset;
 333        struct page **dir;
 334        struct page *subdir;
 335
 336        if (index < SHMEM_NR_DIRECT) {
 337                shmem_swp_balance_unmap();
 338                return info->i_direct+index;
 339        }
 340        if (!info->i_indirect) {
 341                if (page) {
 342                        info->i_indirect = *page;
 343                        *page = NULL;
 344                }
 345                return NULL;                    /* need another page */
 346        }
 347
 348        index -= SHMEM_NR_DIRECT;
 349        offset = index % ENTRIES_PER_PAGE;
 350        index /= ENTRIES_PER_PAGE;
 351        dir = shmem_dir_map(info->i_indirect);
 352
 353        if (index >= ENTRIES_PER_PAGE/2) {
 354                index -= ENTRIES_PER_PAGE/2;
 355                dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
 356                index %= ENTRIES_PER_PAGE;
 357                subdir = *dir;
 358                if (!subdir) {
 359                        if (page) {
 360                                *dir = *page;
 361                                *page = NULL;
 362                        }
 363                        shmem_dir_unmap(dir);
 364                        return NULL;            /* need another page */
 365                }
 366                shmem_dir_unmap(dir);
 367                dir = shmem_dir_map(subdir);
 368        }
 369
 370        dir += index;
 371        subdir = *dir;
 372        if (!subdir) {
 373                if (!page || !(subdir = *page)) {
 374                        shmem_dir_unmap(dir);
 375                        return NULL;            /* need a page */
 376                }
 377                *dir = subdir;
 378                *page = NULL;
 379        }
 380        shmem_dir_unmap(dir);
 381        return shmem_swp_map(subdir) + offset;
 382}
 383
 384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
 385{
 386        long incdec = value? 1: -1;
 387
 388        entry->val = value;
 389        info->swapped += incdec;
 390        if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
 391                struct page *page = kmap_atomic_to_page(entry);
 392                set_page_private(page, page_private(page) + incdec);
 393        }
 394}
 395
 396/**
 397 * shmem_swp_alloc - get the position of the swap entry for the page.
 398 * @info:       info structure for the inode
 399 * @index:      index of the page to find
 400 * @sgp:        check and recheck i_size? skip allocation?
 401 *
 402 * If the entry does not exist, allocate it.
 403 */
 404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
 405{
 406        struct inode *inode = &info->vfs_inode;
 407        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 408        struct page *page = NULL;
 409        swp_entry_t *entry;
 410
 411        if (sgp != SGP_WRITE &&
 412            ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
 413                return ERR_PTR(-EINVAL);
 414
 415        while (!(entry = shmem_swp_entry(info, index, &page))) {
 416                if (sgp == SGP_READ)
 417                        return shmem_swp_map(ZERO_PAGE(0));
 418                /*
 419                 * Test free_blocks against 1 not 0, since we have 1 data
 420                 * page (and perhaps indirect index pages) yet to allocate:
 421                 * a waste to allocate index if we cannot allocate data.
 422                 */
 423                if (sbinfo->max_blocks) {
 424                        spin_lock(&sbinfo->stat_lock);
 425                        if (sbinfo->free_blocks <= 1) {
 426                                spin_unlock(&sbinfo->stat_lock);
 427                                return ERR_PTR(-ENOSPC);
 428                        }
 429                        sbinfo->free_blocks--;
 430                        inode->i_blocks += BLOCKS_PER_PAGE;
 431                        spin_unlock(&sbinfo->stat_lock);
 432                }
 433
 434                spin_unlock(&info->lock);
 435                page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
 436                if (page)
 437                        set_page_private(page, 0);
 438                spin_lock(&info->lock);
 439
 440                if (!page) {
 441                        shmem_free_blocks(inode, 1);
 442                        return ERR_PTR(-ENOMEM);
 443                }
 444                if (sgp != SGP_WRITE &&
 445                    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 446                        entry = ERR_PTR(-EINVAL);
 447                        break;
 448                }
 449                if (info->next_index <= index)
 450                        info->next_index = index + 1;
 451        }
 452        if (page) {
 453                /* another task gave its page, or truncated the file */
 454                shmem_free_blocks(inode, 1);
 455                shmem_dir_free(page);
 456        }
 457        if (info->next_index <= index && !IS_ERR(entry))
 458                info->next_index = index + 1;
 459        return entry;
 460}
 461
 462/**
 463 * shmem_free_swp - free some swap entries in a directory
 464 * @dir:        pointer to the directory
 465 * @edir:       pointer after last entry of the directory
 466 * @punch_lock: pointer to spinlock when needed for the holepunch case
 467 */
 468static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
 469                                                spinlock_t *punch_lock)
 470{
 471        spinlock_t *punch_unlock = NULL;
 472        swp_entry_t *ptr;
 473        int freed = 0;
 474
 475        for (ptr = dir; ptr < edir; ptr++) {
 476                if (ptr->val) {
 477                        if (unlikely(punch_lock)) {
 478                                punch_unlock = punch_lock;
 479                                punch_lock = NULL;
 480                                spin_lock(punch_unlock);
 481                                if (!ptr->val)
 482                                        continue;
 483                        }
 484                        free_swap_and_cache(*ptr);
 485                        *ptr = (swp_entry_t){0};
 486                        freed++;
 487                }
 488        }
 489        if (punch_unlock)
 490                spin_unlock(punch_unlock);
 491        return freed;
 492}
 493
 494static int shmem_map_and_free_swp(struct page *subdir, int offset,
 495                int limit, struct page ***dir, spinlock_t *punch_lock)
 496{
 497        swp_entry_t *ptr;
 498        int freed = 0;
 499
 500        ptr = shmem_swp_map(subdir);
 501        for (; offset < limit; offset += LATENCY_LIMIT) {
 502                int size = limit - offset;
 503                if (size > LATENCY_LIMIT)
 504                        size = LATENCY_LIMIT;
 505                freed += shmem_free_swp(ptr+offset, ptr+offset+size,
 506                                                        punch_lock);
 507                if (need_resched()) {
 508                        shmem_swp_unmap(ptr);
 509                        if (*dir) {
 510                                shmem_dir_unmap(*dir);
 511                                *dir = NULL;
 512                        }
 513                        cond_resched();
 514                        ptr = shmem_swp_map(subdir);
 515                }
 516        }
 517        shmem_swp_unmap(ptr);
 518        return freed;
 519}
 520
 521static void shmem_free_pages(struct list_head *next)
 522{
 523        struct page *page;
 524        int freed = 0;
 525
 526        do {
 527                page = container_of(next, struct page, lru);
 528                next = next->next;
 529                shmem_dir_free(page);
 530                freed++;
 531                if (freed >= LATENCY_LIMIT) {
 532                        cond_resched();
 533                        freed = 0;
 534                }
 535        } while (next);
 536}
 537
 538static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
 539{
 540        struct shmem_inode_info *info = SHMEM_I(inode);
 541        unsigned long idx;
 542        unsigned long size;
 543        unsigned long limit;
 544        unsigned long stage;
 545        unsigned long diroff;
 546        struct page **dir;
 547        struct page *topdir;
 548        struct page *middir;
 549        struct page *subdir;
 550        swp_entry_t *ptr;
 551        LIST_HEAD(pages_to_free);
 552        long nr_pages_to_free = 0;
 553        long nr_swaps_freed = 0;
 554        int offset;
 555        int freed;
 556        int punch_hole;
 557        spinlock_t *needs_lock;
 558        spinlock_t *punch_lock;
 559        unsigned long upper_limit;
 560
 561        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 562        idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 563        if (idx >= info->next_index)
 564                return;
 565
 566        spin_lock(&info->lock);
 567        info->flags |= SHMEM_TRUNCATE;
 568        if (likely(end == (loff_t) -1)) {
 569                limit = info->next_index;
 570                upper_limit = SHMEM_MAX_INDEX;
 571                info->next_index = idx;
 572                needs_lock = NULL;
 573                punch_hole = 0;
 574        } else {
 575                if (end + 1 >= inode->i_size) { /* we may free a little more */
 576                        limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
 577                                                        PAGE_CACHE_SHIFT;
 578                        upper_limit = SHMEM_MAX_INDEX;
 579                } else {
 580                        limit = (end + 1) >> PAGE_CACHE_SHIFT;
 581                        upper_limit = limit;
 582                }
 583                needs_lock = &info->lock;
 584                punch_hole = 1;
 585        }
 586
 587        topdir = info->i_indirect;
 588        if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
 589                info->i_indirect = NULL;
 590                nr_pages_to_free++;
 591                list_add(&topdir->lru, &pages_to_free);
 592        }
 593        spin_unlock(&info->lock);
 594
 595        if (info->swapped && idx < SHMEM_NR_DIRECT) {
 596                ptr = info->i_direct;
 597                size = limit;
 598                if (size > SHMEM_NR_DIRECT)
 599                        size = SHMEM_NR_DIRECT;
 600                nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
 601        }
 602
 603        /*
 604         * If there are no indirect blocks or we are punching a hole
 605         * below indirect blocks, nothing to be done.
 606         */
 607        if (!topdir || limit <= SHMEM_NR_DIRECT)
 608                goto done2;
 609
 610        /*
 611         * The truncation case has already dropped info->lock, and we're safe
 612         * because i_size and next_index have already been lowered, preventing
 613         * access beyond.  But in the punch_hole case, we still need to take
 614         * the lock when updating the swap directory, because there might be
 615         * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
 616         * shmem_writepage.  However, whenever we find we can remove a whole
 617         * directory page (not at the misaligned start or end of the range),
 618         * we first NULLify its pointer in the level above, and then have no
 619         * need to take the lock when updating its contents: needs_lock and
 620         * punch_lock (either pointing to info->lock or NULL) manage this.
