linux/mm/slob.c
<<
>>
Prefs
   1/*
   2 * SLOB Allocator: Simple List Of Blocks
   3 *
   4 * Matt Mackall <mpm@selenic.com> 12/30/03
   5 *
   6 * NUMA support by Paul Mundt, 2007.
   7 *
   8 * How SLOB works:
   9 *
  10 * The core of SLOB is a traditional K&R style heap allocator, with
  11 * support for returning aligned objects. The granularity of this
  12 * allocator is as little as 2 bytes, however typically most architectures
  13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  14 *
  15 * The slob heap is a set of linked list of pages from alloc_pages(),
  16 * and within each page, there is a singly-linked list of free blocks
  17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
  18 * heap pages are segregated into three lists, with objects less than
  19 * 256 bytes, objects less than 1024 bytes, and all other objects.
  20 *
  21 * Allocation from heap involves first searching for a page with
  22 * sufficient free blocks (using a next-fit-like approach) followed by
  23 * a first-fit scan of the page. Deallocation inserts objects back
  24 * into the free list in address order, so this is effectively an
  25 * address-ordered first fit.
  26 *
  27 * Above this is an implementation of kmalloc/kfree. Blocks returned
  28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  30 * alloc_pages() directly, allocating compound pages so the page order
  31 * does not have to be separately tracked, and also stores the exact
  32 * allocation size in page->private so that it can be used to accurately
  33 * provide ksize(). These objects are detected in kfree() because slob_page()
  34 * is false for them.
  35 *
  36 * SLAB is emulated on top of SLOB by simply calling constructors and
  37 * destructors for every SLAB allocation. Objects are returned with the
  38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39 * case the low-level allocator will fragment blocks to create the proper
  40 * alignment. Again, objects of page-size or greater are allocated by
  41 * calling alloc_pages(). As SLAB objects know their size, no separate
  42 * size bookkeeping is necessary and there is essentially no allocation
  43 * space overhead, and compound pages aren't needed for multi-page
  44 * allocations.
  45 *
  46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47 * logic down to the page allocator, and simply doing the node accounting
  48 * on the upper levels. In the event that a node id is explicitly
  49 * provided, alloc_pages_exact_node() with the specified node id is used
  50 * instead. The common case (or when the node id isn't explicitly provided)
  51 * will default to the current node, as per numa_node_id().
  52 *
  53 * Node aware pages are still inserted in to the global freelist, and
  54 * these are scanned for by matching against the node id encoded in the
  55 * page flags. As a result, block allocations that can be satisfied from
  56 * the freelist will only be done so on pages residing on the same node,
  57 * in order to prevent random node placement.
  58 */
  59
  60#include <linux/kernel.h>
  61#include <linux/slab.h>
  62#include <linux/mm.h>
  63#include <linux/swap.h> /* struct reclaim_state */
  64#include <linux/cache.h>
  65#include <linux/init.h>
  66#include <linux/module.h>
  67#include <linux/rcupdate.h>
  68#include <linux/list.h>
  69#include <linux/kmemtrace.h>
  70#include <linux/kmemleak.h>
  71#include <asm/atomic.h>
  72
  73/*
  74 * slob_block has a field 'units', which indicates size of block if +ve,
  75 * or offset of next block if -ve (in SLOB_UNITs).
  76 *
  77 * Free blocks of size 1 unit simply contain the offset of the next block.
  78 * Those with larger size contain their size in the first SLOB_UNIT of
  79 * memory, and the offset of the next free block in the second SLOB_UNIT.
  80 */
  81#if PAGE_SIZE <= (32767 * 2)
  82typedef s16 slobidx_t;
  83#else
  84typedef s32 slobidx_t;
  85#endif
  86
  87struct slob_block {
  88        slobidx_t units;
  89};
  90typedef struct slob_block slob_t;
  91
  92/*
  93 * We use struct page fields to manage some slob allocation aspects,
  94 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
  95 * just define our own struct page type variant here.
  96 */
  97struct slob_page {
  98        union {
  99                struct {
 100                        unsigned long flags;    /* mandatory */
 101                        atomic_t _count;        /* mandatory */
 102                        slobidx_t units;        /* free units left in page */
 103                        unsigned long pad[2];
 104                        slob_t *free;           /* first free slob_t in page */
 105                        struct list_head list;  /* linked list of free pages */
 106                };
 107                struct page page;
 108        };
 109};
 110static inline void struct_slob_page_wrong_size(void)
 111{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
 112
 113/*
 114 * free_slob_page: call before a slob_page is returned to the page allocator.
