linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/kmemtrace.h>
 106#include        <linux/rcupdate.h>
 107#include        <linux/string.h>
 108#include        <linux/uaccess.h>
 109#include        <linux/nodemask.h>
 110#include        <linux/kmemleak.h>
 111#include        <linux/mempolicy.h>
 112#include        <linux/mutex.h>
 113#include        <linux/fault-inject.h>
 114#include        <linux/rtmutex.h>
 115#include        <linux/reciprocal_div.h>
 116#include        <linux/debugobjects.h>
 117#include        <linux/kmemcheck.h>
 118
 119#include        <asm/cacheflush.h>
 120#include        <asm/tlbflush.h>
 121#include        <asm/page.h>
 122
 123/*
 124 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 125 *                0 for faster, smaller code (especially in the critical paths).
 126 *
 127 * STATS        - 1 to collect stats for /proc/slabinfo.
 128 *                0 for faster, smaller code (especially in the critical paths).
 129 *
 130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 131 */
 132
 133#ifdef CONFIG_DEBUG_SLAB
 134#define DEBUG           1
 135#define STATS           1
 136#define FORCED_DEBUG    1
 137#else
 138#define DEBUG           0
 139#define STATS           0
 140#define FORCED_DEBUG    0
 141#endif
 142
 143/* Shouldn't this be in a header file somewhere? */
 144#define BYTES_PER_WORD          sizeof(void *)
 145#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 146
 147#ifndef ARCH_KMALLOC_MINALIGN
 148/*
 149 * Enforce a minimum alignment for the kmalloc caches.
 150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 153 * alignment larger than the alignment of a 64-bit integer.
 154 * ARCH_KMALLOC_MINALIGN allows that.
 155 * Note that increasing this value may disable some debug features.
 156 */
 157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 158#endif
 159
 160#ifndef ARCH_SLAB_MINALIGN
 161/*
 162 * Enforce a minimum alignment for all caches.
 163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 166 * some debug features.
 167 */
 168#define ARCH_SLAB_MINALIGN 0
 169#endif
 170
 171#ifndef ARCH_KMALLOC_FLAGS
 172#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 173#endif
 174
 175/* Legal flag mask for kmem_cache_create(). */
 176#if DEBUG
 177# define CREATE_MASK    (SLAB_RED_ZONE | \
 178                         SLAB_POISON | SLAB_HWCACHE_ALIGN | \
 179                         SLAB_CACHE_DMA | \
 180                         SLAB_STORE_USER | \
 181                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 182                         SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 183                         SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 184#else
 185# define CREATE_MASK    (SLAB_HWCACHE_ALIGN | \
 186                         SLAB_CACHE_DMA | \
 187                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 188                         SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 189                         SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 190#endif
 191
 192/*
 193 * kmem_bufctl_t:
 194 *
 195 * Bufctl's are used for linking objs within a slab
 196 * linked offsets.
 197 *
 198 * This implementation relies on "struct page" for locating the cache &
 199 * slab an object belongs to.
 200 * This allows the bufctl structure to be small (one int), but limits
 201 * the number of objects a slab (not a cache) can contain when off-slab
 202 * bufctls are used. The limit is the size of the largest general cache
 203 * that does not use off-slab slabs.
 204 * For 32bit archs with 4 kB pages, is this 56.
 205 * This is not serious, as it is only for large objects, when it is unwise
 206 * to have too many per slab.
 207 * Note: This limit can be raised by introducing a general cache whose size
 208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 209 */
 210
 211typedef unsigned int kmem_bufctl_t;
 212#define BUFCTL_END      (((kmem_bufctl_t)(~0U))-0)
 213#define BUFCTL_FREE     (((kmem_bufctl_t)(~0U))-1)
 214#define BUFCTL_ACTIVE   (((kmem_bufctl_t)(~0U))-2)
 215#define SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-3)
 216
 217/*
 218 * struct slab
 219 *
 220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 221 * for a slab, or allocated from an general cache.
 222 * Slabs are chained into three list: fully used, partial, fully free slabs.
 223 */
 224struct slab {
 225        struct list_head list;
 226        unsigned long colouroff;
 227        void *s_mem;            /* including colour offset */
 228        unsigned int inuse;     /* num of objs active in slab */
 229        kmem_bufctl_t free;
 230        unsigned short nodeid;
 231};
 232
 233/*
 234 * struct slab_rcu
 235 *
 236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 237 * arrange for kmem_freepages to be called via RCU.  This is useful if
 238 * we need to approach a kernel structure obliquely, from its address
 239 * obtained without the usual locking.  We can lock the structure to
 240 * stabilize it and check it's still at the given address, only if we
 241 * can be sure that the memory has not been meanwhile reused for some
 242 * other kind of object (which our subsystem's lock might corrupt).
 243 *
 244 * rcu_read_lock before reading the address, then rcu_read_unlock after
 245 * taking the spinlock within the structure expected at that address.
 246 *
 247 * We assume struct slab_rcu can overlay struct slab when destroying.
 248 */
 249struct slab_rcu {
 250        struct rcu_head head;
 251        struct kmem_cache *cachep;
 252        void *addr;
 253};
 254
 255/*
 256 * struct array_cache
 257 *
 258 * Purpose:
 259 * - LIFO ordering, to hand out cache-warm objects from _alloc
 260 * - reduce the number of linked list operations
 261 * - reduce spinlock operations
 262 *
 263 * The limit is stored in the per-cpu structure to reduce the data cache
 264 * footprint.
 265 *
 266 */
 267struct array_cache {
 268        unsigned int avail;
 269        unsigned int limit;
 270        unsigned int batchcount;
 271        unsigned int touched;
 272        spinlock_t lock;
 273        void *entry[];  /*
 274                         * Must have this definition in here for the proper
 275                         * alignment of array_cache. Also simplifies accessing
 276                         * the entries.
 277                         */
 278};
 279
 280/*
 281 * bootstrap: The caches do not work without cpuarrays anymore, but the
 282 * cpuarrays are allocated from the generic caches...
 283 */
 284#define BOOT_CPUCACHE_ENTRIES   1
 285struct arraycache_init {
 286        struct array_cache cache;
 287        void *entries[BOOT_CPUCACHE_ENTRIES];
 288};
 289
 290/*
 291 * The slab lists for all objects.
 292 */
 293struct kmem_list3 {
 294        struct list_head slabs_partial; /* partial list first, better asm code */
 295        struct list_head slabs_full;
 296        struct list_head slabs_free;
 297        unsigned long free_objects;
 298        unsigned int free_limit;
 299        unsigned int colour_next;       /* Per-node cache coloring */
 300        spinlock_t list_lock;
 301        struct array_cache *shared;     /* shared per node */
 302        struct array_cache **alien;     /* on other nodes */
 303        unsigned long next_reap;        /* updated without locking */
 304        int free_touched;               /* updated without locking */
 305};
 306
 307/*
 308 * Need this for bootstrapping a per node allocator.
 309 */
 310#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 311struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 312#define CACHE_CACHE 0
 313#define SIZE_AC MAX_NUMNODES
 314#define SIZE_L3 (2 * MAX_NUMNODES)
 315
 316static int drain_freelist(struct kmem_cache *cache,
 317                        struct kmem_list3 *l3, int tofree);
 318static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 319                        int node);
 320static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 321static void cache_reap(struct work_struct *unused);
 322
 323/*
 324 * This function must be completely optimized away if a constant is passed to
 325 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
 326 */
 327static __always_inline int index_of(const size_t size)
 328{
 329        extern void __bad_size(void);
 330
 331        if (__builtin_constant_p(size)) {
 332                int i = 0;
 333
 334#define CACHE(x) \
 335        if (size <=x) \
 336                return i; \
 337        else \
 338                i++;
 339#include <linux/kmalloc_sizes.h>
 340#undef CACHE
 341                __bad_size();
 342        } else
 343                __bad_size();
 344        return 0;
 345}
 346
 347static int slab_early_init = 1;
 348
 349#define INDEX_AC index_of(sizeof(struct arraycache_init))
 350#define INDEX_L3 index_of(sizeof(struct kmem_list3))
 351
 352static void kmem_list3_init(struct kmem_list3 *parent)
 353{
 354        INIT_LIST_HEAD(&parent->slabs_full);
 355        INIT_LIST_HEAD(&parent->slabs_partial);
 356        INIT_LIST_HEAD(&parent->slabs_free);
 357        parent->shared = NULL;
 358        parent->alien = NULL;
 359        parent->colour_next = 0;
 360        spin_lock_init(&parent->list_lock);
 361        parent->free_objects = 0;
 362        parent->free_touched = 0;
 363}
 364
 365#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 366        do {                                                            \
 367                INIT_LIST_HEAD(listp);                                  \
 368                list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
 369        } while (0)
 370
 371#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 372        do {                                                            \
 373        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 374        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 375        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 376        } while (0)
 377
 378#define CFLGS_OFF_SLAB          (0x80000000UL)
 379#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 380
 381#define BATCHREFILL_LIMIT       16
 382/*
 383 * Optimization question: fewer reaps means less probability for unnessary
 384 * cpucache drain/refill cycles.
 385 *
 386 * OTOH the cpuarrays can contain lots of objects,
 387 * which could lock up otherwise freeable slabs.
 388 */
 389#define REAPTIMEOUT_CPUC        (2*HZ)
 390#define REAPTIMEOUT_LIST3       (4*HZ)
 391
 392#if STATS
 393#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 394#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 395#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 396#define STATS_INC_GROWN(x)      ((x)->grown++)
 397#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 398#define STATS_SET_HIGH(x)                                               \
 399        do {                                                            \
 400                if ((x)->num_active > (x)->high_mark)                   \
 401                        (x)->high_mark = (x)->num_active;               \
 402        } while (0)
 403#define STATS_INC_ERR(x)        ((x)->errors++)
 404#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 405#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 406#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 407#define STATS_SET_FREEABLE(x, i)                                        \
 408        do {                                                            \
 409                if ((x)->max_freeable < i)                              \
 410                        (x)->max_freeable = i;                          \
 411        } while (0)
 412#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 413#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 414#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 415#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 416#else
 417#define STATS_INC_ACTIVE(x)     do { } while (0)
 418#define STATS_DEC_ACTIVE(x)     do { } while (0)
 419#define STATS_INC_ALLOCED(x)    do { } while (0)
 420#define STATS_INC_GROWN(x)      do { } while (0)
 421#define STATS_ADD_REAPED(x,y)   do { } while (0)
 422#define STATS_SET_HIGH(x)       do { } while (0)
 423#define STATS_INC_ERR(x)        do { } while (0)
 424#define STATS_INC_NODEALLOCS(x) do { } while (0)
 425#define STATS_INC_NODEFREES(x)  do { } while (0)
 426#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 427#define STATS_SET_FREEABLE(x, i) do { } while (0)
 428#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 429#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 430#define STATS_INC_FREEHIT(x)    do { } while (0)
 431#define STATS_INC_FREEMISS(x)   do { } while (0)
 432#endif
 433
 434#if DEBUG
 435
 436/*
 437 * memory layout of objects:
 438 * 0            : objp
 439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 440 *              the end of an object is aligned with the end of the real
 441 *              allocation. Catches writes behind the end of the allocation.
 442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 443 *              redzone word.
 444 * cachep->obj_offset: The real object.
 445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 447 *                                      [BYTES_PER_WORD long]
 448 */
 449static int obj_offset(struct kmem_cache *cachep)
 450{
 451        return cachep->obj_offset;
 452}
 453
 454static int obj_size(struct kmem_cache *cachep)
 455{
 456        return cachep->obj_size;
 457}
 458
 459static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 460{
 461        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 462        return (unsigned long long*) (objp + obj_offset(cachep) -
 463                                      sizeof(unsigned long long));
 464}
 465
 466static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 467{
 468        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 469        if (cachep->flags & SLAB_STORE_USER)
 470                return (unsigned long long *)(objp + cachep->buffer_size -
 471                                              sizeof(unsigned long long) -
 472                                              REDZONE_ALIGN);
 473        return (unsigned long long *) (objp + cachep->buffer_size -
 474                                       sizeof(unsigned long long));
 475}
 476
 477static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 478{
 479        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 480        return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 481}
 482
 483#else
 484
 485#define obj_offset(x)                   0
 486#define obj_size(cachep)                (cachep->buffer_size)
 487#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 488#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 489#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 490
 491#endif
 492
 493#ifdef CONFIG_KMEMTRACE
 494size_t slab_buffer_size(struct kmem_cache *cachep)
 495{
 496        return cachep->buffer_size;
 497}
 498EXPORT_SYMBOL(slab_buffer_size);
 499#endif
 500
 501/*
 502 * Do not go above this order unless 0 objects fit into the slab.
 503 */
 504#define BREAK_GFP_ORDER_HI      1
 505#define BREAK_GFP_ORDER_LO      0
 506static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
 507
 508/*
 509 * Functions for storing/retrieving the cachep and or slab from the page
 510 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 511 * these are used to find the cache which an obj belongs to.
 512 */
 513static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 514{
 515        page->lru.next = (struct list_head *)cache;
 516}
 517
 518static inline struct kmem_cache *page_get_cache(struct page *page)
 519{
 520        page = compound_head(page);
 521        BUG_ON(!PageSlab(page));
 522        return (struct kmem_cache *)page->lru.next;
 523}
 524
 525static inline void page_set_slab(struct page *page, struct slab *slab)
 526{
 527        page->lru.prev = (struct list_head *)slab;
 528}
 529
 530static inline struct slab *page_get_slab(struct page *page)
 531{
 532        BUG_ON(!PageSlab(page));
 533        return (struct slab *)page->lru.prev;
 534}
 535
 536static inline struct kmem_cache *virt_to_cache(const void *obj)
 537{
 538        struct page *page = virt_to_head_page(obj);
 539        return page_get_cache(page);
 540}
 541
 542static inline struct slab *virt_to_slab(const void *obj)
 543{
 544        struct page *page = virt_to_head_page(obj);
 545        return page_get_slab(page);
 546}
 547
 548static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
 549                                 unsigned int idx)
 550{
 551        return slab->s_mem + cache->buffer_size * idx;
 552}
 553
 554/*
 555 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 556 *   Using the fact that buffer_size is a constant for a particular cache,
 557 *   we can replace (offset / cache->buffer_size) by
 558 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 559 */
 560static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 561                                        const struct slab *slab, void *obj)
 562{
 563        u32 offset = (obj - slab->s_mem);
 564        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 565}
 566
 567/*
 568 * These are the default caches for kmalloc. Custom caches can have other sizes.
 569 */
 570struct cache_sizes malloc_sizes[] = {
 571#define CACHE(x) { .cs_size = (x) },
 572#include <linux/kmalloc_sizes.h>
 573        CACHE(ULONG_MAX)
 574#undef CACHE
 575};
 576EXPORT_SYMBOL(malloc_sizes);
 577
 578/* Must match cache_sizes above. Out of line to keep cache footprint low. */
 579struct cache_names {
 580        char *name;
 581        char *name_dma;
 582};
 583
 584static struct cache_names __initdata cache_names[] = {
 585#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 586#include <linux/kmalloc_sizes.h>
 587        {NULL,}
 588#undef CACHE
 589};
 590
 591static struct arraycache_init initarray_cache __initdata =
 592    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 593static struct arraycache_init initarray_generic =
 594    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 595
 596/* internal cache of cache description objs */
 597static struct kmem_cache cache_cache = {
 598        .batchcount = 1,
 599        .limit = BOOT_CPUCACHE_ENTRIES,
 600        .shared = 1,
 601        .buffer_size = sizeof(struct kmem_cache),
 602        .name = "kmem_cache",
 603};
 604
 605#define BAD_ALIEN_MAGIC 0x01020304ul
 606
 607#ifdef CONFIG_LOCKDEP
 608
 609/*
 610 * Slab sometimes uses the kmalloc slabs to store the slab headers
 611 * for other slabs "off slab".
 612 * The locking for this is tricky in that it nests within the locks
 613 * of all other slabs in a few places; to deal with this special
 614 * locking we put on-slab caches into a separate lock-class.
 615 *
 616 * We set lock class for alien array caches which are up during init.
 617 * The lock annotation will be lost if all cpus of a node goes down and
 618 * then comes back up during hotplug
 619 */
 620static struct lock_class_key on_slab_l3_key;
 621static struct lock_class_key on_slab_alc_key;
 622
 623static inline void init_lock_keys(void)
 624
 625{
 626        int q;
 627        struct cache_sizes *s = malloc_sizes;
 628
 629        while (s->cs_size != ULONG_MAX) {
 630                for_each_node(q) {
 631                        struct array_cache **alc;
 632                        int r;
 633                        struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
 634                        if (!l3 || OFF_SLAB(s->cs_cachep))
 635                                continue;
 636                        lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
 637                        alc = l3->alien;
 638                        /*
 639                         * FIXME: This check for BAD_ALIEN_MAGIC
 640                         * should go away when common slab code is taught to
 641                         * work even without alien caches.
