linux/mm/swap_state.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap_state.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 *
   7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/kernel_stat.h>
  12#include <linux/swap.h>
  13#include <linux/swapops.h>
  14#include <linux/init.h>
  15#include <linux/pagemap.h>
  16#include <linux/buffer_head.h>
  17#include <linux/backing-dev.h>
  18#include <linux/pagevec.h>
  19#include <linux/migrate.h>
  20#include <linux/page_cgroup.h>
  21
  22#include <asm/pgtable.h>
  23
  24/*
  25 * swapper_space is a fiction, retained to simplify the path through
  26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
  27 * future use of radix_tree tags in the swap cache.
  28 */
  29static const struct address_space_operations swap_aops = {
  30        .writepage      = swap_writepage,
  31        .sync_page      = block_sync_page,
  32        .set_page_dirty = __set_page_dirty_nobuffers,
  33        .migratepage    = migrate_page,
  34};
  35
  36static struct backing_dev_info swap_backing_dev_info = {
  37        .name           = "swap",
  38        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  39        .unplug_io_fn   = swap_unplug_io_fn,
  40};
  41
  42struct address_space swapper_space = {
  43        .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  44        .tree_lock      = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
  45        .a_ops          = &swap_aops,
  46        .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
  47        .backing_dev_info = &swap_backing_dev_info,
  48};
  49
  50#define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
  51
  52static struct {
  53        unsigned long add_total;
  54        unsigned long del_total;
  55        unsigned long find_success;
  56        unsigned long find_total;
  57} swap_cache_info;
  58
  59void show_swap_cache_info(void)
  60{
  61        printk("%lu pages in swap cache\n", total_swapcache_pages);
  62        printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  63                swap_cache_info.add_total, swap_cache_info.del_total,
  64                swap_cache_info.find_success, swap_cache_info.find_total);
  65        printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
  66        printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  67}
  68
  69/*
  70 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  71 * but sets SwapCache flag and private instead of mapping and index.
  72 */
  73static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  74{
  75        int error;
  76
  77        VM_BUG_ON(!PageLocked(page));
  78        VM_BUG_ON(PageSwapCache(page));
  79        VM_BUG_ON(!PageSwapBacked(page));
  80
  81        page_cache_get(page);
  82        SetPageSwapCache(page);
  83        set_page_private(page, entry.val);
  84
  85        spin_lock_irq(&swapper_space.tree_lock);
  86        error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
  87        if (likely(!error)) {
  88                total_swapcache_pages++;
  89                __inc_zone_page_state(page, NR_FILE_PAGES);
  90                INC_CACHE_INFO(add_total);
  91        }
  92        spin_unlock_irq(&swapper_space.tree_lock);
  93
  94        if (unlikely(error)) {
  95                /*
  96                 * Only the context which have set SWAP_HAS_CACHE flag
  97                 * would call add_to_swap_cache().
  98                 * So add_to_swap_cache() doesn't returns -EEXIST.
  99                 */
 100                VM_BUG_ON(error == -EEXIST);
 101                set_page_private(page, 0UL);
 102                ClearPageSwapCache(page);
 103                page_cache_release(page);
 104        }
 105
 106        return error;
 107}
 108
 109
 110int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
 111{
 112        int error;
 113
 114        error = radix_tree_preload(gfp_mask);
 115        if (!error) {
 116                error = __add_to_swap_cache(page, entry);
 117                radix_tree_preload_end();
 118        }
 119        return error;
 120}
 121
 122/*
 123 * This must be called only on pages that have
 124 * been verified to be in the swap cache.
 125 */
 126void __delete_from_swap_cache(struct page *page)
 127{
 128        VM_BUG_ON(!PageLocked(page));
 129        VM_BUG_ON(!PageSwapCache(page));
 130        VM_BUG_ON(PageWriteback(page));
 131
 132        radix_tree_delete(&swapper_space.page_tree, page_private(page));
 133        set_page_private(page, 0);
 134        ClearPageSwapCache(page);
 135        total_swapcache_pages--;
 136        __dec_zone_page_state(page, NR_FILE_PAGES);
 137        INC_CACHE_INFO(del_total);
 138}
 139
 140/**
 141 * add_to_swap - allocate swap space for a page
 142 * @page: page we want to move to swap
 143 *
 144 * Allocate swap space for the page and add the page to the
 145 * swap cache.  Caller needs to hold the page lock. 
