linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <asm/atomic.h>
  30#include <asm/uaccess.h>
  31#include <asm/tlbflush.h>
  32#include <asm/shmparam.h>
  33
  34
  35/*** Page table manipulation functions ***/
  36
  37static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  38{
  39        pte_t *pte;
  40
  41        pte = pte_offset_kernel(pmd, addr);
  42        do {
  43                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  44                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  45        } while (pte++, addr += PAGE_SIZE, addr != end);
  46}
  47
  48static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  49{
  50        pmd_t *pmd;
  51        unsigned long next;
  52
  53        pmd = pmd_offset(pud, addr);
  54        do {
  55                next = pmd_addr_end(addr, end);
  56                if (pmd_none_or_clear_bad(pmd))
  57                        continue;
  58                vunmap_pte_range(pmd, addr, next);
  59        } while (pmd++, addr = next, addr != end);
  60}
  61
  62static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  63{
  64        pud_t *pud;
  65        unsigned long next;
  66
  67        pud = pud_offset(pgd, addr);
  68        do {
  69                next = pud_addr_end(addr, end);
  70                if (pud_none_or_clear_bad(pud))
  71                        continue;
  72                vunmap_pmd_range(pud, addr, next);
  73        } while (pud++, addr = next, addr != end);
  74}
  75
  76static void vunmap_page_range(unsigned long addr, unsigned long end)
  77{
  78        pgd_t *pgd;
  79        unsigned long next;
  80
  81        BUG_ON(addr >= end);
  82        pgd = pgd_offset_k(addr);
  83        do {
  84                next = pgd_addr_end(addr, end);
  85                if (pgd_none_or_clear_bad(pgd))
  86                        continue;
  87                vunmap_pud_range(pgd, addr, next);
  88        } while (pgd++, addr = next, addr != end);
  89}
  90
  91static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  92                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  93{
  94        pte_t *pte;
  95
  96        /*
  97         * nr is a running index into the array which helps higher level
  98         * callers keep track of where we're up to.
  99         */
 100
 101        pte = pte_alloc_kernel(pmd, addr);
 102        if (!pte)
 103                return -ENOMEM;
 104        do {
 105                struct page *page = pages[*nr];
 106
 107                if (WARN_ON(!pte_none(*pte)))
 108                        return -EBUSY;
 109                if (WARN_ON(!page))
 110                        return -ENOMEM;
 111                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 112                (*nr)++;
 113        } while (pte++, addr += PAGE_SIZE, addr != end);
 114        return 0;
 115}
 116
 117static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 118                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 119{
 120        pmd_t *pmd;
 121        unsigned long next;
 122
 123        pmd = pmd_alloc(&init_mm, pud, addr);
 124        if (!pmd)
 125                return -ENOMEM;
 126        do {
 127                next = pmd_addr_end(addr, end);
 128                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 129                        return -ENOMEM;
 130        } while (pmd++, addr = next, addr != end);
 131        return 0;
 132}
 133
 134static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 135                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 136{
 137        pud_t *pud;
 138        unsigned long next;
 139
 140        pud = pud_alloc(&init_mm, pgd, addr);
 141        if (!pud)
 142                return -ENOMEM;
 143        do {
 144                next = pud_addr_end(addr, end);
 145                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 146                        return -ENOMEM;
 147        } while (pud++, addr = next, addr != end);
 148        return 0;
 149}
 150
 151/*
 152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 153 * will have pfns corresponding to the "pages" array.
 154 *
 155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 156 */
 157static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 158                                   pgprot_t prot, struct page **pages)
 159{
 160        pgd_t *pgd;
 161        unsigned long next;
 162        unsigned long addr = start;
 163        int err = 0;
 164        int nr = 0;
 165
 166        BUG_ON(addr >= end);
 167        pgd = pgd_offset_k(addr);
 168        do {
 169                next = pgd_addr_end(addr, end);
 170                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 171                if (err)
 172                        return err;
 173        } while (pgd++, addr = next, addr != end);
 174
 175        return nr;
 176}
 177
 178static int vmap_page_range(unsigned long start, unsigned long end,
 179                           pgprot_t prot, struct page **pages)
 180{
 181        int ret;
 182
 183        ret = vmap_page_range_noflush(start, end, prot, pages);
 184        flush_cache_vmap(start, end);
 185        return ret;
 186}
 187
 188int is_vmalloc_or_module_addr(const void *x)
 189{
 190        /*
 191         * ARM, x86-64 and sparc64 put modules in a special place,
 192         * and fall back on vmalloc() if that fails. Others
 193         * just put it in the vmalloc space.
 194         */
 195#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 196        unsigned long addr = (unsigned long)x;
 197        if (addr >= MODULES_VADDR && addr < MODULES_END)
 198                return 1;
 199#endif
 200        return is_vmalloc_addr(x);
 201}
 202
 203/*
 204 * Walk a vmap address to the struct page it maps.
 205 */
 206struct page *vmalloc_to_page(const void *vmalloc_addr)
 207{
 208        unsigned long addr = (unsigned long) vmalloc_addr;
 209        struct page *page = NULL;
 210        pgd_t *pgd = pgd_offset_k(addr);
 211
 212        /*
 213         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 214         * architectures that do not vmalloc module space
 215         */
 216        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 217
 218        if (!pgd_none(*pgd)) {
 219                pud_t *pud = pud_offset(pgd, addr);
 220                if (!pud_none(*pud)) {
 221                        pmd_t *pmd = pmd_offset(pud, addr);
 222                        if (!pmd_none(*pmd)) {
 223                                pte_t *ptep, pte;
 224
 225                                ptep = pte_offset_map(pmd, addr);
 226                                pte = *ptep;
 227                                if (pte_present(pte))
 228                                        page = pte_page(pte);
 229                                pte_unmap(ptep);
 230                        }
 231                }
 232        }
 233        return page;
 234}
 235EXPORT_SYMBOL(vmalloc_to_page);
 236
 237/*
 238 * Map a vmalloc()-space virtual address to the physical page frame number.
 239 */
 240unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 241{
 242        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 243}
 244EXPORT_SYMBOL(vmalloc_to_pfn);
 245
 246
 247/*** Global kva allocator ***/
 248
 249#define VM_LAZY_FREE    0x01
 250#define VM_LAZY_FREEING 0x02
 251#define VM_VM_AREA      0x04
 252
 253struct vmap_area {
 254        unsigned long va_start;
 255        unsigned long va_end;
 256        unsigned long flags;
 257        struct rb_node rb_node;         /* address sorted rbtree */
 258        struct list_head list;          /* address sorted list */
 259        struct list_head purge_list;    /* "lazy purge" list */
 260        void *private;
 261        struct rcu_head rcu_head;
 262};
 263
 264static DEFINE_SPINLOCK(vmap_area_lock);
 265static struct rb_root vmap_area_root = RB_ROOT;
 266static LIST_HEAD(vmap_area_list);
 267static unsigned long vmap_area_pcpu_hole;
 268
 269static struct vmap_area *__find_vmap_area(unsigned long addr)
 270{
 271        struct rb_node *n = vmap_area_root.rb_node;
 272
 273        while (n) {
 274                struct vmap_area *va;
 275
 276                va = rb_entry(n, struct vmap_area, rb_node);
 277                if (addr < va->va_start)
 278                        n = n->rb_left;
 279                else if (addr > va->va_start)
 280                        n = n->rb_right;
 281                else
 282                        return va;
 283        }
 284
 285        return NULL;
 286}
 287
 288static void __insert_vmap_area(struct vmap_area *va)
 289{
 290        struct rb_node **p = &vmap_area_root.rb_node;
 291        struct rb_node *parent = NULL;
 292        struct rb_node *tmp;
 293
 294        while (*p) {
 295                struct vmap_area *tmp;
 296
 297                parent = *p;
 298                tmp = rb_entry(parent, struct vmap_area, rb_node);
 299                if (va->va_start < tmp->va_end)
 300                        p = &(*p)->rb_left;
 301                else if (va->va_end > tmp->va_start)
 302                        p = &(*p)->rb_right;
 303                else
 304                        BUG();
 305        }
 306
 307        rb_link_node(&va->rb_node, parent, p);
 308        rb_insert_color(&va->rb_node, &vmap_area_root);
 309
 310        /* address-sort this list so it is usable like the vmlist */
 311        tmp = rb_prev(&va->rb_node);
 312        if (tmp) {
 313                struct vmap_area *prev;
 314                prev = rb_entry(tmp, struct vmap_area, rb_node);
 315                list_add_rcu(&va->list, &prev->list);
 316        } else
 317                list_add_rcu(&va->list, &vmap_area_list);
 318}
 319
 320static void purge_vmap_area_lazy(void);
 321
 322/*
 323 * Allocate a region of KVA of the specified size and alignment, within the
 324 * vstart and vend.
