linux/net/sched/sch_hfsc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License
   6 * as published by the Free Software Foundation; either version 2
   7 * of the License, or (at your option) any later version.
   8 *
   9 * 2003-10-17 - Ported from altq
  10 */
  11/*
  12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
  13 *
  14 * Permission to use, copy, modify, and distribute this software and
  15 * its documentation is hereby granted (including for commercial or
  16 * for-profit use), provided that both the copyright notice and this
  17 * permission notice appear in all copies of the software, derivative
  18 * works, or modified versions, and any portions thereof.
  19 *
  20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
  21 * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
  22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
  23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25 * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
  26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  33 * DAMAGE.
  34 *
  35 * Carnegie Mellon encourages (but does not require) users of this
  36 * software to return any improvements or extensions that they make,
  37 * and to grant Carnegie Mellon the rights to redistribute these
  38 * changes without encumbrance.
  39 */
  40/*
  41 * H-FSC is described in Proceedings of SIGCOMM'97,
  42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
  43 * Real-Time and Priority Service"
  44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
  45 *
  46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
  47 * when a class has an upperlimit, the fit-time is computed from the
  48 * upperlimit service curve.  the link-sharing scheduler does not schedule
  49 * a class whose fit-time exceeds the current time.
  50 */
  51
  52#include <linux/kernel.h>
  53#include <linux/module.h>
  54#include <linux/types.h>
  55#include <linux/errno.h>
  56#include <linux/compiler.h>
  57#include <linux/spinlock.h>
  58#include <linux/skbuff.h>
  59#include <linux/string.h>
  60#include <linux/slab.h>
  61#include <linux/list.h>
  62#include <linux/rbtree.h>
  63#include <linux/init.h>
  64#include <linux/rtnetlink.h>
  65#include <linux/pkt_sched.h>
  66#include <net/netlink.h>
  67#include <net/pkt_sched.h>
  68#include <net/pkt_cls.h>
  69#include <asm/div64.h>
  70
  71/*
  72 * kernel internal service curve representation:
  73 *   coordinates are given by 64 bit unsigned integers.
  74 *   x-axis: unit is clock count.
  75 *   y-axis: unit is byte.
  76 *
  77 *   The service curve parameters are converted to the internal
  78 *   representation. The slope values are scaled to avoid overflow.
  79 *   the inverse slope values as well as the y-projection of the 1st
  80 *   segment are kept in order to avoid 64-bit divide operations
  81 *   that are expensive on 32-bit architectures.
  82 */
  83
  84struct internal_sc
  85{
  86        u64     sm1;    /* scaled slope of the 1st segment */
  87        u64     ism1;   /* scaled inverse-slope of the 1st segment */
  88        u64     dx;     /* the x-projection of the 1st segment */
  89        u64     dy;     /* the y-projection of the 1st segment */
  90        u64     sm2;    /* scaled slope of the 2nd segment */
  91        u64     ism2;   /* scaled inverse-slope of the 2nd segment */
  92};
  93
  94/* runtime service curve */
  95struct runtime_sc
  96{
  97        u64     x;      /* current starting position on x-axis */
  98        u64     y;      /* current starting position on y-axis */
  99        u64     sm1;    /* scaled slope of the 1st segment */
 100        u64     ism1;   /* scaled inverse-slope of the 1st segment */
 101        u64     dx;     /* the x-projection of the 1st segment */
 102        u64     dy;     /* the y-projection of the 1st segment */
 103        u64     sm2;    /* scaled slope of the 2nd segment */
 104        u64     ism2;   /* scaled inverse-slope of the 2nd segment */
 105};
 106
 107enum hfsc_class_flags
 108{
 109        HFSC_RSC = 0x1,
 110        HFSC_FSC = 0x2,
 111        HFSC_USC = 0x4
 112};
 113
 114struct hfsc_class
 115{
 116        struct Qdisc_class_common cl_common;
 117        unsigned int    refcnt;         /* usage count */
 118
 119        struct gnet_stats_basic_packed bstats;
 120        struct gnet_stats_queue qstats;
 121        struct gnet_stats_rate_est rate_est;
 122        unsigned int    level;          /* class level in hierarchy */
 123        struct tcf_proto *filter_list;  /* filter list */
 124        unsigned int    filter_cnt;     /* filter count */
 125
 126        struct hfsc_sched *sched;       /* scheduler data */
 127        struct hfsc_class *cl_parent;   /* parent class */
 128        struct list_head siblings;      /* sibling classes */
 129        struct list_head children;      /* child classes */
 130        struct Qdisc    *qdisc;         /* leaf qdisc */
 131
 132        struct rb_node el_node;         /* qdisc's eligible tree member */
 133        struct rb_root vt_tree;         /* active children sorted by cl_vt */
 134        struct rb_node vt_node;         /* parent's vt_tree member */
 135        struct rb_root cf_tree;         /* active children sorted by cl_f */
 136        struct rb_node cf_node;         /* parent's cf_heap member */
 137        struct list_head dlist;         /* drop list member */
 138
 139        u64     cl_total;               /* total work in bytes */
 140        u64     cl_cumul;               /* cumulative work in bytes done by
 141                                           real-time criteria */
 142
 143        u64     cl_d;                   /* deadline*/
 144        u64     cl_e;                   /* eligible time */
 145        u64     cl_vt;                  /* virtual time */
 146        u64     cl_f;                   /* time when this class will fit for
 147                                           link-sharing, max(myf, cfmin) */
 148        u64     cl_myf;                 /* my fit-time (calculated from this
 149                                           class's own upperlimit curve) */
 150        u64     cl_myfadj;              /* my fit-time adjustment (to cancel
 151                                           history dependence) */
 152        u64     cl_cfmin;               /* earliest children's fit-time (used
 153                                           with cl_myf to obtain cl_f) */
 154        u64     cl_cvtmin;              /* minimal virtual time among the
 155                                           children fit for link-sharing
 156                                           (monotonic within a period) */
 157        u64     cl_vtadj;               /* intra-period cumulative vt
 158                                           adjustment */
 159        u64     cl_vtoff;               /* inter-period cumulative vt offset */
 160        u64     cl_cvtmax;              /* max child's vt in the last period */
 161        u64     cl_cvtoff;              /* cumulative cvtmax of all periods */
 162        u64     cl_pcvtoff;             /* parent's cvtoff at initialization
 163                                           time */
 164
 165        struct internal_sc cl_rsc;      /* internal real-time service curve */
 166        struct internal_sc cl_fsc;      /* internal fair service curve */
 167        struct internal_sc cl_usc;      /* internal upperlimit service curve */
 168        struct runtime_sc cl_deadline;  /* deadline curve */
 169        struct runtime_sc cl_eligible;  /* eligible curve */
 170        struct runtime_sc cl_virtual;   /* virtual curve */
 171        struct runtime_sc cl_ulimit;    /* upperlimit curve */
 172
 173        unsigned long   cl_flags;       /* which curves are valid */
 174        unsigned long   cl_vtperiod;    /* vt period sequence number */
 175        unsigned long   cl_parentperiod;/* parent's vt period sequence number*/
 176        unsigned long   cl_nactive;     /* number of active children */
 177};
 178
 179struct hfsc_sched
 180{
 181        u16     defcls;                         /* default class id */
 182        struct hfsc_class root;                 /* root class */
 183        struct Qdisc_class_hash clhash;         /* class hash */
 184        struct rb_root eligible;                /* eligible tree */
 185        struct list_head droplist;              /* active leaf class list (for
 186                                                   dropping) */
 187        struct qdisc_watchdog watchdog;         /* watchdog timer */
 188};
 189
 190#define HT_INFINITY     0xffffffffffffffffULL   /* infinite time value */
 191
 192
 193/*
 194 * eligible tree holds backlogged classes being sorted by their eligible times.