 621         */
 622
 623        upper_limit -= SHMEM_NR_DIRECT;
 624        limit -= SHMEM_NR_DIRECT;
 625        idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
 626        offset = idx % ENTRIES_PER_PAGE;
 627        idx -= offset;
 628
 629        dir = shmem_dir_map(topdir);
 630        stage = ENTRIES_PER_PAGEPAGE/2;
 631        if (idx < ENTRIES_PER_PAGEPAGE/2) {
 632                middir = topdir;
 633                diroff = idx/ENTRIES_PER_PAGE;
 634        } else {
 635                dir += ENTRIES_PER_PAGE/2;
 636                dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
 637                while (stage <= idx)
 638                        stage += ENTRIES_PER_PAGEPAGE;
 639                middir = *dir;
 640                if (*dir) {
 641                        diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
 642                                ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
 643                        if (!diroff && !offset && upper_limit >= stage) {
 644                                if (needs_lock) {
 645                                        spin_lock(needs_lock);
 646                                        *dir = NULL;
 647                                        spin_unlock(needs_lock);
 648                                        needs_lock = NULL;
 649                                } else
 650                                        *dir = NULL;
 651                                nr_pages_to_free++;
 652                                list_add(&middir->lru, &pages_to_free);
 653                        }
 654                        shmem_dir_unmap(dir);
 655                        dir = shmem_dir_map(middir);
 656                } else {
 657                        diroff = 0;
 658                        offset = 0;
 659                        idx = stage;
 660                }
 661        }
 662
 663        for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
 664                if (unlikely(idx == stage)) {
 665                        shmem_dir_unmap(dir);
 666                        dir = shmem_dir_map(topdir) +
 667                            ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
 668                        while (!*dir) {
 669                                dir++;
 670                                idx += ENTRIES_PER_PAGEPAGE;
 671                                if (idx >= limit)
 672                                        goto done1;
 673                        }
 674                        stage = idx + ENTRIES_PER_PAGEPAGE;
 675                        middir = *dir;
 676                        if (punch_hole)
 677                                needs_lock = &info->lock;
 678                        if (upper_limit >= stage) {
 679                                if (needs_lock) {
 680                                        spin_lock(needs_lock);
 681                                        *dir = NULL;
 682                                        spin_unlock(needs_lock);
 683                                        needs_lock = NULL;
 684                                } else
 685                                        *dir = NULL;
 686                                nr_pages_to_free++;
 687                                list_add(&middir->lru, &pages_to_free);
 688                        }
 689                        shmem_dir_unmap(dir);
 690                        cond_resched();
 691                        dir = shmem_dir_map(middir);
 692                        diroff = 0;
 693                }
 694                punch_lock = needs_lock;
 695                subdir = dir[diroff];
 696                if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
 697                        if (needs_lock) {
 698                                spin_lock(needs_lock);
 699                                dir[diroff] = NULL;
 700                                spin_unlock(needs_lock);
 701                                punch_lock = NULL;
 702                        } else
 703                                dir[diroff] = NULL;
 704                        nr_pages_to_free++;
 705                        list_add(&subdir->lru, &pages_to_free);
 706                }
 707                if (subdir && page_private(subdir) /* has swap entries */) {
 708                        size = limit - idx;
 709                        if (size > ENTRIES_PER_PAGE)
 710                                size = ENTRIES_PER_PAGE;
 711                        freed = shmem_map_and_free_swp(subdir,
 712                                        offset, size, &dir, punch_lock);
 713                        if (!dir)
 714                                dir = shmem_dir_map(middir);
 715                        nr_swaps_freed += freed;
 716                        if (offset || punch_lock) {
 717                                spin_lock(&info->lock);
 718                                set_page_private(subdir,
 719                                        page_private(subdir) - freed);
 720                                spin_unlock(&info->lock);
 721                        } else
 722                                BUG_ON(page_private(subdir) != freed);
 723                }
 724                offset = 0;
 725        }
 726done1:
 727        shmem_dir_unmap(dir);
 728done2:
 729        if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
 730                /*
 731                 * Call truncate_inode_pages again: racing shmem_unuse_inode
 732                 * may have swizzled a page in from swap since vmtruncate or
 733                 * generic_delete_inode did it, before we lowered next_index.
 734                 * Also, though shmem_getpage checks i_size before adding to
 735                 * cache, no recheck after: so fix the narrow window there too.
 736                 *
 737                 * Recalling truncate_inode_pages_range and unmap_mapping_range
 738                 * every time for punch_hole (which never got a chance to clear
 739                 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
 740                 * yet hardly ever necessary: try to optimize them out later.
 741                 */
 742                truncate_inode_pages_range(inode->i_mapping, start, end);
 743                if (punch_hole)
 744                        unmap_mapping_range(inode->i_mapping, start,
 745                                                        end - start, 1);
 746        }
 747
 748        spin_lock(&info->lock);
 749        info->flags &= ~SHMEM_TRUNCATE;
 750        info->swapped -= nr_swaps_freed;
 751        if (nr_pages_to_free)
 752                shmem_free_blocks(inode, nr_pages_to_free);
 753        shmem_recalc_inode(inode);
 754        spin_unlock(&info->lock);
 755
 756        /*
 757         * Empty swap vector directory pages to be freed?
 758         */
 759        if (!list_empty(&pages_to_free)) {
 760                pages_to_free.prev->next = NULL;
 761                shmem_free_pages(pages_to_free.next);
 762        }
 763}
 764
 765static void shmem_truncate(struct inode *inode)
 766{
 767        shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
 768}
 769
 770static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
 771{
 772        struct inode *inode = dentry->d_inode;
 773        struct page *page = NULL;
 774        int error;
 775
 776        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 777                if (attr->ia_size < inode->i_size) {
 778                        /*
 779                         * If truncating down to a partial page, then
 780                         * if that page is already allocated, hold it
 781                         * in memory until the truncation is over, so
 782                         * truncate_partial_page cannnot miss it were
 783                         * it assigned to swap.
 784                         */
 785                        if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
 786                                (void) shmem_getpage(inode,
 787                                        attr->ia_size>>PAGE_CACHE_SHIFT,
 788                                                &page, SGP_READ, NULL);
 789                                if (page)
 790                                        unlock_page(page);
 791                        }
 792                        /*
 793                         * Reset SHMEM_PAGEIN flag so that shmem_truncate can
 794                         * detect if any pages might have been added to cache
 795                         * after truncate_inode_pages.  But we needn't bother
 796                         * if it's being fully truncated to zero-length: the
 797                         * nrpages check is efficient enough in that case.
 798                         */
 799                        if (attr->ia_size) {
 800                                struct shmem_inode_info *info = SHMEM_I(inode);
 801                                spin_lock(&info->lock);
 802                                info->flags &= ~SHMEM_PAGEIN;
 803                                spin_unlock(&info->lock);
 804                        }
 805                }
 806        }
 807
 808        error = inode_change_ok(inode, attr);
 809        if (!error)
 810                error = inode_setattr(inode, attr);
 811#ifdef CONFIG_TMPFS_POSIX_ACL
 812        if (!error && (attr->ia_valid & ATTR_MODE))
 813                error = generic_acl_chmod(inode, &shmem_acl_ops);
 814#endif
 815        if (page)
 816                page_cache_release(page);
 817        return error;
 818}
 819
 820static void shmem_delete_inode(struct inode *inode)
 821{
 822        struct shmem_inode_info *info = SHMEM_I(inode);
 823
 824        if (inode->i_op->truncate == shmem_truncate) {
 825                truncate_inode_pages(inode->i_mapping, 0);
 826                shmem_unacct_size(info->flags, inode->i_size);
 827                inode->i_size = 0;
 828                shmem_truncate(inode);
 829                if (!list_empty(&info->swaplist)) {
 830                        mutex_lock(&shmem_swaplist_mutex);
 831                        list_del_init(&info->swaplist);
 832                        mutex_unlock(&shmem_swaplist_mutex);
 833                }
 834        }
 835        BUG_ON(inode->i_blocks);
 836        shmem_free_inode(inode->i_sb);
 837        clear_inode(inode);
 838}
 839
 840static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
 841{
 842        swp_entry_t *ptr;
 843
 844        for (ptr = dir; ptr < edir; ptr++) {
 845                if (ptr->val == entry.val)
 846                        return ptr - dir;
 847        }
 848        return -1;
 849}
 850
 851static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
 852{
 853        struct inode *inode;
 854        unsigned long idx;
 855        unsigned long size;
 856        unsigned long limit;
 857        unsigned long stage;
 858        struct page **dir;
 859        struct page *subdir;
 860        swp_entry_t *ptr;
 861        int offset;
 862        int error;
 863
 864        idx = 0;
 865        ptr = info->i_direct;
 866        spin_lock(&info->lock);
 867        if (!info->swapped) {
 868                list_del_init(&info->swaplist);
 869                goto lost2;
 870        }
 871        limit = info->next_index;
 872        size = limit;
 873        if (size > SHMEM_NR_DIRECT)
 874                size = SHMEM_NR_DIRECT;
 875        offset = shmem_find_swp(entry, ptr, ptr+size);
 876        if (offset >= 0)
 877                goto found;
 878        if (!info->i_indirect)
 879                goto lost2;
 880
 881        dir = shmem_dir_map(info->i_indirect);
 882        stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
 883
 884        for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
 885                if (unlikely(idx == stage)) {
 886                        shmem_dir_unmap(dir-1);
 887                        if (cond_resched_lock(&info->lock)) {
 888                                /* check it has not been truncated */
 889                                if (limit > info->next_index) {
 890                                        limit = info->next_index;
 891                                        if (idx >= limit)
 892                                                goto lost2;
 893                                }
 894                        }
 895                        dir = shmem_dir_map(info->i_indirect) +
 896                            ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
 897                        while (!*dir) {
 898                                dir++;
 899                                idx += ENTRIES_PER_PAGEPAGE;
 900                                if (idx >= limit)
 901                                        goto lost1;
 902                        }
 903                        stage = idx + ENTRIES_PER_PAGEPAGE;
 904                        subdir = *dir;
 905                        shmem_dir_unmap(dir);
 906                        dir = shmem_dir_map(subdir);
 907                }
 908                subdir = *dir;
 909                if (subdir && page_private(subdir)) {
 910                        ptr = shmem_swp_map(subdir);
 911                        size = limit - idx;
 912                        if (size > ENTRIES_PER_PAGE)
 913                                size = ENTRIES_PER_PAGE;
 914                        offset = shmem_find_swp(entry, ptr, ptr+size);
 915                        shmem_swp_unmap(ptr);
 916                        if (offset >= 0) {
 917                                shmem_dir_unmap(dir);
 918                                goto found;
 919                        }
 920                }
 921        }
 922lost1:
 923        shmem_dir_unmap(dir-1);
 924lost2:
 925        spin_unlock(&info->lock);
 926        return 0;
 927found:
 928        idx += offset;
 929        inode = igrab(&info->vfs_inode);
 930        spin_unlock(&info->lock);
 931
 932        /*
 933         * Move _head_ to start search for next from here.