 642                         * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 643                         * for alloc_alien_cache,
 644                         */
 645                        if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 646                                continue;
 647                        for_each_node(r) {
 648                                if (alc[r])
 649                                        lockdep_set_class(&alc[r]->lock,
 650                                             &on_slab_alc_key);
 651                        }
 652                }
 653                s++;
 654        }
 655}
 656#else
 657static inline void init_lock_keys(void)
 658{
 659}
 660#endif
 661
 662/*
 663 * Guard access to the cache-chain.
 664 */
 665static DEFINE_MUTEX(cache_chain_mutex);
 666static struct list_head cache_chain;
 667
 668/*
 669 * chicken and egg problem: delay the per-cpu array allocation
 670 * until the general caches are up.
 671 */
 672static enum {
 673        NONE,
 674        PARTIAL_AC,
 675        PARTIAL_L3,
 676        EARLY,
 677        FULL
 678} g_cpucache_up;
 679
 680/*
 681 * used by boot code to determine if it can use slab based allocator
 682 */
 683int slab_is_available(void)
 684{
 685        return g_cpucache_up >= EARLY;
 686}
 687
 688static DEFINE_PER_CPU(struct delayed_work, reap_work);
 689
 690static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 691{
 692        return cachep->array[smp_processor_id()];
 693}
 694
 695static inline struct kmem_cache *__find_general_cachep(size_t size,
 696                                                        gfp_t gfpflags)
 697{
 698        struct cache_sizes *csizep = malloc_sizes;
 699
 700#if DEBUG
 701        /* This happens if someone tries to call
 702         * kmem_cache_create(), or __kmalloc(), before
 703         * the generic caches are initialized.
 704         */
 705        BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
 706#endif
 707        if (!size)
 708                return ZERO_SIZE_PTR;
 709
 710        while (size > csizep->cs_size)
 711                csizep++;
 712
 713        /*
 714         * Really subtle: The last entry with cs->cs_size==ULONG_MAX
 715         * has cs_{dma,}cachep==NULL. Thus no special case
 716         * for large kmalloc calls required.
 717         */
 718#ifdef CONFIG_ZONE_DMA
 719        if (unlikely(gfpflags & GFP_DMA))
 720                return csizep->cs_dmacachep;
 721#endif
 722        return csizep->cs_cachep;
 723}
 724
 725static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 726{
 727        return __find_general_cachep(size, gfpflags);
 728}
 729
 730static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 731{
 732        return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 733}
 734
 735/*
 736 * Calculate the number of objects and left-over bytes for a given buffer size.
 737 */
 738static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 739                           size_t align, int flags, size_t *left_over,
 740                           unsigned int *num)
 741{
 742        int nr_objs;
 743        size_t mgmt_size;
 744        size_t slab_size = PAGE_SIZE << gfporder;
 745
 746        /*
 747         * The slab management structure can be either off the slab or
 748         * on it. For the latter case, the memory allocated for a
 749         * slab is used for:
 750         *
 751         * - The struct slab
 752         * - One kmem_bufctl_t for each object
 753         * - Padding to respect alignment of @align
 754         * - @buffer_size bytes for each object
 755         *
 756         * If the slab management structure is off the slab, then the
 757         * alignment will already be calculated into the size. Because
 758         * the slabs are all pages aligned, the objects will be at the
 759         * correct alignment when allocated.
 760         */
 761        if (flags & CFLGS_OFF_SLAB) {
 762                mgmt_size = 0;
 763                nr_objs = slab_size / buffer_size;
 764
 765                if (nr_objs > SLAB_LIMIT)
 766                        nr_objs = SLAB_LIMIT;
 767        } else {
 768                /*
 769                 * Ignore padding for the initial guess. The padding
 770                 * is at most @align-1 bytes, and @buffer_size is at
 771                 * least @align. In the worst case, this result will
 772                 * be one greater than the number of objects that fit
 773                 * into the memory allocation when taking the padding
 774                 * into account.
 775                 */
 776                nr_objs = (slab_size - sizeof(struct slab)) /
 777                          (buffer_size + sizeof(kmem_bufctl_t));
 778
 779                /*
 780                 * This calculated number will be either the right
 781                 * amount, or one greater than what we want.
 782                 */
 783                if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
 784                       > slab_size)
 785                        nr_objs--;
 786
 787                if (nr_objs > SLAB_LIMIT)
 788                        nr_objs = SLAB_LIMIT;
 789
 790                mgmt_size = slab_mgmt_size(nr_objs, align);
 791        }
 792        *num = nr_objs;
 793        *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 794}
 795
 796#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 797
 798static void __slab_error(const char *function, struct kmem_cache *cachep,
 799                        char *msg)
 800{
 801        printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 802               function, cachep->name, msg);
 803        dump_stack();
 804}
 805
 806/*
 807 * By default on NUMA we use alien caches to stage the freeing of
 808 * objects allocated from other nodes. This causes massive memory
 809 * inefficiencies when using fake NUMA setup to split memory into a
 810 * large number of small nodes, so it can be disabled on the command
 811 * line
 812  */
 813
 814static int use_alien_caches __read_mostly = 1;
 815static int __init noaliencache_setup(char *s)
 816{
 817        use_alien_caches = 0;
 818        return 1;
 819}
 820__setup("noaliencache", noaliencache_setup);
 821
 822#ifdef CONFIG_NUMA
 823/*
 824 * Special reaping functions for NUMA systems called from cache_reap().
 825 * These take care of doing round robin flushing of alien caches (containing
 826 * objects freed on different nodes from which they were allocated) and the
 827 * flushing of remote pcps by calling drain_node_pages.
 828 */
 829static DEFINE_PER_CPU(unsigned long, reap_node);
 830
 831static void init_reap_node(int cpu)
 832{
 833        int node;
 834
 835        node = next_node(cpu_to_node(cpu), node_online_map);
 836        if (node == MAX_NUMNODES)
 837                node = first_node(node_online_map);
 838
 839        per_cpu(reap_node, cpu) = node;
 840}
 841
 842static void next_reap_node(void)
 843{
 844        int node = __get_cpu_var(reap_node);
 845
 846        node = next_node(node, node_online_map);
 847        if (unlikely(node >= MAX_NUMNODES))
 848                node = first_node(node_online_map);
 849        __get_cpu_var(reap_node) = node;
 850}
 851
 852#else
 853#define init_reap_node(cpu) do { } while (0)
 854#define next_reap_node(void) do { } while (0)
 855#endif
 856
 857/*
 858 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 859 * via the workqueue/eventd.
 860 * Add the CPU number into the expiration time to minimize the possibility of
 861 * the CPUs getting into lockstep and contending for the global cache chain
 862 * lock.
 863 */
 864static void __cpuinit start_cpu_timer(int cpu)
 865{
 866        struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
 867
 868        /*
 869         * When this gets called from do_initcalls via cpucache_init(),
 870         * init_workqueues() has already run, so keventd will be setup
 871         * at that time.
 872         */
 873        if (keventd_up() && reap_work->work.func == NULL) {
 874                init_reap_node(cpu);
 875                INIT_DELAYED_WORK(reap_work, cache_reap);
 876                schedule_delayed_work_on(cpu, reap_work,
 877                                        __round_jiffies_relative(HZ, cpu));
 878        }
 879}
 880
 881static struct array_cache *alloc_arraycache(int node, int entries,
 882                                            int batchcount, gfp_t gfp)
 883{
 884        int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 885        struct array_cache *nc = NULL;
 886
 887        nc = kmalloc_node(memsize, gfp, node);
 888        /*
 889         * The array_cache structures contain pointers to free object.
 890         * However, when such objects are allocated or transfered to another
 891         * cache the pointers are not cleared and they could be counted as
 892         * valid references during a kmemleak scan. Therefore, kmemleak must
 893         * not scan such objects.
 894         */
 895        kmemleak_no_scan(nc);
 896        if (nc) {
 897                nc->avail = 0;
 898                nc->limit = entries;
 899                nc->batchcount = batchcount;
 900                nc->touched = 0;
 901                spin_lock_init(&nc->lock);
 902        }
 903        return nc;
 904}
 905
 906/*
 907 * Transfer objects in one arraycache to another.
 908 * Locking must be handled by the caller.
 909 *
 910 * Return the number of entries transferred.
 911 */
 912static int transfer_objects(struct array_cache *to,
 913                struct array_cache *from, unsigned int max)
 914{
 915        /* Figure out how many entries to transfer */
 916        int nr = min(min(from->avail, max), to->limit - to->avail);
 917
 918        if (!nr)
 919                return 0;
 920
 921        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 922                        sizeof(void *) *nr);
 923
 924        from->avail -= nr;
 925        to->avail += nr;
 926        to->touched = 1;
 927        return nr;
 928}
 929
 930#ifndef CONFIG_NUMA
 931
 932#define drain_alien_cache(cachep, alien) do { } while (0)
 933#define reap_alien(cachep, l3) do { } while (0)
 934
 935static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 936{
 937        return (struct array_cache **)BAD_ALIEN_MAGIC;
 938}
 939
 940static inline void free_alien_cache(struct array_cache **ac_ptr)
 941{
 942}
 943
 944static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 945{
 946        return 0;
 947}
 948
 949static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 950                gfp_t flags)
 951{
 952        return NULL;
 953}
 954
 955static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 956                 gfp_t flags, int nodeid)
 957{
 958        return NULL;
 959}
 960
 961#else   /* CONFIG_NUMA */
 962
 963static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 964static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 965
 966static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 967{
 968        struct array_cache **ac_ptr;
 969        int memsize = sizeof(void *) * nr_node_ids;
 970        int i;
 971
 972        if (limit > 1)
 973                limit = 12;
 974        ac_ptr = kmalloc_node(memsize, gfp, node);
 975        if (ac_ptr) {
 976                for_each_node(i) {
 977                        if (i == node || !node_online(i)) {
 978                                ac_ptr[i] = NULL;
 979                                continue;
 980                        }
 981                        ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
 982                        if (!ac_ptr[i]) {
 983                                for (i--; i >= 0; i--)
 984                                        kfree(ac_ptr[i]);
 985                                kfree(ac_ptr);
 986                                return NULL;
 987                        }
 988                }
 989        }
 990        return ac_ptr;
 991}
 992
 993static void free_alien_cache(struct array_cache **ac_ptr)
 994{
 995        int i;
 996
 997        if (!ac_ptr)
 998                return;
 999        for_each_node(i)
1000            kfree(ac_ptr[i]);
1001        kfree(ac_ptr);
1002}
1003
1004static void __drain_alien_cache(struct kmem_cache *cachep,
1005                                struct array_cache *ac, int node)
1006{
1007        struct kmem_list3 *rl3 = cachep->nodelists[node];
1008
1009        if (ac->avail) {
1010                spin_lock(&rl3->list_lock);
1011                /*
1012                 * Stuff objects into the remote nodes shared array first.
1013                 * That way we could avoid the overhead of putting the objects
1014                 * into the free lists and getting them back later.
1015                 */
1016                if (rl3->shared)
1017                        transfer_objects(rl3->shared, ac, ac->limit);
1018
1019                free_block(cachep, ac->entry, ac->avail, node);
1020                ac->avail = 0;
1021                spin_unlock(&rl3->list_lock);
1022        }
1023}
1024
1025/*
1026 * Called from cache_reap() to regularly drain alien caches round robin.
1027 */
1028static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1029{
1030        int node = __get_cpu_var(reap_node);
1031
1032        if (l3->alien) {
1033                struct array_cache *ac = l3->alien[node];
1034
1035                if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1036                        __drain_alien_cache(cachep, ac, node);
1037                        spin_unlock_irq(&ac->lock);
1038                }
1039        }
1040}
1041
1042static void drain_alien_cache(struct kmem_cache *cachep,
1043                                struct array_cache **alien)
1044{
1045        int i = 0;
1046        struct array_cache *ac;
1047        unsigned long flags;
1048
1049        for_each_online_node(i) {
1050                ac = alien[i];
1051                if (ac) {
1052                        spin_lock_irqsave(&ac->lock, flags);
1053                        __drain_alien_cache(cachep, ac, i);
1054                        spin_unlock_irqrestore(&ac->lock, flags);
1055                }
1056        }
1057}
1058
1059static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1060{
1061        struct slab *slabp = virt_to_slab(objp);
1062        int nodeid = slabp->nodeid;
1063        struct kmem_list3 *l3;
1064        struct array_cache *alien = NULL;
1065        int node;
1066
1067        node = numa_node_id();
1068
1069        /*
1070         * Make sure we are not freeing a object from another node to the array
1071         * cache on this cpu.
1072         */
1073        if (likely(slabp->nodeid == node))
1074                return 0;
1075
1076        l3 = cachep->nodelists[node];
1077        STATS_INC_NODEFREES(cachep);
1078        if (l3->alien && l3->alien[nodeid]) {
1079                alien = l3->alien[nodeid];
1080                spin_lock(&alien->lock);
1081                if (unlikely(alien->avail == alien->limit)) {
1082                        STATS_INC_ACOVERFLOW(cachep);
1083                        __drain_alien_cache(cachep, alien, nodeid);
1084                }
1085                alien->entry[alien->avail++] = objp;
1086                spin_unlock(&alien->lock);
1087        } else {
1088                spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1089                free_block(cachep, &objp, 1, nodeid);
1090                spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1091        }
1092        return 1;
1093}
1094#endif
1095
1096static void __cpuinit cpuup_canceled(long cpu)
1097{
1098        struct kmem_cache *cachep;
1099        struct kmem_list3 *l3 = NULL;
1100        int node = cpu_to_node(cpu);
1101        const struct cpumask *mask = cpumask_of_node(node);
1102
1103        list_for_each_entry(cachep, &cache_chain, next) {
1104                struct array_cache *nc;
1105                struct array_cache *shared;
1106                struct array_cache **alien;
1107
1108                /* cpu is dead; no one can alloc from it. */
1109                nc = cachep->array[cpu];
1110                cachep->array[cpu] = NULL;
1111                l3 = cachep->nodelists[node];
1112
1113                if (!l3)
1114                        goto free_array_cache;
1115
1116                spin_lock_irq(&l3->list_lock);
1117
1118                /* Free limit for this kmem_list3 */
1119                l3->free_limit -= cachep->batchcount;
1120                if (nc)
1121                        free_block(cachep, nc->entry, nc->avail, node);
1122
1123                if (!cpus_empty(*mask)) {
1124                        spin_unlock_irq(&l3->list_lock);
1125                        goto free_array_cache;
1126                }
1127
1128                shared = l3->shared;
1129                if (shared) {
1130                        free_block(cachep, shared->entry,
1131                                   shared->avail, node);
1132                        l3->shared = NULL;
1133                }
1134
1135                alien = l3->alien;
1136                l3->alien = NULL;
1137
1138                spin_unlock_irq(&l3->list_lock);
1139
1140                kfree(shared);
1141                if (alien) {
1142                        drain_alien_cache(cachep, alien);
1143                        free_alien_cache(alien);
1144                }
1145free_array_cache:
1146                kfree(nc);
1147        }
1148        /*
1149         * In the previous loop, all the objects were freed to
1150         * the respective cache's slabs,  now we can go ahead and
1151         * shrink each nodelist to its limit.
1152         */
1153        list_for_each_entry(cachep, &cache_chain, next) {
1154                l3 = cachep->nodelists[node];
1155                if (!l3)
1156                        continue;
1157                drain_freelist(cachep, l3, l3->free_objects);
1158        }
1159}
1160
1161static int __cpuinit cpuup_prepare(long cpu)
1162{
1163        struct kmem_cache *cachep;
1164        struct kmem_list3 *l3 = NULL;
1165        int node = cpu_to_node(cpu);
1166        const int memsize = sizeof(struct kmem_list3);
1167
1168        /*
1169         * We need to do this right in the beginning since
1170         * alloc_arraycache's are going to use this list.
1171         * kmalloc_node allows us to add the slab to the right
1172         * kmem_list3 and not this cpu's kmem_list3
1173         */
1174
1175        list_for_each_entry(cachep, &cache_chain, next) {
1176                /*
1177                 * Set up the size64 kmemlist for cpu before we can
1178                 * begin anything. Make sure some other cpu on this
1179                 * node has not already allocated this
1180                 */
1181                if (!cachep->nodelists[node]) {
1182                        l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1183                        if (!l3)
1184                                goto bad;
1185                        kmem_list3_init(l3);
1186                        l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1187                            ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1188
1189                        /*
1190                         * The l3s don't come and go as CPUs come and
1191                         * go.  cache_chain_mutex is sufficient
1192                         * protection here.