 195 * there is one eligible tree per hfsc instance.
 196 */
 197
 198static void
 199eltree_insert(struct hfsc_class *cl)
 200{
 201        struct rb_node **p = &cl->sched->eligible.rb_node;
 202        struct rb_node *parent = NULL;
 203        struct hfsc_class *cl1;
 204
 205        while (*p != NULL) {
 206                parent = *p;
 207                cl1 = rb_entry(parent, struct hfsc_class, el_node);
 208                if (cl->cl_e >= cl1->cl_e)
 209                        p = &parent->rb_right;
 210                else
 211                        p = &parent->rb_left;
 212        }
 213        rb_link_node(&cl->el_node, parent, p);
 214        rb_insert_color(&cl->el_node, &cl->sched->eligible);
 215}
 216
 217static inline void
 218eltree_remove(struct hfsc_class *cl)
 219{
 220        rb_erase(&cl->el_node, &cl->sched->eligible);
 221}
 222
 223static inline void
 224eltree_update(struct hfsc_class *cl)
 225{
 226        eltree_remove(cl);
 227        eltree_insert(cl);
 228}
 229
 230/* find the class with the minimum deadline among the eligible classes */
 231static inline struct hfsc_class *
 232eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
 233{
 234        struct hfsc_class *p, *cl = NULL;
 235        struct rb_node *n;
 236
 237        for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
 238                p = rb_entry(n, struct hfsc_class, el_node);
 239                if (p->cl_e > cur_time)
 240                        break;
 241                if (cl == NULL || p->cl_d < cl->cl_d)
 242                        cl = p;
 243        }
 244        return cl;
 245}
 246
 247/* find the class with minimum eligible time among the eligible classes */
 248static inline struct hfsc_class *
 249eltree_get_minel(struct hfsc_sched *q)
 250{
 251        struct rb_node *n;
 252
 253        n = rb_first(&q->eligible);
 254        if (n == NULL)
 255                return NULL;
 256        return rb_entry(n, struct hfsc_class, el_node);
 257}
 258
 259/*
 260 * vttree holds holds backlogged child classes being sorted by their virtual
 261 * time. each intermediate class has one vttree.
 262 */
 263static void
 264vttree_insert(struct hfsc_class *cl)
 265{
 266        struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
 267        struct rb_node *parent = NULL;
 268        struct hfsc_class *cl1;
 269
 270        while (*p != NULL) {
 271                parent = *p;
 272                cl1 = rb_entry(parent, struct hfsc_class, vt_node);
 273                if (cl->cl_vt >= cl1->cl_vt)
 274                        p = &parent->rb_right;
 275                else
 276                        p = &parent->rb_left;
 277        }
 278        rb_link_node(&cl->vt_node, parent, p);
 279        rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
 280}
 281
 282static inline void
 283vttree_remove(struct hfsc_class *cl)
 284{
 285        rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
 286}
 287
 288static inline void
 289vttree_update(struct hfsc_class *cl)
 290{
 291        vttree_remove(cl);
 292        vttree_insert(cl);
 293}
 294
 295static inline struct hfsc_class *
 296vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
 297{
 298        struct hfsc_class *p;
 299        struct rb_node *n;
 300
 301        for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
 302                p = rb_entry(n, struct hfsc_class, vt_node);
 303                if (p->cl_f <= cur_time)
 304                        return p;
 305        }
 306        return NULL;
 307}
 308
 309/*
 310 * get the leaf class with the minimum vt in the hierarchy
 311 */
 312static struct hfsc_class *
 313vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
 314{
 315        /* if root-class's cfmin is bigger than cur_time nothing to do */
 316        if (cl->cl_cfmin > cur_time)
 317                return NULL;
 318
 319        while (cl->level > 0) {
 320                cl = vttree_firstfit(cl, cur_time);
 321                if (cl == NULL)
 322                        return NULL;
 323                /*
 324                 * update parent's cl_cvtmin.
 325                 */
 326                if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
 327                        cl->cl_parent->cl_cvtmin = cl->cl_vt;
 328        }
 329        return cl;
 330}
 331
 332static void
 333cftree_insert(struct hfsc_class *cl)
 334{
 335        struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
 336        struct rb_node *parent = NULL;
 337        struct hfsc_class *cl1;
 338
 339        while (*p != NULL) {
 340                parent = *p;
 341                cl1 = rb_entry(parent, struct hfsc_class, cf_node);
 342                if (cl->cl_f >= cl1->cl_f)
 343                        p = &parent->rb_right;
 344                else
 345                        p = &parent->rb_left;
 346        }
 347        rb_link_node(&cl->cf_node, parent, p);
 348        rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
 349}
 350
 351static inline void
 352cftree_remove(struct hfsc_class *cl)
 353{
 354        rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
 355}
 356
 357static inline void
 358cftree_update(struct hfsc_class *cl)
 359{
 360        cftree_remove(cl);
 361        cftree_insert(cl);
 362}
 363
 364/*
 365 * service curve support functions
 366 *
 367 *  external service curve parameters
 368 *      m: bps
 369 *      d: us
 370 *  internal service curve parameters
 371 *      sm: (bytes/psched_us) << SM_SHIFT
 372 *      ism: (psched_us/byte) << ISM_SHIFT
 373 *      dx: psched_us
 374 *
 375 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
 376 *
 377 * sm and ism are scaled in order to keep effective digits.
 378 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
 379 * digits in decimal using the following table.