 934         * But be careful: shmem_delete_inode checks list_empty without taking
 935         * mutex, and there's an instant in list_move_tail when info->swaplist
 936         * would appear empty, if it were the only one on shmem_swaplist.  We
 937         * could avoid doing it if inode NULL; or use this minor optimization.
 938         */
 939        if (shmem_swaplist.next != &info->swaplist)
 940                list_move_tail(&shmem_swaplist, &info->swaplist);
 941        mutex_unlock(&shmem_swaplist_mutex);
 942
 943        error = 1;
 944        if (!inode)
 945                goto out;
 946        /*
 947         * Charge page using GFP_KERNEL while we can wait.
 948         * Charged back to the user(not to caller) when swap account is used.
 949         * add_to_page_cache() will be called with GFP_NOWAIT.
 950         */
 951        error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 952        if (error)
 953                goto out;
 954        error = radix_tree_preload(GFP_KERNEL);
 955        if (error) {
 956                mem_cgroup_uncharge_cache_page(page);
 957                goto out;
 958        }
 959        error = 1;
 960
 961        spin_lock(&info->lock);
 962        ptr = shmem_swp_entry(info, idx, NULL);
 963        if (ptr && ptr->val == entry.val) {
 964                error = add_to_page_cache_locked(page, inode->i_mapping,
 965                                                idx, GFP_NOWAIT);
 966                /* does mem_cgroup_uncharge_cache_page on error */
 967        } else  /* we must compensate for our precharge above */
 968                mem_cgroup_uncharge_cache_page(page);
 969
 970        if (error == -EEXIST) {
 971                struct page *filepage = find_get_page(inode->i_mapping, idx);
 972                error = 1;
 973                if (filepage) {
 974                        /*
 975                         * There might be a more uptodate page coming down
 976                         * from a stacked writepage: forget our swappage if so.
 977                         */
 978                        if (PageUptodate(filepage))
 979                                error = 0;
 980                        page_cache_release(filepage);
 981                }
 982        }
 983        if (!error) {
 984                delete_from_swap_cache(page);
 985                set_page_dirty(page);
 986                info->flags |= SHMEM_PAGEIN;
 987                shmem_swp_set(info, ptr, 0);
 988                swap_free(entry);
 989                error = 1;      /* not an error, but entry was found */
 990        }
 991        if (ptr)
 992                shmem_swp_unmap(ptr);
 993        spin_unlock(&info->lock);
 994        radix_tree_preload_end();
 995out:
 996        unlock_page(page);
 997        page_cache_release(page);
 998        iput(inode);            /* allows for NULL */
 999        return error;
1000}
1001
1002/*
1003 * shmem_unuse() search for an eventually swapped out shmem page.
1004 */
1005int shmem_unuse(swp_entry_t entry, struct page *page)
1006{
1007        struct list_head *p, *next;
1008        struct shmem_inode_info *info;
1009        int found = 0;
1010
1011        mutex_lock(&shmem_swaplist_mutex);
1012        list_for_each_safe(p, next, &shmem_swaplist) {
1013                info = list_entry(p, struct shmem_inode_info, swaplist);
1014                found = shmem_unuse_inode(info, entry, page);
1015                cond_resched();
1016                if (found)
1017                        goto out;
1018        }
1019        mutex_unlock(&shmem_swaplist_mutex);
1020out:    return found;   /* 0 or 1 or -ENOMEM */
1021}
1022
1023/*
1024 * Move the page from the page cache to the swap cache.
1025 */
1026static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1027{
1028        struct shmem_inode_info *info;
1029        swp_entry_t *entry, swap;
1030        struct address_space *mapping;
1031        unsigned long index;
1032        struct inode *inode;
1033
1034        BUG_ON(!PageLocked(page));
1035        mapping = page->mapping;
1036        index = page->index;
1037        inode = mapping->host;
1038        info = SHMEM_I(inode);
1039        if (info->flags & VM_LOCKED)
1040                goto redirty;
1041        if (!total_swap_pages)
1042                goto redirty;
1043
1044        /*
1045         * shmem_backing_dev_info's capabilities prevent regular writeback or
1046         * sync from ever calling shmem_writepage; but a stacking filesystem
1047         * may use the ->writepage of its underlying filesystem, in which case
1048         * tmpfs should write out to swap only in response to memory pressure,
1049         * and not for the writeback threads or sync.  However, in those cases,
1050         * we do still want to check if there's a redundant swappage to be
1051         * discarded.
1052         */
1053        if (wbc->for_reclaim)
1054                swap = get_swap_page();
1055        else
1056                swap.val = 0;
1057
1058        spin_lock(&info->lock);
1059        if (index >= info->next_index) {
1060                BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1061                goto unlock;
1062        }
1063        entry = shmem_swp_entry(info, index, NULL);
1064        if (entry->val) {
1065                /*
1066                 * The more uptodate page coming down from a stacked
1067                 * writepage should replace our old swappage.
1068                 */
1069                free_swap_and_cache(*entry);
1070                shmem_swp_set(info, entry, 0);
1071        }
1072        shmem_recalc_inode(inode);
1073
1074        if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1075                remove_from_page_cache(page);
1076                shmem_swp_set(info, entry, swap.val);
1077                shmem_swp_unmap(entry);
1078                if (list_empty(&info->swaplist))
1079                        inode = igrab(inode);
1080                else
1081                        inode = NULL;
1082                spin_unlock(&info->lock);
1083                swap_duplicate(swap);
1084                BUG_ON(page_mapped(page));
1085                page_cache_release(page);       /* pagecache ref */
1086                swap_writepage(page, wbc);
1087                if (inode) {
1088                        mutex_lock(&shmem_swaplist_mutex);
1089                        /* move instead of add in case we're racing */
1090                        list_move_tail(&info->swaplist, &shmem_swaplist);
1091                        mutex_unlock(&shmem_swaplist_mutex);
1092                        iput(inode);
1093                }
1094                return 0;
1095        }
1096
1097        shmem_swp_unmap(entry);
1098unlock:
1099        spin_unlock(&info->lock);
1100        /*
1101         * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1102         * clear SWAP_HAS_CACHE flag.
1103         */
1104        swapcache_free(swap, NULL);
1105redirty:
1106        set_page_dirty(page);
1107        if (wbc->for_reclaim)
1108                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1109        unlock_page(page);
1110        return 0;
1111}
1112
1113#ifdef CONFIG_NUMA
1114#ifdef CONFIG_TMPFS
1115static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1116{
1117        char buffer[64];
1118
1119        if (!mpol || mpol->mode == MPOL_DEFAULT)
1120                return;         /* show nothing */
1121
1122        mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1123
1124        seq_printf(seq, ",mpol=%s", buffer);
1125}
1126
1127static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1128{
1129        struct mempolicy *mpol = NULL;
1130        if (sbinfo->mpol) {
1131                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1132                mpol = sbinfo->mpol;
1133                mpol_get(mpol);
1134                spin_unlock(&sbinfo->stat_lock);
1135        }
1136        return mpol;
1137}
1138#endif /* CONFIG_TMPFS */
1139
1140static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1141                        struct shmem_inode_info *info, unsigned long idx)
1142{
1143        struct mempolicy mpol, *spol;
1144        struct vm_area_struct pvma;
1145        struct page *page;
1146
1147        spol = mpol_cond_copy(&mpol,
1148                                mpol_shared_policy_lookup(&info->policy, idx));
1149
1150        /* Create a pseudo vma that just contains the policy */
1151        pvma.vm_start = 0;
1152        pvma.vm_pgoff = idx;
1153        pvma.vm_ops = NULL;
1154        pvma.vm_policy = spol;
1155        page = swapin_readahead(entry, gfp, &pvma, 0);
1156        return page;
1157}
1158
1159static struct page *shmem_alloc_page(gfp_t gfp,
1160                        struct shmem_inode_info *info, unsigned long idx)
1161{
1162        struct vm_area_struct pvma;
1163
1164        /* Create a pseudo vma that just contains the policy */
1165        pvma.vm_start = 0;
1166        pvma.vm_pgoff = idx;
1167        pvma.vm_ops = NULL;
1168        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1169
1170        /*
1171         * alloc_page_vma() will drop the shared policy reference
1172         */
1173        return alloc_page_vma(gfp, &pvma, 0);
1174}
1175#else /* !CONFIG_NUMA */
1176#ifdef CONFIG_TMPFS
1177static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1178{
1179}
1180#endif /* CONFIG_TMPFS */
1181
1182static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1183                        struct shmem_inode_info *info, unsigned long idx)
1184{
1185        return swapin_readahead(entry, gfp, NULL, 0);
1186}
1187
1188static inline struct page *shmem_alloc_page(gfp_t gfp,
1189                        struct shmem_inode_info *info, unsigned long idx)
1190{
1191        return alloc_page(gfp);
1192}
1193#endif /* CONFIG_NUMA */
1194
1195#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1196static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1197{
1198        return NULL;
1199}
1200#endif
1201
1202/*
1203 * shmem_getpage - either get the page from swap or allocate a new one
1204 *
1205 * If we allocate a new one we do not mark it dirty. That's up to the
1206 * vm. If we swap it in we mark it dirty since we also free the swap
1207 * entry since a page cannot live in both the swap and page cache
1208 */
1209static int shmem_getpage(struct inode *inode, unsigned long idx,
1210                        struct page **pagep, enum sgp_type sgp, int *type)
1211{
1212        struct address_space *mapping = inode->i_mapping;
1213        struct shmem_inode_info *info = SHMEM_I(inode);
1214        struct shmem_sb_info *sbinfo;
1215        struct page *filepage = *pagep;
1216        struct page *swappage;
1217        swp_entry_t *entry;
1218        swp_entry_t swap;
1219        gfp_t gfp;
1220        int error;
1221
1222        if (idx >= SHMEM_MAX_INDEX)
1223                return -EFBIG;
1224
1225        if (type)
1226                *type = 0;
1227
1228        /*
1229         * Normally, filepage is NULL on entry, and either found
1230         * uptodate immediately, or allocated and zeroed, or read
1231         * in under swappage, which is then assigned to filepage.