1193                         */
1194                        cachep->nodelists[node] = l3;
1195                }
1196
1197                spin_lock_irq(&cachep->nodelists[node]->list_lock);
1198                cachep->nodelists[node]->free_limit =
1199                        (1 + nr_cpus_node(node)) *
1200                        cachep->batchcount + cachep->num;
1201                spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1202        }
1203
1204        /*
1205         * Now we can go ahead with allocating the shared arrays and
1206         * array caches
1207         */
1208        list_for_each_entry(cachep, &cache_chain, next) {
1209                struct array_cache *nc;
1210                struct array_cache *shared = NULL;
1211                struct array_cache **alien = NULL;
1212
1213                nc = alloc_arraycache(node, cachep->limit,
1214                                        cachep->batchcount, GFP_KERNEL);
1215                if (!nc)
1216                        goto bad;
1217                if (cachep->shared) {
1218                        shared = alloc_arraycache(node,
1219                                cachep->shared * cachep->batchcount,
1220                                0xbaadf00d, GFP_KERNEL);
1221                        if (!shared) {
1222                                kfree(nc);
1223                                goto bad;
1224                        }
1225                }
1226                if (use_alien_caches) {
1227                        alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228                        if (!alien) {
1229                                kfree(shared);
1230                                kfree(nc);
1231                                goto bad;
1232                        }
1233                }
1234                cachep->array[cpu] = nc;
1235                l3 = cachep->nodelists[node];
1236                BUG_ON(!l3);
1237
1238                spin_lock_irq(&l3->list_lock);
1239                if (!l3->shared) {
1240                        /*
1241                         * We are serialised from CPU_DEAD or
1242                         * CPU_UP_CANCELLED by the cpucontrol lock
1243                         */
1244                        l3->shared = shared;
1245                        shared = NULL;
1246                }
1247#ifdef CONFIG_NUMA
1248                if (!l3->alien) {
1249                        l3->alien = alien;
1250                        alien = NULL;
1251                }
1252#endif
1253                spin_unlock_irq(&l3->list_lock);
1254                kfree(shared);
1255                free_alien_cache(alien);
1256        }
1257        return 0;
1258bad:
1259        cpuup_canceled(cpu);
1260        return -ENOMEM;
1261}
1262
1263static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1264                                    unsigned long action, void *hcpu)
1265{
1266        long cpu = (long)hcpu;
1267        int err = 0;
1268
1269        switch (action) {
1270        case CPU_UP_PREPARE:
1271        case CPU_UP_PREPARE_FROZEN:
1272                mutex_lock(&cache_chain_mutex);
1273                err = cpuup_prepare(cpu);
1274                mutex_unlock(&cache_chain_mutex);
1275                break;
1276        case CPU_ONLINE:
1277        case CPU_ONLINE_FROZEN:
1278                start_cpu_timer(cpu);
1279                break;
1280#ifdef CONFIG_HOTPLUG_CPU
1281        case CPU_DOWN_PREPARE:
1282        case CPU_DOWN_PREPARE_FROZEN:
1283                /*
1284                 * Shutdown cache reaper. Note that the cache_chain_mutex is
1285                 * held so that if cache_reap() is invoked it cannot do
1286                 * anything expensive but will only modify reap_work
1287                 * and reschedule the timer.
1288                */
1289                cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1290                /* Now the cache_reaper is guaranteed to be not running. */
1291                per_cpu(reap_work, cpu).work.func = NULL;
1292                break;
1293        case CPU_DOWN_FAILED:
1294        case CPU_DOWN_FAILED_FROZEN:
1295                start_cpu_timer(cpu);
1296                break;
1297        case CPU_DEAD:
1298        case CPU_DEAD_FROZEN:
1299                /*
1300                 * Even if all the cpus of a node are down, we don't free the
1301                 * kmem_list3 of any cache. This to avoid a race between
1302                 * cpu_down, and a kmalloc allocation from another cpu for
1303                 * memory from the node of the cpu going down.  The list3
1304                 * structure is usually allocated from kmem_cache_create() and
1305                 * gets destroyed at kmem_cache_destroy().
1306                 */
1307                /* fall through */
1308#endif
1309        case CPU_UP_CANCELED:
1310        case CPU_UP_CANCELED_FROZEN:
1311                mutex_lock(&cache_chain_mutex);
1312                cpuup_canceled(cpu);
1313                mutex_unlock(&cache_chain_mutex);
1314                break;
1315        }
1316        return err ? NOTIFY_BAD : NOTIFY_OK;
1317}
1318
1319static struct notifier_block __cpuinitdata cpucache_notifier = {
1320        &cpuup_callback, NULL, 0
1321};
1322
1323/*
1324 * swap the static kmem_list3 with kmalloced memory
1325 */
1326static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1327                        int nodeid)
1328{
1329        struct kmem_list3 *ptr;
1330
1331        ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1332        BUG_ON(!ptr);
1333
1334        memcpy(ptr, list, sizeof(struct kmem_list3));
1335        /*
1336         * Do not assume that spinlocks can be initialized via memcpy:
1337         */
1338        spin_lock_init(&ptr->list_lock);
1339
1340        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1341        cachep->nodelists[nodeid] = ptr;
1342}
1343
1344/*
1345 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1346 * size of kmem_list3.
1347 */
1348static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1349{
1350        int node;
1351
1352        for_each_online_node(node) {
1353                cachep->nodelists[node] = &initkmem_list3[index + node];
1354                cachep->nodelists[node]->next_reap = jiffies +
1355                    REAPTIMEOUT_LIST3 +
1356                    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1357        }
1358}
1359
1360/*
1361 * Initialisation.  Called after the page allocator have been initialised and
1362 * before smp_init().
1363 */
1364void __init kmem_cache_init(void)
1365{
1366        size_t left_over;
1367        struct cache_sizes *sizes;
1368        struct cache_names *names;
1369        int i;
1370        int order;
1371        int node;
1372
1373        if (num_possible_nodes() == 1)
1374                use_alien_caches = 0;
1375
1376        for (i = 0; i < NUM_INIT_LISTS; i++) {
1377                kmem_list3_init(&initkmem_list3[i]);
1378                if (i < MAX_NUMNODES)
1379                        cache_cache.nodelists[i] = NULL;
1380        }
1381        set_up_list3s(&cache_cache, CACHE_CACHE);
1382
1383        /*
1384         * Fragmentation resistance on low memory - only use bigger
1385         * page orders on machines with more than 32MB of memory.
1386         */
1387        if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1388                slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1389
1390        /* Bootstrap is tricky, because several objects are allocated
1391         * from caches that do not exist yet:
1392         * 1) initialize the cache_cache cache: it contains the struct
1393         *    kmem_cache structures of all caches, except cache_cache itself:
1394         *    cache_cache is statically allocated.
1395         *    Initially an __init data area is used for the head array and the
1396         *    kmem_list3 structures, it's replaced with a kmalloc allocated
1397         *    array at the end of the bootstrap.
1398         * 2) Create the first kmalloc cache.
1399         *    The struct kmem_cache for the new cache is allocated normally.
1400         *    An __init data area is used for the head array.
1401         * 3) Create the remaining kmalloc caches, with minimally sized
1402         *    head arrays.
1403         * 4) Replace the __init data head arrays for cache_cache and the first
1404         *    kmalloc cache with kmalloc allocated arrays.
1405         * 5) Replace the __init data for kmem_list3 for cache_cache and
1406         *    the other cache's with kmalloc allocated memory.
1407         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1408         */
1409
1410        node = numa_node_id();
1411
1412        /* 1) create the cache_cache */
1413        INIT_LIST_HEAD(&cache_chain);
1414        list_add(&cache_cache.next, &cache_chain);
1415        cache_cache.colour_off = cache_line_size();
1416        cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1417        cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1418
1419        /*
1420         * struct kmem_cache size depends on nr_node_ids, which
1421         * can be less than MAX_NUMNODES.
1422         */
1423        cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1424                                 nr_node_ids * sizeof(struct kmem_list3 *);
1425#if DEBUG
1426        cache_cache.obj_size = cache_cache.buffer_size;
1427#endif
1428        cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1429                                        cache_line_size());
1430        cache_cache.reciprocal_buffer_size =
1431                reciprocal_value(cache_cache.buffer_size);
1432
1433        for (order = 0; order < MAX_ORDER; order++) {
1434                cache_estimate(order, cache_cache.buffer_size,
1435                        cache_line_size(), 0, &left_over, &cache_cache.num);
1436                if (cache_cache.num)
1437                        break;
1438        }
1439        BUG_ON(!cache_cache.num);
1440        cache_cache.gfporder = order;
1441        cache_cache.colour = left_over / cache_cache.colour_off;
1442        cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1443                                      sizeof(struct slab), cache_line_size());
1444
1445        /* 2+3) create the kmalloc caches */
1446        sizes = malloc_sizes;
1447        names = cache_names;
1448
1449        /*
1450         * Initialize the caches that provide memory for the array cache and the
1451         * kmem_list3 structures first.  Without this, further allocations will
1452         * bug.
1453         */
1454
1455        sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1456                                        sizes[INDEX_AC].cs_size,
1457                                        ARCH_KMALLOC_MINALIGN,
1458                                        ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1459                                        NULL);
1460
1461        if (INDEX_AC != INDEX_L3) {
1462                sizes[INDEX_L3].cs_cachep =
1463                        kmem_cache_create(names[INDEX_L3].name,
1464                                sizes[INDEX_L3].cs_size,
1465                                ARCH_KMALLOC_MINALIGN,
1466                                ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1467                                NULL);
1468        }
1469
1470        slab_early_init = 0;
1471
1472        while (sizes->cs_size != ULONG_MAX) {
1473                /*
1474                 * For performance, all the general caches are L1 aligned.
1475                 * This should be particularly beneficial on SMP boxes, as it
1476                 * eliminates "false sharing".
1477                 * Note for systems short on memory removing the alignment will
1478                 * allow tighter packing of the smaller caches.
1479                 */
1480                if (!sizes->cs_cachep) {
1481                        sizes->cs_cachep = kmem_cache_create(names->name,
1482                                        sizes->cs_size,
1483                                        ARCH_KMALLOC_MINALIGN,
1484                                        ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1485                                        NULL);
1486                }
1487#ifdef CONFIG_ZONE_DMA
1488                sizes->cs_dmacachep = kmem_cache_create(
1489                                        names->name_dma,
1490                                        sizes->cs_size,
1491                                        ARCH_KMALLOC_MINALIGN,
1492                                        ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1493                                                SLAB_PANIC,
1494                                        NULL);
1495#endif
1496                sizes++;
1497                names++;
1498        }
1499        /* 4) Replace the bootstrap head arrays */
1500        {
1501                struct array_cache *ptr;
1502
1503                ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1504
1505                BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1506                memcpy(ptr, cpu_cache_get(&cache_cache),
1507                       sizeof(struct arraycache_init));
1508                /*
1509                 * Do not assume that spinlocks can be initialized via memcpy:
1510                 */
1511                spin_lock_init(&ptr->lock);
1512
1513                cache_cache.array[smp_processor_id()] = ptr;
1514
1515                ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1516
1517                BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1518                       != &initarray_generic.cache);
1519                memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1520                       sizeof(struct arraycache_init));
1521                /*
1522                 * Do not assume that spinlocks can be initialized via memcpy:
1523                 */
1524                spin_lock_init(&ptr->lock);
1525
1526                malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1527                    ptr;
1528        }
1529        /* 5) Replace the bootstrap kmem_list3's */
1530        {
1531                int nid;
1532
1533                for_each_online_node(nid) {
1534                        init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1535
1536                        init_list(malloc_sizes[INDEX_AC].cs_cachep,
1537                                  &initkmem_list3[SIZE_AC + nid], nid);
1538
1539                        if (INDEX_AC != INDEX_L3) {
1540                                init_list(malloc_sizes[INDEX_L3].cs_cachep,
1541                                          &initkmem_list3[SIZE_L3 + nid], nid);
1542                        }
1543                }
1544        }
1545
1546        g_cpucache_up = EARLY;
1547}
1548
1549void __init kmem_cache_init_late(void)
1550{
1551        struct kmem_cache *cachep;
1552
1553        /* 6) resize the head arrays to their final sizes */
1554        mutex_lock(&cache_chain_mutex);
1555        list_for_each_entry(cachep, &cache_chain, next)
1556                if (enable_cpucache(cachep, GFP_NOWAIT))
1557                        BUG();
1558        mutex_unlock(&cache_chain_mutex);
1559
1560        /* Done! */
1561        g_cpucache_up = FULL;
1562
1563        /* Annotate slab for lockdep -- annotate the malloc caches */
1564        init_lock_keys();
1565
1566        /*
1567         * Register a cpu startup notifier callback that initializes
1568         * cpu_cache_get for all new cpus
1569         */
1570        register_cpu_notifier(&cpucache_notifier);
1571
1572        /*
1573         * The reap timers are started later, with a module init call: That part
1574         * of the kernel is not yet operational.
1575         */
1576}
1577
1578static int __init cpucache_init(void)
1579{
1580        int cpu;
1581
1582        /*
1583         * Register the timers that return unneeded pages to the page allocator
1584         */
1585        for_each_online_cpu(cpu)
1586                start_cpu_timer(cpu);
1587        return 0;
1588}
1589__initcall(cpucache_init);
1590
1591/*
1592 * Interface to system's page allocator. No need to hold the cache-lock.
1593 *
1594 * If we requested dmaable memory, we will get it. Even if we
1595 * did not request dmaable memory, we might get it, but that
1596 * would be relatively rare and ignorable.
1597 */
1598static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1599{
1600        struct page *page;
1601        int nr_pages;
1602        int i;
1603
1604#ifndef CONFIG_MMU
1605        /*
1606         * Nommu uses slab's for process anonymous memory allocations, and thus
1607         * requires __GFP_COMP to properly refcount higher order allocations
1608         */
1609        flags |= __GFP_COMP;
1610#endif
1611
1612        flags |= cachep->gfpflags;
1613        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1614                flags |= __GFP_RECLAIMABLE;
1615
1616        page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1617        if (!page)
1618                return NULL;
1619
1620        nr_pages = (1 << cachep->gfporder);
1621        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1622                add_zone_page_state(page_zone(page),
1623                        NR_SLAB_RECLAIMABLE, nr_pages);
1624        else
1625                add_zone_page_state(page_zone(page),
1626                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1627        for (i = 0; i < nr_pages; i++)
1628                __SetPageSlab(page + i);
1629
1630        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1631                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1632
1633                if (cachep->ctor)
1634                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1635                else
1636                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1637        }
1638
1639        return page_address(page);
1640}
1641
1642/*
1643 * Interface to system's page release.