 380 *
 381 *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
 382 *  ------------+-------------------------------------------------------
 383 *  bytes/1.024us 12.8e-3    128e-3     1280e-3    12800e-3   128000e-3
 384 *
 385 *  1.024us/byte  78.125     7.8125     0.78125    0.078125   0.0078125
 386 *
 387 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
 388 */
 389#define SM_SHIFT        (30 - PSCHED_SHIFT)
 390#define ISM_SHIFT       (8 + PSCHED_SHIFT)
 391
 392#define SM_MASK         ((1ULL << SM_SHIFT) - 1)
 393#define ISM_MASK        ((1ULL << ISM_SHIFT) - 1)
 394
 395static inline u64
 396seg_x2y(u64 x, u64 sm)
 397{
 398        u64 y;
 399
 400        /*
 401         * compute
 402         *      y = x * sm >> SM_SHIFT
 403         * but divide it for the upper and lower bits to avoid overflow
 404         */
 405        y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
 406        return y;
 407}
 408
 409static inline u64
 410seg_y2x(u64 y, u64 ism)
 411{
 412        u64 x;
 413
 414        if (y == 0)
 415                x = 0;
 416        else if (ism == HT_INFINITY)
 417                x = HT_INFINITY;
 418        else {
 419                x = (y >> ISM_SHIFT) * ism
 420                    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
 421        }
 422        return x;
 423}
 424
 425/* Convert m (bps) into sm (bytes/psched us) */
 426static u64
 427m2sm(u32 m)
 428{
 429        u64 sm;
 430
 431        sm = ((u64)m << SM_SHIFT);
 432        sm += PSCHED_TICKS_PER_SEC - 1;
 433        do_div(sm, PSCHED_TICKS_PER_SEC);
 434        return sm;
 435}
 436
 437/* convert m (bps) into ism (psched us/byte) */
 438static u64
 439m2ism(u32 m)
 440{
 441        u64 ism;
 442
 443        if (m == 0)
 444                ism = HT_INFINITY;
 445        else {
 446                ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
 447                ism += m - 1;
 448                do_div(ism, m);
 449        }
 450        return ism;
 451}
 452
 453/* convert d (us) into dx (psched us) */
 454static u64
 455d2dx(u32 d)
 456{
 457        u64 dx;
 458
 459        dx = ((u64)d * PSCHED_TICKS_PER_SEC);
 460        dx += USEC_PER_SEC - 1;
 461        do_div(dx, USEC_PER_SEC);
 462        return dx;
 463}
 464
 465/* convert sm (bytes/psched us) into m (bps) */
 466static u32
 467sm2m(u64 sm)
 468{
 469        u64 m;
 470
 471        m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
 472        return (u32)m;
 473}
 474
 475/* convert dx (psched us) into d (us) */
 476static u32
 477dx2d(u64 dx)
 478{
 479        u64 d;
 480
 481        d = dx * USEC_PER_SEC;
 482        do_div(d, PSCHED_TICKS_PER_SEC);
 483        return (u32)d;
 484}
 485
 486static void
 487sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
 488{
 489        isc->sm1  = m2sm(sc->m1);
 490        isc->ism1 = m2ism(sc->m1);
 491        isc->dx   = d2dx(sc->d);
 492        isc->dy   = seg_x2y(isc->dx, isc->sm1);
 493        isc->sm2  = m2sm(sc->m2);
 494        isc->ism2 = m2ism(sc->m2);
 495}
 496
 497/*
 498 * initialize the runtime service curve with the given internal
 499 * service curve starting at (x, y).
 500 */
 501static void
 502rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
 503{
 504        rtsc->x    = x;
 505        rtsc->y    = y;
 506        rtsc->sm1  = isc->sm1;
 507        rtsc->ism1 = isc->ism1;
 508        rtsc->dx   = isc->dx;
 509        rtsc->dy   = isc->dy;
 510        rtsc->sm2  = isc->sm2;
 511        rtsc->ism2 = isc->ism2;
 512}
 513
 514/*
 515 * calculate the y-projection of the runtime service curve by the
 516 * given x-projection value
 517 */
 518static u64
 519rtsc_y2x(struct runtime_sc *rtsc, u64 y)
 520{
 521        u64 x;
 522
 523        if (y < rtsc->y)
 524                x = rtsc->x;
 525        else if (y <= rtsc->y + rtsc->dy) {
 526                /* x belongs to the 1st segment */
 527                if (rtsc->dy == 0)
 528                        x = rtsc->x + rtsc->dx;
 529                else
 530                        x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
 531        } else {
 532                /* x belongs to the 2nd segment */
 533                x = rtsc->x + rtsc->dx
 534                    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
 535        }
 536        return x;
 537}
 538
 539static u64
 540rtsc_x2y(struct runtime_sc *rtsc, u64 x)
 541{
 542        u64 y;
 543
 544        if (x <= rtsc->x)
 545                y = rtsc->y;
 546        else if (x <= rtsc->x + rtsc->dx)
 547                /* y belongs to the 1st segment */
 548                y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
 549        else
 550                /* y belongs to the 2nd segment */
 551                y = rtsc->y + rtsc->dy
 552                    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
 553        return y;
 554}
 555
 556/*
 557 * update the runtime service curve by taking the minimum of the current
 558 * runtime service curve and the service curve starting at (x, y).
 559 */
 560static void
 561rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
 562{
 563        u64 y1, y2, dx, dy;
 564        u32 dsm;
 565
 566        if (isc->sm1 <= isc->sm2) {
 567                /* service curve is convex */
 568                y1 = rtsc_x2y(rtsc, x);
 569                if (y1 < y)
 570                        /* the current rtsc is smaller */
 571                        return;
 572                rtsc->x = x;
 573                rtsc->y = y;
 574                return;
 575        }
 576
 577        /*
 578         * service curve is concave
 579         * compute the two y values of the current rtsc
 580         *      y1: at x
 581         *      y2: at (x + dx)
 582         */
 583        y1 = rtsc_x2y(rtsc, x);
 584        if (y1 <= y) {
 585                /* rtsc is below isc, no change to rtsc */
 586                return;
 587        }
 588
 589        y2 = rtsc_x2y(rtsc, x + isc->dx);
 590        if (y2 >= y + isc->dy) {
 591                /* rtsc is above isc, replace rtsc by isc */
 592                rtsc->x = x;
 593                rtsc->y = y;
 594                rtsc->dx = isc->dx;
 595                rtsc->dy = isc->dy;
 596                return;
 597        }
 598
 599        /*
 600         * the two curves intersect
 601         * compute the offsets (dx, dy) using the reverse
 602         * function of seg_x2y()
 603         *      seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
 604         */
 605        dx = (y1 - y) << SM_SHIFT;
 606        dsm = isc->sm1 - isc->sm2;
 607        do_div(dx, dsm);
 608        /*
 609         * check if (x, y1) belongs to the 1st segment of rtsc.
