linux/net/ipv6/ip6_fib.c
<<
>>
Prefs
   1/*
   2 *      Linux INET6 implementation
   3 *      Forwarding Information Database
   4 *
   5 *      Authors:
   6 *      Pedro Roque             <roque@di.fc.ul.pt>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14/*
  15 *      Changes:
  16 *      Yuji SEKIYA @USAGI:     Support default route on router node;
  17 *                              remove ip6_null_entry from the top of
  18 *                              routing table.
  19 *      Ville Nuorvala:         Fixed routing subtrees.
  20 */
  21#include <linux/errno.h>
  22#include <linux/types.h>
  23#include <linux/net.h>
  24#include <linux/route.h>
  25#include <linux/netdevice.h>
  26#include <linux/in6.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29
  30#ifdef  CONFIG_PROC_FS
  31#include <linux/proc_fs.h>
  32#endif
  33
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/addrconf.h>
  37
  38#include <net/ip6_fib.h>
  39#include <net/ip6_route.h>
  40
  41#define RT6_DEBUG 2
  42
  43#if RT6_DEBUG >= 3
  44#define RT6_TRACE(x...) printk(KERN_DEBUG x)
  45#else
  46#define RT6_TRACE(x...) do { ; } while (0)
  47#endif
  48
  49static struct kmem_cache * fib6_node_kmem __read_mostly;
  50
  51enum fib_walk_state_t
  52{
  53#ifdef CONFIG_IPV6_SUBTREES
  54        FWS_S,
  55#endif
  56        FWS_L,
  57        FWS_R,
  58        FWS_C,
  59        FWS_U
  60};
  61
  62struct fib6_cleaner_t
  63{
  64        struct fib6_walker_t w;
  65        struct net *net;
  66        int (*func)(struct rt6_info *, void *arg);
  67        void *arg;
  68};
  69
  70static DEFINE_RWLOCK(fib6_walker_lock);
  71
  72#ifdef CONFIG_IPV6_SUBTREES
  73#define FWS_INIT FWS_S
  74#else
  75#define FWS_INIT FWS_L
  76#endif
  77
  78static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  79                              struct rt6_info *rt);
  80static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  81static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  82static int fib6_walk(struct fib6_walker_t *w);
  83static int fib6_walk_continue(struct fib6_walker_t *w);
  84
  85/*
  86 *      A routing update causes an increase of the serial number on the
  87 *      affected subtree. This allows for cached routes to be asynchronously
  88 *      tested when modifications are made to the destination cache as a
  89 *      result of redirects, path MTU changes, etc.
  90 */
  91
  92static __u32 rt_sernum;
  93
  94static void fib6_gc_timer_cb(unsigned long arg);
  95
  96static struct fib6_walker_t fib6_walker_list = {
  97        .prev   = &fib6_walker_list,
  98        .next   = &fib6_walker_list,
  99};
 100
 101#define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
 102
 103static inline void fib6_walker_link(struct fib6_walker_t *w)
 104{
 105        write_lock_bh(&fib6_walker_lock);
 106        w->next = fib6_walker_list.next;
 107        w->prev = &fib6_walker_list;
 108        w->next->prev = w;
 109        w->prev->next = w;
 110        write_unlock_bh(&fib6_walker_lock);
 111}
 112
 113static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 114{
 115        write_lock_bh(&fib6_walker_lock);
 116        w->next->prev = w->prev;
 117        w->prev->next = w->next;
 118        w->prev = w->next = w;
 119        write_unlock_bh(&fib6_walker_lock);
 120}
 121static __inline__ u32 fib6_new_sernum(void)
 122{
 123        u32 n = ++rt_sernum;
 124        if ((__s32)n <= 0)
 125                rt_sernum = n = 1;
 126        return n;
 127}
 128
 129/*
 130 *      Auxiliary address test functions for the radix tree.
 131 *
 132 *      These assume a 32bit processor (although it will work on
 133 *      64bit processors)
 134 */
 135
 136/*
 137 *      test bit
 138 */
 139
 140static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
 141{
 142        __be32 *addr = token;
 143
 144        return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
 145}
 146
 147static __inline__ struct fib6_node * node_alloc(void)
 148{
 149        struct fib6_node *fn;
 150
 151        fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 152
 153        return fn;
 154}
 155
 156static __inline__ void node_free(struct fib6_node * fn)
 157{
 158        kmem_cache_free(fib6_node_kmem, fn);
 159}
 160
 161static __inline__ void rt6_release(struct rt6_info *rt)
 162{
 163        if (atomic_dec_and_test(&rt->rt6i_ref))
 164                dst_free(&rt->u.dst);
 165}
 166
 167static void fib6_link_table(struct net *net, struct fib6_table *tb)
 168{
 169        unsigned int h;
 170
 171        /*
 172         * Initialize table lock at a single place to give lockdep a key,
 173         * tables aren't visible prior to being linked to the list.
 174         */
 175        rwlock_init(&tb->tb6_lock);
 176
 177        h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 178
 179        /*
 180         * No protection necessary, this is the only list mutatation
 181         * operation, tables never disappear once they exist.