1644 */
1645static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1646{
1647        unsigned long i = (1 << cachep->gfporder);
1648        struct page *page = virt_to_page(addr);
1649        const unsigned long nr_freed = i;
1650
1651        kmemcheck_free_shadow(page, cachep->gfporder);
1652
1653        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1654                sub_zone_page_state(page_zone(page),
1655                                NR_SLAB_RECLAIMABLE, nr_freed);
1656        else
1657                sub_zone_page_state(page_zone(page),
1658                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1659        while (i--) {
1660                BUG_ON(!PageSlab(page));
1661                __ClearPageSlab(page);
1662                page++;
1663        }
1664        if (current->reclaim_state)
1665                current->reclaim_state->reclaimed_slab += nr_freed;
1666        free_pages((unsigned long)addr, cachep->gfporder);
1667}
1668
1669static void kmem_rcu_free(struct rcu_head *head)
1670{
1671        struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1672        struct kmem_cache *cachep = slab_rcu->cachep;
1673
1674        kmem_freepages(cachep, slab_rcu->addr);
1675        if (OFF_SLAB(cachep))
1676                kmem_cache_free(cachep->slabp_cache, slab_rcu);
1677}
1678
1679#if DEBUG
1680
1681#ifdef CONFIG_DEBUG_PAGEALLOC
1682static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1683                            unsigned long caller)
1684{
1685        int size = obj_size(cachep);
1686
1687        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1688
1689        if (size < 5 * sizeof(unsigned long))
1690                return;
1691
1692        *addr++ = 0x12345678;
1693        *addr++ = caller;
1694        *addr++ = smp_processor_id();
1695        size -= 3 * sizeof(unsigned long);
1696        {
1697                unsigned long *sptr = &caller;
1698                unsigned long svalue;
1699
1700                while (!kstack_end(sptr)) {
1701                        svalue = *sptr++;
1702                        if (kernel_text_address(svalue)) {
1703                                *addr++ = svalue;
1704                                size -= sizeof(unsigned long);
1705                                if (size <= sizeof(unsigned long))
1706                                        break;
1707                        }
1708                }
1709
1710        }
1711        *addr++ = 0x87654321;
1712}
1713#endif
1714
1715static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1716{
1717        int size = obj_size(cachep);
1718        addr = &((char *)addr)[obj_offset(cachep)];
1719
1720        memset(addr, val, size);
1721        *(unsigned char *)(addr + size - 1) = POISON_END;
1722}
1723
1724static void dump_line(char *data, int offset, int limit)
1725{
1726        int i;
1727        unsigned char error = 0;
1728        int bad_count = 0;
1729
1730        printk(KERN_ERR "%03x:", offset);
1731        for (i = 0; i < limit; i++) {
1732                if (data[offset + i] != POISON_FREE) {
1733                        error = data[offset + i];
1734                        bad_count++;
1735                }
1736                printk(" %02x", (unsigned char)data[offset + i]);
1737        }
1738        printk("\n");
1739
1740        if (bad_count == 1) {
1741                error ^= POISON_FREE;
1742                if (!(error & (error - 1))) {
1743                        printk(KERN_ERR "Single bit error detected. Probably "
1744                                        "bad RAM.\n");
1745#ifdef CONFIG_X86
1746                        printk(KERN_ERR "Run memtest86+ or a similar memory "
1747                                        "test tool.\n");
1748#else
1749                        printk(KERN_ERR "Run a memory test tool.\n");
1750#endif
1751                }
1752        }
1753}
1754#endif
1755
1756#if DEBUG
1757
1758static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1759{
1760        int i, size;
1761        char *realobj;
1762
1763        if (cachep->flags & SLAB_RED_ZONE) {
1764                printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1765                        *dbg_redzone1(cachep, objp),
1766                        *dbg_redzone2(cachep, objp));
1767        }
1768
1769        if (cachep->flags & SLAB_STORE_USER) {
1770                printk(KERN_ERR "Last user: [<%p>]",
1771                        *dbg_userword(cachep, objp));
1772                print_symbol("(%s)",
1773                                (unsigned long)*dbg_userword(cachep, objp));
1774                printk("\n");
1775        }
1776        realobj = (char *)objp + obj_offset(cachep);
1777        size = obj_size(cachep);
1778        for (i = 0; i < size && lines; i += 16, lines--) {
1779                int limit;
1780                limit = 16;
1781                if (i + limit > size)
1782                        limit = size - i;
1783                dump_line(realobj, i, limit);
1784        }
1785}
1786
1787static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1788{
1789        char *realobj;
1790        int size, i;
1791        int lines = 0;
1792
1793        realobj = (char *)objp + obj_offset(cachep);
1794        size = obj_size(cachep);
1795
1796        for (i = 0; i < size; i++) {
1797                char exp = POISON_FREE;
1798                if (i == size - 1)
1799                        exp = POISON_END;
1800                if (realobj[i] != exp) {
1801                        int limit;
1802                        /* Mismatch ! */
1803                        /* Print header */
1804                        if (lines == 0) {
1805                                printk(KERN_ERR
1806                                        "Slab corruption: %s start=%p, len=%d\n",
1807                                        cachep->name, realobj, size);
1808                                print_objinfo(cachep, objp, 0);
1809                        }
1810                        /* Hexdump the affected line */
1811                        i = (i / 16) * 16;
1812                        limit = 16;
1813                        if (i + limit > size)
1814                                limit = size - i;
1815                        dump_line(realobj, i, limit);
1816                        i += 16;
1817                        lines++;
1818                        /* Limit to 5 lines */
1819                        if (lines > 5)
1820                                break;
1821                }
1822        }
1823        if (lines != 0) {
1824                /* Print some data about the neighboring objects, if they
1825                 * exist:
1826                 */
1827                struct slab *slabp = virt_to_slab(objp);
1828                unsigned int objnr;
1829
1830                objnr = obj_to_index(cachep, slabp, objp);
1831                if (objnr) {
1832                        objp = index_to_obj(cachep, slabp, objnr - 1);
1833                        realobj = (char *)objp + obj_offset(cachep);
1834                        printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1835                               realobj, size);
1836                        print_objinfo(cachep, objp, 2);
1837                }
1838                if (objnr + 1 < cachep->num) {
1839                        objp = index_to_obj(cachep, slabp, objnr + 1);
1840                        realobj = (char *)objp + obj_offset(cachep);
1841                        printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1842                               realobj, size);
1843                        print_objinfo(cachep, objp, 2);
1844                }
1845        }
1846}
1847#endif
1848
1849#if DEBUG
1850static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1851{
1852        int i;
1853        for (i = 0; i < cachep->num; i++) {
1854                void *objp = index_to_obj(cachep, slabp, i);
1855
1856                if (cachep->flags & SLAB_POISON) {
1857#ifdef CONFIG_DEBUG_PAGEALLOC
1858                        if (cachep->buffer_size % PAGE_SIZE == 0 &&
1859                                        OFF_SLAB(cachep))
1860                                kernel_map_pages(virt_to_page(objp),
1861                                        cachep->buffer_size / PAGE_SIZE, 1);
1862                        else
1863                                check_poison_obj(cachep, objp);
1864#else
1865                        check_poison_obj(cachep, objp);
1866#endif
1867                }
1868                if (cachep->flags & SLAB_RED_ZONE) {
1869                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1870                                slab_error(cachep, "start of a freed object "
1871                                           "was overwritten");
1872                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1873                                slab_error(cachep, "end of a freed object "
1874                                           "was overwritten");
1875                }
1876        }
1877}
1878#else
1879static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1880{
1881}
1882#endif
1883
1884/**
1885 * slab_destroy - destroy and release all objects in a slab
1886 * @cachep: cache pointer being destroyed
1887 * @slabp: slab pointer being destroyed
1888 *
1889 * Destroy all the objs in a slab, and release the mem back to the system.
1890 * Before calling the slab must have been unlinked from the cache.  The
1891 * cache-lock is not held/needed.
1892 */
1893static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1894{
1895        void *addr = slabp->s_mem - slabp->colouroff;
1896
1897        slab_destroy_debugcheck(cachep, slabp);
1898        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1899                struct slab_rcu *slab_rcu;
1900
1901                slab_rcu = (struct slab_rcu *)slabp;
1902                slab_rcu->cachep = cachep;
1903                slab_rcu->addr = addr;
1904                call_rcu(&slab_rcu->head, kmem_rcu_free);
1905        } else {
1906                kmem_freepages(cachep, addr);
1907                if (OFF_SLAB(cachep))
1908                        kmem_cache_free(cachep->slabp_cache, slabp);
1909        }
1910}
1911
1912static void __kmem_cache_destroy(struct kmem_cache *cachep)
1913{
1914        int i;
1915        struct kmem_list3 *l3;
1916
1917        for_each_online_cpu(i)
1918            kfree(cachep->array[i]);
1919
1920        /* NUMA: free the list3 structures */
1921        for_each_online_node(i) {
1922                l3 = cachep->nodelists[i];
1923                if (l3) {
1924                        kfree(l3->shared);
1925                        free_alien_cache(l3->alien);
1926                        kfree(l3);
1927                }
1928        }
1929        kmem_cache_free(&cache_cache, cachep);
1930}
1931
1932
1933/**
1934 * calculate_slab_order - calculate size (page order) of slabs
1935 * @cachep: pointer to the cache that is being created
1936 * @size: size of objects to be created in this cache.
1937 * @align: required alignment for the objects.
1938 * @flags: slab allocation flags
1939 *
1940 * Also calculates the number of objects per slab.
1941 *
1942 * This could be made much more intelligent.  For now, try to avoid using
1943 * high order pages for slabs.  When the gfp() functions are more friendly
1944 * towards high-order requests, this should be changed.
1945 */
1946static size_t calculate_slab_order(struct kmem_cache *cachep,
1947                        size_t size, size_t align, unsigned long flags)
1948{
1949        unsigned long offslab_limit;
1950        size_t left_over = 0;
1951        int gfporder;
1952
1953        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1954                unsigned int num;
1955                size_t remainder;
1956
1957                cache_estimate(gfporder, size, align, flags, &remainder, &num);
1958                if (!num)
1959                        continue;
1960
1961                if (flags & CFLGS_OFF_SLAB) {
1962                        /*
1963                         * Max number of objs-per-slab for caches which
1964                         * use off-slab slabs. Needed to avoid a possible
1965                         * looping condition in cache_grow().
1966                         */
1967                        offslab_limit = size - sizeof(struct slab);
1968                        offslab_limit /= sizeof(kmem_bufctl_t);
1969
1970                        if (num > offslab_limit)
1971                                break;
1972                }
1973
1974                /* Found something acceptable - save it away */
1975                cachep->num = num;
1976                cachep->gfporder = gfporder;
1977                left_over = remainder;
1978
1979                /*
1980                 * A VFS-reclaimable slab tends to have most allocations
1981                 * as GFP_NOFS and we really don't want to have to be allocating
1982                 * higher-order pages when we are unable to shrink dcache.
1983                 */
1984                if (flags & SLAB_RECLAIM_ACCOUNT)
1985                        break;
1986
1987                /*
1988                 * Large number of objects is good, but very large slabs are
1989                 * currently bad for the gfp()s.
1990                 */
1991                if (gfporder >= slab_break_gfp_order)
1992                        break;
1993
1994                /*
1995                 * Acceptable internal fragmentation?
1996                 */
1997                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1998                        break;
1999        }
2000        return left_over;
2001}
2002
2003static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2004{
2005        if (g_cpucache_up == FULL)
2006                return enable_cpucache(cachep, gfp);
2007
2008        if (g_cpucache_up == NONE) {
2009                /*
2010                 * Note: the first kmem_cache_create must create the cache
2011                 * that's used by kmalloc(24), otherwise the creation of
2012                 * further caches will BUG().
2013                 */
2014                cachep->array[smp_processor_id()] = &initarray_generic.cache;
2015
2016                /*
2017                 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2018                 * the first cache, then we need to set up all its list3s,
2019                 * otherwise the creation of further caches will BUG().
2020                 */
2021                set_up_list3s(cachep, SIZE_AC);
2022                if (INDEX_AC == INDEX_L3)
2023                        g_cpucache_up = PARTIAL_L3;
2024                else
2025                        g_cpucache_up = PARTIAL_AC;
2026        } else {
2027                cachep->array[smp_processor_id()] =
2028                        kmalloc(sizeof(struct arraycache_init), gfp);
2029
2030                if (g_cpucache_up == PARTIAL_AC) {
2031                        set_up_list3s(cachep, SIZE_L3);
2032                        g_cpucache_up = PARTIAL_L3;
2033                } else {
2034                        int node;
2035                        for_each_online_node(node) {
2036                                cachep->nodelists[node] =
2037                                    kmalloc_node(sizeof(struct kmem_list3),
2038                                                gfp, node);
2039                                BUG_ON(!cachep->nodelists[node]);
2040                                kmem_list3_init(cachep->nodelists[node]);
2041                        }
2042                }
2043        }
2044        cachep->nodelists[numa_node_id()]->next_reap =
2045                        jiffies + REAPTIMEOUT_LIST3 +
2046                        ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2047
2048        cpu_cache_get(cachep)->avail = 0;
2049        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2050        cpu_cache_get(cachep)->batchcount = 1;
2051        cpu_cache_get(cachep)->touched = 0;
2052        cachep->batchcount = 1;
2053        cachep->limit = BOOT_CPUCACHE_ENTRIES;
2054        return 0;
2055}
2056
2057/**
2058 * kmem_cache_create - Create a cache.
2059 * @name: A string which is used in /proc/slabinfo to identify this cache.
2060 * @size: The size of objects to be created in this cache.
2061 * @align: The required alignment for the objects.
2062 * @flags: SLAB flags
2063 * @ctor: A constructor for the objects.
2064 *
2065 * Returns a ptr to the cache on success, NULL on failure.
2066 * Cannot be called within a int, but can be interrupted.
2067 * The @ctor is run when new pages are allocated by the cache.
2068 *
2069 * @name must be valid until the cache is destroyed. This implies that
2070 * the module calling this has to destroy the cache before getting unloaded.
2071 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2072 * therefore applications must manage it themselves.
2073 *
2074 * The flags are
2075 *
2076 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2077 * to catch references to uninitialised memory.
2078 *
2079 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2080 * for buffer overruns.
2081 *
2082 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2083 * cacheline.  This can be beneficial if you're counting cycles as closely
2084 * as davem.
2085 */
2086struct kmem_cache *
2087kmem_cache_create (const char *name, size_t size, size_t align,
2088        unsigned long flags, void (*ctor)(void *))
2089{
2090        size_t left_over, slab_size, ralign;
2091        struct kmem_cache *cachep = NULL, *pc;
2092        gfp_t gfp;
2093
2094        /*
2095         * Sanity checks... these are all serious usage bugs.
2096         */
2097        if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2098            size > KMALLOC_MAX_SIZE) {
2099                printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2100                                name);
2101                BUG();
2102        }
2103
2104        /*
2105         * We use cache_chain_mutex to ensure a consistent view of
2106         * cpu_online_mask as well.  Please see cpuup_callback
2107         */
2108        if (slab_is_available()) {
2109                get_online_cpus();
2110                mutex_lock(&cache_chain_mutex);
2111        }
2112
2113        list_for_each_entry(pc, &cache_chain, next) {
2114                char tmp;
2115                int res;
2116
2117                /*
2118                 * This happens when the module gets unloaded and doesn't
2119                 * destroy its slab cache and no-one else reuses the vmalloc
2120                 * area of the module.  Print a warning.
2121                 */
2122                res = probe_kernel_address(pc->name, tmp);
2123                if (res) {
2124                        printk(KERN_ERR
2125                               "SLAB: cache with size %d has lost its name\n",
2126                               pc->buffer_size);
2127                        continue;
2128                }
2129
2130                if (!strcmp(pc->name, name)) {
2131                        printk(KERN_ERR
2132                               "kmem_cache_create: duplicate cache %s\n", name);
2133                        dump_stack();
2134                        goto oops;
2135                }
2136        }
2137
2138#if DEBUG
2139        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
2140#if FORCED_DEBUG
2141        /*
2142         * Enable redzoning and last user accounting, except for caches with
2143         * large objects, if the increased size would increase the object size
2144         * above the next power of two: caches with object sizes just above a
2145         * power of two have a significant amount of internal fragmentation.
2146         */
2147        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2148                                                2 * sizeof(unsigned long long)))
2149                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2150        if (!(flags & SLAB_DESTROY_BY_RCU))
2151                flags |= SLAB_POISON;
2152#endif
2153        if (flags & SLAB_DESTROY_BY_RCU)
2154                BUG_ON(flags & SLAB_POISON);
2155#endif
2156        /*
2157         * Always checks flags, a caller might be expecting debug support which
2158         * isn't available.
2159         */
2160        BUG_ON(flags & ~CREATE_MASK);
2161
2162        /*
2163         * Check that size is in terms of words.  This is needed to avoid
2164         * unaligned accesses for some archs when redzoning is used, and makes
2165         * sure any on-slab bufctl's are also correctly aligned.
2166         */
2167        if (size & (BYTES_PER_WORD - 1)) {
2168                size += (BYTES_PER_WORD - 1);
2169                size &= ~(BYTES_PER_WORD - 1);
2170        }
2171
2172        /* calculate the final buffer alignment: */
2173
2174        /* 1) arch recommendation: can be overridden for debug */
2175        if (flags & SLAB_HWCACHE_ALIGN) {
2176                /*
2177                 * Default alignment: as specified by the arch code.  Except if
2178                 * an object is really small, then squeeze multiple objects into
2179                 * one cacheline.
2180                 */
2181                ralign = cache_line_size();
2182                while (size <= ralign / 2)
2183                        ralign /= 2;
2184        } else {
2185                ralign = BYTES_PER_WORD;
2186        }
2187
2188        /*
2189         * Redzoning and user store require word alignment or possibly larger.
2190         * Note this will be overridden by architecture or caller mandated
2191         * alignment if either is greater than BYTES_PER_WORD.
2192         */
2193        if (flags & SLAB_STORE_USER)
2194                ralign = BYTES_PER_WORD;
2195
2196        if (flags & SLAB_RED_ZONE) {
2197                ralign = REDZONE_ALIGN;
2198                /* If redzoning, ensure that the second redzone is suitably
2199                 * aligned, by adjusting the object size accordingly. */
2200                size += REDZONE_ALIGN - 1;
2201                size &= ~(REDZONE_ALIGN - 1);
2202        }
2203
2204        /* 2) arch mandated alignment */
2205        if (ralign < ARCH_SLAB_MINALIGN) {
2206                ralign = ARCH_SLAB_MINALIGN;
2207        }
2208        /* 3) caller mandated alignment */
2209        if (ralign < align) {
2210                ralign = align;
2211        }
2212        /* disable debug if necessary */
2213        if (ralign > __alignof__(unsigned long long))
2214                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2215        /*
2216         * 4) Store it.
2217         */
2218        align = ralign;
2219
2220        if (slab_is_available())
2221                gfp = GFP_KERNEL;
2222        else
2223                gfp = GFP_NOWAIT;
2224
2225        /* Get cache's description obj. */
2226        cachep = kmem_cache_zalloc(&cache_cache, gfp);
2227        if (!cachep)
2228                goto oops;
2229
2230#if DEBUG
2231        cachep->obj_size = size;
2232
2233        /*
2234         * Both debugging options require word-alignment which is calculated
2235         * into align above.
2236         */
2237        if (flags & SLAB_RED_ZONE) {
2238                /* add space for red zone words */
2239                cachep->obj_offset += sizeof(unsigned long long);
2240                size += 2 * sizeof(unsigned long long);
2241        }
2242        if (flags & SLAB_STORE_USER) {
2243                /* user store requires one word storage behind the end of
2244                 * the real object. But if the second red zone needs to be
2245                 * aligned to 64 bits, we must allow that much space.
2246                 */
2247                if (flags & SLAB_RED_ZONE)
2248                        size += REDZONE_ALIGN;
2249                else
2250                        size += BYTES_PER_WORD;
2251        }
2252#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2253        if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2254            && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2255                cachep->obj_offset += PAGE_SIZE - size;
2256                size = PAGE_SIZE;
2257        }
2258#endif
2259#endif
2260
2261        /*
2262         * Determine if the slab management is 'on' or 'off' slab.
2263         * (bootstrapping cannot cope with offslab caches so don't do
2264         * it too early on.)