1232         * But shmem_readpage (required for splice) passes in a locked
1233         * filepage, which may be found not uptodate by other callers
1234         * too, and may need to be copied from the swappage read in.
1235         */
1236repeat:
1237        if (!filepage)
1238                filepage = find_lock_page(mapping, idx);
1239        if (filepage && PageUptodate(filepage))
1240                goto done;
1241        error = 0;
1242        gfp = mapping_gfp_mask(mapping);
1243        if (!filepage) {
1244                /*
1245                 * Try to preload while we can wait, to not make a habit of
1246                 * draining atomic reserves; but don't latch on to this cpu.
1247                 */
1248                error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1249                if (error)
1250                        goto failed;
1251                radix_tree_preload_end();
1252        }
1253
1254        spin_lock(&info->lock);
1255        shmem_recalc_inode(inode);
1256        entry = shmem_swp_alloc(info, idx, sgp);
1257        if (IS_ERR(entry)) {
1258                spin_unlock(&info->lock);
1259                error = PTR_ERR(entry);
1260                goto failed;
1261        }
1262        swap = *entry;
1263
1264        if (swap.val) {
1265                /* Look it up and read it in.. */
1266                swappage = lookup_swap_cache(swap);
1267                if (!swappage) {
1268                        shmem_swp_unmap(entry);
1269                        /* here we actually do the io */
1270                        if (type && !(*type & VM_FAULT_MAJOR)) {
1271                                __count_vm_event(PGMAJFAULT);
1272                                *type |= VM_FAULT_MAJOR;
1273                        }
1274                        spin_unlock(&info->lock);
1275                        swappage = shmem_swapin(swap, gfp, info, idx);
1276                        if (!swappage) {
1277                                spin_lock(&info->lock);
1278                                entry = shmem_swp_alloc(info, idx, sgp);
1279                                if (IS_ERR(entry))
1280                                        error = PTR_ERR(entry);
1281                                else {
1282                                        if (entry->val == swap.val)
1283                                                error = -ENOMEM;
1284                                        shmem_swp_unmap(entry);
1285                                }
1286                                spin_unlock(&info->lock);
1287                                if (error)
1288                                        goto failed;
1289                                goto repeat;
1290                        }
1291                        wait_on_page_locked(swappage);
1292                        page_cache_release(swappage);
1293                        goto repeat;
1294                }
1295
1296                /* We have to do this with page locked to prevent races */
1297                if (!trylock_page(swappage)) {
1298                        shmem_swp_unmap(entry);
1299                        spin_unlock(&info->lock);
1300                        wait_on_page_locked(swappage);
1301                        page_cache_release(swappage);
1302                        goto repeat;
1303                }
1304                if (PageWriteback(swappage)) {
1305                        shmem_swp_unmap(entry);
1306                        spin_unlock(&info->lock);
1307                        wait_on_page_writeback(swappage);
1308                        unlock_page(swappage);
1309                        page_cache_release(swappage);
1310                        goto repeat;
1311                }
1312                if (!PageUptodate(swappage)) {
1313                        shmem_swp_unmap(entry);
1314                        spin_unlock(&info->lock);
1315                        unlock_page(swappage);
1316                        page_cache_release(swappage);
1317                        error = -EIO;
1318                        goto failed;
1319                }
1320
1321                if (filepage) {
1322                        shmem_swp_set(info, entry, 0);
1323                        shmem_swp_unmap(entry);
1324                        delete_from_swap_cache(swappage);
1325                        spin_unlock(&info->lock);
1326                        copy_highpage(filepage, swappage);
1327                        unlock_page(swappage);
1328                        page_cache_release(swappage);
1329                        flush_dcache_page(filepage);
1330                        SetPageUptodate(filepage);
1331                        set_page_dirty(filepage);
1332                        swap_free(swap);
1333                } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1334                                        idx, GFP_NOWAIT))) {
1335                        info->flags |= SHMEM_PAGEIN;
1336                        shmem_swp_set(info, entry, 0);
1337                        shmem_swp_unmap(entry);
1338                        delete_from_swap_cache(swappage);
1339                        spin_unlock(&info->lock);
1340                        filepage = swappage;
1341                        set_page_dirty(filepage);
1342                        swap_free(swap);
1343                } else {
1344                        shmem_swp_unmap(entry);
1345                        spin_unlock(&info->lock);
1346                        if (error == -ENOMEM) {
1347                                /*
1348                                 * reclaim from proper memory cgroup and
1349                                 * call memcg's OOM if needed.
1350                                 */
1351                                error = mem_cgroup_shmem_charge_fallback(
1352                                                                swappage,
1353                                                                current->mm,
1354                                                                gfp);
1355                                if (error) {
1356                                        unlock_page(swappage);
1357                                        page_cache_release(swappage);
1358                                        goto failed;
1359                                }
1360                        }
1361                        unlock_page(swappage);
1362                        page_cache_release(swappage);
1363                        goto repeat;
1364                }
1365        } else if (sgp == SGP_READ && !filepage) {
1366                shmem_swp_unmap(entry);
1367                filepage = find_get_page(mapping, idx);
1368                if (filepage &&
1369                    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1370                        spin_unlock(&info->lock);
1371                        wait_on_page_locked(filepage);
1372                        page_cache_release(filepage);
1373                        filepage = NULL;
1374                        goto repeat;
1375                }
1376                spin_unlock(&info->lock);
1377        } else {
1378                shmem_swp_unmap(entry);
1379                sbinfo = SHMEM_SB(inode->i_sb);
1380                if (sbinfo->max_blocks) {
1381                        spin_lock(&sbinfo->stat_lock);
1382                        if (sbinfo->free_blocks == 0 ||
1383                            shmem_acct_block(info->flags)) {
1384                                spin_unlock(&sbinfo->stat_lock);
1385                                spin_unlock(&info->lock);
1386                                error = -ENOSPC;
1387                                goto failed;
1388                        }
1389                        sbinfo->free_blocks--;
1390                        inode->i_blocks += BLOCKS_PER_PAGE;
1391                        spin_unlock(&sbinfo->stat_lock);
1392                } else if (shmem_acct_block(info->flags)) {
1393                        spin_unlock(&info->lock);
1394                        error = -ENOSPC;
1395                        goto failed;
1396                }
1397
1398                if (!filepage) {
1399                        int ret;
1400
1401                        spin_unlock(&info->lock);
1402                        filepage = shmem_alloc_page(gfp, info, idx);
1403                        if (!filepage) {
1404                                shmem_unacct_blocks(info->flags, 1);
1405                                shmem_free_blocks(inode, 1);
1406                                error = -ENOMEM;
1407                                goto failed;
1408                        }
1409                        SetPageSwapBacked(filepage);
1410
1411                        /* Precharge page while we can wait, compensate after */
1412                        error = mem_cgroup_cache_charge(filepage, current->mm,
1413                                        GFP_KERNEL);
1414                        if (error) {
1415                                page_cache_release(filepage);
1416                                shmem_unacct_blocks(info->flags, 1);
1417                                shmem_free_blocks(inode, 1);
1418                                filepage = NULL;
1419                                goto failed;
1420                        }
1421
1422                        spin_lock(&info->lock);
1423                        entry = shmem_swp_alloc(info, idx, sgp);
1424                        if (IS_ERR(entry))
1425                                error = PTR_ERR(entry);
1426                        else {
1427                                swap = *entry;
1428                                shmem_swp_unmap(entry);
1429                        }
1430                        ret = error || swap.val;
1431                        if (ret)
1432                                mem_cgroup_uncharge_cache_page(filepage);
1433                        else
1434                                ret = add_to_page_cache_lru(filepage, mapping,
1435                                                idx, GFP_NOWAIT);
1436                        /*
1437                         * At add_to_page_cache_lru() failure, uncharge will
1438                         * be done automatically.