 610         * if so, add the offset.
 611         */
 612        if (rtsc->x + rtsc->dx > x)
 613                dx += rtsc->x + rtsc->dx - x;
 614        dy = seg_x2y(dx, isc->sm1);
 615
 616        rtsc->x = x;
 617        rtsc->y = y;
 618        rtsc->dx = dx;
 619        rtsc->dy = dy;
 620        return;
 621}
 622
 623static void
 624init_ed(struct hfsc_class *cl, unsigned int next_len)
 625{
 626        u64 cur_time = psched_get_time();
 627
 628        /* update the deadline curve */
 629        rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
 630
 631        /*
 632         * update the eligible curve.
 633         * for concave, it is equal to the deadline curve.
 634         * for convex, it is a linear curve with slope m2.
 635         */
 636        cl->cl_eligible = cl->cl_deadline;
 637        if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
 638                cl->cl_eligible.dx = 0;
 639                cl->cl_eligible.dy = 0;
 640        }
 641
 642        /* compute e and d */
 643        cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
 644        cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
 645
 646        eltree_insert(cl);
 647}
 648
 649static void
 650update_ed(struct hfsc_class *cl, unsigned int next_len)
 651{
 652        cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
 653        cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
 654
 655        eltree_update(cl);
 656}
 657
 658static inline void
 659update_d(struct hfsc_class *cl, unsigned int next_len)
 660{
 661        cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
 662}
 663
 664static inline void
 665update_cfmin(struct hfsc_class *cl)
 666{
 667        struct rb_node *n = rb_first(&cl->cf_tree);
 668        struct hfsc_class *p;
 669
 670        if (n == NULL) {
 671                cl->cl_cfmin = 0;
 672                return;
 673        }
 674        p = rb_entry(n, struct hfsc_class, cf_node);
 675        cl->cl_cfmin = p->cl_f;
 676}
 677
 678static void
 679init_vf(struct hfsc_class *cl, unsigned int len)
 680{
 681        struct hfsc_class *max_cl;
 682        struct rb_node *n;
 683        u64 vt, f, cur_time;
 684        int go_active;
 685
 686        cur_time = 0;
 687        go_active = 1;
 688        for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
 689                if (go_active && cl->cl_nactive++ == 0)
 690                        go_active = 1;
 691                else
 692                        go_active = 0;
 693
 694                if (go_active) {
 695                        n = rb_last(&cl->cl_parent->vt_tree);
 696                        if (n != NULL) {
 697                                max_cl = rb_entry(n, struct hfsc_class,vt_node);
 698                                /*
 699                                 * set vt to the average of the min and max
 700                                 * classes.  if the parent's period didn't
 701                                 * change, don't decrease vt of the class.
 702                                 */
 703                                vt = max_cl->cl_vt;
 704                                if (cl->cl_parent->cl_cvtmin != 0)
 705                                        vt = (cl->cl_parent->cl_cvtmin + vt)/2;
 706
 707                                if (cl->cl_parent->cl_vtperiod !=
 708                                    cl->cl_parentperiod || vt > cl->cl_vt)
 709                                        cl->cl_vt = vt;
 710                        } else {
 711                                /*
 712                                 * first child for a new parent backlog period.
 713                                 * add parent's cvtmax to cvtoff to make a new
 714                                 * vt (vtoff + vt) larger than the vt in the
 715                                 * last period for all children.
 716                                 */
 717                                vt = cl->cl_parent->cl_cvtmax;
 718                                cl->cl_parent->cl_cvtoff += vt;
 719                                cl->cl_parent->cl_cvtmax = 0;
 720                                cl->cl_parent->cl_cvtmin = 0;
 721                                cl->cl_vt = 0;
 722                        }
 723
 724                        cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
 725                                                        cl->cl_pcvtoff;
 726
 727                        /* update the virtual curve */
 728                        vt = cl->cl_vt + cl->cl_vtoff;
 729                        rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
 730                                                      cl->cl_total);
 731                        if (cl->cl_virtual.x == vt) {
 732                                cl->cl_virtual.x -= cl->cl_vtoff;
 733                                cl->cl_vtoff = 0;
 734                        }
 735                        cl->cl_vtadj = 0;
 736
 737                        cl->cl_vtperiod++;  /* increment vt period */
 738                        cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
 739                        if (cl->cl_parent->cl_nactive == 0)
 740                                cl->cl_parentperiod++;
 741                        cl->cl_f = 0;
 742
 743                        vttree_insert(cl);
 744                        cftree_insert(cl);
 745
 746                        if (cl->cl_flags & HFSC_USC) {
 747                                /* class has upper limit curve */
 748                                if (cur_time == 0)
 749                                        cur_time = psched_get_time();
 750
 751                                /* update the ulimit curve */
 752                                rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
 753                                         cl->cl_total);
 754                                /* compute myf */
 755                                cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
 756                                                      cl->cl_total);
 757                                cl->cl_myfadj = 0;
 758                        }
 759                }
 760
 761                f = max(cl->cl_myf, cl->cl_cfmin);
 762                if (f != cl->cl_f) {
 763                        cl->cl_f = f;
 764                        cftree_update(cl);
 765                        update_cfmin(cl->cl_parent);
 766                }
 767        }
 768}
 769
 770static void
 771update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
 772{
 773        u64 f; /* , myf_bound, delta; */
 774        int go_passive = 0;
 775
 776        if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
 777                go_passive = 1;
 778
 779        for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
 780                cl->cl_total += len;
 781
 782                if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
 783                        continue;
 784
 785                if (go_passive && --cl->cl_nactive == 0)
 786                        go_passive = 1;
 787                else
 788                        go_passive = 0;
 789
 790                if (go_passive) {
 791                        /* no more active child, going passive */
 792
 793                        /* update cvtmax of the parent class */
 794                        if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
 795                                cl->cl_parent->cl_cvtmax = cl->cl_vt;
 796
 797                        /* remove this class from the vt tree */
 798                        vttree_remove(cl);
 799
 800                        cftree_remove(cl);
 801                        update_cfmin(cl->cl_parent);
 802
 803                        continue;
 804                }
 805
 806                /*
 807                 * update vt and f
 808                 */
 809                cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
 810                            - cl->cl_vtoff + cl->cl_vtadj;
 811
 812                /*
 813                 * if vt of the class is smaller than cvtmin,
 814                 * the class was skipped in the past due to non-fit.
 815                 * if so, we need to adjust vtadj.