2265         */
2266        if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2267                /*
2268                 * Size is large, assume best to place the slab management obj
2269                 * off-slab (should allow better packing of objs).
2270                 */
2271                flags |= CFLGS_OFF_SLAB;
2272
2273        size = ALIGN(size, align);
2274
2275        left_over = calculate_slab_order(cachep, size, align, flags);
2276
2277        if (!cachep->num) {
2278                printk(KERN_ERR
2279                       "kmem_cache_create: couldn't create cache %s.\n", name);
2280                kmem_cache_free(&cache_cache, cachep);
2281                cachep = NULL;
2282                goto oops;
2283        }
2284        slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2285                          + sizeof(struct slab), align);
2286
2287        /*
2288         * If the slab has been placed off-slab, and we have enough space then
2289         * move it on-slab. This is at the expense of any extra colouring.
2290         */
2291        if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2292                flags &= ~CFLGS_OFF_SLAB;
2293                left_over -= slab_size;
2294        }
2295
2296        if (flags & CFLGS_OFF_SLAB) {
2297                /* really off slab. No need for manual alignment */
2298                slab_size =
2299                    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2300
2301#ifdef CONFIG_PAGE_POISONING
2302                /* If we're going to use the generic kernel_map_pages()
2303                 * poisoning, then it's going to smash the contents of
2304                 * the redzone and userword anyhow, so switch them off.
2305                 */
2306                if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2307                        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2308#endif
2309        }
2310
2311        cachep->colour_off = cache_line_size();
2312        /* Offset must be a multiple of the alignment. */
2313        if (cachep->colour_off < align)
2314                cachep->colour_off = align;
2315        cachep->colour = left_over / cachep->colour_off;
2316        cachep->slab_size = slab_size;
2317        cachep->flags = flags;
2318        cachep->gfpflags = 0;
2319        if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2320                cachep->gfpflags |= GFP_DMA;
2321        cachep->buffer_size = size;
2322        cachep->reciprocal_buffer_size = reciprocal_value(size);
2323
2324        if (flags & CFLGS_OFF_SLAB) {
2325                cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2326                /*
2327                 * This is a possibility for one of the malloc_sizes caches.
2328                 * But since we go off slab only for object size greater than
2329                 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2330                 * this should not happen at all.
2331                 * But leave a BUG_ON for some lucky dude.
2332                 */
2333                BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2334        }
2335        cachep->ctor = ctor;
2336        cachep->name = name;
2337
2338        if (setup_cpu_cache(cachep, gfp)) {
2339                __kmem_cache_destroy(cachep);
2340                cachep = NULL;
2341                goto oops;
2342        }
2343
2344        /* cache setup completed, link it into the list */
2345        list_add(&cachep->next, &cache_chain);
2346oops:
2347        if (!cachep && (flags & SLAB_PANIC))
2348                panic("kmem_cache_create(): failed to create slab `%s'\n",
2349                      name);
2350        if (slab_is_available()) {
2351                mutex_unlock(&cache_chain_mutex);
2352                put_online_cpus();
2353        }
2354        return cachep;
2355}
2356EXPORT_SYMBOL(kmem_cache_create);
2357
2358#if DEBUG
2359static void check_irq_off(void)
2360{
2361        BUG_ON(!irqs_disabled());
2362}
2363
2364static void check_irq_on(void)
2365{
2366        BUG_ON(irqs_disabled());
2367}
2368
2369static void check_spinlock_acquired(struct kmem_cache *cachep)
2370{
2371#ifdef CONFIG_SMP
2372        check_irq_off();
2373        assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2374#endif
2375}
2376
2377static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2378{
2379#ifdef CONFIG_SMP
2380        check_irq_off();
2381        assert_spin_locked(&cachep->nodelists[node]->list_lock);
2382#endif
2383}
2384
2385#else
2386#define check_irq_off() do { } while(0)
2387#define check_irq_on()  do { } while(0)
2388#define check_spinlock_acquired(x) do { } while(0)
2389#define check_spinlock_acquired_node(x, y) do { } while(0)
2390#endif
2391
2392static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2393                        struct array_cache *ac,
2394                        int force, int node);
2395
2396static void do_drain(void *arg)
2397{
2398        struct kmem_cache *cachep = arg;
2399        struct array_cache *ac;
2400        int node = numa_node_id();
2401
2402        check_irq_off();
2403        ac = cpu_cache_get(cachep);
2404        spin_lock(&cachep->nodelists[node]->list_lock);
2405        free_block(cachep, ac->entry, ac->avail, node);
2406        spin_unlock(&cachep->nodelists[node]->list_lock);
2407        ac->avail = 0;
2408}
2409
2410static void drain_cpu_caches(struct kmem_cache *cachep)
2411{
2412        struct kmem_list3 *l3;
2413        int node;
2414
2415        on_each_cpu(do_drain, cachep, 1);
2416        check_irq_on();
2417        for_each_online_node(node) {
2418                l3 = cachep->nodelists[node];
2419                if (l3 && l3->alien)
2420                        drain_alien_cache(cachep, l3->alien);
2421        }
2422
2423        for_each_online_node(node) {
2424                l3 = cachep->nodelists[node];
2425                if (l3)
2426                        drain_array(cachep, l3, l3->shared, 1, node);
2427        }
2428}
2429
2430/*
2431 * Remove slabs from the list of free slabs.
2432 * Specify the number of slabs to drain in tofree.
2433 *
2434 * Returns the actual number of slabs released.
2435 */
2436static int drain_freelist(struct kmem_cache *cache,
2437                        struct kmem_list3 *l3, int tofree)
2438{
2439        struct list_head *p;
2440        int nr_freed;
2441        struct slab *slabp;
2442
2443        nr_freed = 0;
2444        while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2445
2446                spin_lock_irq(&l3->list_lock);
2447                p = l3->slabs_free.prev;
2448                if (p == &l3->slabs_free) {
2449                        spin_unlock_irq(&l3->list_lock);
2450                        goto out;
2451                }
2452
2453                slabp = list_entry(p, struct slab, list);
2454#if DEBUG
2455                BUG_ON(slabp->inuse);
2456#endif
2457                list_del(&slabp->list);
2458                /*
2459                 * Safe to drop the lock. The slab is no longer linked
2460                 * to the cache.
2461                 */
2462                l3->free_objects -= cache->num;
2463                spin_unlock_irq(&l3->list_lock);
2464                slab_destroy(cache, slabp);
2465                nr_freed++;
2466        }
2467out:
2468        return nr_freed;
2469}
2470
2471/* Called with cache_chain_mutex held to protect against cpu hotplug */
2472static int __cache_shrink(struct kmem_cache *cachep)
2473{
2474        int ret = 0, i = 0;
2475        struct kmem_list3 *l3;
2476
2477        drain_cpu_caches(cachep);
2478
2479        check_irq_on();
2480        for_each_online_node(i) {
2481                l3 = cachep->nodelists[i];
2482                if (!l3)
2483                        continue;
2484
2485                drain_freelist(cachep, l3, l3->free_objects);
2486
2487                ret += !list_empty(&l3->slabs_full) ||
2488                        !list_empty(&l3->slabs_partial);
2489        }
2490        return (ret ? 1 : 0);
2491}
2492
2493/**
2494 * kmem_cache_shrink - Shrink a cache.
2495 * @cachep: The cache to shrink.
2496 *
2497 * Releases as many slabs as possible for a cache.
2498 * To help debugging, a zero exit status indicates all slabs were released.
2499 */
2500int kmem_cache_shrink(struct kmem_cache *cachep)
2501{
2502        int ret;
2503        BUG_ON(!cachep || in_interrupt());
2504
2505        get_online_cpus();
2506        mutex_lock(&cache_chain_mutex);
2507        ret = __cache_shrink(cachep);
2508        mutex_unlock(&cache_chain_mutex);
2509        put_online_cpus();
2510        return ret;
2511}
2512EXPORT_SYMBOL(kmem_cache_shrink);
2513
2514/**
2515 * kmem_cache_destroy - delete a cache
2516 * @cachep: the cache to destroy
2517 *
2518 * Remove a &struct kmem_cache object from the slab cache.
2519 *
2520 * It is expected this function will be called by a module when it is
2521 * unloaded.  This will remove the cache completely, and avoid a duplicate
2522 * cache being allocated each time a module is loaded and unloaded, if the
2523 * module doesn't have persistent in-kernel storage across loads and unloads.
2524 *
2525 * The cache must be empty before calling this function.
2526 *
2527 * The caller must guarantee that noone will allocate memory from the cache
2528 * during the kmem_cache_destroy().
2529 */
2530void kmem_cache_destroy(struct kmem_cache *cachep)
2531{
2532        BUG_ON(!cachep || in_interrupt());
2533
2534        /* Find the cache in the chain of caches. */
2535        get_online_cpus();
2536        mutex_lock(&cache_chain_mutex);
2537        /*
2538         * the chain is never empty, cache_cache is never destroyed
2539         */
2540        list_del(&cachep->next);
2541        if (__cache_shrink(cachep)) {
2542                slab_error(cachep, "Can't free all objects");
2543                list_add(&cachep->next, &cache_chain);
2544                mutex_unlock(&cache_chain_mutex);
2545                put_online_cpus();
2546                return;
2547        }
2548
2549        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2550                rcu_barrier();
2551
2552        __kmem_cache_destroy(cachep);
2553        mutex_unlock(&cache_chain_mutex);
2554        put_online_cpus();
2555}
2556EXPORT_SYMBOL(kmem_cache_destroy);
2557
2558/*
2559 * Get the memory for a slab management obj.
2560 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2561 * always come from malloc_sizes caches.  The slab descriptor cannot
2562 * come from the same cache which is getting created because,
2563 * when we are searching for an appropriate cache for these
2564 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2565 * If we are creating a malloc_sizes cache here it would not be visible to
2566 * kmem_find_general_cachep till the initialization is complete.
2567 * Hence we cannot have slabp_cache same as the original cache.
2568 */
2569static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2570                                   int colour_off, gfp_t local_flags,
2571                                   int nodeid)
2572{
2573        struct slab *slabp;
2574
2575        if (OFF_SLAB(cachep)) {
2576                /* Slab management obj is off-slab. */
2577                slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2578                                              local_flags, nodeid);
2579                /*
2580                 * If the first object in the slab is leaked (it's allocated
2581                 * but no one has a reference to it), we want to make sure
2582                 * kmemleak does not treat the ->s_mem pointer as a reference
2583                 * to the object. Otherwise we will not report the leak.
2584                 */
2585                kmemleak_scan_area(slabp, offsetof(struct slab, list),
2586                                   sizeof(struct list_head), local_flags);
2587                if (!slabp)
2588                        return NULL;
2589        } else {
2590                slabp = objp + colour_off;
2591                colour_off += cachep->slab_size;
2592        }
2593        slabp->inuse = 0;
2594        slabp->colouroff = colour_off;
2595        slabp->s_mem = objp + colour_off;
2596        slabp->nodeid = nodeid;
2597        slabp->free = 0;
2598        return slabp;
2599}
2600
2601static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2602{
2603        return (kmem_bufctl_t *) (slabp + 1);
2604}
2605
2606static void cache_init_objs(struct kmem_cache *cachep,
2607                            struct slab *slabp)
2608{
2609        int i;
2610
2611        for (i = 0; i < cachep->num; i++) {
2612                void *objp = index_to_obj(cachep, slabp, i);
2613#if DEBUG
2614                /* need to poison the objs? */
2615                if (cachep->flags & SLAB_POISON)
2616                        poison_obj(cachep, objp, POISON_FREE);
2617                if (cachep->flags & SLAB_STORE_USER)
2618                        *dbg_userword(cachep, objp) = NULL;
2619
2620                if (cachep->flags & SLAB_RED_ZONE) {
2621                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2622                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2623                }
2624                /*
2625                 * Constructors are not allowed to allocate memory from the same
2626                 * cache which they are a constructor for.  Otherwise, deadlock.
2627                 * They must also be threaded.
2628                 */
2629                if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2630                        cachep->ctor(objp + obj_offset(cachep));
2631
2632                if (cachep->flags & SLAB_RED_ZONE) {
2633                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2634                                slab_error(cachep, "constructor overwrote the"
2635                                           " end of an object");
2636                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2637                                slab_error(cachep, "constructor overwrote the"
2638                                           " start of an object");
2639                }
2640                if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2641                            OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2642                        kernel_map_pages(virt_to_page(objp),
2643                                         cachep->buffer_size / PAGE_SIZE, 0);
2644#else
2645                if (cachep->ctor)
2646                        cachep->ctor(objp);
2647#endif
2648                slab_bufctl(slabp)[i] = i + 1;
2649        }
2650        slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2651}
2652
2653static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2654{
2655        if (CONFIG_ZONE_DMA_FLAG) {
2656                if (flags & GFP_DMA)
2657                        BUG_ON(!(cachep->gfpflags & GFP_DMA));
2658                else
2659                        BUG_ON(cachep->gfpflags & GFP_DMA);
2660        }
2661}
2662
2663static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2664                                int nodeid)
2665{
2666        void *objp = index_to_obj(cachep, slabp, slabp->free);
2667        kmem_bufctl_t next;
2668
2669        slabp->inuse++;
2670        next = slab_bufctl(slabp)[slabp->free];
2671#if DEBUG
2672        slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2673        WARN_ON(slabp->nodeid != nodeid);
2674#endif
2675        slabp->free = next;
2676
2677        return objp;
2678}
2679
2680static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2681                                void *objp, int nodeid)
2682{
2683        unsigned int objnr = obj_to_index(cachep, slabp, objp);
2684
2685#if DEBUG
2686        /* Verify that the slab belongs to the intended node */
2687        WARN_ON(slabp->nodeid != nodeid);
2688
2689        if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2690                printk(KERN_ERR "slab: double free detected in cache "
2691                                "'%s', objp %p\n", cachep->name, objp);
2692                BUG();
2693        }
2694#endif
2695        slab_bufctl(slabp)[objnr] = slabp->free;
2696        slabp->free = objnr;
2697        slabp->inuse--;
2698}
2699
2700/*
2701 * Map pages beginning at addr to the given cache and slab. This is required
2702 * for the slab allocator to be able to lookup the cache and slab of a
2703 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2704 */
2705static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2706                           void *addr)
2707{
2708        int nr_pages;
2709        struct page *page;
2710
2711        page = virt_to_page(addr);
2712
2713        nr_pages = 1;
2714        if (likely(!PageCompound(page)))
2715                nr_pages <<= cache->gfporder;
2716
2717        do {
2718                page_set_cache(page, cache);
2719                page_set_slab(page, slab);
2720                page++;
2721        } while (--nr_pages);
2722}
2723
2724/*
2725 * Grow (by 1) the number of slabs within a cache.  This is called by
2726 * kmem_cache_alloc() when there are no active objs left in a cache.
2727 */
2728static int cache_grow(struct kmem_cache *cachep,
2729                gfp_t flags, int nodeid, void *objp)
2730{
2731        struct slab *slabp;
2732        size_t offset;
2733        gfp_t local_flags;
2734        struct kmem_list3 *l3;
2735
2736        /*
2737         * Be lazy and only check for valid flags here,  keeping it out of the
2738         * critical path in kmem_cache_alloc().
2739         */
2740        BUG_ON(flags & GFP_SLAB_BUG_MASK);
2741        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2742
2743        /* Take the l3 list lock to change the colour_next on this node */
2744        check_irq_off();
2745        l3 = cachep->nodelists[nodeid];
2746        spin_lock(&l3->list_lock);
2747
2748        /* Get colour for the slab, and cal the next value. */
2749        offset = l3->colour_next;
2750        l3->colour_next++;
2751        if (l3->colour_next >= cachep->colour)
2752                l3->colour_next = 0;
2753        spin_unlock(&l3->list_lock);
2754
2755        offset *= cachep->colour_off;
2756
2757        if (local_flags & __GFP_WAIT)
2758                local_irq_enable();
2759
2760        /*
2761         * The test for missing atomic flag is performed here, rather than
2762         * the more obvious place, simply to reduce the critical path length
2763         * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2764         * will eventually be caught here (where it matters).
2765         */
2766        kmem_flagcheck(cachep, flags);
2767
2768        /*
2769         * Get mem for the objs.  Attempt to allocate a physical page from
2770         * 'nodeid'.
2771         */
2772        if (!objp)
2773                objp = kmem_getpages(cachep, local_flags, nodeid);
2774        if (!objp)
2775                goto failed;
2776
2777        /* Get slab management. */
2778        slabp = alloc_slabmgmt(cachep, objp, offset,
2779                        local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2780        if (!slabp)
2781                goto opps1;
2782
2783        slab_map_pages(cachep, slabp, objp);
2784
2785        cache_init_objs(cachep, slabp);
2786
2787        if (local_flags & __GFP_WAIT)
2788                local_irq_disable();
2789        check_irq_off();
2790        spin_lock(&l3->list_lock);
2791
2792        /* Make slab active. */
2793        list_add_tail(&slabp->list, &(l3->slabs_free));
2794        STATS_INC_GROWN(cachep);
2795        l3->free_objects += cachep->num;
2796        spin_unlock(&l3->list_lock);
2797        return 1;
2798opps1:
2799        kmem_freepages(cachep, objp);
2800failed:
2801        if (local_flags & __GFP_WAIT)
2802                local_irq_disable();
2803        return 0;
2804}
2805
2806#if DEBUG
2807
2808/*
2809 * Perform extra freeing checks:
2810 * - detect bad pointers.