 182         */
 183        hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 184}
 185
 186#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 187
 188static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 189{
 190        struct fib6_table *table;
 191
 192        table = kzalloc(sizeof(*table), GFP_ATOMIC);
 193        if (table != NULL) {
 194                table->tb6_id = id;
 195                table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 196                table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 197        }
 198
 199        return table;
 200}
 201
 202struct fib6_table *fib6_new_table(struct net *net, u32 id)
 203{
 204        struct fib6_table *tb;
 205
 206        if (id == 0)
 207                id = RT6_TABLE_MAIN;
 208        tb = fib6_get_table(net, id);
 209        if (tb)
 210                return tb;
 211
 212        tb = fib6_alloc_table(net, id);
 213        if (tb != NULL)
 214                fib6_link_table(net, tb);
 215
 216        return tb;
 217}
 218
 219struct fib6_table *fib6_get_table(struct net *net, u32 id)
 220{
 221        struct fib6_table *tb;
 222        struct hlist_head *head;
 223        struct hlist_node *node;
 224        unsigned int h;
 225
 226        if (id == 0)
 227                id = RT6_TABLE_MAIN;
 228        h = id & (FIB6_TABLE_HASHSZ - 1);
 229        rcu_read_lock();
 230        head = &net->ipv6.fib_table_hash[h];
 231        hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 232                if (tb->tb6_id == id) {
 233                        rcu_read_unlock();
 234                        return tb;
 235                }
 236        }
 237        rcu_read_unlock();
 238
 239        return NULL;
 240}
 241
 242static void fib6_tables_init(struct net *net)
 243{
 244        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 245        fib6_link_table(net, net->ipv6.fib6_local_tbl);
 246}
 247#else
 248
 249struct fib6_table *fib6_new_table(struct net *net, u32 id)
 250{
 251        return fib6_get_table(net, id);
 252}
 253
 254struct fib6_table *fib6_get_table(struct net *net, u32 id)
 255{
 256          return net->ipv6.fib6_main_tbl;
 257}
 258
 259struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
 260                                   int flags, pol_lookup_t lookup)
 261{
 262        return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
 263}
 264
 265static void fib6_tables_init(struct net *net)
 266{
 267        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 268}
 269
 270#endif
 271
 272static int fib6_dump_node(struct fib6_walker_t *w)
 273{
 274        int res;
 275        struct rt6_info *rt;
 276
 277        for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
 278                res = rt6_dump_route(rt, w->args);
 279                if (res < 0) {
 280                        /* Frame is full, suspend walking */
 281                        w->leaf = rt;
 282                        return 1;
 283                }
 284                WARN_ON(res == 0);
 285        }
 286        w->leaf = NULL;
 287        return 0;
 288}
 289
 290static void fib6_dump_end(struct netlink_callback *cb)
 291{
 292        struct fib6_walker_t *w = (void*)cb->args[2];
 293
 294        if (w) {
 295                if (cb->args[4]) {
 296                        cb->args[4] = 0;
 297                        fib6_walker_unlink(w);
 298                }
 299                cb->args[2] = 0;
 300                kfree(w);
 301        }
 302        cb->done = (void*)cb->args[3];
 303        cb->args[1] = 3;
 304}
 305
 306static int fib6_dump_done(struct netlink_callback *cb)
 307{
 308        fib6_dump_end(cb);
 309        return cb->done ? cb->done(cb) : 0;
 310}
 311
 312static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 313                           struct netlink_callback *cb)
 314{
 315        struct fib6_walker_t *w;
 316        int res;
 317
 318        w = (void *)cb->args[2];
 319        w->root = &table->tb6_root;
 320
 321        if (cb->args[4] == 0) {
 322                read_lock_bh(&table->tb6_lock);
 323                res = fib6_walk(w);
 324                read_unlock_bh(&table->tb6_lock);
 325                if (res > 0)
 326                        cb->args[4] = 1;
 327        } else {
 328                read_lock_bh(&table->tb6_lock);
 329                res = fib6_walk_continue(w);
 330                read_unlock_bh(&table->tb6_lock);
 331                if (res <= 0) {
 332                        fib6_walker_unlink(w);
 333                        cb->args[4] = 0;
 334                }
 335        }
 336
 337        return res;
 338}
 339
 340static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 341{
 342        struct net *net = sock_net(skb->sk);
 343        unsigned int h, s_h;
 344        unsigned int e = 0, s_e;
 345        struct rt6_rtnl_dump_arg arg;
 346        struct fib6_walker_t *w;
 347        struct fib6_table *tb;
 348        struct hlist_node *node;
 349        struct hlist_head *head;
 350        int res = 0;
 351
 352        s_h = cb->args[0];
 353        s_e = cb->args[1];
 354
 355        w = (void *)cb->args[2];
 356        if (w == NULL) {
 357                /* New dump:
 358                 *
 359                 * 1. hook callback destructor.
 360                 */
 361                cb->args[3] = (long)cb->done;
 362                cb->done = fib6_dump_done;
 363
 364                /*
 365                 * 2. allocate and initialize walker.
 366                 */
 367                w = kzalloc(sizeof(*w), GFP_ATOMIC);
 368                if (w == NULL)
 369                        return -ENOMEM;
 370                w->func = fib6_dump_node;
 371                cb->args[2] = (long)w;
 372        }
 373
 374        arg.skb = skb;
 375        arg.cb = cb;
 376        arg.net = net;
 377        w->args = &arg;
 378
 379        for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 380                e = 0;
 381                head = &net->ipv6.fib_table_hash[h];
 382                hlist_for_each_entry(tb, node, head, tb6_hlist) {
 383                        if (e < s_e)
 384                                goto next;
 385                        res = fib6_dump_table(tb, skb, cb);
 386                        if (res != 0)
 387                                goto out;
 388next:
 389                        e++;
 390                }
 391        }
 392out:
 393        cb->args[1] = e;
 394        cb->args[0] = h;
 395
 396        res = res < 0 ? res : skb->len;
 397        if (res <= 0)
 398                fib6_dump_end(cb);
 399        return res;
 400}
 401
 402/*
 403 *      Routing Table
 404 *
 405 *      return the appropriate node for a routing tree "add" operation
 406 *      by either creating and inserting or by returning an existing
 407 *      node.