 325 */
 326static struct vmap_area *alloc_vmap_area(unsigned long size,
 327                                unsigned long align,
 328                                unsigned long vstart, unsigned long vend,
 329                                int node, gfp_t gfp_mask)
 330{
 331        struct vmap_area *va;
 332        struct rb_node *n;
 333        unsigned long addr;
 334        int purged = 0;
 335
 336        BUG_ON(!size);
 337        BUG_ON(size & ~PAGE_MASK);
 338
 339        va = kmalloc_node(sizeof(struct vmap_area),
 340                        gfp_mask & GFP_RECLAIM_MASK, node);
 341        if (unlikely(!va))
 342                return ERR_PTR(-ENOMEM);
 343
 344retry:
 345        addr = ALIGN(vstart, align);
 346
 347        spin_lock(&vmap_area_lock);
 348        if (addr + size - 1 < addr)
 349                goto overflow;
 350
 351        /* XXX: could have a last_hole cache */
 352        n = vmap_area_root.rb_node;
 353        if (n) {
 354                struct vmap_area *first = NULL;
 355
 356                do {
 357                        struct vmap_area *tmp;
 358                        tmp = rb_entry(n, struct vmap_area, rb_node);
 359                        if (tmp->va_end >= addr) {
 360                                if (!first && tmp->va_start < addr + size)
 361                                        first = tmp;
 362                                n = n->rb_left;
 363                        } else {
 364                                first = tmp;
 365                                n = n->rb_right;
 366                        }
 367                } while (n);
 368
 369                if (!first)
 370                        goto found;
 371
 372                if (first->va_end < addr) {
 373                        n = rb_next(&first->rb_node);
 374                        if (n)
 375                                first = rb_entry(n, struct vmap_area, rb_node);
 376                        else
 377                                goto found;
 378                }
 379
 380                while (addr + size > first->va_start && addr + size <= vend) {
 381                        addr = ALIGN(first->va_end + PAGE_SIZE, align);
 382                        if (addr + size - 1 < addr)
 383                                goto overflow;
 384
 385                        n = rb_next(&first->rb_node);
 386                        if (n)
 387                                first = rb_entry(n, struct vmap_area, rb_node);
 388                        else
 389                                goto found;
 390                }
 391        }
 392found:
 393        if (addr + size > vend) {
 394overflow:
 395                spin_unlock(&vmap_area_lock);
 396                if (!purged) {
 397                        purge_vmap_area_lazy();
 398                        purged = 1;
 399                        goto retry;
 400                }
 401                if (printk_ratelimit())
 402                        printk(KERN_WARNING
 403                                "vmap allocation for size %lu failed: "
 404                                "use vmalloc=<size> to increase size.\n", size);
 405                kfree(va);
 406                return ERR_PTR(-EBUSY);
 407        }
 408
 409        BUG_ON(addr & (align-1));
 410
 411        va->va_start = addr;
 412        va->va_end = addr + size;
 413        va->flags = 0;
 414        __insert_vmap_area(va);
 415        spin_unlock(&vmap_area_lock);
 416
 417        return va;
 418}
 419
 420static void rcu_free_va(struct rcu_head *head)
 421{
 422        struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
 423
 424        kfree(va);
 425}
 426
 427static void __free_vmap_area(struct vmap_area *va)
 428{
 429        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 430        rb_erase(&va->rb_node, &vmap_area_root);
 431        RB_CLEAR_NODE(&va->rb_node);
 432        list_del_rcu(&va->list);
 433
 434        /*
 435         * Track the highest possible candidate for pcpu area
 436         * allocation.  Areas outside of vmalloc area can be returned
 437         * here too, consider only end addresses which fall inside
 438         * vmalloc area proper.
 439         */
 440        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 441                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 442
 443        call_rcu(&va->rcu_head, rcu_free_va);
 444}
 445
 446/*
 447 * Free a region of KVA allocated by alloc_vmap_area
 448 */
 449static void free_vmap_area(struct vmap_area *va)
 450{
 451        spin_lock(&vmap_area_lock);
 452        __free_vmap_area(va);
 453        spin_unlock(&vmap_area_lock);
 454}
 455
 456/*
 457 * Clear the pagetable entries of a given vmap_area
 458 */
 459static void unmap_vmap_area(struct vmap_area *va)
 460{
 461        vunmap_page_range(va->va_start, va->va_end);
 462}
 463
 464static void vmap_debug_free_range(unsigned long start, unsigned long end)
 465{
 466        /*
 467         * Unmap page tables and force a TLB flush immediately if
 468         * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 469         * bugs similarly to those in linear kernel virtual address
 470         * space after a page has been freed.
 471         *
 472         * All the lazy freeing logic is still retained, in order to
 473         * minimise intrusiveness of this debugging feature.
 474         *
 475         * This is going to be *slow* (linear kernel virtual address
 476         * debugging doesn't do a broadcast TLB flush so it is a lot
 477         * faster).
 478         */
 479#ifdef CONFIG_DEBUG_PAGEALLOC
 480        vunmap_page_range(start, end);
 481        flush_tlb_kernel_range(start, end);
 482#endif
 483}
 484
 485/*
 486 * lazy_max_pages is the maximum amount of virtual address space we gather up
 487 * before attempting to purge with a TLB flush.
 488 *
 489 * There is a tradeoff here: a larger number will cover more kernel page tables
 490 * and take slightly longer to purge, but it will linearly reduce the number of
 491 * global TLB flushes that must be performed. It would seem natural to scale
 492 * this number up linearly with the number of CPUs (because vmapping activity
 493 * could also scale linearly with the number of CPUs), however it is likely
 494 * that in practice, workloads might be constrained in other ways that mean
 495 * vmap activity will not scale linearly with CPUs. Also, I want to be
 496 * conservative and not introduce a big latency on huge systems, so go with
 497 * a less aggressive log scale. It will still be an improvement over the old
 498 * code, and it will be simple to change the scale factor if we find that it
 499 * becomes a problem on bigger systems.
 500 */
 501static unsigned long lazy_max_pages(void)
 502{
 503        unsigned int log;
 504
 505        log = fls(num_online_cpus());
 506
 507        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 508}
 509
 510static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 511
 512/*
 513 * Purges all lazily-freed vmap areas.
 514 *
 515 * If sync is 0 then don't purge if there is already a purge in progress.
 516 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 517 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 518 * their own TLB flushing).
 519 * Returns with *start = min(*start, lowest purged address)
 520 *              *end = max(*end, highest purged address)
 521 */
 522static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 523                                        int sync, int force_flush)
 524{
 525        static DEFINE_SPINLOCK(purge_lock);
 526        LIST_HEAD(valist);
 527        struct vmap_area *va;
 528        struct vmap_area *n_va;
 529        int nr = 0;
 530
 531        /*
 532         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 533         * should not expect such behaviour. This just simplifies locking for
 534         * the case that isn't actually used at the moment anyway.
 535         */
 536        if (!sync && !force_flush) {
 537                if (!spin_trylock(&purge_lock))
 538                        return;
 539        } else
 540                spin_lock(&purge_lock);
 541
 542        rcu_read_lock();
 543        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 544                if (va->flags & VM_LAZY_FREE) {
 545                        if (va->va_start < *start)
 546                                *start = va->va_start;
 547                        if (va->va_end > *end)
 548                                *end = va->va_end;
 549                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 550                        unmap_vmap_area(va);
 551                        list_add_tail(&va->purge_list, &valist);
 552                        va->flags |= VM_LAZY_FREEING;
 553                        va->flags &= ~VM_LAZY_FREE;
 554                }
 555        }
 556        rcu_read_unlock();
 557
 558        if (nr) {
 559                BUG_ON(nr > atomic_read(&vmap_lazy_nr));
 560                atomic_sub(nr, &vmap_lazy_nr);
 561        }
 562
 563        if (nr || force_flush)
 564                flush_tlb_kernel_range(*start, *end);
 565
 566        if (nr) {
 567                spin_lock(&vmap_area_lock);
 568                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 569                        __free_vmap_area(va);
 570                spin_unlock(&vmap_area_lock);
 571        }
 572        spin_unlock(&purge_lock);
 573}
 574
 575/*
 576 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 577 * is already purging.
 578 */
 579static void try_purge_vmap_area_lazy(void)
 580{
 581        unsigned long start = ULONG_MAX, end = 0;
 582
 583        __purge_vmap_area_lazy(&start, &end, 0, 0);
 584}
 585
 586/*
 587 * Kick off a purge of the outstanding lazy areas.
 588 */
 589static void purge_vmap_area_lazy(void)
 590{
 591        unsigned long start = ULONG_MAX, end = 0;
 592
 593        __purge_vmap_area_lazy(&start, &end, 1, 0);
 594}
 595
 596/*
 597 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 598 * called for the correct range previously.