 816                 */
 817                if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
 818                        cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
 819                        cl->cl_vt = cl->cl_parent->cl_cvtmin;
 820                }
 821
 822                /* update the vt tree */
 823                vttree_update(cl);
 824
 825                if (cl->cl_flags & HFSC_USC) {
 826                        cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
 827                                                              cl->cl_total);
 828#if 0
 829                        /*
 830                         * This code causes classes to stay way under their
 831                         * limit when multiple classes are used at gigabit
 832                         * speed. needs investigation. -kaber
 833                         */
 834                        /*
 835                         * if myf lags behind by more than one clock tick
 836                         * from the current time, adjust myfadj to prevent
 837                         * a rate-limited class from going greedy.
 838                         * in a steady state under rate-limiting, myf
 839                         * fluctuates within one clock tick.
 840                         */
 841                        myf_bound = cur_time - PSCHED_JIFFIE2US(1);
 842                        if (cl->cl_myf < myf_bound) {
 843                                delta = cur_time - cl->cl_myf;
 844                                cl->cl_myfadj += delta;
 845                                cl->cl_myf += delta;
 846                        }
 847#endif
 848                }
 849
 850                f = max(cl->cl_myf, cl->cl_cfmin);
 851                if (f != cl->cl_f) {
 852                        cl->cl_f = f;
 853                        cftree_update(cl);
 854                        update_cfmin(cl->cl_parent);
 855                }
 856        }
 857}
 858
 859static void
 860set_active(struct hfsc_class *cl, unsigned int len)
 861{
 862        if (cl->cl_flags & HFSC_RSC)
 863                init_ed(cl, len);
 864        if (cl->cl_flags & HFSC_FSC)
 865                init_vf(cl, len);
 866
 867        list_add_tail(&cl->dlist, &cl->sched->droplist);
 868}
 869
 870static void
 871set_passive(struct hfsc_class *cl)
 872{
 873        if (cl->cl_flags & HFSC_RSC)
 874                eltree_remove(cl);
 875
 876        list_del(&cl->dlist);
 877
 878        /*
 879         * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
 880         * needs to be called explicitly to remove a class from vttree.
 881         */
 882}
 883
 884static unsigned int
 885qdisc_peek_len(struct Qdisc *sch)
 886{
 887        struct sk_buff *skb;
 888        unsigned int len;
 889
 890        skb = sch->ops->peek(sch);
 891        if (skb == NULL) {
 892                qdisc_warn_nonwc("qdisc_peek_len", sch);
 893                return 0;
 894        }
 895        len = qdisc_pkt_len(skb);
 896
 897        return len;
 898}
 899
 900static void
 901hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
 902{
 903        unsigned int len = cl->qdisc->q.qlen;
 904
 905        qdisc_reset(cl->qdisc);
 906        qdisc_tree_decrease_qlen(cl->qdisc, len);
 907}
 908
 909static void
 910hfsc_adjust_levels(struct hfsc_class *cl)
 911{
 912        struct hfsc_class *p;
 913        unsigned int level;
 914
 915        do {
 916                level = 0;
 917                list_for_each_entry(p, &cl->children, siblings) {
 918                        if (p->level >= level)
 919                                level = p->level + 1;
 920                }
 921                cl->level = level;
 922        } while ((cl = cl->cl_parent) != NULL);
 923}
 924
 925static inline struct hfsc_class *
 926hfsc_find_class(u32 classid, struct Qdisc *sch)
 927{
 928        struct hfsc_sched *q = qdisc_priv(sch);
 929        struct Qdisc_class_common *clc;
 930
 931        clc = qdisc_class_find(&q->clhash, classid);
 932        if (clc == NULL)
 933                return NULL;
 934        return container_of(clc, struct hfsc_class, cl_common);
 935}
 936
 937static void
 938hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
 939                u64 cur_time)
 940{
 941        sc2isc(rsc, &cl->cl_rsc);
 942        rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
 943        cl->cl_eligible = cl->cl_deadline;
 944        if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
 945                cl->cl_eligible.dx = 0;
 946                cl->cl_eligible.dy = 0;
 947        }
 948        cl->cl_flags |= HFSC_RSC;
 949}
 950
 951static void
 952hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
 953{
 954        sc2isc(fsc, &cl->cl_fsc);
 955        rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
 956        cl->cl_flags |= HFSC_FSC;
 957}
 958
 959static void
 960hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
 961                u64 cur_time)
 962{
 963        sc2isc(usc, &cl->cl_usc);
 964        rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
 965        cl->cl_flags |= HFSC_USC;
 966}
 967
 968static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
 969        [TCA_HFSC_RSC]  = { .len = sizeof(struct tc_service_curve) },
 970        [TCA_HFSC_FSC]  = { .len = sizeof(struct tc_service_curve) },
 971        [TCA_HFSC_USC]  = { .len = sizeof(struct tc_service_curve) },
 972};
 973
 974static int
 975hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 976                  struct nlattr **tca, unsigned long *arg)
 977{
 978        struct hfsc_sched *q = qdisc_priv(sch);
 979        struct hfsc_class *cl = (struct hfsc_class *)*arg;
 980        struct hfsc_class *parent = NULL;
 981        struct nlattr *opt = tca[TCA_OPTIONS];
 982        struct nlattr *tb[TCA_HFSC_MAX + 1];
 983        struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
 984        u64 cur_time;
 985        int err;
 986
 987        if (opt == NULL)
 988                return -EINVAL;
 989
 990        err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
 991        if (err < 0)
 992                return err;
 993
 994        if (tb[TCA_HFSC_RSC]) {
 995                rsc = nla_data(tb[TCA_HFSC_RSC]);
 996                if (rsc->m1 == 0 && rsc->m2 == 0)
 997                        rsc = NULL;
 998        }
 999
1000        if (tb[TCA_HFSC_FSC]) {
1001                fsc = nla_data(tb[TCA_HFSC_FSC]);
1002                if (fsc->m1 == 0 && fsc->m2 == 0)
1003                        fsc = NULL;
1004        }
1005
1006        if (tb[TCA_HFSC_USC]) {
1007                usc = nla_data(tb[TCA_HFSC_USC]);
1008                if (usc->m1 == 0 && usc->m2 == 0)
1009                        usc = NULL;
1010        }
1011
1012        if (cl != NULL) {
1013                if (parentid) {
1014                        if (cl->cl_parent &&
1015                            cl->cl_parent->cl_common.classid != parentid)
1016                                return -EINVAL;
1017                        if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1018                                return -EINVAL;
1019                }
1020                cur_time = psched_get_time();
1021
1022                if (tca[TCA_RATE]) {