1439                         */
1440                        if (ret) {
1441                                spin_unlock(&info->lock);
1442                                page_cache_release(filepage);
1443                                shmem_unacct_blocks(info->flags, 1);
1444                                shmem_free_blocks(inode, 1);
1445                                filepage = NULL;
1446                                if (error)
1447                                        goto failed;
1448                                goto repeat;
1449                        }
1450                        info->flags |= SHMEM_PAGEIN;
1451                }
1452
1453                info->alloced++;
1454                spin_unlock(&info->lock);
1455                clear_highpage(filepage);
1456                flush_dcache_page(filepage);
1457                SetPageUptodate(filepage);
1458                if (sgp == SGP_DIRTY)
1459                        set_page_dirty(filepage);
1460        }
1461done:
1462        *pagep = filepage;
1463        return 0;
1464
1465failed:
1466        if (*pagep != filepage) {
1467                unlock_page(filepage);
1468                page_cache_release(filepage);
1469        }
1470        return error;
1471}
1472
1473static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1474{
1475        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1476        int error;
1477        int ret;
1478
1479        if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1480                return VM_FAULT_SIGBUS;
1481
1482        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1483        if (error)
1484                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1485
1486        return ret | VM_FAULT_LOCKED;
1487}
1488
1489#ifdef CONFIG_NUMA
1490static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1491{
1492        struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1493        return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1494}
1495
1496static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1497                                          unsigned long addr)
1498{
1499        struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1500        unsigned long idx;
1501
1502        idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1503        return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1504}
1505#endif
1506
1507int shmem_lock(struct file *file, int lock, struct user_struct *user)
1508{
1509        struct inode *inode = file->f_path.dentry->d_inode;
1510        struct shmem_inode_info *info = SHMEM_I(inode);
1511        int retval = -ENOMEM;
1512
1513        spin_lock(&info->lock);
1514        if (lock && !(info->flags & VM_LOCKED)) {
1515                if (!user_shm_lock(inode->i_size, user))
1516                        goto out_nomem;
1517                info->flags |= VM_LOCKED;
1518                mapping_set_unevictable(file->f_mapping);
1519        }
1520        if (!lock && (info->flags & VM_LOCKED) && user) {
1521                user_shm_unlock(inode->i_size, user);
1522                info->flags &= ~VM_LOCKED;
1523                mapping_clear_unevictable(file->f_mapping);
1524                scan_mapping_unevictable_pages(file->f_mapping);
1525        }
1526        retval = 0;
1527
1528out_nomem:
1529        spin_unlock(&info->lock);
1530        return retval;
1531}
1532
1533static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1534{
1535        file_accessed(file);
1536        vma->vm_ops = &shmem_vm_ops;
1537        vma->vm_flags |= VM_CAN_NONLINEAR;
1538        return 0;
1539}
1540
1541static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1542                                        dev_t dev, unsigned long flags)
1543{
1544        struct inode *inode;
1545        struct shmem_inode_info *info;
1546        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1547
1548        if (shmem_reserve_inode(sb))
1549                return NULL;
1550
1551        inode = new_inode(sb);
1552        if (inode) {
1553                inode->i_mode = mode;
1554                inode->i_uid = current_fsuid();
1555                inode->i_gid = current_fsgid();
1556                inode->i_blocks = 0;
1557                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1558                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1559                inode->i_generation = get_seconds();
1560                info = SHMEM_I(inode);
1561                memset(info, 0, (char *)inode - (char *)info);
1562                spin_lock_init(&info->lock);
1563                info->flags = flags & VM_NORESERVE;
1564                INIT_LIST_HEAD(&info->swaplist);
1565                cache_no_acl(inode);
1566
1567                switch (mode & S_IFMT) {
1568                default:
1569                        inode->i_op = &shmem_special_inode_operations;
1570                        init_special_inode(inode, mode, dev);
1571                        break;
1572                case S_IFREG:
1573                        inode->i_mapping->a_ops = &shmem_aops;
1574                        inode->i_op = &shmem_inode_operations;
1575                        inode->i_fop = &shmem_file_operations;
1576                        mpol_shared_policy_init(&info->policy,
1577                                                 shmem_get_sbmpol(sbinfo));
1578                        break;
1579                case S_IFDIR:
1580                        inc_nlink(inode);
1581                        /* Some things misbehave if size == 0 on a directory */
1582                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1583                        inode->i_op = &shmem_dir_inode_operations;
1584                        inode->i_fop = &simple_dir_operations;
1585                        break;
1586                case S_IFLNK:
1587                        /*
1588                         * Must not load anything in the rbtree,
1589                         * mpol_free_shared_policy will not be called.
1590                         */
1591                        mpol_shared_policy_init(&info->policy, NULL);
1592                        break;
1593                }
1594        } else
1595                shmem_free_inode(sb);
1596        return inode;
1597}
1598
1599#ifdef CONFIG_TMPFS
1600static const struct inode_operations shmem_symlink_inode_operations;
1601static const struct inode_operations shmem_symlink_inline_operations;
1602
1603/*
1604 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1605 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1606 * below the loop driver, in the generic fashion that many filesystems support.
1607 */
1608static int shmem_readpage(struct file *file, struct page *page)
1609{
1610        struct inode *inode = page->mapping->host;
1611        int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1612        unlock_page(page);
1613        return error;
1614}
1615
1616static int
1617shmem_write_begin(struct file *file, struct address_space *mapping,
1618                        loff_t pos, unsigned len, unsigned flags,
1619                        struct page **pagep, void **fsdata)
1620{
1621        struct inode *inode = mapping->host;
1622        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1623        *pagep = NULL;
1624        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1625}
1626
1627static int
1628shmem_write_end(struct file *file, struct address_space *mapping,
1629                        loff_t pos, unsigned len, unsigned copied,
1630                        struct page *page, void *fsdata)
1631{
1632        struct inode *inode = mapping->host;
1633
1634        if (pos + copied > inode->i_size)
1635                i_size_write(inode, pos + copied);
1636
1637        set_page_dirty(page);
1638        unlock_page(page);
1639        page_cache_release(page);
1640
1641        return copied;
1642}
1643
1644static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1645{
1646        struct inode *inode = filp->f_path.dentry->d_inode;
1647        struct address_space *mapping = inode->i_mapping;
1648        unsigned long index, offset;
1649        enum sgp_type sgp = SGP_READ;
1650
1651        /*
1652         * Might this read be for a stacking filesystem?  Then when reading
1653         * holes of a sparse file, we actually need to allocate those pages,
1654         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1655         */
1656        if (segment_eq(get_fs(), KERNEL_DS))
1657                sgp = SGP_DIRTY;
1658
1659        index = *ppos >> PAGE_CACHE_SHIFT;
1660        offset = *ppos & ~PAGE_CACHE_MASK;
1661
1662        for (;;) {
1663                struct page *page = NULL;
1664                unsigned long end_index, nr, ret;
1665                loff_t i_size = i_size_read(inode);
1666
1667                end_index = i_size >> PAGE_CACHE_SHIFT;
1668                if (index > end_index)
1669                        break;
1670                if (index == end_index) {
1671                        nr = i_size & ~PAGE_CACHE_MASK;
1672                        if (nr <= offset)
1673                                break;
1674                }
1675
1676                desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1677                if (desc->error) {
1678                        if (desc->error == -EINVAL)
1679                                desc->error = 0;
1680                        break;
1681                }
1682                if (page)
1683                        unlock_page(page);
1684
1685                /*
1686                 * We must evaluate after, since reads (unlike writes)
1687                 * are called without i_mutex protection against truncate
1688                 */
1689                nr = PAGE_CACHE_SIZE;
1690                i_size = i_size_read(inode);
1691                end_index = i_size >> PAGE_CACHE_SHIFT;
1692                if (index == end_index) {
1693                        nr = i_size & ~PAGE_CACHE_MASK;
1694                        if (nr <= offset) {
1695                                if (page)
1696                                        page_cache_release(page);
1697                                break;
1698                        }
1699                }
1700                nr -= offset;
1701
1702                if (page) {
1703                        /*
1704                         * If users can be writing to this page using arbitrary
1705                         * virtual addresses, take care about potential aliasing
1706                         * before reading the page on the kernel side.
1707                         */
1708                        if (mapping_writably_mapped(mapping))
1709                                flush_dcache_page(page);
1710                        /*
1711                         * Mark the page accessed if we read the beginning.
1712                         */
1713                        if (!offset)
1714                                mark_page_accessed(page);
1715                } else {
1716                        page = ZERO_PAGE(0);
1717                        page_cache_get(page);
1718                }
1719
1720                /*
1721                 * Ok, we have the page, and it's up-to-date, so
1722                 * now we can copy it to user space...
1723                 *
1724                 * The actor routine returns how many bytes were actually used..
1725                 * NOTE! This may not be the same as how much of a user buffer
1726                 * we filled up (we may be padding etc), so we can only update
1727                 * "pos" here (the actor routine has to update the user buffer
1728                 * pointers and the remaining count).
1729                 */
1730                ret = actor(desc, page, offset, nr);
1731                offset += ret;
1732                index += offset >> PAGE_CACHE_SHIFT;
1733                offset &= ~PAGE_CACHE_MASK;
1734
1735                page_cache_release(page);
1736                if (ret != nr || !desc->count)
1737                        break;
1738
1739                cond_resched();
1740        }
1741
1742        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1743        file_accessed(filp);
1744}
1745
1746static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1747                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1748{
1749        struct file *filp = iocb->ki_filp;
1750        ssize_t retval;
1751        unsigned long seg;
1752        size_t count;
1753        loff_t *ppos = &iocb->ki_pos;
1754
1755        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1756        if (retval)
1757                return retval;
1758
1759        for (seg = 0; seg < nr_segs; seg++) {
1760                read_descriptor_t desc;
1761
1762                desc.written = 0;
1763                desc.arg.buf = iov[seg].iov_base;
1764                desc.count = iov[seg].iov_len;
1765                if (desc.count == 0)
1766                        continue;
1767                desc.error = 0;
1768                do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1769                retval += desc.written;
1770                if (desc.error) {
1771                        retval = retval ?: desc.error;
1772                        break;
1773                }
1774                if (desc.count > 0)
1775                        break;
1776        }
1777        return retval;
1778}
1779
1780static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1781{
1782        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1783
1784        buf->f_type = TMPFS_MAGIC;
1785        buf->f_bsize = PAGE_CACHE_SIZE;
1786        buf->f_namelen = NAME_MAX;
1787        spin_lock(&sbinfo->stat_lock);
1788        if (sbinfo->max_blocks) {
1789                buf->f_blocks = sbinfo->max_blocks;
1790                buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1791        }
1792        if (sbinfo->max_inodes) {
1793                buf->f_files = sbinfo->max_inodes;
1794                buf->f_ffree = sbinfo->free_inodes;
1795        }
1796        /* else leave those fields 0 like simple_statfs */
1797        spin_unlock(&sbinfo->stat_lock);
1798        return 0;
1799}
1800
1801/*
1802 * File creation. Allocate an inode, and we're done..