 599 */
 600static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 601{
 602        va->flags |= VM_LAZY_FREE;
 603        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 604        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 605                try_purge_vmap_area_lazy();
 606}
 607
 608/*
 609 * Free and unmap a vmap area
 610 */
 611static void free_unmap_vmap_area(struct vmap_area *va)
 612{
 613        flush_cache_vunmap(va->va_start, va->va_end);
 614        free_unmap_vmap_area_noflush(va);
 615}
 616
 617static struct vmap_area *find_vmap_area(unsigned long addr)
 618{
 619        struct vmap_area *va;
 620
 621        spin_lock(&vmap_area_lock);
 622        va = __find_vmap_area(addr);
 623        spin_unlock(&vmap_area_lock);
 624
 625        return va;
 626}
 627
 628static void free_unmap_vmap_area_addr(unsigned long addr)
 629{
 630        struct vmap_area *va;
 631
 632        va = find_vmap_area(addr);
 633        BUG_ON(!va);
 634        free_unmap_vmap_area(va);
 635}
 636
 637
 638/*** Per cpu kva allocator ***/
 639
 640/*
 641 * vmap space is limited especially on 32 bit architectures. Ensure there is
 642 * room for at least 16 percpu vmap blocks per CPU.
 643 */
 644/*
 645 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 646 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 647 * instead (we just need a rough idea)
 648 */
 649#if BITS_PER_LONG == 32
 650#define VMALLOC_SPACE           (128UL*1024*1024)
 651#else
 652#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 653#endif
 654
 655#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 656#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 657#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 658#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 659#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 660#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 661#define VMAP_BBMAP_BITS         VMAP_MIN(VMAP_BBMAP_BITS_MAX,           \
 662                                        VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 663                                                VMALLOC_PAGES / NR_CPUS / 16))
 664
 665#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 666
 667static bool vmap_initialized __read_mostly = false;
 668
 669struct vmap_block_queue {
 670        spinlock_t lock;
 671        struct list_head free;
 672        struct list_head dirty;
 673        unsigned int nr_dirty;
 674};
 675
 676struct vmap_block {
 677        spinlock_t lock;
 678        struct vmap_area *va;
 679        struct vmap_block_queue *vbq;
 680        unsigned long free, dirty;
 681        DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 682        DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 683        union {
 684                struct list_head free_list;
 685                struct rcu_head rcu_head;
 686        };
 687};
 688
 689/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 690static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 691
 692/*
 693 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 694 * in the free path. Could get rid of this if we change the API to return a
 695 * "cookie" from alloc, to be passed to free. But no big deal yet.
 696 */
 697static DEFINE_SPINLOCK(vmap_block_tree_lock);
 698static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 699
 700/*
 701 * We should probably have a fallback mechanism to allocate virtual memory
 702 * out of partially filled vmap blocks. However vmap block sizing should be
 703 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 704 * big problem.
 705 */
 706
 707static unsigned long addr_to_vb_idx(unsigned long addr)
 708{
 709        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 710        addr /= VMAP_BLOCK_SIZE;
 711        return addr;
 712}
 713
 714static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 715{
 716        struct vmap_block_queue *vbq;
 717        struct vmap_block *vb;
 718        struct vmap_area *va;
 719        unsigned long vb_idx;
 720        int node, err;
 721
 722        node = numa_node_id();
 723
 724        vb = kmalloc_node(sizeof(struct vmap_block),
 725                        gfp_mask & GFP_RECLAIM_MASK, node);
 726        if (unlikely(!vb))
 727                return ERR_PTR(-ENOMEM);
 728
 729        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 730                                        VMALLOC_START, VMALLOC_END,
 731                                        node, gfp_mask);
 732        if (unlikely(IS_ERR(va))) {
 733                kfree(vb);
 734                return ERR_PTR(PTR_ERR(va));
 735        }
 736
 737        err = radix_tree_preload(gfp_mask);
 738        if (unlikely(err)) {
 739                kfree(vb);
 740                free_vmap_area(va);
 741                return ERR_PTR(err);
 742        }
 743
 744        spin_lock_init(&vb->lock);
 745        vb->va = va;
 746        vb->free = VMAP_BBMAP_BITS;
 747        vb->dirty = 0;
 748        bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 749        bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 750        INIT_LIST_HEAD(&vb->free_list);
 751
 752        vb_idx = addr_to_vb_idx(va->va_start);
 753        spin_lock(&vmap_block_tree_lock);
 754        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 755        spin_unlock(&vmap_block_tree_lock);
 756        BUG_ON(err);
 757        radix_tree_preload_end();
 758
 759        vbq = &get_cpu_var(vmap_block_queue);
 760        vb->vbq = vbq;
 761        spin_lock(&vbq->lock);
 762        list_add(&vb->free_list, &vbq->free);
 763        spin_unlock(&vbq->lock);
 764        put_cpu_var(vmap_cpu_blocks);
 765
 766        return vb;
 767}
 768
 769static void rcu_free_vb(struct rcu_head *head)
 770{
 771        struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
 772
 773        kfree(vb);
 774}
 775
 776static void free_vmap_block(struct vmap_block *vb)
 777{
 778        struct vmap_block *tmp;
 779        unsigned long vb_idx;
 780
 781        BUG_ON(!list_empty(&vb->free_list));
 782
 783        vb_idx = addr_to_vb_idx(vb->va->va_start);
 784        spin_lock(&vmap_block_tree_lock);
 785        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 786        spin_unlock(&vmap_block_tree_lock);
 787        BUG_ON(tmp != vb);
 788
 789        free_unmap_vmap_area_noflush(vb->va);
 790        call_rcu(&vb->rcu_head, rcu_free_vb);
 791}
 792
 793static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 794{
 795        struct vmap_block_queue *vbq;
 796        struct vmap_block *vb;
 797        unsigned long addr = 0;
 798        unsigned int order;
 799
 800        BUG_ON(size & ~PAGE_MASK);
 801        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 802        order = get_order(size);
 803
 804again:
 805        rcu_read_lock();
 806        vbq = &get_cpu_var(vmap_block_queue);
 807        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 808                int i;
 809
 810                spin_lock(&vb->lock);
 811                i = bitmap_find_free_region(vb->alloc_map,
 812                                                VMAP_BBMAP_BITS, order);
 813
 814                if (i >= 0) {
 815                        addr = vb->va->va_start + (i << PAGE_SHIFT);
 816                        BUG_ON(addr_to_vb_idx(addr) !=
 817                                        addr_to_vb_idx(vb->va->va_start));
 818                        vb->free -= 1UL << order;
 819                        if (vb->free == 0) {
 820                                spin_lock(&vbq->lock);
 821                                list_del_init(&vb->free_list);
 822                                spin_unlock(&vbq->lock);
 823                        }
 824                        spin_unlock(&vb->lock);
 825                        break;
 826                }
 827                spin_unlock(&vb->lock);
 828        }
 829        put_cpu_var(vmap_cpu_blocks);
 830        rcu_read_unlock();
 831
 832        if (!addr) {
 833                vb = new_vmap_block(gfp_mask);
 834                if (IS_ERR(vb))
 835                        return vb;
 836                goto again;
 837        }
 838
 839        return (void *)addr;
 840}
 841
 842static void vb_free(const void *addr, unsigned long size)
 843{
 844        unsigned long offset;
 845        unsigned long vb_idx;
 846        unsigned int order;
 847        struct vmap_block *vb;
 848
 849        BUG_ON(size & ~PAGE_MASK);
 850        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 851
 852        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 853
 854        order = get_order(size);
 855
 856        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 857
 858        vb_idx = addr_to_vb_idx((unsigned long)addr);
 859        rcu_read_lock();
 860        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 861        rcu_read_unlock();
 862        BUG_ON(!vb);
 863
 864        spin_lock(&vb->lock);
 865        bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
 866
 867        vb->dirty += 1UL << order;
 868        if (vb->dirty == VMAP_BBMAP_BITS) {
 869                BUG_ON(vb->free || !list_empty(&vb->free_list));
 870                spin_unlock(&vb->lock);
 871                free_vmap_block(vb);
 872        } else
 873                spin_unlock(&vb->lock);
 874}
 875
 876/**
 877 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 878 *
 879 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 880 * to amortize TLB flushing overheads. What this means is that any page you
 881 * have now, may, in a former life, have been mapped into kernel virtual
 882 * address by the vmap layer and so there might be some CPUs with TLB entries
 883 * still referencing that page (additional to the regular 1:1 kernel mapping).
 884 *
 885 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 886 * be sure that none of the pages we have control over will have any aliases
 887 * from the vmap layer.