 146 */
 147int add_to_swap(struct page *page)
 148{
 149        swp_entry_t entry;
 150        int err;
 151
 152        VM_BUG_ON(!PageLocked(page));
 153        VM_BUG_ON(!PageUptodate(page));
 154
 155        entry = get_swap_page();
 156        if (!entry.val)
 157                return 0;
 158
 159        /*
 160         * Radix-tree node allocations from PF_MEMALLOC contexts could
 161         * completely exhaust the page allocator. __GFP_NOMEMALLOC
 162         * stops emergency reserves from being allocated.
 163         *
 164         * TODO: this could cause a theoretical memory reclaim
 165         * deadlock in the swap out path.
 166         */
 167        /*
 168         * Add it to the swap cache and mark it dirty
 169         */
 170        err = add_to_swap_cache(page, entry,
 171                        __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
 172
 173        if (!err) {     /* Success */
 174                SetPageDirty(page);
 175                return 1;
 176        } else {        /* -ENOMEM radix-tree allocation failure */
 177                /*
 178                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 179                 * clear SWAP_HAS_CACHE flag.
 180                 */
 181                swapcache_free(entry, NULL);
 182                return 0;
 183        }
 184}
 185
 186/*
 187 * This must be called only on pages that have
 188 * been verified to be in the swap cache and locked.
 189 * It will never put the page into the free list,
 190 * the caller has a reference on the page.
 191 */
 192void delete_from_swap_cache(struct page *page)
 193{
 194        swp_entry_t entry;
 195
 196        entry.val = page_private(page);
 197
 198        spin_lock_irq(&swapper_space.tree_lock);
 199        __delete_from_swap_cache(page);
 200        spin_unlock_irq(&swapper_space.tree_lock);
 201
 202        swapcache_free(entry, page);
 203        page_cache_release(page);
 204}
 205
 206/* 
 207 * If we are the only user, then try to free up the swap cache. 
 208 * 
 209 * Its ok to check for PageSwapCache without the page lock
 210 * here because we are going to recheck again inside
 211 * try_to_free_swap() _with_ the lock.
 212 *                                      - Marcelo
 213 */
 214static inline void free_swap_cache(struct page *page)
 215{
 216        if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
 217                try_to_free_swap(page);
 218                unlock_page(page);
 219        }
 220}
 221
 222/* 
 223 * Perform a free_page(), also freeing any swap cache associated with
 224 * this page if it is the last user of the page.
 225 */
 226void free_page_and_swap_cache(struct page *page)
 227{
 228        free_swap_cache(page);
 229        page_cache_release(page);
 230}
 231
 232/*
 233 * Passed an array of pages, drop them all from swapcache and then release
 234 * them.  They are removed from the LRU and freed if this is their last use.
 235 */
 236void free_pages_and_swap_cache(struct page **pages, int nr)
 237{
 238        struct page **pagep = pages;
 239
 240        lru_add_drain();
 241        while (nr) {
 242                int todo = min(nr, PAGEVEC_SIZE);
 243                int i;
 244
 245                for (i = 0; i < todo; i++)
 246                        free_swap_cache(pagep[i]);
 247                release_pages(pagep, todo, 0);
 248                pagep += todo;
 249                nr -= todo;
 250        }
 251}
 252
 253/*
 254 * Lookup a swap entry in the swap cache. A found page will be returned
 255 * unlocked and with its refcount incremented - we rely on the kernel
 256 * lock getting page table operations atomic even if we drop the page
 257 * lock before returning.
 258 */
 259struct page * lookup_swap_cache(swp_entry_t entry)
 260{
 261        struct page *page;
 262
 263        page = find_get_page(&swapper_space, entry.val);
 264
 265        if (page)
 266                INC_CACHE_INFO(find_success);
 267
 268        INC_CACHE_INFO(find_total);
 269        return page;
 270}
 271
 272/* 
 273 * Locate a page of swap in physical memory, reserving swap cache space
 274 * and reading the disk if it is not already cached.