 408 */
 409
 410static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 411                                     int addrlen, int plen,
 412                                     int offset)
 413{
 414        struct fib6_node *fn, *in, *ln;
 415        struct fib6_node *pn = NULL;
 416        struct rt6key *key;
 417        int     bit;
 418        __be32  dir = 0;
 419        __u32   sernum = fib6_new_sernum();
 420
 421        RT6_TRACE("fib6_add_1\n");
 422
 423        /* insert node in tree */
 424
 425        fn = root;
 426
 427        do {
 428                key = (struct rt6key *)((u8 *)fn->leaf + offset);
 429
 430                /*
 431                 *      Prefix match
 432                 */
 433                if (plen < fn->fn_bit ||
 434                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 435                        goto insert_above;
 436
 437                /*
 438                 *      Exact match ?
 439                 */
 440
 441                if (plen == fn->fn_bit) {
 442                        /* clean up an intermediate node */
 443                        if ((fn->fn_flags & RTN_RTINFO) == 0) {
 444                                rt6_release(fn->leaf);
 445                                fn->leaf = NULL;
 446                        }
 447
 448                        fn->fn_sernum = sernum;
 449
 450                        return fn;
 451                }
 452
 453                /*
 454                 *      We have more bits to go
 455                 */
 456
 457                /* Try to walk down on tree. */
 458                fn->fn_sernum = sernum;
 459                dir = addr_bit_set(addr, fn->fn_bit);
 460                pn = fn;
 461                fn = dir ? fn->right: fn->left;
 462        } while (fn);
 463
 464        /*
 465         *      We walked to the bottom of tree.
 466         *      Create new leaf node without children.
 467         */
 468
 469        ln = node_alloc();
 470
 471        if (ln == NULL)
 472                return NULL;
 473        ln->fn_bit = plen;
 474
 475        ln->parent = pn;
 476        ln->fn_sernum = sernum;
 477
 478        if (dir)
 479                pn->right = ln;
 480        else
 481                pn->left  = ln;
 482
 483        return ln;
 484
 485
 486insert_above:
 487        /*
 488         * split since we don't have a common prefix anymore or
 489         * we have a less significant route.
 490         * we've to insert an intermediate node on the list
 491         * this new node will point to the one we need to create
 492         * and the current
 493         */
 494
 495        pn = fn->parent;
 496
 497        /* find 1st bit in difference between the 2 addrs.
 498
 499           See comment in __ipv6_addr_diff: bit may be an invalid value,
 500           but if it is >= plen, the value is ignored in any case.
 501         */
 502
 503        bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 504
 505        /*
 506         *              (intermediate)[in]
 507         *                /        \
 508         *      (new leaf node)[ln] (old node)[fn]
 509         */
 510        if (plen > bit) {
 511                in = node_alloc();
 512                ln = node_alloc();
 513
 514                if (in == NULL || ln == NULL) {
 515                        if (in)
 516                                node_free(in);
 517                        if (ln)
 518                                node_free(ln);
 519                        return NULL;
 520                }
 521
 522                /*
 523                 * new intermediate node.
 524                 * RTN_RTINFO will
 525                 * be off since that an address that chooses one of
 526                 * the branches would not match less specific routes
 527                 * in the other branch
 528                 */
 529
 530                in->fn_bit = bit;
 531
 532                in->parent = pn;
 533                in->leaf = fn->leaf;
 534                atomic_inc(&in->leaf->rt6i_ref);
 535
 536                in->fn_sernum = sernum;
 537
 538                /* update parent pointer */
 539                if (dir)
 540                        pn->right = in;
 541                else
 542                        pn->left  = in;
 543
 544                ln->fn_bit = plen;
 545
 546                ln->parent = in;
 547                fn->parent = in;
 548
 549                ln->fn_sernum = sernum;
 550
 551                if (addr_bit_set(addr, bit)) {
 552                        in->right = ln;
 553                        in->left  = fn;
 554                } else {
 555                        in->left  = ln;
 556                        in->right = fn;
 557                }
 558        } else { /* plen <= bit */
 559
 560                /*
 561                 *              (new leaf node)[ln]
 562                 *                /        \
 563                 *           (old node)[fn] NULL
 564                 */
 565
 566                ln = node_alloc();
 567
 568                if (ln == NULL)
 569                        return NULL;
 570
 571                ln->fn_bit = plen;
 572
 573                ln->parent = pn;
 574
 575                ln->fn_sernum = sernum;
 576
 577                if (dir)
 578                        pn->right = ln;
 579                else
 580                        pn->left  = ln;
 581
 582                if (addr_bit_set(&key->addr, plen))
 583                        ln->right = fn;
 584                else
 585                        ln->left  = fn;
 586
 587                fn->parent = ln;
 588        }
 589        return ln;
 590}
 591
 592/*
 593 *      Insert routing information in a node.