 888 */
 889void vm_unmap_aliases(void)
 890{
 891        unsigned long start = ULONG_MAX, end = 0;
 892        int cpu;
 893        int flush = 0;
 894
 895        if (unlikely(!vmap_initialized))
 896                return;
 897
 898        for_each_possible_cpu(cpu) {
 899                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 900                struct vmap_block *vb;
 901
 902                rcu_read_lock();
 903                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 904                        int i;
 905
 906                        spin_lock(&vb->lock);
 907                        i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
 908                        while (i < VMAP_BBMAP_BITS) {
 909                                unsigned long s, e;
 910                                int j;
 911                                j = find_next_zero_bit(vb->dirty_map,
 912                                        VMAP_BBMAP_BITS, i);
 913
 914                                s = vb->va->va_start + (i << PAGE_SHIFT);
 915                                e = vb->va->va_start + (j << PAGE_SHIFT);
 916                                vunmap_page_range(s, e);
 917                                flush = 1;
 918
 919                                if (s < start)
 920                                        start = s;
 921                                if (e > end)
 922                                        end = e;
 923
 924                                i = j;
 925                                i = find_next_bit(vb->dirty_map,
 926                                                        VMAP_BBMAP_BITS, i);
 927                        }
 928                        spin_unlock(&vb->lock);
 929                }
 930                rcu_read_unlock();
 931        }
 932
 933        __purge_vmap_area_lazy(&start, &end, 1, flush);
 934}
 935EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 936
 937/**
 938 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 939 * @mem: the pointer returned by vm_map_ram
 940 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 941 */
 942void vm_unmap_ram(const void *mem, unsigned int count)
 943{
 944        unsigned long size = count << PAGE_SHIFT;
 945        unsigned long addr = (unsigned long)mem;
 946
 947        BUG_ON(!addr);
 948        BUG_ON(addr < VMALLOC_START);
 949        BUG_ON(addr > VMALLOC_END);
 950        BUG_ON(addr & (PAGE_SIZE-1));
 951
 952        debug_check_no_locks_freed(mem, size);
 953        vmap_debug_free_range(addr, addr+size);
 954
 955        if (likely(count <= VMAP_MAX_ALLOC))
 956                vb_free(mem, size);
 957        else
 958                free_unmap_vmap_area_addr(addr);
 959}
 960EXPORT_SYMBOL(vm_unmap_ram);
 961
 962/**
 963 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 964 * @pages: an array of pointers to the pages to be mapped
 965 * @count: number of pages
 966 * @node: prefer to allocate data structures on this node
 967 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
 968 *
 969 * Returns: a pointer to the address that has been mapped, or %NULL on failure
 970 */
 971void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 972{
 973        unsigned long size = count << PAGE_SHIFT;
 974        unsigned long addr;
 975        void *mem;
 976
 977        if (likely(count <= VMAP_MAX_ALLOC)) {
 978                mem = vb_alloc(size, GFP_KERNEL);
 979                if (IS_ERR(mem))
 980                        return NULL;
 981                addr = (unsigned long)mem;
 982        } else {
 983                struct vmap_area *va;
 984                va = alloc_vmap_area(size, PAGE_SIZE,
 985                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 986                if (IS_ERR(va))
 987                        return NULL;
 988
 989                addr = va->va_start;
 990                mem = (void *)addr;
 991        }
 992        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 993                vm_unmap_ram(mem, count);
 994                return NULL;
 995        }
 996        return mem;
 997}
 998EXPORT_SYMBOL(vm_map_ram);
 999
1000/**
1001 * vm_area_register_early - register vmap area early during boot
1002 * @vm: vm_struct to register
1003 * @align: requested alignment
1004 *
1005 * This function is used to register kernel vm area before
1006 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1007 * proper values on entry and other fields should be zero.  On return,
1008 * vm->addr contains the allocated address.
1009 *
1010 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1011 */
1012void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1013{
1014        static size_t vm_init_off __initdata;
1015        unsigned long addr;
1016
1017        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1018        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1019
1020        vm->addr = (void *)addr;
1021
1022        vm->next = vmlist;
1023        vmlist = vm;
1024}
1025
1026void __init vmalloc_init(void)
1027{
1028        struct vmap_area *va;
1029        struct vm_struct *tmp;
1030        int i;
1031
1032        for_each_possible_cpu(i) {
1033                struct vmap_block_queue *vbq;
1034
1035                vbq = &per_cpu(vmap_block_queue, i);
1036                spin_lock_init(&vbq->lock);
1037                INIT_LIST_HEAD(&vbq->free);
1038                INIT_LIST_HEAD(&vbq->dirty);
1039                vbq->nr_dirty = 0;
1040        }
1041
1042        /* Import existing vmlist entries. */
1043        for (tmp = vmlist; tmp; tmp = tmp->next) {
1044                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1045                va->flags = tmp->flags | VM_VM_AREA;
1046                va->va_start = (unsigned long)tmp->addr;
1047                va->va_end = va->va_start + tmp->size;
1048                __insert_vmap_area(va);
1049        }
1050
1051        vmap_area_pcpu_hole = VMALLOC_END;
1052
1053        vmap_initialized = true;
1054}
1055
1056/**
1057 * map_kernel_range_noflush - map kernel VM area with the specified pages
1058 * @addr: start of the VM area to map
1059 * @size: size of the VM area to map
1060 * @prot: page protection flags to use
1061 * @pages: pages to map
1062 *
1063 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1064 * specify should have been allocated using get_vm_area() and its
1065 * friends.
1066 *
1067 * NOTE:
1068 * This function does NOT do any cache flushing.  The caller is
1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1070 * before calling this function.
1071 *
1072 * RETURNS:
1073 * The number of pages mapped on success, -errno on failure.
1074 */
1075int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1076                             pgprot_t prot, struct page **pages)
1077{
1078        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1079}
1080
1081/**
1082 * unmap_kernel_range_noflush - unmap kernel VM area
1083 * @addr: start of the VM area to unmap
1084 * @size: size of the VM area to unmap
1085 *
1086 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1087 * specify should have been allocated using get_vm_area() and its
1088 * friends.
1089 *
1090 * NOTE:
1091 * This function does NOT do any cache flushing.  The caller is
1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1093 * before calling this function and flush_tlb_kernel_range() after.
1094 */
1095void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1096{
1097        vunmap_page_range(addr, addr + size);
1098}
1099
1100/**
1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1102 * @addr: start of the VM area to unmap
1103 * @size: size of the VM area to unmap
1104 *
1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1106 * the unmapping and tlb after.
1107 */
1108void unmap_kernel_range(unsigned long addr, unsigned long size)
1109{
1110        unsigned long end = addr + size;
1111
1112        flush_cache_vunmap(addr, end);
1113        vunmap_page_range(addr, end);
1114        flush_tlb_kernel_range(addr, end);
1115}
1116
1117int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1118{
1119        unsigned long addr = (unsigned long)area->addr;
1120        unsigned long end = addr + area->size - PAGE_SIZE;
1121        int err;
1122
1123        err = vmap_page_range(addr, end, prot, *pages);
1124        if (err > 0) {
1125                *pages += err;
1126                err = 0;
1127        }
1128
1129        return err;
1130}
1131EXPORT_SYMBOL_GPL(map_vm_area);
1132
1133/*** Old vmalloc interfaces ***/
1134DEFINE_RWLOCK(vmlist_lock);
1135struct vm_struct *vmlist;
1136
1137static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1138                              unsigned long flags, void *caller)
1139{
1140        struct vm_struct *tmp, **p;
1141
1142        vm->flags = flags;
1143        vm->addr = (void *)va->va_start;
1144        vm->size = va->va_end - va->va_start;
1145        vm->caller = caller;
1146        va->private = vm;
1147        va->flags |= VM_VM_AREA;
1148
1149        write_lock(&vmlist_lock);
1150        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1151                if (tmp->addr >= vm->addr)
1152                        break;
1153        }
1154        vm->next = *p;
1155        *p = vm;
1156        write_unlock(&vmlist_lock);
1157}
1158
1159static struct vm_struct *__get_vm_area_node(unsigned long size,
1160                unsigned long align, unsigned long flags, unsigned long start,
1161                unsigned long end, int node, gfp_t gfp_mask, void *caller)
1162{
1163        static struct vmap_area *va;
1164        struct vm_struct *area;
1165
1166        BUG_ON(in_interrupt());
1167        if (flags & VM_IOREMAP) {
1168                int bit = fls(size);
1169
1170                if (bit > IOREMAP_MAX_ORDER)
1171                        bit = IOREMAP_MAX_ORDER;
1172                else if (bit < PAGE_SHIFT)
1173                        bit = PAGE_SHIFT;
1174
1175                align = 1ul << bit;
1176        }
1177
1178        size = PAGE_ALIGN(size);
1179        if (unlikely(!size))
1180                return NULL;
1181
1182        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1183        if (unlikely(!area))
1184                return NULL;
1185
1186        /*
1187         * We always allocate a guard page.
1188         */
1189        size += PAGE_SIZE;
1190
1191        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1192        if (IS_ERR(va)) {
1193                kfree(area);
1194                return NULL;
1195        }
1196
1197        insert_vmalloc_vm(area, va, flags, caller);
1198        return area;
1199}
1200
1201struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1202                                unsigned long start, unsigned long end)
1203{
1204        return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1205                                                __builtin_return_address(0));
1206}
1207EXPORT_SYMBOL_GPL(__get_vm_area);
1208
1209struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1210                                       unsigned long start, unsigned long end,
1211                                       void *caller)
1212{
1213        return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1214                                  caller);
1215}
1216
1217/**
1218 *      get_vm_area  -  reserve a contiguous kernel virtual area
1219 *      @size:          size of the area
1220 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1221 *
1222 *      Search an area of @size in the kernel virtual mapping area,
1223 *      and reserved it for out purposes.  Returns the area descriptor
1224 *      on success or %NULL on failure.