2811 * - POISON/RED_ZONE checking
2812 */
2813static void kfree_debugcheck(const void *objp)
2814{
2815        if (!virt_addr_valid(objp)) {
2816                printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2817                       (unsigned long)objp);
2818                BUG();
2819        }
2820}
2821
2822static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2823{
2824        unsigned long long redzone1, redzone2;
2825
2826        redzone1 = *dbg_redzone1(cache, obj);
2827        redzone2 = *dbg_redzone2(cache, obj);
2828
2829        /*
2830         * Redzone is ok.
2831         */
2832        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2833                return;
2834
2835        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2836                slab_error(cache, "double free detected");
2837        else
2838                slab_error(cache, "memory outside object was overwritten");
2839
2840        printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2841                        obj, redzone1, redzone2);
2842}
2843
2844static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2845                                   void *caller)
2846{
2847        struct page *page;
2848        unsigned int objnr;
2849        struct slab *slabp;
2850
2851        BUG_ON(virt_to_cache(objp) != cachep);
2852
2853        objp -= obj_offset(cachep);
2854        kfree_debugcheck(objp);
2855        page = virt_to_head_page(objp);
2856
2857        slabp = page_get_slab(page);
2858
2859        if (cachep->flags & SLAB_RED_ZONE) {
2860                verify_redzone_free(cachep, objp);
2861                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2862                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2863        }
2864        if (cachep->flags & SLAB_STORE_USER)
2865                *dbg_userword(cachep, objp) = caller;
2866
2867        objnr = obj_to_index(cachep, slabp, objp);
2868
2869        BUG_ON(objnr >= cachep->num);
2870        BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2871
2872#ifdef CONFIG_DEBUG_SLAB_LEAK
2873        slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2874#endif
2875        if (cachep->flags & SLAB_POISON) {
2876#ifdef CONFIG_DEBUG_PAGEALLOC
2877                if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2878                        store_stackinfo(cachep, objp, (unsigned long)caller);
2879                        kernel_map_pages(virt_to_page(objp),
2880                                         cachep->buffer_size / PAGE_SIZE, 0);
2881                } else {
2882                        poison_obj(cachep, objp, POISON_FREE);
2883                }
2884#else
2885                poison_obj(cachep, objp, POISON_FREE);
2886#endif
2887        }
2888        return objp;
2889}
2890
2891static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2892{
2893        kmem_bufctl_t i;
2894        int entries = 0;
2895
2896        /* Check slab's freelist to see if this obj is there. */
2897        for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2898                entries++;
2899                if (entries > cachep->num || i >= cachep->num)
2900                        goto bad;
2901        }
2902        if (entries != cachep->num - slabp->inuse) {
2903bad:
2904                printk(KERN_ERR "slab: Internal list corruption detected in "
2905                                "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2906                        cachep->name, cachep->num, slabp, slabp->inuse);
2907                for (i = 0;
2908                     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2909                     i++) {
2910                        if (i % 16 == 0)
2911                                printk("\n%03x:", i);
2912                        printk(" %02x", ((unsigned char *)slabp)[i]);
2913                }
2914                printk("\n");
2915                BUG();
2916        }
2917}
2918#else
2919#define kfree_debugcheck(x) do { } while(0)
2920#define cache_free_debugcheck(x,objp,z) (objp)
2921#define check_slabp(x,y) do { } while(0)
2922#endif
2923
2924static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2925{
2926        int batchcount;
2927        struct kmem_list3 *l3;
2928        struct array_cache *ac;
2929        int node;
2930
2931retry:
2932        check_irq_off();
2933        node = numa_node_id();
2934        ac = cpu_cache_get(cachep);
2935        batchcount = ac->batchcount;
2936        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2937                /*
2938                 * If there was little recent activity on this cache, then
2939                 * perform only a partial refill.  Otherwise we could generate
2940                 * refill bouncing.
2941                 */
2942                batchcount = BATCHREFILL_LIMIT;
2943        }
2944        l3 = cachep->nodelists[node];
2945
2946        BUG_ON(ac->avail > 0 || !l3);
2947        spin_lock(&l3->list_lock);
2948
2949        /* See if we can refill from the shared array */
2950        if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2951                goto alloc_done;
2952
2953        while (batchcount > 0) {
2954                struct list_head *entry;
2955                struct slab *slabp;
2956                /* Get slab alloc is to come from. */
2957                entry = l3->slabs_partial.next;
2958                if (entry == &l3->slabs_partial) {
2959                        l3->free_touched = 1;
2960                        entry = l3->slabs_free.next;
2961                        if (entry == &l3->slabs_free)
2962                                goto must_grow;
2963                }
2964
2965                slabp = list_entry(entry, struct slab, list);
2966                check_slabp(cachep, slabp);
2967                check_spinlock_acquired(cachep);
2968
2969                /*
2970                 * The slab was either on partial or free list so
2971                 * there must be at least one object available for
2972                 * allocation.
2973                 */
2974                BUG_ON(slabp->inuse >= cachep->num);
2975
2976                while (slabp->inuse < cachep->num && batchcount--) {
2977                        STATS_INC_ALLOCED(cachep);
2978                        STATS_INC_ACTIVE(cachep);
2979                        STATS_SET_HIGH(cachep);
2980
2981                        ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2982                                                            node);
2983                }
2984                check_slabp(cachep, slabp);
2985
2986                /* move slabp to correct slabp list: */
2987                list_del(&slabp->list);
2988                if (slabp->free == BUFCTL_END)
2989                        list_add(&slabp->list, &l3->slabs_full);
2990                else
2991                        list_add(&slabp->list, &l3->slabs_partial);
2992        }
2993
2994must_grow:
2995        l3->free_objects -= ac->avail;
2996alloc_done:
2997        spin_unlock(&l3->list_lock);
2998
2999        if (unlikely(!ac->avail)) {
3000                int x;
3001                x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3002
3003                /* cache_grow can reenable interrupts, then ac could change. */
3004                ac = cpu_cache_get(cachep);
3005                if (!x && ac->avail == 0)       /* no objects in sight? abort */
3006                        return NULL;
3007
3008                if (!ac->avail)         /* objects refilled by interrupt? */
3009                        goto retry;
3010        }
3011        ac->touched = 1;
3012        return ac->entry[--ac->avail];
3013}
3014
3015static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3016                                                gfp_t flags)
3017{
3018        might_sleep_if(flags & __GFP_WAIT);
3019#if DEBUG
3020        kmem_flagcheck(cachep, flags);
3021#endif
3022}
3023
3024#if DEBUG
3025static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3026                                gfp_t flags, void *objp, void *caller)
3027{
3028        if (!objp)
3029                return objp;
3030        if (cachep->flags & SLAB_POISON) {
3031#ifdef CONFIG_DEBUG_PAGEALLOC
3032                if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3033                        kernel_map_pages(virt_to_page(objp),
3034                                         cachep->buffer_size / PAGE_SIZE, 1);
3035                else
3036                        check_poison_obj(cachep, objp);
3037#else
3038                check_poison_obj(cachep, objp);
3039#endif
3040                poison_obj(cachep, objp, POISON_INUSE);
3041        }
3042        if (cachep->flags & SLAB_STORE_USER)
3043                *dbg_userword(cachep, objp) = caller;
3044
3045        if (cachep->flags & SLAB_RED_ZONE) {
3046                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3047                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3048                        slab_error(cachep, "double free, or memory outside"
3049                                                " object was overwritten");
3050                        printk(KERN_ERR
3051                                "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3052                                objp, *dbg_redzone1(cachep, objp),
3053                                *dbg_redzone2(cachep, objp));
3054                }
3055                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3056                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3057        }
3058#ifdef CONFIG_DEBUG_SLAB_LEAK
3059        {
3060                struct slab *slabp;
3061                unsigned objnr;
3062
3063                slabp = page_get_slab(virt_to_head_page(objp));
3064                objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3065                slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3066        }
3067#endif
3068        objp += obj_offset(cachep);
3069        if (cachep->ctor && cachep->flags & SLAB_POISON)
3070                cachep->ctor(objp);
3071#if ARCH_SLAB_MINALIGN
3072        if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3073                printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3074                       objp, ARCH_SLAB_MINALIGN);
3075        }
3076#endif
3077        return objp;
3078}
3079#else
3080#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3081#endif
3082
3083static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3084{
3085        if (cachep == &cache_cache)
3086                return false;
3087
3088        return should_failslab(obj_size(cachep), flags);
3089}
3090
3091static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3092{
3093        void *objp;
3094        struct array_cache *ac;
3095
3096        check_irq_off();
3097
3098        ac = cpu_cache_get(cachep);
3099        if (likely(ac->avail)) {
3100                STATS_INC_ALLOCHIT(cachep);
3101                ac->touched = 1;
3102                objp = ac->entry[--ac->avail];
3103        } else {
3104                STATS_INC_ALLOCMISS(cachep);
3105                objp = cache_alloc_refill(cachep, flags);
3106        }
3107        /*
3108         * To avoid a false negative, if an object that is in one of the
3109         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3110         * treat the array pointers as a reference to the object.
3111         */
3112        kmemleak_erase(&ac->entry[ac->avail]);
3113        return objp;
3114}
3115
3116#ifdef CONFIG_NUMA
3117/*
3118 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3119 *
3120 * If we are in_interrupt, then process context, including cpusets and
3121 * mempolicy, may not apply and should not be used for allocation policy.
3122 */
3123static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3124{
3125        int nid_alloc, nid_here;
3126
3127        if (in_interrupt() || (flags & __GFP_THISNODE))
3128                return NULL;
3129        nid_alloc = nid_here = numa_node_id();
3130        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3131                nid_alloc = cpuset_mem_spread_node();
3132        else if (current->mempolicy)
3133                nid_alloc = slab_node(current->mempolicy);
3134        if (nid_alloc != nid_here)
3135                return ____cache_alloc_node(cachep, flags, nid_alloc);
3136        return NULL;
3137}
3138
3139/*
3140 * Fallback function if there was no memory available and no objects on a
3141 * certain node and fall back is permitted. First we scan all the
3142 * available nodelists for available objects. If that fails then we
3143 * perform an allocation without specifying a node. This allows the page
3144 * allocator to do its reclaim / fallback magic. We then insert the
3145 * slab into the proper nodelist and then allocate from it.
3146 */
3147static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3148{
3149        struct zonelist *zonelist;
3150        gfp_t local_flags;
3151        struct zoneref *z;
3152        struct zone *zone;
3153        enum zone_type high_zoneidx = gfp_zone(flags);
3154        void *obj = NULL;
3155        int nid;
3156
3157        if (flags & __GFP_THISNODE)
3158                return NULL;
3159
3160        zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3161        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3162
3163retry:
3164        /*
3165         * Look through allowed nodes for objects available
3166         * from existing per node queues.
3167         */
3168        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3169                nid = zone_to_nid(zone);
3170
3171                if (cpuset_zone_allowed_hardwall(zone, flags) &&
3172                        cache->nodelists[nid] &&
3173                        cache->nodelists[nid]->free_objects) {
3174                                obj = ____cache_alloc_node(cache,
3175                                        flags | GFP_THISNODE, nid);
3176                                if (obj)
3177                                        break;
3178                }
3179        }
3180
3181        if (!obj) {
3182                /*
3183                 * This allocation will be performed within the constraints
3184                 * of the current cpuset / memory policy requirements.
3185                 * We may trigger various forms of reclaim on the allowed
3186                 * set and go into memory reserves if necessary.
3187                 */
3188                if (local_flags & __GFP_WAIT)
3189                        local_irq_enable();
3190                kmem_flagcheck(cache, flags);
3191                obj = kmem_getpages(cache, local_flags, numa_node_id());
3192                if (local_flags & __GFP_WAIT)
3193                        local_irq_disable();
3194                if (obj) {
3195                        /*
3196                         * Insert into the appropriate per node queues
3197                         */
3198                        nid = page_to_nid(virt_to_page(obj));
3199                        if (cache_grow(cache, flags, nid, obj)) {
3200                                obj = ____cache_alloc_node(cache,
3201                                        flags | GFP_THISNODE, nid);
3202                                if (!obj)
3203                                        /*
3204                                         * Another processor may allocate the
3205                                         * objects in the slab since we are
3206                                         * not holding any locks.
3207                                         */
3208                                        goto retry;
3209                        } else {
3210                                /* cache_grow already freed obj */
3211                                obj = NULL;
3212                        }
3213                }
3214        }
3215        return obj;
3216}
3217
3218/*
3219 * A interface to enable slab creation on nodeid
3220 */
3221static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3222                                int nodeid)
3223{
3224        struct list_head *entry;
3225        struct slab *slabp;
3226        struct kmem_list3 *l3;
3227        void *obj;
3228        int x;
3229
3230        l3 = cachep->nodelists[nodeid];
3231        BUG_ON(!l3);
3232
3233retry:
3234        check_irq_off();
3235        spin_lock(&l3->list_lock);
3236        entry = l3->slabs_partial.next;
3237        if (entry == &l3->slabs_partial) {
3238                l3->free_touched = 1;
3239                entry = l3->slabs_free.next;
3240                if (entry == &l3->slabs_free)
3241                        goto must_grow;
3242        }
3243
3244        slabp = list_entry(entry, struct slab, list);
3245        check_spinlock_acquired_node(cachep, nodeid);
3246        check_slabp(cachep, slabp);
3247
3248        STATS_INC_NODEALLOCS(cachep);
3249        STATS_INC_ACTIVE(cachep);
3250        STATS_SET_HIGH(cachep);
3251
3252        BUG_ON(slabp->inuse == cachep->num);
3253
3254        obj = slab_get_obj(cachep, slabp, nodeid);
3255        check_slabp(cachep, slabp);
3256        l3->free_objects--;
3257        /* move slabp to correct slabp list: */
3258        list_del(&slabp->list);
3259
3260        if (slabp->free == BUFCTL_END)
3261                list_add(&slabp->list, &l3->slabs_full);
3262        else
3263                list_add(&slabp->list, &l3->slabs_partial);
3264
3265        spin_unlock(&l3->list_lock);
3266        goto done;
3267
3268must_grow:
3269        spin_unlock(&l3->list_lock);
3270        x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3271        if (x)
3272                goto retry;
3273
3274        return fallback_alloc(cachep, flags);
3275
3276done:
3277        return obj;
3278}
3279
3280/**
3281 * kmem_cache_alloc_node - Allocate an object on the specified node
3282 * @cachep: The cache to allocate from.
3283 * @flags: See kmalloc().
3284 * @nodeid: node number of the target node.
3285 * @caller: return address of caller, used for debug information
3286 *
3287 * Identical to kmem_cache_alloc but it will allocate memory on the given
3288 * node, which can improve the performance for cpu bound structures.
3289 *
3290 * Fallback to other node is possible if __GFP_THISNODE is not set.
3291 */
3292static __always_inline void *
3293__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3294                   void *caller)
3295{
3296        unsigned long save_flags;
3297        void *ptr;
3298
3299        flags &= gfp_allowed_mask;
3300
3301        lockdep_trace_alloc(flags);
3302
3303        if (slab_should_failslab(cachep, flags))
3304                return NULL;
3305
3306        cache_alloc_debugcheck_before(cachep, flags);
3307        local_irq_save(save_flags);
3308
3309        if (unlikely(nodeid == -1))
3310                nodeid = numa_node_id();
3311
3312        if (unlikely(!cachep->nodelists[nodeid])) {
3313                /* Node not bootstrapped yet */
3314                ptr = fallback_alloc(cachep, flags);
3315                goto out;
3316        }
3317
3318        if (nodeid == numa_node_id()) {
3319                /*
3320                 * Use the locally cached objects if possible.
3321                 * However ____cache_alloc does not allow fallback
3322                 * to other nodes. It may fail while we still have
3323                 * objects on other nodes available.
3324                 */
3325                ptr = ____cache_alloc(cachep, flags);
3326                if (ptr)
3327                        goto out;
3328        }
3329        /* ___cache_alloc_node can fall back to other nodes */
3330        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3331  out:
3332        local_irq_restore(save_flags);
3333        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3334        kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3335                                 flags);
3336
3337        if (likely(ptr))
3338                kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3339
3340        if (unlikely((flags & __GFP_ZERO) && ptr))
3341                memset(ptr, 0, obj_size(cachep));
3342
3343        return ptr;
3344}
3345
3346static __always_inline void *
3347__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3348{
3349        void *objp;
3350
3351        if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3352                objp = alternate_node_alloc(cache, flags);
3353                if (objp)
3354                        goto out;
3355        }
3356        objp = ____cache_alloc(cache, flags);
3357
3358        /*
3359         * We may just have run out of memory on the local node.