 594 */
 595
 596static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 597                            struct nl_info *info)
 598{
 599        struct rt6_info *iter = NULL;
 600        struct rt6_info **ins;
 601
 602        ins = &fn->leaf;
 603
 604        for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
 605                /*
 606                 *      Search for duplicates
 607                 */
 608
 609                if (iter->rt6i_metric == rt->rt6i_metric) {
 610                        /*
 611                         *      Same priority level
 612                         */
 613
 614                        if (iter->rt6i_dev == rt->rt6i_dev &&
 615                            iter->rt6i_idev == rt->rt6i_idev &&
 616                            ipv6_addr_equal(&iter->rt6i_gateway,
 617                                            &rt->rt6i_gateway)) {
 618                                if (!(iter->rt6i_flags&RTF_EXPIRES))
 619                                        return -EEXIST;
 620                                iter->rt6i_expires = rt->rt6i_expires;
 621                                if (!(rt->rt6i_flags&RTF_EXPIRES)) {
 622                                        iter->rt6i_flags &= ~RTF_EXPIRES;
 623                                        iter->rt6i_expires = 0;
 624                                }
 625                                return -EEXIST;
 626                        }
 627                }
 628
 629                if (iter->rt6i_metric > rt->rt6i_metric)
 630                        break;
 631
 632                ins = &iter->u.dst.rt6_next;
 633        }
 634
 635        /* Reset round-robin state, if necessary */
 636        if (ins == &fn->leaf)
 637                fn->rr_ptr = NULL;
 638
 639        /*
 640         *      insert node
 641         */
 642
 643        rt->u.dst.rt6_next = iter;
 644        *ins = rt;
 645        rt->rt6i_node = fn;
 646        atomic_inc(&rt->rt6i_ref);
 647        inet6_rt_notify(RTM_NEWROUTE, rt, info);
 648        info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 649
 650        if ((fn->fn_flags & RTN_RTINFO) == 0) {
 651                info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 652                fn->fn_flags |= RTN_RTINFO;
 653        }
 654
 655        return 0;
 656}
 657
 658static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 659{
 660        if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 661            (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
 662                mod_timer(&net->ipv6.ip6_fib_timer,
 663                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 664}
 665
 666void fib6_force_start_gc(struct net *net)
 667{
 668        if (!timer_pending(&net->ipv6.ip6_fib_timer))
 669                mod_timer(&net->ipv6.ip6_fib_timer,
 670                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 671}
 672
 673/*
 674 *      Add routing information to the routing tree.
 675 *      <destination addr>/<source addr>
 676 *      with source addr info in sub-trees
 677 */
 678
 679int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 680{
 681        struct fib6_node *fn, *pn = NULL;
 682        int err = -ENOMEM;
 683
 684        fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 685                        rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
 686
 687        if (fn == NULL)
 688                goto out;
 689
 690        pn = fn;
 691
 692#ifdef CONFIG_IPV6_SUBTREES
 693        if (rt->rt6i_src.plen) {
 694                struct fib6_node *sn;
 695
 696                if (fn->subtree == NULL) {
 697                        struct fib6_node *sfn;
 698
 699                        /*
 700                         * Create subtree.
 701                         *
 702                         *              fn[main tree]
 703                         *              |
 704                         *              sfn[subtree root]
 705                         *                 \
 706                         *                  sn[new leaf node]
 707                         */
 708
 709                        /* Create subtree root node */
 710                        sfn = node_alloc();
 711                        if (sfn == NULL)
 712                                goto st_failure;
 713
 714                        sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 715                        atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 716                        sfn->fn_flags = RTN_ROOT;
 717                        sfn->fn_sernum = fib6_new_sernum();
 718
 719                        /* Now add the first leaf node to new subtree */
 720
 721                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 722                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
 723                                        offsetof(struct rt6_info, rt6i_src));
 724
 725                        if (sn == NULL) {
 726                                /* If it is failed, discard just allocated
 727                                   root, and then (in st_failure) stale node
 728                                   in main tree.
 729                                 */
 730                                node_free(sfn);
 731                                goto st_failure;
 732                        }
 733
 734                        /* Now link new subtree to main tree */
 735                        sfn->parent = fn;
 736                        fn->subtree = sfn;
 737                } else {
 738                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 739                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
 740                                        offsetof(struct rt6_info, rt6i_src));
 741
 742                        if (sn == NULL)
 743                                goto st_failure;
 744                }
 745
 746                if (fn->leaf == NULL) {
 747                        fn->leaf = rt;
 748                        atomic_inc(&rt->rt6i_ref);
 749                }
 750                fn = sn;
 751        }
 752#endif
 753
 754        err = fib6_add_rt2node(fn, rt, info);
 755
 756        if (err == 0) {
 757                fib6_start_gc(info->nl_net, rt);
 758                if (!(rt->rt6i_flags&RTF_CACHE))
 759                        fib6_prune_clones(info->nl_net, pn, rt);
 760        }
 761
 762out:
 763        if (err) {
 764#ifdef CONFIG_IPV6_SUBTREES
 765                /*
 766                 * If fib6_add_1 has cleared the old leaf pointer in the
 767                 * super-tree leaf node we have to find a new one for it.
 768                 */
 769                if (pn != fn && pn->leaf == rt) {
 770                        pn->leaf = NULL;
 771                        atomic_dec(&rt->rt6i_ref);
 772                }
 773                if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 774                        pn->leaf = fib6_find_prefix(info->nl_net, pn);
 775#if RT6_DEBUG >= 2
 776                        if (!pn->leaf) {
 777                                WARN_ON(pn->leaf == NULL);
 778                                pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 779                        }
 780#endif
 781                        atomic_inc(&pn->leaf->rt6i_ref);
 782                }
 783#endif
 784                dst_free(&rt->u.dst);
 785        }
 786        return err;
 787
 788#ifdef CONFIG_IPV6_SUBTREES
 789        /* Subtree creation failed, probably main tree node
 790           is orphan. If it is, shoot it.