 275 * A failure return means that either the page allocation failed or that
 276 * the swap entry is no longer in use.
 277 */
 278struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 279                        struct vm_area_struct *vma, unsigned long addr)
 280{
 281        struct page *found_page, *new_page = NULL;
 282        int err;
 283
 284        do {
 285                /*
 286                 * First check the swap cache.  Since this is normally
 287                 * called after lookup_swap_cache() failed, re-calling
 288                 * that would confuse statistics.
 289                 */
 290                found_page = find_get_page(&swapper_space, entry.val);
 291                if (found_page)
 292                        break;
 293
 294                /*
 295                 * Get a new page to read into from swap.
 296                 */
 297                if (!new_page) {
 298                        new_page = alloc_page_vma(gfp_mask, vma, addr);
 299                        if (!new_page)
 300                                break;          /* Out of memory */
 301                }
 302
 303                /*
 304                 * call radix_tree_preload() while we can wait.
 305                 */
 306                err = radix_tree_preload(gfp_mask & GFP_KERNEL);
 307                if (err)
 308                        break;
 309
 310                /*
 311                 * Swap entry may have been freed since our caller observed it.
 312                 */
 313                err = swapcache_prepare(entry);
 314                if (err == -EEXIST) {   /* seems racy */
 315                        radix_tree_preload_end();
 316                        continue;
 317                }
 318                if (err) {              /* swp entry is obsolete ? */
 319                        radix_tree_preload_end();
 320                        break;
 321                }
 322
 323                /* May fail (-ENOMEM) if radix-tree node allocation failed. */
 324                __set_page_locked(new_page);
 325                SetPageSwapBacked(new_page);
 326                err = __add_to_swap_cache(new_page, entry);
 327                if (likely(!err)) {
 328                        radix_tree_preload_end();
 329                        /*
 330                         * Initiate read into locked page and return.
 331                         */
 332                        lru_cache_add_anon(new_page);
 333                        swap_readpage(new_page);
 334                        return new_page;
 335                }
 336                radix_tree_preload_end();
 337                ClearPageSwapBacked(new_page);
 338                __clear_page_locked(new_page);
 339                /*
 340                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 341                 * clear SWAP_HAS_CACHE flag.
 342                 */
 343                swapcache_free(entry, NULL);
 344        } while (err != -ENOMEM);
 345
 346        if (new_page)
 347                page_cache_release(new_page);
 348        return found_page;
 349}
 350
 351/**
 352 * swapin_readahead - swap in pages in hope we need them soon
 353 * @entry: swap entry of this memory
 354 * @gfp_mask: memory allocation flags
 355 * @vma: user vma this address belongs to
 356 * @addr: target address for mempolicy
 357 *
 358 * Returns the struct page for entry and addr, after queueing swapin.
 359 *
 360 * Primitive swap readahead code. We simply read an aligned block of
 361 * (1 << page_cluster) entries in the swap area. This method is chosen
 362 * because it doesn't cost us any seek time.  We also make sure to queue
 363 * the 'original' request together with the readahead ones...
 364 *
 365 * This has been extended to use the NUMA policies from the mm triggering
 366 * the readahead.
 367 *
 368 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 369 */
 370struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
 371                        struct vm_area_struct *vma, unsigned long addr)
 372{
 373        int nr_pages;
 374        struct page *page;
 375        unsigned long offset;
 376        unsigned long end_offset;
 377
 378        /*
 379         * Get starting offset for readaround, and number of pages to read.
 380         * Adjust starting address by readbehind (for NUMA interleave case)?
 381         * No, it's very unlikely that swap layout would follow vma layout,
 382         * more likely that neighbouring swap pages came from the same node:
 383         * so use the same "addr" to choose the same node for each swap read.
 384         */
 385        nr_pages = valid_swaphandles(entry, &offset);
 386        for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
 387                /* Ok, do the async read-ahead now */
 388                page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
 389                                                gfp_mask, vma, addr);
 390                if (!page)
 391                        break;
 392                page_cache_release(page);
 393        }
 394        lru_add_drain();        /* Push any new pages onto the LRU now */
 395        return read_swap_cache_async(entry, gfp_mask, vma, addr);
 396}
 397