 115 */
 116static inline void free_slob_page(struct slob_page *sp)
 117{
 118        reset_page_mapcount(&sp->page);
 119        sp->page.mapping = NULL;
 120}
 121
 122/*
 123 * All partially free slob pages go on these lists.
 124 */
 125#define SLOB_BREAK1 256
 126#define SLOB_BREAK2 1024
 127static LIST_HEAD(free_slob_small);
 128static LIST_HEAD(free_slob_medium);
 129static LIST_HEAD(free_slob_large);
 130
 131/*
 132 * is_slob_page: True for all slob pages (false for bigblock pages)
 133 */
 134static inline int is_slob_page(struct slob_page *sp)
 135{
 136        return PageSlab((struct page *)sp);
 137}
 138
 139static inline void set_slob_page(struct slob_page *sp)
 140{
 141        __SetPageSlab((struct page *)sp);
 142}
 143
 144static inline void clear_slob_page(struct slob_page *sp)
 145{
 146        __ClearPageSlab((struct page *)sp);
 147}
 148
 149static inline struct slob_page *slob_page(const void *addr)
 150{
 151        return (struct slob_page *)virt_to_page(addr);
 152}
 153
 154/*
 155 * slob_page_free: true for pages on free_slob_pages list.
 156 */
 157static inline int slob_page_free(struct slob_page *sp)
 158{
 159        return PageSlobFree((struct page *)sp);
 160}
 161
 162static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
 163{
 164        list_add(&sp->list, list);
 165        __SetPageSlobFree((struct page *)sp);
 166}
 167
 168static inline void clear_slob_page_free(struct slob_page *sp)
 169{
 170        list_del(&sp->list);
 171        __ClearPageSlobFree((struct page *)sp);
 172}
 173
 174#define SLOB_UNIT sizeof(slob_t)
 175#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
 176#define SLOB_ALIGN L1_CACHE_BYTES
 177
 178/*
 179 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 180 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
 181 * the block using call_rcu.
 182 */
 183struct slob_rcu {
 184        struct rcu_head head;
 185        int size;
 186};
 187
 188/*
 189 * slob_lock protects all slob allocator structures.
 190 */
 191static DEFINE_SPINLOCK(slob_lock);
 192
 193/*
 194 * Encode the given size and next info into a free slob block s.
 195 */
 196static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 197{
 198        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 199        slobidx_t offset = next - base;
 200
 201        if (size > 1) {
 202                s[0].units = size;
 203                s[1].units = offset;
 204        } else
 205                s[0].units = -offset;
 206}
 207
 208/*
 209 * Return the size of a slob block.
 210 */
 211static slobidx_t slob_units(slob_t *s)
 212{
 213        if (s->units > 0)
 214                return s->units;
 215        return 1;
 216}
 217
 218/*
 219 * Return the next free slob block pointer after this one.
 220 */
 221static slob_t *slob_next(slob_t *s)
 222{
 223        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 224        slobidx_t next;
 225
 226        if (s[0].units < 0)
 227                next = -s[0].units;
 228        else
 229                next = s[1].units;
 230        return base+next;
 231}
 232
 233/*
 234 * Returns true if s is the last free block in its page.
 235 */
 236static int slob_last(slob_t *s)
 237{
 238        return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 239}
 240
 241static void *slob_new_pages(gfp_t gfp, int order, int node)
 242{
 243        void *page;
 244
 245#ifdef CONFIG_NUMA
 246        if (node != -1)
 247                page = alloc_pages_exact_node(node, gfp, order);
 248        else
 249#endif
 250                page = alloc_pages(gfp, order);
 251
 252        if (!page)
 253                return NULL;
 254
 255        return page_address(page);
 256}
 257
 258static void slob_free_pages(void *b, int order)
 259{
 260        if (current->reclaim_state)
 261                current->reclaim_state->reclaimed_slab += 1 << order;
 262        free_pages((unsigned long)b, order);
 263}
 264
 265/*
 266 * Allocate a slob block within a given slob_page sp.