 791         */
 792st_failure:
 793        if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 794                fib6_repair_tree(info->nl_net, fn);
 795        dst_free(&rt->u.dst);
 796        return err;
 797#endif
 798}
 799
 800/*
 801 *      Routing tree lookup
 802 *
 803 */
 804
 805struct lookup_args {
 806        int             offset;         /* key offset on rt6_info       */
 807        struct in6_addr *addr;          /* search key                   */
 808};
 809
 810static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 811                                        struct lookup_args *args)
 812{
 813        struct fib6_node *fn;
 814        __be32 dir;
 815
 816        if (unlikely(args->offset == 0))
 817                return NULL;
 818
 819        /*
 820         *      Descend on a tree
 821         */
 822
 823        fn = root;
 824
 825        for (;;) {
 826                struct fib6_node *next;
 827
 828                dir = addr_bit_set(args->addr, fn->fn_bit);
 829
 830                next = dir ? fn->right : fn->left;
 831
 832                if (next) {
 833                        fn = next;
 834                        continue;
 835                }
 836
 837                break;
 838        }
 839
 840        while(fn) {
 841                if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 842                        struct rt6key *key;
 843
 844                        key = (struct rt6key *) ((u8 *) fn->leaf +
 845                                                 args->offset);
 846
 847                        if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 848#ifdef CONFIG_IPV6_SUBTREES
 849                                if (fn->subtree)
 850                                        fn = fib6_lookup_1(fn->subtree, args + 1);
 851#endif
 852                                if (!fn || fn->fn_flags & RTN_RTINFO)
 853                                        return fn;
 854                        }
 855                }
 856
 857                if (fn->fn_flags & RTN_ROOT)
 858                        break;
 859
 860                fn = fn->parent;
 861        }
 862
 863        return NULL;
 864}
 865
 866struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
 867                               struct in6_addr *saddr)
 868{
 869        struct fib6_node *fn;
 870        struct lookup_args args[] = {
 871                {
 872                        .offset = offsetof(struct rt6_info, rt6i_dst),
 873                        .addr = daddr,
 874                },
 875#ifdef CONFIG_IPV6_SUBTREES
 876                {
 877                        .offset = offsetof(struct rt6_info, rt6i_src),
 878                        .addr = saddr,
 879                },
 880#endif
 881                {
 882                        .offset = 0,    /* sentinel */
 883                }
 884        };
 885
 886        fn = fib6_lookup_1(root, daddr ? args : args + 1);
 887
 888        if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
 889                fn = root;
 890
 891        return fn;
 892}
 893
 894/*
 895 *      Get node with specified destination prefix (and source prefix,
 896 *      if subtrees are used)
 897 */
 898
 899
 900static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 901                                        struct in6_addr *addr,
 902                                        int plen, int offset)
 903{
 904        struct fib6_node *fn;
 905
 906        for (fn = root; fn ; ) {
 907                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
 908
 909                /*
 910                 *      Prefix match
 911                 */
 912                if (plen < fn->fn_bit ||
 913                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 914                        return NULL;
 915
 916                if (plen == fn->fn_bit)
 917                        return fn;
 918
 919                /*
 920                 *      We have more bits to go
 921                 */
 922                if (addr_bit_set(addr, fn->fn_bit))
 923                        fn = fn->right;
 924                else
 925                        fn = fn->left;
 926        }
 927        return NULL;
 928}
 929
 930struct fib6_node * fib6_locate(struct fib6_node *root,
 931                               struct in6_addr *daddr, int dst_len,
 932                               struct in6_addr *saddr, int src_len)
 933{
 934        struct fib6_node *fn;
 935
 936        fn = fib6_locate_1(root, daddr, dst_len,
 937                           offsetof(struct rt6_info, rt6i_dst));
 938
 939#ifdef CONFIG_IPV6_SUBTREES
 940        if (src_len) {
 941                WARN_ON(saddr == NULL);
 942                if (fn && fn->subtree)
 943                        fn = fib6_locate_1(fn->subtree, saddr, src_len,
 944                                           offsetof(struct rt6_info, rt6i_src));
 945        }
 946#endif
 947
 948        if (fn && fn->fn_flags&RTN_RTINFO)
 949                return fn;
 950
 951        return NULL;
 952}
 953
 954
 955/*
 956 *      Deletion
 957 *
 958 */
 959
 960static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
 961{
 962        if (fn->fn_flags&RTN_ROOT)
 963                return net->ipv6.ip6_null_entry;
 964
 965        while(fn) {
 966                if(fn->left)
 967                        return fn->left->leaf;
 968
 969                if(fn->right)
 970                        return fn->right->leaf;
 971
 972                fn = FIB6_SUBTREE(fn);
 973        }
 974        return NULL;
 975}
 976
 977/*
 978 *      Called to trim the tree of intermediate nodes when possible. "fn"
 979 *      is the node we want to try and remove.