1225 */
1226struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1227{
1228        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1229                                -1, GFP_KERNEL, __builtin_return_address(0));
1230}
1231
1232struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1233                                void *caller)
1234{
1235        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1236                                                -1, GFP_KERNEL, caller);
1237}
1238
1239struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1240                                   int node, gfp_t gfp_mask)
1241{
1242        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1243                                  node, gfp_mask, __builtin_return_address(0));
1244}
1245
1246static struct vm_struct *find_vm_area(const void *addr)
1247{
1248        struct vmap_area *va;
1249
1250        va = find_vmap_area((unsigned long)addr);
1251        if (va && va->flags & VM_VM_AREA)
1252                return va->private;
1253
1254        return NULL;
1255}
1256
1257/**
1258 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1259 *      @addr:          base address
1260 *
1261 *      Search for the kernel VM area starting at @addr, and remove it.
1262 *      This function returns the found VM area, but using it is NOT safe
1263 *      on SMP machines, except for its size or flags.
1264 */
1265struct vm_struct *remove_vm_area(const void *addr)
1266{
1267        struct vmap_area *va;
1268
1269        va = find_vmap_area((unsigned long)addr);
1270        if (va && va->flags & VM_VM_AREA) {
1271                struct vm_struct *vm = va->private;
1272                struct vm_struct *tmp, **p;
1273                /*
1274                 * remove from list and disallow access to this vm_struct
1275                 * before unmap. (address range confliction is maintained by
1276                 * vmap.)
1277                 */
1278                write_lock(&vmlist_lock);
1279                for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1280                        ;
1281                *p = tmp->next;
1282                write_unlock(&vmlist_lock);
1283
1284                vmap_debug_free_range(va->va_start, va->va_end);
1285                free_unmap_vmap_area(va);
1286                vm->size -= PAGE_SIZE;
1287
1288                return vm;
1289        }
1290        return NULL;
1291}
1292
1293static void __vunmap(const void *addr, int deallocate_pages)
1294{
1295        struct vm_struct *area;
1296
1297        if (!addr)
1298                return;
1299
1300        if ((PAGE_SIZE-1) & (unsigned long)addr) {
1301                WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1302                return;
1303        }
1304
1305        area = remove_vm_area(addr);
1306        if (unlikely(!area)) {
1307                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1308                                addr);
1309                return;
1310        }
1311
1312        debug_check_no_locks_freed(addr, area->size);
1313        debug_check_no_obj_freed(addr, area->size);
1314
1315        if (deallocate_pages) {
1316                int i;
1317
1318                for (i = 0; i < area->nr_pages; i++) {
1319                        struct page *page = area->pages[i];
1320
1321                        BUG_ON(!page);
1322                        __free_page(page);
1323                }
1324
1325                if (area->flags & VM_VPAGES)
1326                        vfree(area->pages);
1327                else
1328                        kfree(area->pages);
1329        }
1330
1331        kfree(area);
1332        return;
1333}
1334
1335/**
1336 *      vfree  -  release memory allocated by vmalloc()
1337 *      @addr:          memory base address
1338 *
1339 *      Free the virtually continuous memory area starting at @addr, as
1340 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1341 *      NULL, no operation is performed.
1342 *
1343 *      Must not be called in interrupt context.
1344 */
1345void vfree(const void *addr)
1346{
1347        BUG_ON(in_interrupt());
1348
1349        kmemleak_free(addr);
1350
1351        __vunmap(addr, 1);
1352}
1353EXPORT_SYMBOL(vfree);
1354
1355/**
1356 *      vunmap  -  release virtual mapping obtained by vmap()
1357 *      @addr:          memory base address
1358 *
1359 *      Free the virtually contiguous memory area starting at @addr,
1360 *      which was created from the page array passed to vmap().
1361 *
1362 *      Must not be called in interrupt context.
1363 */
1364void vunmap(const void *addr)
1365{
1366        BUG_ON(in_interrupt());
1367        might_sleep();
1368        __vunmap(addr, 0);
1369}
1370EXPORT_SYMBOL(vunmap);
1371
1372/**
1373 *      vmap  -  map an array of pages into virtually contiguous space
1374 *      @pages:         array of page pointers
1375 *      @count:         number of pages to map
1376 *      @flags:         vm_area->flags
1377 *      @prot:          page protection for the mapping
1378 *
1379 *      Maps @count pages from @pages into contiguous kernel virtual
1380 *      space.
1381 */
1382void *vmap(struct page **pages, unsigned int count,
1383                unsigned long flags, pgprot_t prot)
1384{
1385        struct vm_struct *area;
1386
1387        might_sleep();
1388
1389        if (count > totalram_pages)
1390                return NULL;
1391
1392        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1393                                        __builtin_return_address(0));
1394        if (!area)
1395                return NULL;
1396
1397        if (map_vm_area(area, prot, &pages)) {
1398                vunmap(area->addr);
1399                return NULL;
1400        }
1401
1402        return area->addr;
1403}
1404EXPORT_SYMBOL(vmap);
1405
1406static void *__vmalloc_node(unsigned long size, unsigned long align,
1407                            gfp_t gfp_mask, pgprot_t prot,
1408                            int node, void *caller);
1409static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1410                                 pgprot_t prot, int node, void *caller)
1411{
1412        struct page **pages;
1413        unsigned int nr_pages, array_size, i;
1414
1415        nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1416        array_size = (nr_pages * sizeof(struct page *));
1417
1418        area->nr_pages = nr_pages;
1419        /* Please note that the recursion is strictly bounded. */
1420        if (array_size > PAGE_SIZE) {
1421                pages = __vmalloc_node(array_size, 1, gfp_mask | __GFP_ZERO,
1422                                PAGE_KERNEL, node, caller);
1423                area->flags |= VM_VPAGES;
1424        } else {
1425                pages = kmalloc_node(array_size,
1426                                (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1427                                node);
1428        }
1429        area->pages = pages;
1430        area->caller = caller;
1431        if (!area->pages) {
1432                remove_vm_area(area->addr);
1433                kfree(area);
1434                return NULL;
1435        }
1436
1437        for (i = 0; i < area->nr_pages; i++) {
1438                struct page *page;
1439
1440                if (node < 0)
1441                        page = alloc_page(gfp_mask);
1442                else
1443                        page = alloc_pages_node(node, gfp_mask, 0);
1444
1445                if (unlikely(!page)) {
1446                        /* Successfully allocated i pages, free them in __vunmap() */
1447                        area->nr_pages = i;
1448                        goto fail;
1449                }
1450                area->pages[i] = page;
1451        }
1452
1453        if (map_vm_area(area, prot, &pages))
1454                goto fail;
1455        return area->addr;
1456
1457fail:
1458        vfree(area->addr);
1459        return NULL;
1460}
1461
1462void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1463{
1464        void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1465                                         __builtin_return_address(0));
1466
1467        /*
1468         * A ref_count = 3 is needed because the vm_struct and vmap_area
1469         * structures allocated in the __get_vm_area_node() function contain
1470         * references to the virtual address of the vmalloc'ed block.
1471         */
1472        kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1473
1474        return addr;
1475}
1476
1477/**
1478 *      __vmalloc_node  -  allocate virtually contiguous memory
1479 *      @size:          allocation size
1480 *      @align:         desired alignment
1481 *      @gfp_mask:      flags for the page level allocator
1482 *      @prot:          protection mask for the allocated pages
1483 *      @node:          node to use for allocation or -1
1484 *      @caller:        caller's return address
1485 *
1486 *      Allocate enough pages to cover @size from the page level
1487 *      allocator with @gfp_mask flags.  Map them into contiguous
1488 *      kernel virtual space, using a pagetable protection of @prot.
1489 */
1490static void *__vmalloc_node(unsigned long size, unsigned long align,
1491                            gfp_t gfp_mask, pgprot_t prot,
1492                            int node, void *caller)
1493{
1494        struct vm_struct *area;
1495        void *addr;
1496        unsigned long real_size = size;
1497
1498        size = PAGE_ALIGN(size);
1499        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1500                return NULL;
1501
1502        area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1503                                  VMALLOC_END, node, gfp_mask, caller);
1504
1505        if (!area)
1506                return NULL;
1507
1508        addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1509
1510        /*
1511         * A ref_count = 3 is needed because the vm_struct and vmap_area
1512         * structures allocated in the __get_vm_area_node() function contain
1513         * references to the virtual address of the vmalloc'ed block.
1514         */
1515        kmemleak_alloc(addr, real_size, 3, gfp_mask);
1516
1517        return addr;
1518}
1519
1520void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1521{
1522        return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1523                                __builtin_return_address(0));
1524}
1525EXPORT_SYMBOL(__vmalloc);
1526
1527/**
1528 *      vmalloc  -  allocate virtually contiguous memory
1529 *      @size:          allocation size
1530 *      Allocate enough pages to cover @size from the page level
1531 *      allocator and map them into contiguous kernel virtual space.