 267 */
 268static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
 269{
 270        slob_t *prev, *cur, *aligned = NULL;
 271        int delta = 0, units = SLOB_UNITS(size);
 272
 273        for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
 274                slobidx_t avail = slob_units(cur);
 275
 276                if (align) {
 277                        aligned = (slob_t *)ALIGN((unsigned long)cur, align);
 278                        delta = aligned - cur;
 279                }
 280                if (avail >= units + delta) { /* room enough? */
 281                        slob_t *next;
 282
 283                        if (delta) { /* need to fragment head to align? */
 284                                next = slob_next(cur);
 285                                set_slob(aligned, avail - delta, next);
 286                                set_slob(cur, delta, aligned);
 287                                prev = cur;
 288                                cur = aligned;
 289                                avail = slob_units(cur);
 290                        }
 291
 292                        next = slob_next(cur);
 293                        if (avail == units) { /* exact fit? unlink. */
 294                                if (prev)
 295                                        set_slob(prev, slob_units(prev), next);
 296                                else
 297                                        sp->free = next;
 298                        } else { /* fragment */
 299                                if (prev)
 300                                        set_slob(prev, slob_units(prev), cur + units);
 301                                else
 302                                        sp->free = cur + units;
 303                                set_slob(cur + units, avail - units, next);
 304                        }
 305
 306                        sp->units -= units;
 307                        if (!sp->units)
 308                                clear_slob_page_free(sp);
 309                        return cur;
 310                }
 311                if (slob_last(cur))
 312                        return NULL;
 313        }
 314}
 315
 316/*
 317 * slob_alloc: entry point into the slob allocator.
 318 */
 319static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
 320{
 321        struct slob_page *sp;
 322        struct list_head *prev;
 323        struct list_head *slob_list;
 324        slob_t *b = NULL;
 325        unsigned long flags;
 326
 327        if (size < SLOB_BREAK1)
 328                slob_list = &free_slob_small;
 329        else if (size < SLOB_BREAK2)
 330                slob_list = &free_slob_medium;
 331        else
 332                slob_list = &free_slob_large;
 333
 334        spin_lock_irqsave(&slob_lock, flags);
 335        /* Iterate through each partially free page, try to find room */
 336        list_for_each_entry(sp, slob_list, list) {
 337#ifdef CONFIG_NUMA
 338                /*
 339                 * If there's a node specification, search for a partial
 340                 * page with a matching node id in the freelist.
 341                 */
 342                if (node != -1 && page_to_nid(&sp->page) != node)
 343                        continue;
 344#endif
 345                /* Enough room on this page? */
 346                if (sp->units < SLOB_UNITS(size))
 347                        continue;
 348
 349                /* Attempt to alloc */
 350                prev = sp->list.prev;
 351                b = slob_page_alloc(sp, size, align);
 352                if (!b)
 353                        continue;
 354
 355                /* Improve fragment distribution and reduce our average
 356                 * search time by starting our next search here. (see
 357                 * Knuth vol 1, sec 2.5, pg 449) */
 358                if (prev != slob_list->prev &&
 359                                slob_list->next != prev->next)
 360                        list_move_tail(slob_list, prev->next);
 361                break;
 362        }
 363        spin_unlock_irqrestore(&slob_lock, flags);
 364
 365        /* Not enough space: must allocate a new page */
 366        if (!b) {
 367                b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 368                if (!b)
 369                        return NULL;
 370                sp = slob_page(b);
 371                set_slob_page(sp);
 372
 373                spin_lock_irqsave(&slob_lock, flags);
 374                sp->units = SLOB_UNITS(PAGE_SIZE);
 375                sp->free = b;
 376                INIT_LIST_HEAD(&sp->list);
 377                set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 378                set_slob_page_free(sp, slob_list);
 379                b = slob_page_alloc(sp, size, align);
 380                BUG_ON(!b);
 381                spin_unlock_irqrestore(&slob_lock, flags);
 382        }
 383        if (unlikely((gfp & __GFP_ZERO) && b))
 384                memset(b, 0, size);
 385        return b;
 386}
 387
 388/*
 389 * slob_free: entry point into the slob allocator.