 980 */
 981
 982static struct fib6_node *fib6_repair_tree(struct net *net,
 983                                           struct fib6_node *fn)
 984{
 985        int children;
 986        int nstate;
 987        struct fib6_node *child, *pn;
 988        struct fib6_walker_t *w;
 989        int iter = 0;
 990
 991        for (;;) {
 992                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
 993                iter++;
 994
 995                WARN_ON(fn->fn_flags & RTN_RTINFO);
 996                WARN_ON(fn->fn_flags & RTN_TL_ROOT);
 997                WARN_ON(fn->leaf != NULL);
 998
 999                children = 0;
1000                child = NULL;
1001                if (fn->right) child = fn->right, children |= 1;
1002                if (fn->left) child = fn->left, children |= 2;
1003
1004                if (children == 3 || FIB6_SUBTREE(fn)
1005#ifdef CONFIG_IPV6_SUBTREES
1006                    /* Subtree root (i.e. fn) may have one child */
1007                    || (children && fn->fn_flags&RTN_ROOT)
1008#endif
1009                    ) {
1010                        fn->leaf = fib6_find_prefix(net, fn);
1011#if RT6_DEBUG >= 2
1012                        if (fn->leaf==NULL) {
1013                                WARN_ON(!fn->leaf);
1014                                fn->leaf = net->ipv6.ip6_null_entry;
1015                        }
1016#endif
1017                        atomic_inc(&fn->leaf->rt6i_ref);
1018                        return fn->parent;
1019                }
1020
1021                pn = fn->parent;
1022#ifdef CONFIG_IPV6_SUBTREES
1023                if (FIB6_SUBTREE(pn) == fn) {
1024                        WARN_ON(!(fn->fn_flags & RTN_ROOT));
1025                        FIB6_SUBTREE(pn) = NULL;
1026                        nstate = FWS_L;
1027                } else {
1028                        WARN_ON(fn->fn_flags & RTN_ROOT);
1029#endif
1030                        if (pn->right == fn) pn->right = child;
1031                        else if (pn->left == fn) pn->left = child;
1032#if RT6_DEBUG >= 2
1033                        else
1034                                WARN_ON(1);
1035#endif
1036                        if (child)
1037                                child->parent = pn;
1038                        nstate = FWS_R;
1039#ifdef CONFIG_IPV6_SUBTREES
1040                }
1041#endif
1042
1043                read_lock(&fib6_walker_lock);
1044                FOR_WALKERS(w) {
1045                        if (child == NULL) {
1046                                if (w->root == fn) {
1047                                        w->root = w->node = NULL;
1048                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
1049                                } else if (w->node == fn) {
1050                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1051                                        w->node = pn;
1052                                        w->state = nstate;
1053                                }
1054                        } else {
1055                                if (w->root == fn) {
1056                                        w->root = child;
1057                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
1058                                }
1059                                if (w->node == fn) {
1060                                        w->node = child;
1061                                        if (children&2) {
1062                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1063                                                w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1064                                        } else {
1065                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1066                                                w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1067                                        }
1068                                }
1069                        }
1070                }
1071                read_unlock(&fib6_walker_lock);
1072
1073                node_free(fn);
1074                if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1075                        return pn;
1076
1077                rt6_release(pn->leaf);
1078                pn->leaf = NULL;
1079                fn = pn;
1080        }
1081}
1082
1083static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1084                           struct nl_info *info)
1085{
1086        struct fib6_walker_t *w;
1087        struct rt6_info *rt = *rtp;
1088        struct net *net = info->nl_net;
1089
1090        RT6_TRACE("fib6_del_route\n");
1091
1092        /* Unlink it */
1093        *rtp = rt->u.dst.rt6_next;
1094        rt->rt6i_node = NULL;
1095        net->ipv6.rt6_stats->fib_rt_entries--;
1096        net->ipv6.rt6_stats->fib_discarded_routes++;
1097
1098        /* Reset round-robin state, if necessary */
1099        if (fn->rr_ptr == rt)
1100                fn->rr_ptr = NULL;
1101
1102        /* Adjust walkers */
1103        read_lock(&fib6_walker_lock);
1104        FOR_WALKERS(w) {
1105                if (w->state == FWS_C && w->leaf == rt) {
1106                        RT6_TRACE("walker %p adjusted by delroute\n", w);
1107                        w->leaf = rt->u.dst.rt6_next;
1108                        if (w->leaf == NULL)
1109                                w->state = FWS_U;
1110                }
1111        }
1112        read_unlock(&fib6_walker_lock);
1113
1114        rt->u.dst.rt6_next = NULL;
1115
1116        /* If it was last route, expunge its radix tree node */
1117        if (fn->leaf == NULL) {
1118                fn->fn_flags &= ~RTN_RTINFO;
1119                net->ipv6.rt6_stats->fib_route_nodes--;
1120                fn = fib6_repair_tree(net, fn);
1121        }
1122
1123        if (atomic_read(&rt->rt6i_ref) != 1) {
1124                /* This route is used as dummy address holder in some split
1125                 * nodes. It is not leaked, but it still holds other resources,
1126                 * which must be released in time. So, scan ascendant nodes
1127                 * and replace dummy references to this route with references
1128                 * to still alive ones.
1129                 */
1130                while (fn) {
1131                        if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1132                                fn->leaf = fib6_find_prefix(net, fn);
1133                                atomic_inc(&fn->leaf->rt6i_ref);
1134                                rt6_release(rt);
1135                        }
1136                        fn = fn->parent;
1137                }
1138                /* No more references are possible at this point. */
1139                BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1140        }
1141
1142        inet6_rt_notify(RTM_DELROUTE, rt, info);
1143        rt6_release(rt);
1144}
1145
1146int fib6_del(struct rt6_info *rt, struct nl_info *info)
1147{
1148        struct net *net = info->nl_net;
1149        struct fib6_node *fn = rt->rt6i_node;
1150        struct rt6_info **rtp;
1151
1152#if RT6_DEBUG >= 2
1153        if (rt->u.dst.obsolete>0) {
1154                WARN_ON(fn != NULL);
1155                return -ENOENT;
1156        }
1157#endif
1158        if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1159                return -ENOENT;
1160
1161        WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1162
1163        if (!(rt->rt6i_flags&RTF_CACHE)) {
1164                struct fib6_node *pn = fn;
1165#ifdef CONFIG_IPV6_SUBTREES
1166                /* clones of this route might be in another subtree */
1167                if (rt->rt6i_src.plen) {
1168                        while (!(pn->fn_flags&RTN_ROOT))
1169                                pn = pn->parent;
1170                        pn = pn->parent;
1171                }
1172#endif
1173                fib6_prune_clones(info->nl_net, pn, rt);
1174        }
1175
1176        /*
1177         *      Walk the leaf entries looking for ourself
1178         */
1179
1180        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1181                if (*rtp == rt) {
1182                        fib6_del_route(fn, rtp, info);
1183                        return 0;
1184                }
1185        }
1186        return -ENOENT;
1187}
1188
1189/*
1190 *      Tree traversal function.