1803 */
1804static int
1805shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1806{
1807        struct inode *inode;
1808        int error = -ENOSPC;
1809
1810        inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1811        if (inode) {
1812                error = security_inode_init_security(inode, dir, NULL, NULL,
1813                                                     NULL);
1814                if (error) {
1815                        if (error != -EOPNOTSUPP) {
1816                                iput(inode);
1817                                return error;
1818                        }
1819                }
1820                error = shmem_acl_init(inode, dir);
1821                if (error) {
1822                        iput(inode);
1823                        return error;
1824                }
1825                if (dir->i_mode & S_ISGID) {
1826                        inode->i_gid = dir->i_gid;
1827                        if (S_ISDIR(mode))
1828                                inode->i_mode |= S_ISGID;
1829                }
1830                dir->i_size += BOGO_DIRENT_SIZE;
1831                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1832                d_instantiate(dentry, inode);
1833                dget(dentry); /* Extra count - pin the dentry in core */
1834        }
1835        return error;
1836}
1837
1838static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1839{
1840        int error;
1841
1842        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1843                return error;
1844        inc_nlink(dir);
1845        return 0;
1846}
1847
1848static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1849                struct nameidata *nd)
1850{
1851        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1852}
1853
1854/*
1855 * Link a file..
1856 */
1857static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1858{
1859        struct inode *inode = old_dentry->d_inode;
1860        int ret;
1861
1862        /*
1863         * No ordinary (disk based) filesystem counts links as inodes;
1864         * but each new link needs a new dentry, pinning lowmem, and
1865         * tmpfs dentries cannot be pruned until they are unlinked.
1866         */
1867        ret = shmem_reserve_inode(inode->i_sb);
1868        if (ret)
1869                goto out;
1870
1871        dir->i_size += BOGO_DIRENT_SIZE;
1872        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1873        inc_nlink(inode);
1874        atomic_inc(&inode->i_count);    /* New dentry reference */
1875        dget(dentry);           /* Extra pinning count for the created dentry */
1876        d_instantiate(dentry, inode);
1877out:
1878        return ret;
1879}
1880
1881static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1882{
1883        struct inode *inode = dentry->d_inode;
1884
1885        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1886                shmem_free_inode(inode->i_sb);
1887
1888        dir->i_size -= BOGO_DIRENT_SIZE;
1889        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1890        drop_nlink(inode);
1891        dput(dentry);   /* Undo the count from "create" - this does all the work */
1892        return 0;
1893}
1894
1895static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1896{
1897        if (!simple_empty(dentry))
1898                return -ENOTEMPTY;
1899
1900        drop_nlink(dentry->d_inode);
1901        drop_nlink(dir);
1902        return shmem_unlink(dir, dentry);
1903}
1904
1905/*
1906 * The VFS layer already does all the dentry stuff for rename,
1907 * we just have to decrement the usage count for the target if
1908 * it exists so that the VFS layer correctly free's it when it
1909 * gets overwritten.
1910 */
1911static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1912{
1913        struct inode *inode = old_dentry->d_inode;
1914        int they_are_dirs = S_ISDIR(inode->i_mode);
1915
1916        if (!simple_empty(new_dentry))
1917                return -ENOTEMPTY;
1918
1919        if (new_dentry->d_inode) {
1920                (void) shmem_unlink(new_dir, new_dentry);
1921                if (they_are_dirs)
1922                        drop_nlink(old_dir);
1923        } else if (they_are_dirs) {
1924                drop_nlink(old_dir);
1925                inc_nlink(new_dir);
1926        }
1927
1928        old_dir->i_size -= BOGO_DIRENT_SIZE;
1929        new_dir->i_size += BOGO_DIRENT_SIZE;
1930        old_dir->i_ctime = old_dir->i_mtime =
1931        new_dir->i_ctime = new_dir->i_mtime =
1932        inode->i_ctime = CURRENT_TIME;
1933        return 0;
1934}
1935
1936static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1937{
1938        int error;
1939        int len;
1940        struct inode *inode;
1941        struct page *page = NULL;
1942        char *kaddr;
1943        struct shmem_inode_info *info;
1944
1945        len = strlen(symname) + 1;
1946        if (len > PAGE_CACHE_SIZE)
1947                return -ENAMETOOLONG;
1948
1949        inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1950        if (!inode)
1951                return -ENOSPC;
1952
1953        error = security_inode_init_security(inode, dir, NULL, NULL,
1954                                             NULL);
1955        if (error) {
1956                if (error != -EOPNOTSUPP) {
1957                        iput(inode);
1958                        return error;
1959                }
1960                error = 0;
1961        }
1962
1963        info = SHMEM_I(inode);
1964        inode->i_size = len-1;
1965        if (len <= (char *)inode - (char *)info) {
1966                /* do it inline */
1967                memcpy(info, symname, len);
1968                inode->i_op = &shmem_symlink_inline_operations;
1969        } else {
1970                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1971                if (error) {
1972                        iput(inode);
1973                        return error;
1974                }
1975                inode->i_mapping->a_ops = &shmem_aops;
1976                inode->i_op = &shmem_symlink_inode_operations;
1977                kaddr = kmap_atomic(page, KM_USER0);
1978                memcpy(kaddr, symname, len);
1979                kunmap_atomic(kaddr, KM_USER0);
1980                set_page_dirty(page);
1981                unlock_page(page);
1982                page_cache_release(page);
1983        }
1984        if (dir->i_mode & S_ISGID)
1985                inode->i_gid = dir->i_gid;
1986        dir->i_size += BOGO_DIRENT_SIZE;
1987        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1988        d_instantiate(dentry, inode);
1989        dget(dentry);
1990        return 0;
1991}
1992
1993static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1994{
1995        nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1996        return NULL;
1997}
1998
1999static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2000{
2001        struct page *page = NULL;
2002        int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2003        nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2004        if (page)
2005                unlock_page(page);
2006        return page;
2007}
2008
2009static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2010{
2011        if (!IS_ERR(nd_get_link(nd))) {
2012                struct page *page = cookie;
2013                kunmap(page);
2014                mark_page_accessed(page);
2015                page_cache_release(page);
2016        }
2017}
2018
2019static const struct inode_operations shmem_symlink_inline_operations = {
2020        .readlink       = generic_readlink,
2021        .follow_link    = shmem_follow_link_inline,
2022};
2023
2024static const struct inode_operations shmem_symlink_inode_operations = {
2025        .truncate       = shmem_truncate,
2026        .readlink       = generic_readlink,
2027        .follow_link    = shmem_follow_link,
2028        .put_link       = shmem_put_link,
2029};
2030
2031#ifdef CONFIG_TMPFS_POSIX_ACL
2032/*
2033 * Superblocks without xattr inode operations will get security.* xattr
2034 * support from the VFS "for free". As soon as we have any other xattrs
2035 * like ACLs, we also need to implement the security.* handlers at
2036 * filesystem level, though.
2037 */
2038
2039static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2040                                        size_t list_len, const char *name,
2041                                        size_t name_len)
2042{
2043        return security_inode_listsecurity(inode, list, list_len);
2044}
2045
2046static int shmem_xattr_security_get(struct inode *inode, const char *name,
2047                                    void *buffer, size_t size)
2048{
2049        if (strcmp(name, "") == 0)
2050                return -EINVAL;
2051        return xattr_getsecurity(inode, name, buffer, size);
2052}
2053
2054static int shmem_xattr_security_set(struct inode *inode, const char *name,
2055                                    const void *value, size_t size, int flags)
2056{
2057        if (strcmp(name, "") == 0)
2058                return -EINVAL;
2059        return security_inode_setsecurity(inode, name, value, size, flags);
2060}
2061
2062static struct xattr_handler shmem_xattr_security_handler = {
2063        .prefix = XATTR_SECURITY_PREFIX,
2064        .list   = shmem_xattr_security_list,
2065        .get    = shmem_xattr_security_get,
2066        .set    = shmem_xattr_security_set,
2067};
2068
2069static struct xattr_handler *shmem_xattr_handlers[] = {
2070        &shmem_xattr_acl_access_handler,
2071        &shmem_xattr_acl_default_handler,
2072        &shmem_xattr_security_handler,
2073        NULL
2074};
2075#endif
2076
2077static struct dentry *shmem_get_parent(struct dentry *child)
2078{
2079        return ERR_PTR(-ESTALE);
2080}
2081
2082static int shmem_match(struct inode *ino, void *vfh)
2083{
2084        __u32 *fh = vfh;
2085        __u64 inum = fh[2];
2086        inum = (inum << 32) | fh[1];
2087        return ino->i_ino == inum && fh[0] == ino->i_generation;
2088}
2089
2090static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2091                struct fid *fid, int fh_len, int fh_type)
2092{
2093        struct inode *inode;
2094        struct dentry *dentry = NULL;
2095        u64 inum = fid->raw[2];
2096        inum = (inum << 32) | fid->raw[1];
2097
2098        if (fh_len < 3)
2099                return NULL;
2100
2101        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2102                        shmem_match, fid->raw);
2103        if (inode) {
2104                dentry = d_find_alias(inode);
2105                iput(inode);
2106        }
2107
2108        return dentry;
2109}
2110
2111static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2112                                int connectable)
2113{
2114        struct inode *inode = dentry->d_inode;
2115
2116        if (*len < 3)
2117                return 255;
2118
2119        if (hlist_unhashed(&inode->i_hash)) {
2120                /* Unfortunately insert_inode_hash is not idempotent,
2121                 * so as we hash inodes here rather than at creation
2122                 * time, we need a lock to ensure we only try
2123                 * to do it once
2124                 */
2125                static DEFINE_SPINLOCK(lock);
2126                spin_lock(&lock);
2127                if (hlist_unhashed(&inode->i_hash))
2128                        __insert_inode_hash(inode,
2129                                            inode->i_ino + inode->i_generation);
2130                spin_unlock(&lock);
2131        }
2132
2133        fh[0] = inode->i_generation;
2134        fh[1] = inode->i_ino;
2135        fh[2] = ((__u64)inode->i_ino) >> 32;
2136
2137        *len = 3;
2138        return 1;
2139}
2140
2141static const struct export_operations shmem_export_ops = {
2142        .get_parent     = shmem_get_parent,
2143        .encode_fh      = shmem_encode_fh,
2144        .fh_to_dentry   = shmem_fh_to_dentry,
2145};
2146
2147static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2148                               bool remount)
2149{
2150        char *this_char, *value, *rest;
2151
2152        while (options != NULL) {
2153                this_char = options;
2154                for (;;) {
2155                        /*
2156                         * NUL-terminate this option: unfortunately,
2157                         * mount options form a comma-separated list,
2158                         * but mpol's nodelist may also contain commas.