3360         * ____cache_alloc_node() knows how to locate memory on other nodes
3361         */
3362        if (!objp)
3363                objp = ____cache_alloc_node(cache, flags, numa_node_id());
3364
3365  out:
3366        return objp;
3367}
3368#else
3369
3370static __always_inline void *
3371__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3372{
3373        return ____cache_alloc(cachep, flags);
3374}
3375
3376#endif /* CONFIG_NUMA */
3377
3378static __always_inline void *
3379__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3380{
3381        unsigned long save_flags;
3382        void *objp;
3383
3384        flags &= gfp_allowed_mask;
3385
3386        lockdep_trace_alloc(flags);
3387
3388        if (slab_should_failslab(cachep, flags))
3389                return NULL;
3390
3391        cache_alloc_debugcheck_before(cachep, flags);
3392        local_irq_save(save_flags);
3393        objp = __do_cache_alloc(cachep, flags);
3394        local_irq_restore(save_flags);
3395        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3396        kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3397                                 flags);
3398        prefetchw(objp);
3399
3400        if (likely(objp))
3401                kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3402
3403        if (unlikely((flags & __GFP_ZERO) && objp))
3404                memset(objp, 0, obj_size(cachep));
3405
3406        return objp;
3407}
3408
3409/*
3410 * Caller needs to acquire correct kmem_list's list_lock
3411 */
3412static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3413                       int node)
3414{
3415        int i;
3416        struct kmem_list3 *l3;
3417
3418        for (i = 0; i < nr_objects; i++) {
3419                void *objp = objpp[i];
3420                struct slab *slabp;
3421
3422                slabp = virt_to_slab(objp);
3423                l3 = cachep->nodelists[node];
3424                list_del(&slabp->list);
3425                check_spinlock_acquired_node(cachep, node);
3426                check_slabp(cachep, slabp);
3427                slab_put_obj(cachep, slabp, objp, node);
3428                STATS_DEC_ACTIVE(cachep);
3429                l3->free_objects++;
3430                check_slabp(cachep, slabp);
3431
3432                /* fixup slab chains */
3433                if (slabp->inuse == 0) {
3434                        if (l3->free_objects > l3->free_limit) {
3435                                l3->free_objects -= cachep->num;
3436                                /* No need to drop any previously held
3437                                 * lock here, even if we have a off-slab slab
3438                                 * descriptor it is guaranteed to come from
3439                                 * a different cache, refer to comments before
3440                                 * alloc_slabmgmt.
3441                                 */
3442                                slab_destroy(cachep, slabp);
3443                        } else {
3444                                list_add(&slabp->list, &l3->slabs_free);
3445                        }
3446                } else {
3447                        /* Unconditionally move a slab to the end of the
3448                         * partial list on free - maximum time for the
3449                         * other objects to be freed, too.
3450                         */
3451                        list_add_tail(&slabp->list, &l3->slabs_partial);
3452                }
3453        }
3454}
3455
3456static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3457{
3458        int batchcount;
3459        struct kmem_list3 *l3;
3460        int node = numa_node_id();
3461
3462        batchcount = ac->batchcount;
3463#if DEBUG
3464        BUG_ON(!batchcount || batchcount > ac->avail);
3465#endif
3466        check_irq_off();
3467        l3 = cachep->nodelists[node];
3468        spin_lock(&l3->list_lock);
3469        if (l3->shared) {
3470                struct array_cache *shared_array = l3->shared;
3471                int max = shared_array->limit - shared_array->avail;
3472                if (max) {
3473                        if (batchcount > max)
3474                                batchcount = max;
3475                        memcpy(&(shared_array->entry[shared_array->avail]),
3476                               ac->entry, sizeof(void *) * batchcount);
3477                        shared_array->avail += batchcount;
3478                        goto free_done;
3479                }
3480        }
3481
3482        free_block(cachep, ac->entry, batchcount, node);
3483free_done:
3484#if STATS
3485        {
3486                int i = 0;
3487                struct list_head *p;
3488
3489                p = l3->slabs_free.next;
3490                while (p != &(l3->slabs_free)) {
3491                        struct slab *slabp;
3492
3493                        slabp = list_entry(p, struct slab, list);
3494                        BUG_ON(slabp->inuse);
3495
3496                        i++;
3497                        p = p->next;
3498                }
3499                STATS_SET_FREEABLE(cachep, i);
3500        }
3501#endif
3502        spin_unlock(&l3->list_lock);
3503        ac->avail -= batchcount;
3504        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3505}
3506
3507/*
3508 * Release an obj back to its cache. If the obj has a constructed state, it must
3509 * be in this state _before_ it is released.  Called with disabled ints.
3510 */
3511static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3512{
3513        struct array_cache *ac = cpu_cache_get(cachep);
3514
3515        check_irq_off();
3516        kmemleak_free_recursive(objp, cachep->flags);
3517        objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3518
3519        kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3520
3521        /*
3522         * Skip calling cache_free_alien() when the platform is not numa.
3523         * This will avoid cache misses that happen while accessing slabp (which
3524         * is per page memory  reference) to get nodeid. Instead use a global
3525         * variable to skip the call, which is mostly likely to be present in
3526         * the cache.
3527         */
3528        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3529                return;
3530
3531        if (likely(ac->avail < ac->limit)) {
3532                STATS_INC_FREEHIT(cachep);
3533                ac->entry[ac->avail++] = objp;
3534                return;
3535        } else {
3536                STATS_INC_FREEMISS(cachep);
3537                cache_flusharray(cachep, ac);
3538                ac->entry[ac->avail++] = objp;
3539        }
3540}
3541
3542/**
3543 * kmem_cache_alloc - Allocate an object
3544 * @cachep: The cache to allocate from.
3545 * @flags: See kmalloc().
3546 *
3547 * Allocate an object from this cache.  The flags are only relevant
3548 * if the cache has no available objects.
3549 */
3550void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3551{
3552        void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3553
3554        trace_kmem_cache_alloc(_RET_IP_, ret,
3555                               obj_size(cachep), cachep->buffer_size, flags);
3556
3557        return ret;
3558}
3559EXPORT_SYMBOL(kmem_cache_alloc);
3560
3561#ifdef CONFIG_KMEMTRACE
3562void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3563{
3564        return __cache_alloc(cachep, flags, __builtin_return_address(0));
3565}
3566EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3567#endif
3568
3569/**
3570 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3571 * @cachep: the cache we're checking against
3572 * @ptr: pointer to validate
3573 *
3574 * This verifies that the untrusted pointer looks sane;
3575 * it is _not_ a guarantee that the pointer is actually
3576 * part of the slab cache in question, but it at least
3577 * validates that the pointer can be dereferenced and
3578 * looks half-way sane.
3579 *
3580 * Currently only used for dentry validation.
3581 */
3582int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3583{
3584        unsigned long addr = (unsigned long)ptr;
3585        unsigned long min_addr = PAGE_OFFSET;
3586        unsigned long align_mask = BYTES_PER_WORD - 1;
3587        unsigned long size = cachep->buffer_size;
3588        struct page *page;
3589
3590        if (unlikely(addr < min_addr))
3591                goto out;
3592        if (unlikely(addr > (unsigned long)high_memory - size))
3593                goto out;
3594        if (unlikely(addr & align_mask))
3595                goto out;
3596        if (unlikely(!kern_addr_valid(addr)))
3597                goto out;
3598        if (unlikely(!kern_addr_valid(addr + size - 1)))
3599                goto out;
3600        page = virt_to_page(ptr);
3601        if (unlikely(!PageSlab(page)))
3602                goto out;
3603        if (unlikely(page_get_cache(page) != cachep))
3604                goto out;
3605        return 1;
3606out:
3607        return 0;
3608}
3609
3610#ifdef CONFIG_NUMA
3611void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3612{
3613        void *ret = __cache_alloc_node(cachep, flags, nodeid,
3614                                       __builtin_return_address(0));
3615
3616        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3617                                    obj_size(cachep), cachep->buffer_size,
3618                                    flags, nodeid);
3619
3620        return ret;
3621}
3622EXPORT_SYMBOL(kmem_cache_alloc_node);
3623
3624#ifdef CONFIG_KMEMTRACE
3625void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3626                                    gfp_t flags,
3627                                    int nodeid)
3628{
3629        return __cache_alloc_node(cachep, flags, nodeid,
3630                                  __builtin_return_address(0));
3631}
3632EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3633#endif
3634
3635static __always_inline void *
3636__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3637{
3638        struct kmem_cache *cachep;
3639        void *ret;
3640
3641        cachep = kmem_find_general_cachep(size, flags);
3642        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3643                return cachep;
3644        ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3645
3646        trace_kmalloc_node((unsigned long) caller, ret,
3647                           size, cachep->buffer_size, flags, node);
3648
3649        return ret;
3650}
3651
3652#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3653void *__kmalloc_node(size_t size, gfp_t flags, int node)
3654{
3655        return __do_kmalloc_node(size, flags, node,
3656                        __builtin_return_address(0));
3657}
3658EXPORT_SYMBOL(__kmalloc_node);
3659
3660void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3661                int node, unsigned long caller)
3662{
3663        return __do_kmalloc_node(size, flags, node, (void *)caller);
3664}
3665EXPORT_SYMBOL(__kmalloc_node_track_caller);
3666#else
3667void *__kmalloc_node(size_t size, gfp_t flags, int node)
3668{
3669        return __do_kmalloc_node(size, flags, node, NULL);
3670}
3671EXPORT_SYMBOL(__kmalloc_node);
3672#endif /* CONFIG_DEBUG_SLAB */
3673#endif /* CONFIG_NUMA */
3674
3675/**
3676 * __do_kmalloc - allocate memory
3677 * @size: how many bytes of memory are required.
3678 * @flags: the type of memory to allocate (see kmalloc).
3679 * @caller: function caller for debug tracking of the caller
3680 */
3681static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3682                                          void *caller)
3683{
3684        struct kmem_cache *cachep;
3685        void *ret;
3686
3687        /* If you want to save a few bytes .text space: replace
3688         * __ with kmem_.
3689         * Then kmalloc uses the uninlined functions instead of the inline
3690         * functions.
3691         */
3692        cachep = __find_general_cachep(size, flags);
3693        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3694                return cachep;
3695        ret = __cache_alloc(cachep, flags, caller);
3696
3697        trace_kmalloc((unsigned long) caller, ret,
3698                      size, cachep->buffer_size, flags);
3699
3700        return ret;
3701}
3702
3703
3704#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3705void *__kmalloc(size_t size, gfp_t flags)
3706{
3707        return __do_kmalloc(size, flags, __builtin_return_address(0));
3708}
3709EXPORT_SYMBOL(__kmalloc);
3710
3711void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3712{
3713        return __do_kmalloc(size, flags, (void *)caller);
3714}
3715EXPORT_SYMBOL(__kmalloc_track_caller);
3716
3717#else
3718void *__kmalloc(size_t size, gfp_t flags)
3719{
3720        return __do_kmalloc(size, flags, NULL);
3721}
3722EXPORT_SYMBOL(__kmalloc);
3723#endif
3724
3725/**
3726 * kmem_cache_free - Deallocate an object
3727 * @cachep: The cache the allocation was from.
3728 * @objp: The previously allocated object.
3729 *
3730 * Free an object which was previously allocated from this
3731 * cache.
3732 */
3733void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3734{
3735        unsigned long flags;
3736
3737        local_irq_save(flags);
3738        debug_check_no_locks_freed(objp, obj_size(cachep));
3739        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3740                debug_check_no_obj_freed(objp, obj_size(cachep));
3741        __cache_free(cachep, objp);
3742        local_irq_restore(flags);
3743
3744        trace_kmem_cache_free(_RET_IP_, objp);
3745}
3746EXPORT_SYMBOL(kmem_cache_free);
3747
3748/**
3749 * kfree - free previously allocated memory
3750 * @objp: pointer returned by kmalloc.
3751 *
3752 * If @objp is NULL, no operation is performed.
3753 *
3754 * Don't free memory not originally allocated by kmalloc()
3755 * or you will run into trouble.
3756 */
3757void kfree(const void *objp)
3758{
3759        struct kmem_cache *c;
3760        unsigned long flags;
3761
3762        trace_kfree(_RET_IP_, objp);
3763
3764        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3765                return;
3766        local_irq_save(flags);
3767        kfree_debugcheck(objp);
3768        c = virt_to_cache(objp);
3769        debug_check_no_locks_freed(objp, obj_size(c));
3770        debug_check_no_obj_freed(objp, obj_size(c));
3771        __cache_free(c, (void *)objp);
3772        local_irq_restore(flags);
3773}
3774EXPORT_SYMBOL(kfree);
3775
3776unsigned int kmem_cache_size(struct kmem_cache *cachep)
3777{
3778        return obj_size(cachep);
3779}
3780EXPORT_SYMBOL(kmem_cache_size);
3781
3782const char *kmem_cache_name(struct kmem_cache *cachep)
3783{
3784        return cachep->name;
3785}
3786EXPORT_SYMBOL_GPL(kmem_cache_name);
3787
3788/*
3789 * This initializes kmem_list3 or resizes various caches for all nodes.
3790 */
3791static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3792{
3793        int node;
3794        struct kmem_list3 *l3;
3795        struct array_cache *new_shared;
3796        struct array_cache **new_alien = NULL;
3797
3798        for_each_online_node(node) {
3799
3800                if (use_alien_caches) {
3801                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3802                        if (!new_alien)
3803                                goto fail;
3804                }
3805
3806                new_shared = NULL;
3807                if (cachep->shared) {
3808                        new_shared = alloc_arraycache(node,
3809                                cachep->shared*cachep->batchcount,
3810                                        0xbaadf00d, gfp);
3811                        if (!new_shared) {
3812                                free_alien_cache(new_alien);
3813                                goto fail;
3814                        }
3815                }
3816
3817                l3 = cachep->nodelists[node];
3818                if (l3) {
3819                        struct array_cache *shared = l3->shared;
3820
3821                        spin_lock_irq(&l3->list_lock);
3822
3823                        if (shared)
3824                                free_block(cachep, shared->entry,
3825                                                shared->avail, node);
3826
3827                        l3->shared = new_shared;
3828                        if (!l3->alien) {
3829                                l3->alien = new_alien;
3830                                new_alien = NULL;
3831                        }
3832                        l3->free_limit = (1 + nr_cpus_node(node)) *
3833                                        cachep->batchcount + cachep->num;
3834                        spin_unlock_irq(&l3->list_lock);
3835                        kfree(shared);
3836                        free_alien_cache(new_alien);
3837                        continue;
3838                }
3839                l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3840                if (!l3) {
3841                        free_alien_cache(new_alien);
3842                        kfree(new_shared);
3843                        goto fail;
3844                }
3845
3846                kmem_list3_init(l3);
3847                l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3848                                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3849                l3->shared = new_shared;
3850                l3->alien = new_alien;
3851                l3->free_limit = (1 + nr_cpus_node(node)) *
3852                                        cachep->batchcount + cachep->num;
3853                cachep->nodelists[node] = l3;
3854        }
3855        return 0;
3856
3857fail:
3858        if (!cachep->next.next) {
3859                /* Cache is not active yet. Roll back what we did */
3860                node--;
3861                while (node >= 0) {
3862                        if (cachep->nodelists[node]) {
3863                                l3 = cachep->nodelists[node];
3864
3865                                kfree(l3->shared);
3866                                free_alien_cache(l3->alien);
3867                                kfree(l3);
3868                                cachep->nodelists[node] = NULL;
3869                        }
3870                        node--;
3871                }
3872        }
3873        return -ENOMEM;
3874}
3875
3876struct ccupdate_struct {
3877        struct kmem_cache *cachep;
3878        struct array_cache *new[NR_CPUS];
3879};
3880
3881static void do_ccupdate_local(void *info)
3882{
3883        struct ccupdate_struct *new = info;
3884        struct array_cache *old;
3885
3886        check_irq_off();
3887        old = cpu_cache_get(new->cachep);
3888
3889        new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3890        new->new[smp_processor_id()] = old;
3891}
3892
3893/* Always called with the cache_chain_mutex held */
3894static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3895                                int batchcount, int shared, gfp_t gfp)
3896{
3897        struct ccupdate_struct *new;
3898        int i;
3899
3900        new = kzalloc(sizeof(*new), gfp);
3901        if (!new)
3902                return -ENOMEM;
3903
3904        for_each_online_cpu(i) {
3905                new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3906                                                batchcount, gfp);
3907                if (!new->new[i]) {
3908                        for (i--; i >= 0; i--)
3909                                kfree(new->new[i]);
3910                        kfree(new);
3911                        return -ENOMEM;
3912                }
3913        }
3914        new->cachep = cachep;
3915
3916        on_each_cpu(do_ccupdate_local, (void *)new, 1);
3917
3918        check_irq_on();
3919        cachep->batchcount = batchcount;
3920        cachep->limit = limit;
3921        cachep->shared = shared;
3922
3923        for_each_online_cpu(i) {
3924                struct array_cache *ccold = new->new[i];
3925                if (!ccold)
3926                        continue;
3927                spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3928                free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3929                spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3930                kfree(ccold);
3931        }
3932        kfree(new);
3933        return alloc_kmemlist(cachep, gfp);
3934}
3935
3936/* Called with cache_chain_mutex held always */
3937static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3938{
3939        int err;
3940        int limit, shared;
3941
3942        /*
3943         * The head array serves three purposes:
3944         * - create a LIFO ordering, i.e. return objects that are cache-warm
3945         * - reduce the number of spinlock operations.