1191 *
1192 *      Certainly, it is not interrupt safe.
1193 *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1194 *      It means, that we can modify tree during walking
1195 *      and use this function for garbage collection, clone pruning,
1196 *      cleaning tree when a device goes down etc. etc.
1197 *
1198 *      It guarantees that every node will be traversed,
1199 *      and that it will be traversed only once.
1200 *
1201 *      Callback function w->func may return:
1202 *      0 -> continue walking.
1203 *      positive value -> walking is suspended (used by tree dumps,
1204 *      and probably by gc, if it will be split to several slices)
1205 *      negative value -> terminate walking.
1206 *
1207 *      The function itself returns:
1208 *      0   -> walk is complete.
1209 *      >0  -> walk is incomplete (i.e. suspended)
1210 *      <0  -> walk is terminated by an error.
1211 */
1212
1213static int fib6_walk_continue(struct fib6_walker_t *w)
1214{
1215        struct fib6_node *fn, *pn;
1216
1217        for (;;) {
1218                fn = w->node;
1219                if (fn == NULL)
1220                        return 0;
1221
1222                if (w->prune && fn != w->root &&
1223                    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1224                        w->state = FWS_C;
1225                        w->leaf = fn->leaf;
1226                }
1227                switch (w->state) {
1228#ifdef CONFIG_IPV6_SUBTREES
1229                case FWS_S:
1230                        if (FIB6_SUBTREE(fn)) {
1231                                w->node = FIB6_SUBTREE(fn);
1232                                continue;
1233                        }
1234                        w->state = FWS_L;
1235#endif
1236                case FWS_L:
1237                        if (fn->left) {
1238                                w->node = fn->left;
1239                                w->state = FWS_INIT;
1240                                continue;
1241                        }
1242                        w->state = FWS_R;
1243                case FWS_R:
1244                        if (fn->right) {
1245                                w->node = fn->right;
1246                                w->state = FWS_INIT;
1247                                continue;
1248                        }
1249                        w->state = FWS_C;
1250                        w->leaf = fn->leaf;
1251                case FWS_C:
1252                        if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1253                                int err = w->func(w);
1254                                if (err)
1255                                        return err;
1256                                continue;
1257                        }
1258                        w->state = FWS_U;
1259                case FWS_U:
1260                        if (fn == w->root)
1261                                return 0;
1262                        pn = fn->parent;
1263                        w->node = pn;
1264#ifdef CONFIG_IPV6_SUBTREES
1265                        if (FIB6_SUBTREE(pn) == fn) {
1266                                WARN_ON(!(fn->fn_flags & RTN_ROOT));
1267                                w->state = FWS_L;
1268                                continue;
1269                        }
1270#endif
1271                        if (pn->left == fn) {
1272                                w->state = FWS_R;
1273                                continue;
1274                        }
1275                        if (pn->right == fn) {
1276                                w->state = FWS_C;
1277                                w->leaf = w->node->leaf;
1278                                continue;
1279                        }
1280#if RT6_DEBUG >= 2
1281                        WARN_ON(1);
1282#endif
1283                }
1284        }
1285}
1286
1287static int fib6_walk(struct fib6_walker_t *w)
1288{
1289        int res;
1290
1291        w->state = FWS_INIT;
1292        w->node = w->root;
1293
1294        fib6_walker_link(w);
1295        res = fib6_walk_continue(w);
1296        if (res <= 0)
1297                fib6_walker_unlink(w);
1298        return res;
1299}
1300
1301static int fib6_clean_node(struct fib6_walker_t *w)
1302{
1303        int res;
1304        struct rt6_info *rt;
1305        struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1306        struct nl_info info = {
1307                .nl_net = c->net,
1308        };
1309
1310        for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1311                res = c->func(rt, c->arg);
1312                if (res < 0) {
1313                        w->leaf = rt;
1314                        res = fib6_del(rt, &info);
1315                        if (res) {
1316#if RT6_DEBUG >= 2
1317                                printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1318#endif
1319                                continue;
1320                        }
1321                        return 0;
1322                }
1323                WARN_ON(res != 0);
1324        }
1325        w->leaf = rt;
1326        return 0;
1327}
1328
1329/*
1330 *      Convenient frontend to tree walker.
1331 *
1332 *      func is called on each route.
1333 *              It may return -1 -> delete this route.
1334 *                            0  -> continue walking
1335 *
1336 *      prune==1 -> only immediate children of node (certainly,
1337 *      ignoring pure split nodes) will be scanned.
1338 */
1339
1340static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1341                            int (*func)(struct rt6_info *, void *arg),
1342                            int prune, void *arg)
1343{
1344        struct fib6_cleaner_t c;
1345
1346        c.w.root = root;
1347        c.w.func = fib6_clean_node;
1348        c.w.prune = prune;
1349        c.func = func;
1350        c.arg = arg;
1351        c.net = net;
1352
1353        fib6_walk(&c.w);
1354}
1355
1356void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1357                    int prune, void *arg)
1358{
1359        struct fib6_table *table;
1360        struct hlist_node *node;
1361        struct hlist_head *head;
1362        unsigned int h;
1363
1364        rcu_read_lock();
1365        for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1366                head = &net->ipv6.fib_table_hash[h];
1367                hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1368                        write_lock_bh(&table->tb6_lock);
1369                        fib6_clean_tree(net, &table->tb6_root,
1370                                        func, prune, arg);
1371                        write_unlock_bh(&table->tb6_lock);
1372                }
1373        }
1374        rcu_read_unlock();
1375}
1376
1377static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1378{
1379        if (rt->rt6i_flags & RTF_CACHE) {
1380                RT6_TRACE("pruning clone %p\n", rt);
1381                return -1;
1382        }
1383
1384        return 0;
1385}
1386
1387static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1388                              struct rt6_info *rt)
1389{
1390        fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1391}
1392
1393/*
1394 *      Garbage collection
1395 */
1396
1397static struct fib6_gc_args
1398{
1399        int                     timeout;
1400        int                     more;
1401} gc_args;
1402
1403static int fib6_age(struct rt6_info *rt, void *arg)
1404{
1405        unsigned long now = jiffies;
1406
1407        /*
1408         *      check addrconf expiration here.