1532 *
1533 *      For tight control over page level allocator and protection flags
1534 *      use __vmalloc() instead.
1535 */
1536void *vmalloc(unsigned long size)
1537{
1538        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1539                                        -1, __builtin_return_address(0));
1540}
1541EXPORT_SYMBOL(vmalloc);
1542
1543/**
1544 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1545 * @size: allocation size
1546 *
1547 * The resulting memory area is zeroed so it can be mapped to userspace
1548 * without leaking data.
1549 */
1550void *vmalloc_user(unsigned long size)
1551{
1552        struct vm_struct *area;
1553        void *ret;
1554
1555        ret = __vmalloc_node(size, SHMLBA,
1556                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1557                             PAGE_KERNEL, -1, __builtin_return_address(0));
1558        if (ret) {
1559                area = find_vm_area(ret);
1560                area->flags |= VM_USERMAP;
1561        }
1562        return ret;
1563}
1564EXPORT_SYMBOL(vmalloc_user);
1565
1566/**
1567 *      vmalloc_node  -  allocate memory on a specific node
1568 *      @size:          allocation size
1569 *      @node:          numa node
1570 *
1571 *      Allocate enough pages to cover @size from the page level
1572 *      allocator and map them into contiguous kernel virtual space.
1573 *
1574 *      For tight control over page level allocator and protection flags
1575 *      use __vmalloc() instead.
1576 */
1577void *vmalloc_node(unsigned long size, int node)
1578{
1579        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1580                                        node, __builtin_return_address(0));
1581}
1582EXPORT_SYMBOL(vmalloc_node);
1583
1584#ifndef PAGE_KERNEL_EXEC
1585# define PAGE_KERNEL_EXEC PAGE_KERNEL
1586#endif
1587
1588/**
1589 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1590 *      @size:          allocation size
1591 *
1592 *      Kernel-internal function to allocate enough pages to cover @size
1593 *      the page level allocator and map them into contiguous and
1594 *      executable kernel virtual space.
1595 *
1596 *      For tight control over page level allocator and protection flags
1597 *      use __vmalloc() instead.
1598 */
1599
1600void *vmalloc_exec(unsigned long size)
1601{
1602        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1603                              -1, __builtin_return_address(0));
1604}
1605
1606#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1607#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1608#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1609#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1610#else
1611#define GFP_VMALLOC32 GFP_KERNEL
1612#endif
1613
1614/**
1615 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1616 *      @size:          allocation size
1617 *
1618 *      Allocate enough 32bit PA addressable pages to cover @size from the
1619 *      page level allocator and map them into contiguous kernel virtual space.
1620 */
1621void *vmalloc_32(unsigned long size)
1622{
1623        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1624                              -1, __builtin_return_address(0));
1625}
1626EXPORT_SYMBOL(vmalloc_32);
1627
1628/**
1629 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1630 *      @size:          allocation size
1631 *
1632 * The resulting memory area is 32bit addressable and zeroed so it can be
1633 * mapped to userspace without leaking data.
1634 */
1635void *vmalloc_32_user(unsigned long size)
1636{
1637        struct vm_struct *area;
1638        void *ret;
1639
1640        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1641                             -1, __builtin_return_address(0));
1642        if (ret) {
1643                area = find_vm_area(ret);
1644                area->flags |= VM_USERMAP;
1645        }
1646        return ret;
1647}
1648EXPORT_SYMBOL(vmalloc_32_user);
1649
1650/*
1651 * small helper routine , copy contents to buf from addr.
1652 * If the page is not present, fill zero.
1653 */
1654
1655static int aligned_vread(char *buf, char *addr, unsigned long count)
1656{
1657        struct page *p;
1658        int copied = 0;
1659
1660        while (count) {
1661                unsigned long offset, length;
1662
1663                offset = (unsigned long)addr & ~PAGE_MASK;
1664                length = PAGE_SIZE - offset;
1665                if (length > count)
1666                        length = count;
1667                p = vmalloc_to_page(addr);
1668                /*
1669                 * To do safe access to this _mapped_ area, we need
1670                 * lock. But adding lock here means that we need to add
1671                 * overhead of vmalloc()/vfree() calles for this _debug_
1672                 * interface, rarely used. Instead of that, we'll use
1673                 * kmap() and get small overhead in this access function.
1674                 */
1675                if (p) {
1676                        /*
1677                         * we can expect USER0 is not used (see vread/vwrite's
1678                         * function description)
1679                         */
1680                        void *map = kmap_atomic(p, KM_USER0);
1681                        memcpy(buf, map + offset, length);
1682                        kunmap_atomic(map, KM_USER0);
1683                } else
1684                        memset(buf, 0, length);
1685
1686                addr += length;
1687                buf += length;
1688                copied += length;
1689                count -= length;
1690        }
1691        return copied;
1692}
1693
1694static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1695{
1696        struct page *p;
1697        int copied = 0;
1698
1699        while (count) {
1700                unsigned long offset, length;
1701
1702                offset = (unsigned long)addr & ~PAGE_MASK;
1703                length = PAGE_SIZE - offset;
1704                if (length > count)
1705                        length = count;
1706                p = vmalloc_to_page(addr);
1707                /*
1708                 * To do safe access to this _mapped_ area, we need
1709                 * lock. But adding lock here means that we need to add
1710                 * overhead of vmalloc()/vfree() calles for this _debug_
1711                 * interface, rarely used. Instead of that, we'll use
1712                 * kmap() and get small overhead in this access function.
1713                 */
1714                if (p) {
1715                        /*
1716                         * we can expect USER0 is not used (see vread/vwrite's
1717                         * function description)
1718                         */
1719                        void *map = kmap_atomic(p, KM_USER0);
1720                        memcpy(map + offset, buf, length);
1721                        kunmap_atomic(map, KM_USER0);
1722                }
1723                addr += length;
1724                buf += length;
1725                copied += length;
1726                count -= length;
1727        }
1728        return copied;
1729}
1730
1731/**
1732 *      vread() -  read vmalloc area in a safe way.
1733 *      @buf:           buffer for reading data
1734 *      @addr:          vm address.
1735 *      @count:         number of bytes to be read.
1736 *
1737 *      Returns # of bytes which addr and buf should be increased.
1738 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
1739 *      includes any intersect with alive vmalloc area.
1740 *
1741 *      This function checks that addr is a valid vmalloc'ed area, and
1742 *      copy data from that area to a given buffer. If the given memory range
1743 *      of [addr...addr+count) includes some valid address, data is copied to
1744 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
1745 *      IOREMAP area is treated as memory hole and no copy is done.
1746 *
1747 *      If [addr...addr+count) doesn't includes any intersects with alive
1748 *      vm_struct area, returns 0.
1749 *      @buf should be kernel's buffer. Because this function uses KM_USER0,
1750 *      the caller should guarantee KM_USER0 is not used.
1751 *
1752 *      Note: In usual ops, vread() is never necessary because the caller
1753 *      should know vmalloc() area is valid and can use memcpy().
1754 *      This is for routines which have to access vmalloc area without
1755 *      any informaion, as /dev/kmem.
1756 *
1757 */
1758
1759long vread(char *buf, char *addr, unsigned long count)
1760{
1761        struct vm_struct *tmp;
1762        char *vaddr, *buf_start = buf;
1763        unsigned long buflen = count;
1764        unsigned long n;
1765
1766        /* Don't allow overflow */
1767        if ((unsigned long) addr + count < count)
1768                count = -(unsigned long) addr;
1769
1770        read_lock(&vmlist_lock);
1771        for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1772                vaddr = (char *) tmp->addr;
1773                if (addr >= vaddr + tmp->size - PAGE_SIZE)
1774                        continue;
1775                while (addr < vaddr) {
1776                        if (count == 0)
1777                                goto finished;
1778                        *buf = '\0';
1779                        buf++;
1780                        addr++;
1781                        count--;
1782                }
1783                n = vaddr + tmp->size - PAGE_SIZE - addr;
1784                if (n > count)
1785                        n = count;
1786                if (!(tmp->flags & VM_IOREMAP))
1787                        aligned_vread(buf, addr, n);
1788                else /* IOREMAP area is treated as memory hole */
1789                        memset(buf, 0, n);
1790                buf += n;
1791                addr += n;
1792                count -= n;
1793        }
1794finished:
1795        read_unlock(&vmlist_lock);
1796
1797        if (buf == buf_start)
1798                return 0;
1799        /* zero-fill memory holes */
1800        if (buf != buf_start + buflen)
1801                memset(buf, 0, buflen - (buf - buf_start));
1802
1803        return buflen;
1804}
1805
1806/**
1807 *      vwrite() -  write vmalloc area in a safe way.
1808 *      @buf:           buffer for source data
1809 *      @addr:          vm address.
1810 *      @count:         number of bytes to be read.
1811 *
1812 *      Returns # of bytes which addr and buf should be incresed.
1813 *      (same number to @count).