2159                         */
2160                        options = strchr(options, ',');
2161                        if (options == NULL)
2162                                break;
2163                        options++;
2164                        if (!isdigit(*options)) {
2165                                options[-1] = '\0';
2166                                break;
2167                        }
2168                }
2169                if (!*this_char)
2170                        continue;
2171                if ((value = strchr(this_char,'=')) != NULL) {
2172                        *value++ = 0;
2173                } else {
2174                        printk(KERN_ERR
2175                            "tmpfs: No value for mount option '%s'\n",
2176                            this_char);
2177                        return 1;
2178                }
2179
2180                if (!strcmp(this_char,"size")) {
2181                        unsigned long long size;
2182                        size = memparse(value,&rest);
2183                        if (*rest == '%') {
2184                                size <<= PAGE_SHIFT;
2185                                size *= totalram_pages;
2186                                do_div(size, 100);
2187                                rest++;
2188                        }
2189                        if (*rest)
2190                                goto bad_val;
2191                        sbinfo->max_blocks =
2192                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2193                } else if (!strcmp(this_char,"nr_blocks")) {
2194                        sbinfo->max_blocks = memparse(value, &rest);
2195                        if (*rest)
2196                                goto bad_val;
2197                } else if (!strcmp(this_char,"nr_inodes")) {
2198                        sbinfo->max_inodes = memparse(value, &rest);
2199                        if (*rest)
2200                                goto bad_val;
2201                } else if (!strcmp(this_char,"mode")) {
2202                        if (remount)
2203                                continue;
2204                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2205                        if (*rest)
2206                                goto bad_val;
2207                } else if (!strcmp(this_char,"uid")) {
2208                        if (remount)
2209                                continue;
2210                        sbinfo->uid = simple_strtoul(value, &rest, 0);
2211                        if (*rest)
2212                                goto bad_val;
2213                } else if (!strcmp(this_char,"gid")) {
2214                        if (remount)
2215                                continue;
2216                        sbinfo->gid = simple_strtoul(value, &rest, 0);
2217                        if (*rest)
2218                                goto bad_val;
2219                } else if (!strcmp(this_char,"mpol")) {
2220                        if (mpol_parse_str(value, &sbinfo->mpol, 1))
2221                                goto bad_val;
2222                } else {
2223                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2224                               this_char);
2225                        return 1;
2226                }
2227        }
2228        return 0;
2229
2230bad_val:
2231        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2232               value, this_char);
2233        return 1;
2234
2235}
2236
2237static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2238{
2239        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240        struct shmem_sb_info config = *sbinfo;
2241        unsigned long blocks;
2242        unsigned long inodes;
2243        int error = -EINVAL;
2244
2245        if (shmem_parse_options(data, &config, true))
2246                return error;
2247
2248        spin_lock(&sbinfo->stat_lock);
2249        blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2250        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2251        if (config.max_blocks < blocks)
2252                goto out;
2253        if (config.max_inodes < inodes)
2254                goto out;
2255        /*
2256         * Those tests also disallow limited->unlimited while any are in
2257         * use, so i_blocks will always be zero when max_blocks is zero;
2258         * but we must separately disallow unlimited->limited, because
2259         * in that case we have no record of how much is already in use.
2260         */
2261        if (config.max_blocks && !sbinfo->max_blocks)
2262                goto out;
2263        if (config.max_inodes && !sbinfo->max_inodes)
2264                goto out;
2265
2266        error = 0;
2267        sbinfo->max_blocks  = config.max_blocks;
2268        sbinfo->free_blocks = config.max_blocks - blocks;
2269        sbinfo->max_inodes  = config.max_inodes;
2270        sbinfo->free_inodes = config.max_inodes - inodes;
2271
2272        mpol_put(sbinfo->mpol);
2273        sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2274out:
2275        spin_unlock(&sbinfo->stat_lock);
2276        return error;
2277}
2278
2279static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2280{
2281        struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2282
2283        if (sbinfo->max_blocks != shmem_default_max_blocks())
2284                seq_printf(seq, ",size=%luk",
2285                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2286        if (sbinfo->max_inodes != shmem_default_max_inodes())
2287                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2288        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2289                seq_printf(seq, ",mode=%03o", sbinfo->mode);
2290        if (sbinfo->uid != 0)
2291                seq_printf(seq, ",uid=%u", sbinfo->uid);
2292        if (sbinfo->gid != 0)
2293                seq_printf(seq, ",gid=%u", sbinfo->gid);
2294        shmem_show_mpol(seq, sbinfo->mpol);
2295        return 0;
2296}
2297#endif /* CONFIG_TMPFS */
2298
2299static void shmem_put_super(struct super_block *sb)
2300{
2301        kfree(sb->s_fs_info);
2302        sb->s_fs_info = NULL;
2303}
2304
2305int shmem_fill_super(struct super_block *sb, void *data, int silent)
2306{
2307        struct inode *inode;
2308        struct dentry *root;
2309        struct shmem_sb_info *sbinfo;
2310        int err = -ENOMEM;
2311
2312        /* Round up to L1_CACHE_BYTES to resist false sharing */
2313        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2314                                L1_CACHE_BYTES), GFP_KERNEL);
2315        if (!sbinfo)
2316                return -ENOMEM;
2317
2318        sbinfo->mode = S_IRWXUGO | S_ISVTX;
2319        sbinfo->uid = current_fsuid();
2320        sbinfo->gid = current_fsgid();
2321        sb->s_fs_info = sbinfo;
2322
2323#ifdef CONFIG_TMPFS
2324        /*
2325         * Per default we only allow half of the physical ram per
2326         * tmpfs instance, limiting inodes to one per page of lowmem;
2327         * but the internal instance is left unlimited.