1023                        err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
1024                                              qdisc_root_sleeping_lock(sch),
1025                                              tca[TCA_RATE]);
1026                        if (err)
1027                                return err;
1028                }
1029
1030                sch_tree_lock(sch);
1031                if (rsc != NULL)
1032                        hfsc_change_rsc(cl, rsc, cur_time);
1033                if (fsc != NULL)
1034                        hfsc_change_fsc(cl, fsc);
1035                if (usc != NULL)
1036                        hfsc_change_usc(cl, usc, cur_time);
1037
1038                if (cl->qdisc->q.qlen != 0) {
1039                        if (cl->cl_flags & HFSC_RSC)
1040                                update_ed(cl, qdisc_peek_len(cl->qdisc));
1041                        if (cl->cl_flags & HFSC_FSC)
1042                                update_vf(cl, 0, cur_time);
1043                }
1044                sch_tree_unlock(sch);
1045
1046                return 0;
1047        }
1048
1049        if (parentid == TC_H_ROOT)
1050                return -EEXIST;
1051
1052        parent = &q->root;
1053        if (parentid) {
1054                parent = hfsc_find_class(parentid, sch);
1055                if (parent == NULL)
1056                        return -ENOENT;
1057        }
1058
1059        if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1060                return -EINVAL;
1061        if (hfsc_find_class(classid, sch))
1062                return -EEXIST;
1063
1064        if (rsc == NULL && fsc == NULL)
1065                return -EINVAL;
1066
1067        cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1068        if (cl == NULL)
1069                return -ENOBUFS;
1070
1071        if (tca[TCA_RATE]) {
1072                err = gen_new_estimator(&cl->bstats, &cl->rate_est,
1073                                        qdisc_root_sleeping_lock(sch),
1074                                        tca[TCA_RATE]);
1075                if (err) {
1076                        kfree(cl);
1077                        return err;
1078                }
1079        }
1080
1081        if (rsc != NULL)
1082                hfsc_change_rsc(cl, rsc, 0);
1083        if (fsc != NULL)
1084                hfsc_change_fsc(cl, fsc);
1085        if (usc != NULL)
1086                hfsc_change_usc(cl, usc, 0);
1087
1088        cl->cl_common.classid = classid;
1089        cl->refcnt    = 1;
1090        cl->sched     = q;
1091        cl->cl_parent = parent;
1092        cl->qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
1093                                      &pfifo_qdisc_ops, classid);
1094        if (cl->qdisc == NULL)
1095                cl->qdisc = &noop_qdisc;
1096        INIT_LIST_HEAD(&cl->children);
1097        cl->vt_tree = RB_ROOT;
1098        cl->cf_tree = RB_ROOT;
1099
1100        sch_tree_lock(sch);
1101        qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1102        list_add_tail(&cl->siblings, &parent->children);
1103        if (parent->level == 0)
1104                hfsc_purge_queue(sch, parent);
1105        hfsc_adjust_levels(parent);
1106        cl->cl_pcvtoff = parent->cl_cvtoff;
1107        sch_tree_unlock(sch);
1108
1109        qdisc_class_hash_grow(sch, &q->clhash);
1110
1111        *arg = (unsigned long)cl;
1112        return 0;
1113}
1114
1115static void
1116hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1117{
1118        struct hfsc_sched *q = qdisc_priv(sch);
1119
1120        tcf_destroy_chain(&cl->filter_list);
1121        qdisc_destroy(cl->qdisc);
1122        gen_kill_estimator(&cl->bstats, &cl->rate_est);
1123        if (cl != &q->root)
1124                kfree(cl);
1125}
1126
1127static int
1128hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1129{
1130        struct hfsc_sched *q = qdisc_priv(sch);
1131        struct hfsc_class *cl = (struct hfsc_class *)arg;
1132
1133        if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1134                return -EBUSY;
1135
1136        sch_tree_lock(sch);
1137
1138        list_del(&cl->siblings);
1139        hfsc_adjust_levels(cl->cl_parent);
1140
1141        hfsc_purge_queue(sch, cl);
1142        qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1143
1144        BUG_ON(--cl->refcnt == 0);
1145        /*
1146         * This shouldn't happen: we "hold" one cops->get() when called
1147         * from tc_ctl_tclass; the destroy method is done from cops->put().
1148         */
1149
1150        sch_tree_unlock(sch);
1151        return 0;
1152}
1153
1154static struct hfsc_class *
1155hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1156{
1157        struct hfsc_sched *q = qdisc_priv(sch);
1158        struct hfsc_class *cl;
1159        struct tcf_result res;
1160        struct tcf_proto *tcf;
1161        int result;
1162
1163        if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1164            (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1165                if (cl->level == 0)
1166                        return cl;
1167
1168        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1169        tcf = q->root.filter_list;
1170        while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1171#ifdef CONFIG_NET_CLS_ACT
1172                switch (result) {
1173                case TC_ACT_QUEUED:
1174                case TC_ACT_STOLEN:
1175                        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1176                case TC_ACT_SHOT:
1177                        return NULL;
1178                }
1179#endif
1180                if ((cl = (struct hfsc_class *)res.class) == NULL) {
1181                        if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1182                                break; /* filter selected invalid classid */
1183                }
1184
1185                if (cl->level == 0)
1186                        return cl; /* hit leaf class */
1187
1188                /* apply inner filter chain */
1189                tcf = cl->filter_list;
1190        }
1191
1192        /* classification failed, try default class */
1193        cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1194        if (cl == NULL || cl->level > 0)
1195                return NULL;
1196
1197        return cl;
1198}
1199
1200static int
1201hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1202                 struct Qdisc **old)
1203{
1204        struct hfsc_class *cl = (struct hfsc_class *)arg;
1205
1206        if (cl->level > 0)
1207                return -EINVAL;
1208        if (new == NULL) {
1209                new = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
1210                                        &pfifo_qdisc_ops,
1211                                        cl->cl_common.classid);
1212                if (new == NULL)
1213                        new = &noop_qdisc;
1214        }
1215
1216        sch_tree_lock(sch);
1217        hfsc_purge_queue(sch, cl);
1218        *old = cl->qdisc;
1219        cl->qdisc = new;
1220        sch_tree_unlock(sch);
1221        return 0;
1222}
1223
1224static struct Qdisc *
1225hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1226{