1814 *      If [addr...addr+count) doesn't includes any intersect with valid
1815 *      vmalloc area, returns 0.
1816 *
1817 *      This function checks that addr is a valid vmalloc'ed area, and
1818 *      copy data from a buffer to the given addr. If specified range of
1819 *      [addr...addr+count) includes some valid address, data is copied from
1820 *      proper area of @buf. If there are memory holes, no copy to hole.
1821 *      IOREMAP area is treated as memory hole and no copy is done.
1822 *
1823 *      If [addr...addr+count) doesn't includes any intersects with alive
1824 *      vm_struct area, returns 0.
1825 *      @buf should be kernel's buffer. Because this function uses KM_USER0,
1826 *      the caller should guarantee KM_USER0 is not used.
1827 *
1828 *      Note: In usual ops, vwrite() is never necessary because the caller
1829 *      should know vmalloc() area is valid and can use memcpy().
1830 *      This is for routines which have to access vmalloc area without
1831 *      any informaion, as /dev/kmem.
1832 *
1833 *      The caller should guarantee KM_USER1 is not used.
1834 */
1835
1836long vwrite(char *buf, char *addr, unsigned long count)
1837{
1838        struct vm_struct *tmp;
1839        char *vaddr;
1840        unsigned long n, buflen;
1841        int copied = 0;
1842
1843        /* Don't allow overflow */
1844        if ((unsigned long) addr + count < count)
1845                count = -(unsigned long) addr;
1846        buflen = count;
1847
1848        read_lock(&vmlist_lock);
1849        for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1850                vaddr = (char *) tmp->addr;
1851                if (addr >= vaddr + tmp->size - PAGE_SIZE)
1852                        continue;
1853                while (addr < vaddr) {
1854                        if (count == 0)
1855                                goto finished;
1856                        buf++;
1857                        addr++;
1858                        count--;
1859                }
1860                n = vaddr + tmp->size - PAGE_SIZE - addr;
1861                if (n > count)
1862                        n = count;
1863                if (!(tmp->flags & VM_IOREMAP)) {
1864                        aligned_vwrite(buf, addr, n);
1865                        copied++;
1866                }
1867                buf += n;
1868                addr += n;
1869                count -= n;
1870        }
1871finished:
1872        read_unlock(&vmlist_lock);
1873        if (!copied)
1874                return 0;
1875        return buflen;
1876}
1877
1878/**
1879 *      remap_vmalloc_range  -  map vmalloc pages to userspace
1880 *      @vma:           vma to cover (map full range of vma)
1881 *      @addr:          vmalloc memory
1882 *      @pgoff:         number of pages into addr before first page to map
1883 *
1884 *      Returns:        0 for success, -Exxx on failure
1885 *
1886 *      This function checks that addr is a valid vmalloc'ed area, and
1887 *      that it is big enough to cover the vma. Will return failure if
1888 *      that criteria isn't met.
1889 *
1890 *      Similar to remap_pfn_range() (see mm/memory.c)
1891 */
1892int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1893                                                unsigned long pgoff)
1894{
1895        struct vm_struct *area;
1896        unsigned long uaddr = vma->vm_start;
1897        unsigned long usize = vma->vm_end - vma->vm_start;
1898
1899        if ((PAGE_SIZE-1) & (unsigned long)addr)
1900                return -EINVAL;
1901
1902        area = find_vm_area(addr);
1903        if (!area)
1904                return -EINVAL;
1905
1906        if (!(area->flags & VM_USERMAP))
1907                return -EINVAL;
1908
1909        if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1910                return -EINVAL;
1911
1912        addr += pgoff << PAGE_SHIFT;
1913        do {
1914                struct page *page = vmalloc_to_page(addr);
1915                int ret;
1916
1917                ret = vm_insert_page(vma, uaddr, page);
1918                if (ret)
1919                        return ret;
1920
1921                uaddr += PAGE_SIZE;
1922                addr += PAGE_SIZE;
1923                usize -= PAGE_SIZE;
1924        } while (usize > 0);
1925
1926        /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1927        vma->vm_flags |= VM_RESERVED;
1928
1929        return 0;
1930}
1931EXPORT_SYMBOL(remap_vmalloc_range);
1932
1933/*
1934 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1935 * have one.
1936 */
1937void  __attribute__((weak)) vmalloc_sync_all(void)
1938{
1939}
1940
1941
1942static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1943{
1944        /* apply_to_page_range() does all the hard work. */
1945        return 0;
1946}
1947
1948/**
1949 *      alloc_vm_area - allocate a range of kernel address space
1950 *      @size:          size of the area
1951 *
1952 *      Returns:        NULL on failure, vm_struct on success
1953 *
1954 *      This function reserves a range of kernel address space, and
1955 *      allocates pagetables to map that range.  No actual mappings
1956 *      are created.  If the kernel address space is not shared
1957 *      between processes, it syncs the pagetable across all
1958 *      processes.
1959 */
1960struct vm_struct *alloc_vm_area(size_t size)
1961{
1962        struct vm_struct *area;
1963
1964        area = get_vm_area_caller(size, VM_IOREMAP,
1965                                __builtin_return_address(0));
1966        if (area == NULL)
1967                return NULL;
1968
1969        /*
1970         * This ensures that page tables are constructed for this region
1971         * of kernel virtual address space and mapped into init_mm.
1972         */
1973        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1974                                area->size, f, NULL)) {
1975                free_vm_area(area);
1976                return NULL;
1977        }
1978
1979        /* Make sure the pagetables are constructed in process kernel
1980           mappings */
1981        vmalloc_sync_all();
1982
1983        return area;
1984}
1985EXPORT_SYMBOL_GPL(alloc_vm_area);
1986
1987void free_vm_area(struct vm_struct *area)
1988{
1989        struct vm_struct *ret;
1990        ret = remove_vm_area(area->addr);
1991        BUG_ON(ret != area);
1992        kfree(area);
1993}
1994EXPORT_SYMBOL_GPL(free_vm_area);
1995
1996static struct vmap_area *node_to_va(struct rb_node *n)
1997{
1998        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
1999}
2000
2001/**
2002 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2003 * @end: target address
2004 * @pnext: out arg for the next vmap_area
2005 * @pprev: out arg for the previous vmap_area
2006 *
2007 * Returns: %true if either or both of next and prev are found,
2008 *          %false if no vmap_area exists
2009 *
2010 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2011 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2012 */
2013static bool pvm_find_next_prev(unsigned long end,
2014                               struct vmap_area **pnext,
2015                               struct vmap_area **pprev)
2016{
2017        struct rb_node *n = vmap_area_root.rb_node;
2018        struct vmap_area *va = NULL;
2019
2020        while (n) {
2021                va = rb_entry(n, struct vmap_area, rb_node);
2022                if (end < va->va_end)
2023                        n = n->rb_left;
2024                else if (end > va->va_end)
2025                        n = n->rb_right;
2026                else
2027                        break;
2028        }
2029
2030        if (!va)
2031                return false;
2032
2033        if (va->va_end > end) {
2034                *pnext = va;
2035                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2036        } else {
2037                *pprev = va;
2038                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2039        }
2040        return true;
2041}
2042
2043/**
2044 * pvm_determine_end - find the highest aligned address between two vmap_areas
2045 * @pnext: in/out arg for the next vmap_area
2046 * @pprev: in/out arg for the previous vmap_area
2047 * @align: alignment
2048 *
2049 * Returns: determined end address
2050 *
2051 * Find the highest aligned address between *@pnext and *@pprev below
2052 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2053 * down address is between the end addresses of the two vmap_areas.
2054 *
2055 * Please note that the address returned by this function may fall
2056 * inside *@pnext vmap_area.  The caller is responsible for checking
2057 * that.
2058 */
2059static unsigned long pvm_determine_end(struct vmap_area **pnext,
2060                                       struct vmap_area **pprev,
2061                                       unsigned long align)
2062{
2063        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2064        unsigned long addr;
2065
2066        if (*pnext)
2067                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2068        else
2069                addr = vmalloc_end;
2070
2071        while (*pprev && (*pprev)->va_end > addr) {
2072                *pnext = *pprev;
2073                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2074        }
2075
2076        return addr;
2077}
2078
2079/**
2080 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2081 * @offsets: array containing offset of each area
2082 * @sizes: array containing size of each area
2083 * @nr_vms: the number of areas to allocate
2084 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2085 * @gfp_mask: allocation mask
2086 *
2087 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2088 *          vm_structs on success, %NULL on failure
2089 *
2090 * Percpu allocator wants to use congruent vm areas so that it can
2091 * maintain the offsets among percpu areas.  This function allocates
2092 * congruent vmalloc areas for it.  These areas tend to be scattered
2093 * pretty far, distance between two areas easily going up to
2094 * gigabytes.  To avoid interacting with regular vmallocs, these areas
2095 * are allocated from top.