2328         */
2329        if (!(sb->s_flags & MS_NOUSER)) {
2330                sbinfo->max_blocks = shmem_default_max_blocks();
2331                sbinfo->max_inodes = shmem_default_max_inodes();
2332                if (shmem_parse_options(data, sbinfo, false)) {
2333                        err = -EINVAL;
2334                        goto failed;
2335                }
2336        }
2337        sb->s_export_op = &shmem_export_ops;
2338#else
2339        sb->s_flags |= MS_NOUSER;
2340#endif
2341
2342        spin_lock_init(&sbinfo->stat_lock);
2343        sbinfo->free_blocks = sbinfo->max_blocks;
2344        sbinfo->free_inodes = sbinfo->max_inodes;
2345
2346        sb->s_maxbytes = SHMEM_MAX_BYTES;
2347        sb->s_blocksize = PAGE_CACHE_SIZE;
2348        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2349        sb->s_magic = TMPFS_MAGIC;
2350        sb->s_op = &shmem_ops;
2351        sb->s_time_gran = 1;
2352#ifdef CONFIG_TMPFS_POSIX_ACL
2353        sb->s_xattr = shmem_xattr_handlers;
2354        sb->s_flags |= MS_POSIXACL;
2355#endif
2356
2357        inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2358        if (!inode)
2359                goto failed;
2360        inode->i_uid = sbinfo->uid;
2361        inode->i_gid = sbinfo->gid;
2362        root = d_alloc_root(inode);
2363        if (!root)
2364                goto failed_iput;
2365        sb->s_root = root;
2366        return 0;
2367
2368failed_iput:
2369        iput(inode);
2370failed:
2371        shmem_put_super(sb);
2372        return err;
2373}
2374
2375static struct kmem_cache *shmem_inode_cachep;
2376
2377static struct inode *shmem_alloc_inode(struct super_block *sb)
2378{
2379        struct shmem_inode_info *p;
2380        p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2381        if (!p)
2382                return NULL;
2383        return &p->vfs_inode;
2384}
2385
2386static void shmem_destroy_inode(struct inode *inode)
2387{
2388        if ((inode->i_mode & S_IFMT) == S_IFREG) {
2389                /* only struct inode is valid if it's an inline symlink */
2390                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2391        }
2392        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2393}
2394
2395static void init_once(void *foo)
2396{
2397        struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2398
2399        inode_init_once(&p->vfs_inode);
2400}
2401
2402static int init_inodecache(void)
2403{
2404        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2405                                sizeof(struct shmem_inode_info),
2406                                0, SLAB_PANIC, init_once);
2407        return 0;
2408}
2409
2410static void destroy_inodecache(void)
2411{
2412        kmem_cache_destroy(shmem_inode_cachep);
2413}
2414
2415static const struct address_space_operations shmem_aops = {
2416        .writepage      = shmem_writepage,
2417        .set_page_dirty = __set_page_dirty_no_writeback,
2418#ifdef CONFIG_TMPFS
2419        .readpage       = shmem_readpage,
2420        .write_begin    = shmem_write_begin,
2421        .write_end      = shmem_write_end,
2422#endif
2423        .migratepage    = migrate_page,
2424        .error_remove_page = generic_error_remove_page,
2425};
2426
2427static const struct file_operations shmem_file_operations = {
2428        .mmap           = shmem_mmap,
2429#ifdef CONFIG_TMPFS
2430        .llseek         = generic_file_llseek,
2431        .read           = do_sync_read,
2432        .write          = do_sync_write,
2433        .aio_read       = shmem_file_aio_read,
2434        .aio_write      = generic_file_aio_write,
2435        .fsync          = simple_sync_file,
2436        .splice_read    = generic_file_splice_read,
2437        .splice_write   = generic_file_splice_write,
2438#endif
2439};
2440
2441static const struct inode_operations shmem_inode_operations = {
2442        .truncate       = shmem_truncate,
2443        .setattr        = shmem_notify_change,
2444        .truncate_range = shmem_truncate_range,
2445#ifdef CONFIG_TMPFS_POSIX_ACL
2446        .setxattr       = generic_setxattr,
2447        .getxattr       = generic_getxattr,
2448        .listxattr      = generic_listxattr,
2449        .removexattr    = generic_removexattr,
2450        .check_acl      = shmem_check_acl,
2451#endif
2452
2453};
2454
2455static const struct inode_operations shmem_dir_inode_operations = {
2456#ifdef CONFIG_TMPFS
2457        .create         = shmem_create,
2458        .lookup         = simple_lookup,
2459        .link           = shmem_link,
2460        .unlink         = shmem_unlink,
2461        .symlink        = shmem_symlink,
2462        .mkdir          = shmem_mkdir,
2463        .rmdir          = shmem_rmdir,
2464        .mknod          = shmem_mknod,
2465        .rename         = shmem_rename,
2466#endif
2467#ifdef CONFIG_TMPFS_POSIX_ACL
2468        .setattr        = shmem_notify_change,
2469        .setxattr       = generic_setxattr,
2470        .getxattr       = generic_getxattr,
2471        .listxattr      = generic_listxattr,
2472        .removexattr    = generic_removexattr,
2473        .check_acl      = shmem_check_acl,
2474#endif
2475};
2476
2477static const struct inode_operations shmem_special_inode_operations = {
2478#ifdef CONFIG_TMPFS_POSIX_ACL
2479        .setattr        = shmem_notify_change,
2480        .setxattr       = generic_setxattr,
2481        .getxattr       = generic_getxattr,
2482        .listxattr      = generic_listxattr,
2483        .removexattr    = generic_removexattr,
2484        .check_acl      = shmem_check_acl,
2485#endif
2486};
2487
2488static const struct super_operations shmem_ops = {
2489        .alloc_inode    = shmem_alloc_inode,
2490        .destroy_inode  = shmem_destroy_inode,
2491#ifdef CONFIG_TMPFS
2492        .statfs         = shmem_statfs,
2493        .remount_fs     = shmem_remount_fs,
2494        .show_options   = shmem_show_options,
2495#endif
2496        .delete_inode   = shmem_delete_inode,
2497        .drop_inode     = generic_delete_inode,
2498        .put_super      = shmem_put_super,
2499};
2500
2501static const struct vm_operations_struct shmem_vm_ops = {
2502        .fault          = shmem_fault,
2503#ifdef CONFIG_NUMA
2504        .set_policy     = shmem_set_policy,
2505        .get_policy     = shmem_get_policy,
2506#endif
2507};
2508
2509
2510static int shmem_get_sb(struct file_system_type *fs_type,
2511        int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2512{
2513        return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2514}
2515
2516static struct file_system_type tmpfs_fs_type = {
2517        .owner          = THIS_MODULE,
2518        .name           = "tmpfs",
2519        .get_sb         = shmem_get_sb,
2520        .kill_sb        = kill_litter_super,
2521};
2522
2523int __init init_tmpfs(void)
2524{
2525        int error;
2526
2527        error = bdi_init(&shmem_backing_dev_info);
2528        if (error)
2529                goto out4;
2530
2531        error = init_inodecache();
2532        if (error)
2533                goto out3;
2534
2535        error = register_filesystem(&tmpfs_fs_type);
2536        if (error) {
2537                printk(KERN_ERR "Could not register tmpfs\n");
2538                goto out2;
2539        }
2540
2541        shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2542                                tmpfs_fs_type.name, NULL);
2543        if (IS_ERR(shm_mnt)) {
2544                error = PTR_ERR(shm_mnt);
2545                printk(KERN_ERR "Could not kern_mount tmpfs\n");
2546                goto out1;
2547        }
2548        return 0;
2549
2550out1:
2551        unregister_filesystem(&tmpfs_fs_type);
2552out2:
2553        destroy_inodecache();
2554out3:
2555        bdi_destroy(&shmem_backing_dev_info);
2556out4:
2557        shm_mnt = ERR_PTR(error);
2558        return error;
2559}
2560
2561#else /* !CONFIG_SHMEM */
2562
2563/*
2564 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2565 *
2566 * This is intended for small system where the benefits of the full
2567 * shmem code (swap-backed and resource-limited) are outweighed by
2568 * their complexity. On systems without swap this code should be
2569 * effectively equivalent, but much lighter weight.
2570 */
2571
2572#include <linux/ramfs.h>
2573
2574static struct file_system_type tmpfs_fs_type = {
2575        .name           = "tmpfs",
2576        .get_sb         = ramfs_get_sb,
2577        .kill_sb        = kill_litter_super,
2578};
2579
2580int __init init_tmpfs(void)
2581{
2582        BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2583
2584        shm_mnt = kern_mount(&tmpfs_fs_type);
2585        BUG_ON(IS_ERR(shm_mnt));
2586
2587        return 0;
2588}
2589
2590int shmem_unuse(swp_entry_t entry, struct page *page)
2591{
2592        return 0;
2593}
2594
2595int shmem_lock(struct file *file, int lock, struct user_struct *user)
2596{
2597        return 0;
2598}
2599
2600#define shmem_vm_ops                            generic_file_vm_ops
2601#define shmem_file_operations                   ramfs_file_operations
2602#define shmem_get_inode(sb, mode, dev, flags)   ramfs_get_inode(sb, mode, dev)
2603#define shmem_acct_size(flags, size)            0
2604#define shmem_unacct_size(flags, size)          do {} while (0)
2605#define SHMEM_MAX_BYTES                         MAX_LFS_FILESIZE
2606
2607#endif /* CONFIG_SHMEM */
2608
2609/* common code */
2610
2611/**
2612 * shmem_file_setup - get an unlinked file living in tmpfs
2613 * @name: name for dentry (to be seen in /proc/<pid>/maps
2614 * @size: size to be set for the file
2615 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2616 */
2617struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2618{
2619        int error;
2620        struct file *file;
2621        struct inode *inode;
2622        struct dentry *dentry, *root;
2623        struct qstr this;
2624
2625        if (IS_ERR(shm_mnt))
2626                return (void *)shm_mnt;
2627
2628        if (size < 0 || size > SHMEM_MAX_BYTES)
2629                return ERR_PTR(-EINVAL);
2630
2631        if (shmem_acct_size(flags, size))
2632                return ERR_PTR(-ENOMEM);
2633
2634        error = -ENOMEM;
2635        this.name = name;
2636        this.len = strlen(name);
2637        this.hash = 0; /* will go */
2638        root = shm_mnt->mnt_root;
2639        dentry = d_alloc(root, &this);
2640        if (!dentry)
2641                goto put_memory;
2642
2643        error = -ENFILE;
2644        file = get_empty_filp();
2645        if (!file)
2646                goto put_dentry;
2647
2648        error = -ENOSPC;
2649        inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2650        if (!inode)
2651                goto close_file;
2652
2653        d_instantiate(dentry, inode);
2654        inode->i_size = size;
2655        inode->i_nlink = 0;     /* It is unlinked */
2656        init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2657                  &shmem_file_operations);
2658
2659#ifndef CONFIG_MMU
2660        error = ramfs_nommu_expand_for_mapping(inode, size);
2661        if (error)
2662                goto close_file;
2663#endif
2664        ima_counts_get(file);
2665        return file;
2666
2667close_file:
2668        put_filp(file);
2669put_dentry:
2670        dput(dentry);
2671put_memory:
2672        shmem_unacct_size(flags, size);
2673        return ERR_PTR(error);
2674}
2675EXPORT_SYMBOL_GPL(shmem_file_setup);
2676
2677/**
2678 * shmem_zero_setup - setup a shared anonymous mapping
2679 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2680 */
2681int shmem_zero_setup(struct vm_area_struct *vma)
2682{
2683        struct file *file;
2684        loff_t size = vma->vm_end - vma->vm_start;
2685
2686        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2687        if (IS_ERR(file))
2688                return PTR_ERR(file);
2689
2690        if (vma->vm_file)
2691                fput(vma->vm_file);
2692        vma->vm_file = file;
2693        vma->vm_ops = &shmem_vm_ops;
2694        return 0;
2695}
2696