1409         *      Routes are expired even if they are in use.
1410         *
1411         *      Also age clones. Note, that clones are aged out
1412         *      only if they are not in use now.
1413         */
1414
1415        if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1416                if (time_after(now, rt->rt6i_expires)) {
1417                        RT6_TRACE("expiring %p\n", rt);
1418                        return -1;
1419                }
1420                gc_args.more++;
1421        } else if (rt->rt6i_flags & RTF_CACHE) {
1422                if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1423                    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1424                        RT6_TRACE("aging clone %p\n", rt);
1425                        return -1;
1426                } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1427                           (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1428                        RT6_TRACE("purging route %p via non-router but gateway\n",
1429                                  rt);
1430                        return -1;
1431                }
1432                gc_args.more++;
1433        }
1434
1435        return 0;
1436}
1437
1438static DEFINE_SPINLOCK(fib6_gc_lock);
1439
1440void fib6_run_gc(unsigned long expires, struct net *net)
1441{
1442        if (expires != ~0UL) {
1443                spin_lock_bh(&fib6_gc_lock);
1444                gc_args.timeout = expires ? (int)expires :
1445                        net->ipv6.sysctl.ip6_rt_gc_interval;
1446        } else {
1447                if (!spin_trylock_bh(&fib6_gc_lock)) {
1448                        mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1449                        return;
1450                }
1451                gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1452        }
1453
1454        gc_args.more = icmp6_dst_gc();
1455
1456        fib6_clean_all(net, fib6_age, 0, NULL);
1457
1458        if (gc_args.more)
1459                mod_timer(&net->ipv6.ip6_fib_timer,
1460                          round_jiffies(jiffies
1461                                        + net->ipv6.sysctl.ip6_rt_gc_interval));
1462        else
1463                del_timer(&net->ipv6.ip6_fib_timer);
1464        spin_unlock_bh(&fib6_gc_lock);
1465}
1466
1467static void fib6_gc_timer_cb(unsigned long arg)
1468{
1469        fib6_run_gc(0, (struct net *)arg);
1470}
1471
1472static int fib6_net_init(struct net *net)
1473{
1474        setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1475
1476        net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1477        if (!net->ipv6.rt6_stats)
1478                goto out_timer;
1479
1480        net->ipv6.fib_table_hash = kcalloc(FIB6_TABLE_HASHSZ,
1481                                           sizeof(*net->ipv6.fib_table_hash),
1482                                           GFP_KERNEL);
1483        if (!net->ipv6.fib_table_hash)
1484                goto out_rt6_stats;
1485
1486        net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1487                                          GFP_KERNEL);
1488        if (!net->ipv6.fib6_main_tbl)
1489                goto out_fib_table_hash;
1490
1491        net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1492        net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1493        net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1494                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1495
1496#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1497        net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1498                                           GFP_KERNEL);
1499        if (!net->ipv6.fib6_local_tbl)
1500                goto out_fib6_main_tbl;
1501        net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1502        net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1503        net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1504                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1505#endif
1506        fib6_tables_init(net);
1507
1508        return 0;
1509
1510#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1511out_fib6_main_tbl:
1512        kfree(net->ipv6.fib6_main_tbl);
1513#endif
1514out_fib_table_hash:
1515        kfree(net->ipv6.fib_table_hash);
1516out_rt6_stats:
1517        kfree(net->ipv6.rt6_stats);
1518out_timer:
1519        return -ENOMEM;
1520 }
1521
1522static void fib6_net_exit(struct net *net)
1523{
1524        rt6_ifdown(net, NULL);
1525        del_timer_sync(&net->ipv6.ip6_fib_timer);
1526
1527#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1528        kfree(net->ipv6.fib6_local_tbl);
1529#endif
1530        kfree(net->ipv6.fib6_main_tbl);
1531        kfree(net->ipv6.fib_table_hash);
1532        kfree(net->ipv6.rt6_stats);
1533}
1534
1535static struct pernet_operations fib6_net_ops = {
1536        .init = fib6_net_init,
1537        .exit = fib6_net_exit,
1538};
1539
1540int __init fib6_init(void)
1541{
1542        int ret = -ENOMEM;
1543
1544        fib6_node_kmem = kmem_cache_create("fib6_nodes",
1545                                           sizeof(struct fib6_node),
1546                                           0, SLAB_HWCACHE_ALIGN,
1547                                           NULL);
1548        if (!fib6_node_kmem)
1549                goto out;
1550
1551        ret = register_pernet_subsys(&fib6_net_ops);
1552        if (ret)
1553                goto out_kmem_cache_create;
1554
1555        ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1556        if (ret)
1557                goto out_unregister_subsys;
1558out:
1559        return ret;
1560
1561out_unregister_subsys:
1562        unregister_pernet_subsys(&fib6_net_ops);
1563out_kmem_cache_create:
1564        kmem_cache_destroy(fib6_node_kmem);
1565        goto out;
1566}
1567
1568void fib6_gc_cleanup(void)
1569{
1570        unregister_pernet_subsys(&fib6_net_ops);
1571        kmem_cache_destroy(fib6_node_kmem);
1572}
1573