1227        struct hfsc_class *cl = (struct hfsc_class *)arg;
1228
1229        if (cl->level == 0)
1230                return cl->qdisc;
1231
1232        return NULL;
1233}
1234
1235static void
1236hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1237{
1238        struct hfsc_class *cl = (struct hfsc_class *)arg;
1239
1240        if (cl->qdisc->q.qlen == 0) {
1241                update_vf(cl, 0, 0);
1242                set_passive(cl);
1243        }
1244}
1245
1246static unsigned long
1247hfsc_get_class(struct Qdisc *sch, u32 classid)
1248{
1249        struct hfsc_class *cl = hfsc_find_class(classid, sch);
1250
1251        if (cl != NULL)
1252                cl->refcnt++;
1253
1254        return (unsigned long)cl;
1255}
1256
1257static void
1258hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1259{
1260        struct hfsc_class *cl = (struct hfsc_class *)arg;
1261
1262        if (--cl->refcnt == 0)
1263                hfsc_destroy_class(sch, cl);
1264}
1265
1266static unsigned long
1267hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1268{
1269        struct hfsc_class *p = (struct hfsc_class *)parent;
1270        struct hfsc_class *cl = hfsc_find_class(classid, sch);
1271
1272        if (cl != NULL) {
1273                if (p != NULL && p->level <= cl->level)
1274                        return 0;
1275                cl->filter_cnt++;
1276        }
1277
1278        return (unsigned long)cl;
1279}
1280
1281static void
1282hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1283{
1284        struct hfsc_class *cl = (struct hfsc_class *)arg;
1285
1286        cl->filter_cnt--;
1287}
1288
1289static struct tcf_proto **
1290hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1291{
1292        struct hfsc_sched *q = qdisc_priv(sch);
1293        struct hfsc_class *cl = (struct hfsc_class *)arg;
1294
1295        if (cl == NULL)
1296                cl = &q->root;
1297
1298        return &cl->filter_list;
1299}
1300
1301static int
1302hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1303{
1304        struct tc_service_curve tsc;
1305
1306        tsc.m1 = sm2m(sc->sm1);
1307        tsc.d  = dx2d(sc->dx);
1308        tsc.m2 = sm2m(sc->sm2);
1309        NLA_PUT(skb, attr, sizeof(tsc), &tsc);
1310
1311        return skb->len;
1312
1313 nla_put_failure:
1314        return -1;
1315}
1316
1317static inline int
1318hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1319{
1320        if ((cl->cl_flags & HFSC_RSC) &&
1321            (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1322                goto nla_put_failure;
1323
1324        if ((cl->cl_flags & HFSC_FSC) &&
1325            (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1326                goto nla_put_failure;
1327
1328        if ((cl->cl_flags & HFSC_USC) &&
1329            (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1330                goto nla_put_failure;
1331
1332        return skb->len;
1333
1334 nla_put_failure:
1335        return -1;
1336}
1337
1338static int
1339hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1340                struct tcmsg *tcm)
1341{
1342        struct hfsc_class *cl = (struct hfsc_class *)arg;
1343        struct nlattr *nest;
1344
1345        tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1346                                          TC_H_ROOT;
1347        tcm->tcm_handle = cl->cl_common.classid;
1348        if (cl->level == 0)
1349                tcm->tcm_info = cl->qdisc->handle;
1350
1351        nest = nla_nest_start(skb, TCA_OPTIONS);
1352        if (nest == NULL)
1353                goto nla_put_failure;
1354        if (hfsc_dump_curves(skb, cl) < 0)
1355                goto nla_put_failure;
1356        nla_nest_end(skb, nest);
1357        return skb->len;
1358
1359 nla_put_failure:
1360        nla_nest_cancel(skb, nest);
1361        return -EMSGSIZE;
1362}
1363
1364static int
1365hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1366        struct gnet_dump *d)
1367{
1368        struct hfsc_class *cl = (struct hfsc_class *)arg;
1369        struct tc_hfsc_stats xstats;
1370
1371        cl->qstats.qlen = cl->qdisc->q.qlen;
1372        xstats.level   = cl->level;
1373        xstats.period  = cl->cl_vtperiod;
1374        xstats.work    = cl->cl_total;
1375        xstats.rtwork  = cl->cl_cumul;
1376
1377        if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1378            gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1379            gnet_stats_copy_queue(d, &cl->qstats) < 0)
1380                return -1;
1381
1382        return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1383}
1384
1385
1386
1387static void
1388hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1389{
1390        struct hfsc_sched *q = qdisc_priv(sch);
1391        struct hlist_node *n;
1392        struct hfsc_class *cl;
1393        unsigned int i;
1394
1395        if (arg->stop)
1396                return;
1397
1398        for (i = 0; i < q->clhash.hashsize; i++) {
1399                hlist_for_each_entry(cl, n, &q->clhash.hash[i],
1400                                     cl_common.hnode) {
1401                        if (arg->count < arg->skip) {
1402                                arg->count++;
1403                                continue;
1404                        }
1405                        if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1406                                arg->stop = 1;
1407                                return;
1408                        }
1409                        arg->count++;
1410                }
1411        }
1412}
1413
1414static void
1415hfsc_schedule_watchdog(struct Qdisc *sch)
1416{
1417        struct hfsc_sched *q = qdisc_priv(sch);
1418        struct hfsc_class *cl;
1419        u64 next_time = 0;
1420
1421        if ((cl = eltree_get_minel(q)) != NULL)
1422                next_time = cl->cl_e;
1423        if (q->root.cl_cfmin != 0) {
1424                if (next_time == 0 || next_time > q->root.cl_cfmin)
1425                        next_time = q->root.cl_cfmin;
1426        }
1427        WARN_ON(next_time == 0);
1428        qdisc_watchdog_schedule(&q->watchdog, next_time);
1429}
1430
1431static int
1432hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1433{
1434        struct hfsc_sched *q = qdisc_priv(sch);
1435        struct tc_hfsc_qopt *qopt;
1436        int err;
1437
1438        if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1439                return -EINVAL;
1440        qopt = nla_data(opt);
1441
1442        q->defcls = qopt->defcls;
1443        err = qdisc_class_hash_init(&q->clhash);
1444        if (err < 0)
1445                return err;
1446        q->eligible = RB_ROOT;
1447        INIT_LIST_HEAD(&q->droplist);
1448
1449        q->root.cl_common.classid = sch->handle;
1450        q->root.refcnt  = 1;
1451        q->root.sched   = q;
1452        q->root.qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
1453                                          &pfifo_qdisc_ops,
1454                                          sch->handle);
1455        if (q->root.qdisc == NULL)
1456                q->root.qdisc = &noop_qdisc;
1457        INIT_LIST_HEAD(&q->root.children);
1458        q->root.vt_tree = RB_ROOT;
1459        q->root.cf_tree = RB_ROOT;