 390 */
 391static void slob_free(void *block, int size)
 392{
 393        struct slob_page *sp;
 394        slob_t *prev, *next, *b = (slob_t *)block;
 395        slobidx_t units;
 396        unsigned long flags;
 397
 398        if (unlikely(ZERO_OR_NULL_PTR(block)))
 399                return;
 400        BUG_ON(!size);
 401
 402        sp = slob_page(block);
 403        units = SLOB_UNITS(size);
 404
 405        spin_lock_irqsave(&slob_lock, flags);
 406
 407        if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 408                /* Go directly to page allocator. Do not pass slob allocator */
 409                if (slob_page_free(sp))
 410                        clear_slob_page_free(sp);
 411                spin_unlock_irqrestore(&slob_lock, flags);
 412                clear_slob_page(sp);
 413                free_slob_page(sp);
 414                slob_free_pages(b, 0);
 415                return;
 416        }
 417
 418        if (!slob_page_free(sp)) {
 419                /* This slob page is about to become partially free. Easy! */
 420                sp->units = units;
 421                sp->free = b;
 422                set_slob(b, units,
 423                        (void *)((unsigned long)(b +
 424                                        SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 425                set_slob_page_free(sp, &free_slob_small);
 426                goto out;
 427        }
 428
 429        /*
 430         * Otherwise the page is already partially free, so find reinsertion
 431         * point.
 432         */
 433        sp->units += units;
 434
 435        if (b < sp->free) {
 436                if (b + units == sp->free) {
 437                        units += slob_units(sp->free);
 438                        sp->free = slob_next(sp->free);
 439                }
 440                set_slob(b, units, sp->free);
 441                sp->free = b;
 442        } else {
 443                prev = sp->free;
 444                next = slob_next(prev);
 445                while (b > next) {
 446                        prev = next;
 447                        next = slob_next(prev);
 448                }
 449
 450                if (!slob_last(prev) && b + units == next) {
 451                        units += slob_units(next);
 452                        set_slob(b, units, slob_next(next));
 453                } else
 454                        set_slob(b, units, next);
 455
 456                if (prev + slob_units(prev) == b) {
 457                        units = slob_units(b) + slob_units(prev);
 458                        set_slob(prev, units, slob_next(b));
 459                } else
 460                        set_slob(prev, slob_units(prev), b);
 461        }
 462out:
 463        spin_unlock_irqrestore(&slob_lock, flags);
 464}
 465
 466/*
 467 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 468 */
 469
 470#ifndef ARCH_KMALLOC_MINALIGN
 471#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
 472#endif
 473
 474#ifndef ARCH_SLAB_MINALIGN
 475#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
 476#endif
 477
 478void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 479{
 480        unsigned int *m;
 481        int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 482        void *ret;
 483
 484        lockdep_trace_alloc(gfp);
 485
 486        if (size < PAGE_SIZE - align) {
 487                if (!size)
 488                        return ZERO_SIZE_PTR;
 489
 490                m = slob_alloc(size + align, gfp, align, node);
 491
 492                if (!m)
 493                        return NULL;
 494                *m = size;
 495                ret = (void *)m + align;
 496
 497                trace_kmalloc_node(_RET_IP_, ret,
 498                                   size, size + align, gfp, node);
 499        } else {
 500                unsigned int order = get_order(size);
 501
 502                ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
 503                if (ret) {
 504                        struct page *page;
 505                        page = virt_to_page(ret);
 506                        page->private = size;
 507                }
 508
 509                trace_kmalloc_node(_RET_IP_, ret,
 510                                   size, PAGE_SIZE << order, gfp, node);
 511        }
 512
 513        kmemleak_alloc(ret, size, 1, gfp);
 514        return ret;
 515}
 516EXPORT_SYMBOL(__kmalloc_node);
 517
 518void kfree(const void *block)
 519{
 520        struct slob_page *sp;
 521
 522        trace_kfree(_RET_IP_, block);
 523
 524        if (unlikely(ZERO_OR_NULL_PTR(block)))
 525                return;
 526        kmemleak_free(block);
 527
 528        sp = slob_page(block);
 529        if (is_slob_page(sp)) {
 530                int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 531                unsigned int *m = (unsigned int *)(block - align);
 532                slob_free(m, *m + align);
 533        } else
 534                put_page(&sp->page);
 535}
 536EXPORT_SYMBOL(kfree);
 537
 538/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 539size_t ksize(const void *block)