3946         * - reduce the number of linked list operations on the slab and
3947         *   bufctl chains: array operations are cheaper.
3948         * The numbers are guessed, we should auto-tune as described by
3949         * Bonwick.
3950         */
3951        if (cachep->buffer_size > 131072)
3952                limit = 1;
3953        else if (cachep->buffer_size > PAGE_SIZE)
3954                limit = 8;
3955        else if (cachep->buffer_size > 1024)
3956                limit = 24;
3957        else if (cachep->buffer_size > 256)
3958                limit = 54;
3959        else
3960                limit = 120;
3961
3962        /*
3963         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3964         * allocation behaviour: Most allocs on one cpu, most free operations
3965         * on another cpu. For these cases, an efficient object passing between
3966         * cpus is necessary. This is provided by a shared array. The array
3967         * replaces Bonwick's magazine layer.
3968         * On uniprocessor, it's functionally equivalent (but less efficient)
3969         * to a larger limit. Thus disabled by default.
3970         */
3971        shared = 0;
3972        if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3973                shared = 8;
3974
3975#if DEBUG
3976        /*
3977         * With debugging enabled, large batchcount lead to excessively long
3978         * periods with disabled local interrupts. Limit the batchcount
3979         */
3980        if (limit > 32)
3981                limit = 32;
3982#endif
3983        err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
3984        if (err)
3985                printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3986                       cachep->name, -err);
3987        return err;
3988}
3989
3990/*
3991 * Drain an array if it contains any elements taking the l3 lock only if
3992 * necessary. Note that the l3 listlock also protects the array_cache
3993 * if drain_array() is used on the shared array.
3994 */
3995void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3996                         struct array_cache *ac, int force, int node)
3997{
3998        int tofree;
3999
4000        if (!ac || !ac->avail)
4001                return;
4002        if (ac->touched && !force) {
4003                ac->touched = 0;
4004        } else {
4005                spin_lock_irq(&l3->list_lock);
4006                if (ac->avail) {
4007                        tofree = force ? ac->avail : (ac->limit + 4) / 5;
4008                        if (tofree > ac->avail)
4009                                tofree = (ac->avail + 1) / 2;
4010                        free_block(cachep, ac->entry, tofree, node);
4011                        ac->avail -= tofree;
4012                        memmove(ac->entry, &(ac->entry[tofree]),
4013                                sizeof(void *) * ac->avail);
4014                }
4015                spin_unlock_irq(&l3->list_lock);
4016        }
4017}
4018
4019/**
4020 * cache_reap - Reclaim memory from caches.
4021 * @w: work descriptor
4022 *
4023 * Called from workqueue/eventd every few seconds.
4024 * Purpose:
4025 * - clear the per-cpu caches for this CPU.
4026 * - return freeable pages to the main free memory pool.
4027 *
4028 * If we cannot acquire the cache chain mutex then just give up - we'll try
4029 * again on the next iteration.
4030 */
4031static void cache_reap(struct work_struct *w)
4032{
4033        struct kmem_cache *searchp;
4034        struct kmem_list3 *l3;
4035        int node = numa_node_id();
4036        struct delayed_work *work = to_delayed_work(w);
4037
4038        if (!mutex_trylock(&cache_chain_mutex))
4039                /* Give up. Setup the next iteration. */
4040                goto out;
4041
4042        list_for_each_entry(searchp, &cache_chain, next) {
4043                check_irq_on();
4044
4045                /*
4046                 * We only take the l3 lock if absolutely necessary and we
4047                 * have established with reasonable certainty that
4048                 * we can do some work if the lock was obtained.
4049                 */
4050                l3 = searchp->nodelists[node];
4051
4052                reap_alien(searchp, l3);
4053
4054                drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4055
4056                /*
4057                 * These are racy checks but it does not matter
4058                 * if we skip one check or scan twice.
4059                 */
4060                if (time_after(l3->next_reap, jiffies))
4061                        goto next;
4062
4063                l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4064
4065                drain_array(searchp, l3, l3->shared, 0, node);
4066
4067                if (l3->free_touched)
4068                        l3->free_touched = 0;
4069                else {
4070                        int freed;
4071
4072                        freed = drain_freelist(searchp, l3, (l3->free_limit +
4073                                5 * searchp->num - 1) / (5 * searchp->num));
4074                        STATS_ADD_REAPED(searchp, freed);
4075                }
4076next:
4077                cond_resched();
4078        }
4079        check_irq_on();
4080        mutex_unlock(&cache_chain_mutex);
4081        next_reap_node();
4082out:
4083        /* Set up the next iteration */
4084        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4085}
4086
4087#ifdef CONFIG_SLABINFO
4088
4089static void print_slabinfo_header(struct seq_file *m)
4090{
4091        /*
4092         * Output format version, so at least we can change it
4093         * without _too_ many complaints.
4094         */
4095#if STATS
4096        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4097#else
4098        seq_puts(m, "slabinfo - version: 2.1\n");
4099#endif
4100        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4101                 "<objperslab> <pagesperslab>");
4102        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4103        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4104#if STATS
4105        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4106                 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4107        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4108#endif
4109        seq_putc(m, '\n');
4110}
4111
4112static void *s_start(struct seq_file *m, loff_t *pos)
4113{
4114        loff_t n = *pos;
4115
4116        mutex_lock(&cache_chain_mutex);
4117        if (!n)
4118                print_slabinfo_header(m);
4119
4120        return seq_list_start(&cache_chain, *pos);
4121}
4122
4123static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4124{
4125        return seq_list_next(p, &cache_chain, pos);
4126}
4127
4128static void s_stop(struct seq_file *m, void *p)
4129{
4130        mutex_unlock(&cache_chain_mutex);
4131}
4132
4133static int s_show(struct seq_file *m, void *p)
4134{
4135        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4136        struct slab *slabp;
4137        unsigned long active_objs;
4138        unsigned long num_objs;
4139        unsigned long active_slabs = 0;
4140        unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4141        const char *name;
4142        char *error = NULL;
4143        int node;
4144        struct kmem_list3 *l3;
4145
4146        active_objs = 0;
4147        num_slabs = 0;
4148        for_each_online_node(node) {
4149                l3 = cachep->nodelists[node];
4150                if (!l3)
4151                        continue;
4152
4153                check_irq_on();
4154                spin_lock_irq(&l3->list_lock);
4155
4156                list_for_each_entry(slabp, &l3->slabs_full, list) {
4157                        if (slabp->inuse != cachep->num && !error)
4158                                error = "slabs_full accounting error";
4159                        active_objs += cachep->num;
4160                        active_slabs++;
4161                }
4162                list_for_each_entry(slabp, &l3->slabs_partial, list) {
4163                        if (slabp->inuse == cachep->num && !error)
4164                                error = "slabs_partial inuse accounting error";
4165                        if (!slabp->inuse && !error)
4166                                error = "slabs_partial/inuse accounting error";
4167                        active_objs += slabp->inuse;
4168                        active_slabs++;
4169                }
4170                list_for_each_entry(slabp, &l3->slabs_free, list) {
4171                        if (slabp->inuse && !error)
4172                                error = "slabs_free/inuse accounting error";
4173                        num_slabs++;
4174                }
4175                free_objects += l3->free_objects;
4176                if (l3->shared)
4177                        shared_avail += l3->shared->avail;
4178
4179                spin_unlock_irq(&l3->list_lock);
4180        }
4181        num_slabs += active_slabs;
4182        num_objs = num_slabs * cachep->num;
4183        if (num_objs - active_objs != free_objects && !error)
4184                error = "free_objects accounting error";
4185
4186        name = cachep->name;
4187        if (error)
4188                printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4189
4190        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4191                   name, active_objs, num_objs, cachep->buffer_size,
4192                   cachep->num, (1 << cachep->gfporder));
4193        seq_printf(m, " : tunables %4u %4u %4u",
4194                   cachep->limit, cachep->batchcount, cachep->shared);
4195        seq_printf(m, " : slabdata %6lu %6lu %6lu",
4196                   active_slabs, num_slabs, shared_avail);
4197#if STATS
4198        {                       /* list3 stats */
4199                unsigned long high = cachep->high_mark;
4200                unsigned long allocs = cachep->num_allocations;
4201                unsigned long grown = cachep->grown;
4202                unsigned long reaped = cachep->reaped;
4203                unsigned long errors = cachep->errors;
4204                unsigned long max_freeable = cachep->max_freeable;
4205                unsigned long node_allocs = cachep->node_allocs;
4206                unsigned long node_frees = cachep->node_frees;
4207                unsigned long overflows = cachep->node_overflow;
4208
4209                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4210                                %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4211                                reaped, errors, max_freeable, node_allocs,
4212                                node_frees, overflows);
4213        }
4214        /* cpu stats */
4215        {
4216                unsigned long allochit = atomic_read(&cachep->allochit);
4217                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4218                unsigned long freehit = atomic_read(&cachep->freehit);
4219                unsigned long freemiss = atomic_read(&cachep->freemiss);
4220
4221                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4222                           allochit, allocmiss, freehit, freemiss);
4223        }
4224#endif
4225        seq_putc(m, '\n');
4226        return 0;
4227}
4228
4229/*
4230 * slabinfo_op - iterator that generates /proc/slabinfo
4231 *
4232 * Output layout:
4233 * cache-name
4234 * num-active-objs
4235 * total-objs
4236 * object size
4237 * num-active-slabs
4238 * total-slabs
4239 * num-pages-per-slab
4240 * + further values on SMP and with statistics enabled
4241 */
4242
4243static const struct seq_operations slabinfo_op = {
4244        .start = s_start,
4245        .next = s_next,
4246        .stop = s_stop,
4247        .show = s_show,
4248};
4249
4250#define MAX_SLABINFO_WRITE 128
4251/**
4252 * slabinfo_write - Tuning for the slab allocator
4253 * @file: unused
4254 * @buffer: user buffer
4255 * @count: data length
4256 * @ppos: unused
4257 */
4258ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4259                       size_t count, loff_t *ppos)
4260{
4261        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4262        int limit, batchcount, shared, res;
4263        struct kmem_cache *cachep;
4264
4265        if (count > MAX_SLABINFO_WRITE)
4266                return -EINVAL;
4267        if (copy_from_user(&kbuf, buffer, count))
4268                return -EFAULT;
4269        kbuf[MAX_SLABINFO_WRITE] = '\0';
4270
4271        tmp = strchr(kbuf, ' ');
4272        if (!tmp)
4273                return -EINVAL;
4274        *tmp = '\0';
4275        tmp++;
4276        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4277                return -EINVAL;
4278
4279        /* Find the cache in the chain of caches. */
4280        mutex_lock(&cache_chain_mutex);
4281        res = -EINVAL;
4282        list_for_each_entry(cachep, &cache_chain, next) {
4283                if (!strcmp(cachep->name, kbuf)) {
4284                        if (limit < 1 || batchcount < 1 ||
4285                                        batchcount > limit || shared < 0) {
4286                                res = 0;
4287                        } else {
4288                                res = do_tune_cpucache(cachep, limit,
4289                                                       batchcount, shared,
4290                                                       GFP_KERNEL);
4291                        }
4292                        break;
4293                }
4294        }
4295        mutex_unlock(&cache_chain_mutex);
4296        if (res >= 0)
4297                res = count;
4298        return res;
4299}
4300
4301static int slabinfo_open(struct inode *inode, struct file *file)
4302{
4303        return seq_open(file, &slabinfo_op);
4304}
4305
4306static const struct file_operations proc_slabinfo_operations = {
4307        .open           = slabinfo_open,
4308        .read           = seq_read,
4309        .write          = slabinfo_write,
4310        .llseek         = seq_lseek,
4311        .release        = seq_release,
4312};
4313
4314#ifdef CONFIG_DEBUG_SLAB_LEAK
4315
4316static void *leaks_start(struct seq_file *m, loff_t *pos)
4317{
4318        mutex_lock(&cache_chain_mutex);
4319        return seq_list_start(&cache_chain, *pos);
4320}
4321
4322static inline int add_caller(unsigned long *n, unsigned long v)
4323{
4324        unsigned long *p;
4325        int l;
4326        if (!v)
4327                return 1;
4328        l = n[1];
4329        p = n + 2;
4330        while (l) {
4331                int i = l/2;
4332                unsigned long *q = p + 2 * i;
4333                if (*q == v) {
4334                        q[1]++;
4335                        return 1;
4336                }
4337                if (*q > v) {
4338                        l = i;
4339                } else {
4340                        p = q + 2;
4341                        l -= i + 1;
4342                }
4343        }
4344        if (++n[1] == n[0])
4345                return 0;
4346        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4347        p[0] = v;
4348        p[1] = 1;
4349        return 1;
4350}
4351
4352static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4353{
4354        void *p;
4355        int i;
4356        if (n[0] == n[1])
4357                return;
4358        for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4359                if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4360                        continue;
4361                if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4362                        return;
4363        }
4364}
4365
4366static void show_symbol(struct seq_file *m, unsigned long address)
4367{
4368#ifdef CONFIG_KALLSYMS
4369        unsigned long offset, size;
4370        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4371
4372        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4373                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4374                if (modname[0])
4375                        seq_printf(m, " [%s]", modname);
4376                return;
4377        }
4378#endif
4379        seq_printf(m, "%p", (void *)address);
4380}
4381
4382static int leaks_show(struct seq_file *m, void *p)
4383{
4384        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4385        struct slab *slabp;
4386        struct kmem_list3 *l3;
4387        const char *name;
4388        unsigned long *n = m->private;
4389        int node;
4390        int i;
4391
4392        if (!(cachep->flags & SLAB_STORE_USER))
4393                return 0;
4394        if (!(cachep->flags & SLAB_RED_ZONE))
4395                return 0;
4396
4397        /* OK, we can do it */
4398
4399        n[1] = 0;
4400
4401        for_each_online_node(node) {
4402                l3 = cachep->nodelists[node];
4403                if (!l3)
4404                        continue;
4405
4406                check_irq_on();
4407                spin_lock_irq(&l3->list_lock);
4408
4409                list_for_each_entry(slabp, &l3->slabs_full, list)
4410                        handle_slab(n, cachep, slabp);
4411                list_for_each_entry(slabp, &l3->slabs_partial, list)
4412                        handle_slab(n, cachep, slabp);
4413                spin_unlock_irq(&l3->list_lock);
4414        }
4415        name = cachep->name;
4416        if (n[0] == n[1]) {
4417                /* Increase the buffer size */
4418                mutex_unlock(&cache_chain_mutex);
4419                m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4420                if (!m->private) {
4421                        /* Too bad, we are really out */
4422                        m->private = n;
4423                        mutex_lock(&cache_chain_mutex);
4424                        return -ENOMEM;
4425                }
4426                *(unsigned long *)m->private = n[0] * 2;
4427                kfree(n);
4428                mutex_lock(&cache_chain_mutex);
4429                /* Now make sure this entry will be retried */
4430                m->count = m->size;
4431                return 0;
4432        }
4433        for (i = 0; i < n[1]; i++) {
4434                seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4435                show_symbol(m, n[2*i+2]);
4436                seq_putc(m, '\n');
4437        }
4438
4439        return 0;
4440}
4441
4442static const struct seq_operations slabstats_op = {
4443        .start = leaks_start,
4444        .next = s_next,
4445        .stop = s_stop,
4446        .show = leaks_show,
4447};
4448
4449static int slabstats_open(struct inode *inode, struct file *file)
4450{
4451        unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4452        int ret = -ENOMEM;
4453        if (n) {
4454                ret = seq_open(file, &slabstats_op);
4455                if (!ret) {
4456                        struct seq_file *m = file->private_data;
4457                        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4458                        m->private = n;
4459                        n = NULL;
4460                }
4461                kfree(n);
4462        }
4463        return ret;
4464}
4465
4466static const struct file_operations proc_slabstats_operations = {
4467        .open           = slabstats_open,
4468        .read           = seq_read,
4469        .llseek         = seq_lseek,
4470        .release        = seq_release_private,
4471};
4472#endif
4473
4474static int __init slab_proc_init(void)
4475{
4476        proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4477#ifdef CONFIG_DEBUG_SLAB_LEAK
4478        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4479#endif
4480        return 0;
4481}
4482module_init(slab_proc_init);
4483#endif
4484
4485/**
4486 * ksize - get the actual amount of memory allocated for a given object
4487 * @objp: Pointer to the object
4488 *
4489 * kmalloc may internally round up allocations and return more memory
4490 * than requested. ksize() can be used to determine the actual amount of
4491 * memory allocated. The caller may use this additional memory, even though
4492 * a smaller amount of memory was initially specified with the kmalloc call.
4493 * The caller must guarantee that objp points to a valid object previously
4494 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4495 * must not be freed during the duration of the call.
4496 */
4497size_t ksize(const void *objp)
4498{
4499        BUG_ON(!objp);
4500        if (unlikely(objp == ZERO_SIZE_PTR))
4501                return 0;
4502
4503        return obj_size(virt_to_cache(objp));
4504}
4505EXPORT_SYMBOL(ksize);
4506