2096 *
2097 * Despite its complicated look, this allocator is rather simple.  It
2098 * does everything top-down and scans areas from the end looking for
2099 * matching slot.  While scanning, if any of the areas overlaps with
2100 * existing vmap_area, the base address is pulled down to fit the
2101 * area.  Scanning is repeated till all the areas fit and then all
2102 * necessary data structres are inserted and the result is returned.
2103 */
2104struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2105                                     const size_t *sizes, int nr_vms,
2106                                     size_t align, gfp_t gfp_mask)
2107{
2108        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2109        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2110        struct vmap_area **vas, *prev, *next;
2111        struct vm_struct **vms;
2112        int area, area2, last_area, term_area;
2113        unsigned long base, start, end, last_end;
2114        bool purged = false;
2115
2116        gfp_mask &= GFP_RECLAIM_MASK;
2117
2118        /* verify parameters and allocate data structures */
2119        BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2120        for (last_area = 0, area = 0; area < nr_vms; area++) {
2121                start = offsets[area];
2122                end = start + sizes[area];
2123
2124                /* is everything aligned properly? */
2125                BUG_ON(!IS_ALIGNED(offsets[area], align));
2126                BUG_ON(!IS_ALIGNED(sizes[area], align));
2127
2128                /* detect the area with the highest address */
2129                if (start > offsets[last_area])
2130                        last_area = area;
2131
2132                for (area2 = 0; area2 < nr_vms; area2++) {
2133                        unsigned long start2 = offsets[area2];
2134                        unsigned long end2 = start2 + sizes[area2];
2135
2136                        if (area2 == area)
2137                                continue;
2138
2139                        BUG_ON(start2 >= start && start2 < end);
2140                        BUG_ON(end2 <= end && end2 > start);
2141                }
2142        }
2143        last_end = offsets[last_area] + sizes[last_area];
2144
2145        if (vmalloc_end - vmalloc_start < last_end) {
2146                WARN_ON(true);
2147                return NULL;
2148        }
2149
2150        vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2151        vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2152        if (!vas || !vms)
2153                goto err_free;
2154
2155        for (area = 0; area < nr_vms; area++) {
2156                vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2157                vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2158                if (!vas[area] || !vms[area])
2159                        goto err_free;
2160        }
2161retry:
2162        spin_lock(&vmap_area_lock);
2163
2164        /* start scanning - we scan from the top, begin with the last area */
2165        area = term_area = last_area;
2166        start = offsets[area];
2167        end = start + sizes[area];
2168
2169        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2170                base = vmalloc_end - last_end;
2171                goto found;
2172        }
2173        base = pvm_determine_end(&next, &prev, align) - end;
2174
2175        while (true) {
2176                BUG_ON(next && next->va_end <= base + end);
2177                BUG_ON(prev && prev->va_end > base + end);
2178
2179                /*
2180                 * base might have underflowed, add last_end before
2181                 * comparing.
2182                 */
2183                if (base + last_end < vmalloc_start + last_end) {
2184                        spin_unlock(&vmap_area_lock);
2185                        if (!purged) {
2186                                purge_vmap_area_lazy();
2187                                purged = true;
2188                                goto retry;
2189                        }
2190                        goto err_free;
2191                }
2192
2193                /*
2194                 * If next overlaps, move base downwards so that it's
2195                 * right below next and then recheck.
2196                 */
2197                if (next && next->va_start < base + end) {
2198                        base = pvm_determine_end(&next, &prev, align) - end;
2199                        term_area = area;
2200                        continue;
2201                }
2202
2203                /*
2204                 * If prev overlaps, shift down next and prev and move
2205                 * base so that it's right below new next and then
2206                 * recheck.
2207                 */
2208                if (prev && prev->va_end > base + start)  {
2209                        next = prev;
2210                        prev = node_to_va(rb_prev(&next->rb_node));
2211                        base = pvm_determine_end(&next, &prev, align) - end;
2212                        term_area = area;
2213                        continue;
2214                }
2215
2216                /*
2217                 * This area fits, move on to the previous one.  If
2218                 * the previous one is the terminal one, we're done.
2219                 */
2220                area = (area + nr_vms - 1) % nr_vms;
2221                if (area == term_area)
2222                        break;
2223                start = offsets[area];
2224                end = start + sizes[area];
2225                pvm_find_next_prev(base + end, &next, &prev);
2226        }
2227found:
2228        /* we've found a fitting base, insert all va's */
2229        for (area = 0; area < nr_vms; area++) {
2230                struct vmap_area *va = vas[area];
2231
2232                va->va_start = base + offsets[area];
2233                va->va_end = va->va_start + sizes[area];
2234                __insert_vmap_area(va);
2235        }
2236
2237        vmap_area_pcpu_hole = base + offsets[last_area];
2238
2239        spin_unlock(&vmap_area_lock);
2240
2241        /* insert all vm's */
2242        for (area = 0; area < nr_vms; area++)
2243                insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2244                                  pcpu_get_vm_areas);
2245
2246        kfree(vas);
2247        return vms;
2248
2249err_free:
2250        for (area = 0; area < nr_vms; area++) {
2251                if (vas)
2252                        kfree(vas[area]);
2253                if (vms)
2254                        kfree(vms[area]);
2255        }
2256        kfree(vas);
2257        kfree(vms);
2258        return NULL;
2259}
2260
2261/**
2262 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2263 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2264 * @nr_vms: the number of allocated areas
2265 *
2266 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2267 */
2268void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2269{
2270        int i;
2271
2272        for (i = 0; i < nr_vms; i++)
2273                free_vm_area(vms[i]);
2274        kfree(vms);
2275}
2276
2277#ifdef CONFIG_PROC_FS
2278static void *s_start(struct seq_file *m, loff_t *pos)
2279{
2280        loff_t n = *pos;
2281        struct vm_struct *v;
2282
2283        read_lock(&vmlist_lock);
2284        v = vmlist;
2285        while (n > 0 && v) {
2286                n--;
2287                v = v->next;
2288        }
2289        if (!n)
2290                return v;
2291
2292        return NULL;
2293
2294}
2295
2296static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2297{
2298        struct vm_struct *v = p;
2299
2300        ++*pos;
2301        return v->next;
2302}
2303
2304static void s_stop(struct seq_file *m, void *p)
2305{
2306        read_unlock(&vmlist_lock);
2307}
2308
2309static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2310{
2311        if (NUMA_BUILD) {
2312                unsigned int nr, *counters = m->private;
2313
2314                if (!counters)
2315                        return;
2316
2317                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2318
2319                for (nr = 0; nr < v->nr_pages; nr++)
2320                        counters[page_to_nid(v->pages[nr])]++;
2321
2322                for_each_node_state(nr, N_HIGH_MEMORY)
2323                        if (counters[nr])
2324                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2325        }
2326}
2327
2328static int s_show(struct seq_file *m, void *p)
2329{
2330        struct vm_struct *v = p;
2331
2332        seq_printf(m, "0x%p-0x%p %7ld",
2333                v->addr, v->addr + v->size, v->size);
2334
2335        if (v->caller) {
2336                char buff[KSYM_SYMBOL_LEN];
2337
2338                seq_putc(m, ' ');
2339                sprint_symbol(buff, (unsigned long)v->caller);
2340                seq_puts(m, buff);
2341        }
2342
2343        if (v->nr_pages)
2344                seq_printf(m, " pages=%d", v->nr_pages);
2345
2346        if (v->phys_addr)
2347                seq_printf(m, " phys=%lx", v->phys_addr);
2348
2349        if (v->flags & VM_IOREMAP)
2350                seq_printf(m, " ioremap");
2351
2352        if (v->flags & VM_ALLOC)
2353                seq_printf(m, " vmalloc");
2354
2355        if (v->flags & VM_MAP)
2356                seq_printf(m, " vmap");
2357
2358        if (v->flags & VM_USERMAP)
2359                seq_printf(m, " user");
2360
2361        if (v->flags & VM_VPAGES)
2362                seq_printf(m, " vpages");
2363
2364        show_numa_info(m, v);
2365        seq_putc(m, '\n');
2366        return 0;
2367}
2368
2369static const struct seq_operations vmalloc_op = {
2370        .start = s_start,
2371        .next = s_next,
2372        .stop = s_stop,
2373        .show = s_show,
2374};
2375
2376static int vmalloc_open(struct inode *inode, struct file *file)
2377{
2378        unsigned int *ptr = NULL;
2379        int ret;
2380
2381        if (NUMA_BUILD)
2382                ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2383        ret = seq_open(file, &vmalloc_op);
2384        if (!ret) {
2385                struct seq_file *m = file->private_data;
2386                m->private = ptr;
2387        } else
2388                kfree(ptr);
2389        return ret;
2390}
2391
2392static const struct file_operations proc_vmalloc_operations = {
2393        .open           = vmalloc_open,
2394        .read           = seq_read,
2395        .llseek         = seq_lseek,
2396        .release        = seq_release_private,
2397};
2398
2399static int __init proc_vmalloc_init(void)
2400{
2401        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2402        return 0;
2403}
2404module_init(proc_vmalloc_init);
2405#endif
2406
2407