 540{
 541        struct slob_page *sp;
 542
 543        BUG_ON(!block);
 544        if (unlikely(block == ZERO_SIZE_PTR))
 545                return 0;
 546
 547        sp = slob_page(block);
 548        if (is_slob_page(sp)) {
 549                int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 550                unsigned int *m = (unsigned int *)(block - align);
 551                return SLOB_UNITS(*m) * SLOB_UNIT;
 552        } else
 553                return sp->page.private;
 554}
 555EXPORT_SYMBOL(ksize);
 556
 557struct kmem_cache {
 558        unsigned int size, align;
 559        unsigned long flags;
 560        const char *name;
 561        void (*ctor)(void *);
 562};
 563
 564struct kmem_cache *kmem_cache_create(const char *name, size_t size,
 565        size_t align, unsigned long flags, void (*ctor)(void *))
 566{
 567        struct kmem_cache *c;
 568
 569        c = slob_alloc(sizeof(struct kmem_cache),
 570                GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
 571
 572        if (c) {
 573                c->name = name;
 574                c->size = size;
 575                if (flags & SLAB_DESTROY_BY_RCU) {
 576                        /* leave room for rcu footer at the end of object */
 577                        c->size += sizeof(struct slob_rcu);
 578                }
 579                c->flags = flags;
 580                c->ctor = ctor;
 581                /* ignore alignment unless it's forced */
 582                c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
 583                if (c->align < ARCH_SLAB_MINALIGN)
 584                        c->align = ARCH_SLAB_MINALIGN;
 585                if (c->align < align)
 586                        c->align = align;
 587        } else if (flags & SLAB_PANIC)
 588                panic("Cannot create slab cache %s\n", name);
 589
 590        kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
 591        return c;
 592}
 593EXPORT_SYMBOL(kmem_cache_create);
 594
 595void kmem_cache_destroy(struct kmem_cache *c)
 596{
 597        kmemleak_free(c);
 598        if (c->flags & SLAB_DESTROY_BY_RCU)
 599                rcu_barrier();
 600        slob_free(c, sizeof(struct kmem_cache));
 601}
 602EXPORT_SYMBOL(kmem_cache_destroy);
 603
 604void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 605{
 606        void *b;
 607
 608        if (c->size < PAGE_SIZE) {
 609                b = slob_alloc(c->size, flags, c->align, node);
 610                trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
 611                                            SLOB_UNITS(c->size) * SLOB_UNIT,
 612                                            flags, node);
 613        } else {
 614                b = slob_new_pages(flags, get_order(c->size), node);
 615                trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
 616                                            PAGE_SIZE << get_order(c->size),
 617                                            flags, node);
 618        }
 619
 620        if (c->ctor)
 621                c->ctor(b);
 622
 623        kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 624        return b;
 625}
 626EXPORT_SYMBOL(kmem_cache_alloc_node);
 627
 628static void __kmem_cache_free(void *b, int size)
 629{
 630        if (size < PAGE_SIZE)
 631                slob_free(b, size);
 632        else
 633                slob_free_pages(b, get_order(size));
 634}
 635
 636static void kmem_rcu_free(struct rcu_head *head)
 637{
 638        struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 639        void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 640
 641        __kmem_cache_free(b, slob_rcu->size);
 642}
 643
 644void kmem_cache_free(struct kmem_cache *c, void *b)
 645{
 646        kmemleak_free_recursive(b, c->flags);
 647        if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
 648                struct slob_rcu *slob_rcu;
 649                slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 650                INIT_RCU_HEAD(&slob_rcu->head);
 651                slob_rcu->size = c->size;
 652                call_rcu(&slob_rcu->head, kmem_rcu_free);
 653        } else {
 654                __kmem_cache_free(b, c->size);
 655        }
 656
 657        trace_kmem_cache_free(_RET_IP_, b);
 658}
 659EXPORT_SYMBOL(kmem_cache_free);
 660
 661unsigned int kmem_cache_size(struct kmem_cache *c)
 662{
 663        return c->size;
 664}
 665EXPORT_SYMBOL(kmem_cache_size);
 666
 667const char *kmem_cache_name(struct kmem_cache *c)
 668{
 669        return c->name;
 670}
 671EXPORT_SYMBOL(kmem_cache_name);
 672
 673int kmem_cache_shrink(struct kmem_cache *d)
 674{
 675        return 0;
 676}
 677EXPORT_SYMBOL(kmem_cache_shrink);
 678
 679int kmem_ptr_validate(struct kmem_cache *a, const void *b)
 680{
 681        return 0;
 682}
 683
 684static unsigned int slob_ready __read_mostly;
 685
 686int slab_is_available(void)
 687{
 688        return slob_ready;
 689}
 690
 691void __init kmem_cache_init(void)
 692{
 693        slob_ready = 1;
 694}
 695
 696void __init kmem_cache_init_late(void)
 697{
 698        /* Nothing to do */
 699}
 700