1460
1461        qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1462        qdisc_class_hash_grow(sch, &q->clhash);
1463
1464        qdisc_watchdog_init(&q->watchdog, sch);
1465
1466        return 0;
1467}
1468
1469static int
1470hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1471{
1472        struct hfsc_sched *q = qdisc_priv(sch);
1473        struct tc_hfsc_qopt *qopt;
1474
1475        if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1476                return -EINVAL;
1477        qopt = nla_data(opt);
1478
1479        sch_tree_lock(sch);
1480        q->defcls = qopt->defcls;
1481        sch_tree_unlock(sch);
1482
1483        return 0;
1484}
1485
1486static void
1487hfsc_reset_class(struct hfsc_class *cl)
1488{
1489        cl->cl_total        = 0;
1490        cl->cl_cumul        = 0;
1491        cl->cl_d            = 0;
1492        cl->cl_e            = 0;
1493        cl->cl_vt           = 0;
1494        cl->cl_vtadj        = 0;
1495        cl->cl_vtoff        = 0;
1496        cl->cl_cvtmin       = 0;
1497        cl->cl_cvtmax       = 0;
1498        cl->cl_cvtoff       = 0;
1499        cl->cl_pcvtoff      = 0;
1500        cl->cl_vtperiod     = 0;
1501        cl->cl_parentperiod = 0;
1502        cl->cl_f            = 0;
1503        cl->cl_myf          = 0;
1504        cl->cl_myfadj       = 0;
1505        cl->cl_cfmin        = 0;
1506        cl->cl_nactive      = 0;
1507
1508        cl->vt_tree = RB_ROOT;
1509        cl->cf_tree = RB_ROOT;
1510        qdisc_reset(cl->qdisc);
1511
1512        if (cl->cl_flags & HFSC_RSC)
1513                rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1514        if (cl->cl_flags & HFSC_FSC)
1515                rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1516        if (cl->cl_flags & HFSC_USC)
1517                rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1518}
1519
1520static void
1521hfsc_reset_qdisc(struct Qdisc *sch)
1522{
1523        struct hfsc_sched *q = qdisc_priv(sch);
1524        struct hfsc_class *cl;
1525        struct hlist_node *n;
1526        unsigned int i;
1527
1528        for (i = 0; i < q->clhash.hashsize; i++) {
1529                hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
1530                        hfsc_reset_class(cl);
1531        }
1532        q->eligible = RB_ROOT;
1533        INIT_LIST_HEAD(&q->droplist);
1534        qdisc_watchdog_cancel(&q->watchdog);
1535        sch->q.qlen = 0;
1536}
1537
1538static void
1539hfsc_destroy_qdisc(struct Qdisc *sch)
1540{
1541        struct hfsc_sched *q = qdisc_priv(sch);
1542        struct hlist_node *n, *next;
1543        struct hfsc_class *cl;
1544        unsigned int i;
1545
1546        for (i = 0; i < q->clhash.hashsize; i++) {
1547                hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
1548                        tcf_destroy_chain(&cl->filter_list);
1549        }
1550        for (i = 0; i < q->clhash.hashsize; i++) {
1551                hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1552                                          cl_common.hnode)
1553                        hfsc_destroy_class(sch, cl);
1554        }
1555        qdisc_class_hash_destroy(&q->clhash);
1556        qdisc_watchdog_cancel(&q->watchdog);
1557}
1558
1559static int
1560hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1561{
1562        struct hfsc_sched *q = qdisc_priv(sch);
1563        unsigned char *b = skb_tail_pointer(skb);
1564        struct tc_hfsc_qopt qopt;
1565
1566        qopt.defcls = q->defcls;
1567        NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1568        return skb->len;
1569
1570 nla_put_failure:
1571        nlmsg_trim(skb, b);
1572        return -1;
1573}
1574
1575static int
1576hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1577{
1578        struct hfsc_class *cl;
1579        int uninitialized_var(err);
1580
1581        cl = hfsc_classify(skb, sch, &err);
1582        if (cl == NULL) {
1583                if (err & __NET_XMIT_BYPASS)
1584                        sch->qstats.drops++;
1585                kfree_skb(skb);
1586                return err;
1587        }
1588
1589        err = qdisc_enqueue(skb, cl->qdisc);
1590        if (unlikely(err != NET_XMIT_SUCCESS)) {
1591                if (net_xmit_drop_count(err)) {
1592                        cl->qstats.drops++;
1593                        sch->qstats.drops++;
1594                }
1595                return err;
1596        }
1597
1598        if (cl->qdisc->q.qlen == 1)
1599                set_active(cl, qdisc_pkt_len(skb));
1600
1601        cl->bstats.packets++;
1602        cl->bstats.bytes += qdisc_pkt_len(skb);
1603        sch->bstats.packets++;
1604        sch->bstats.bytes += qdisc_pkt_len(skb);
1605        sch->q.qlen++;
1606
1607        return NET_XMIT_SUCCESS;
1608}
1609
1610static struct sk_buff *
1611hfsc_dequeue(struct Qdisc *sch)
1612{
1613        struct hfsc_sched *q = qdisc_priv(sch);
1614        struct hfsc_class *cl;
1615        struct sk_buff *skb;
1616        u64 cur_time;
1617        unsigned int next_len;
1618        int realtime = 0;
1619
1620        if (sch->q.qlen == 0)
1621                return NULL;
1622
1623        cur_time = psched_get_time();
1624
1625        /*
1626         * if there are eligible classes, use real-time criteria.
1627         * find the class with the minimum deadline among
1628         * the eligible classes.
1629         */
1630        if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1631                realtime = 1;
1632        } else {
1633                /*
1634                 * use link-sharing criteria
1635                 * get the class with the minimum vt in the hierarchy
1636                 */
1637                cl = vttree_get_minvt(&q->root, cur_time);
1638                if (cl == NULL) {
1639                        sch->qstats.overlimits++;
1640                        hfsc_schedule_watchdog(sch);
1641                        return NULL;
1642                }
1643        }
1644
1645        skb = qdisc_dequeue_peeked(cl->qdisc);
1646        if (skb == NULL) {
1647                qdisc_warn_nonwc("HFSC", cl->qdisc);
1648                return NULL;
1649        }
1650
1651        update_vf(cl, qdisc_pkt_len(skb), cur_time);
1652        if (realtime)
1653                cl->cl_cumul += qdisc_pkt_len(skb);
1654
1655        if (cl->qdisc->q.qlen != 0) {
1656                if (cl->cl_flags & HFSC_RSC) {
1657                        /* update ed */
1658                        next_len = qdisc_peek_len(cl->qdisc);
1659                        if (realtime)
1660                                update_ed(cl, next_len);
1661                        else
1662                                update_d(cl, next_len);
1663                }
1664        } else {
1665                /* the class becomes passive */
1666                set_passive(cl);
1667        }
1668
1669        sch->flags &= ~TCQ_F_THROTTLED;
1670        sch->q.qlen--;
1671
1672        return skb;
1673}
1674
1675static unsigned int
1676hfsc_drop(struct Qdisc *sch)
1677{
1678        struct hfsc_sched *q = qdisc_priv(sch);
1679        struct hfsc_class *cl;
1680        unsigned int len;
1681
1682        list_for_each_entry(cl, &q->droplist, dlist) {
1683                if (cl->qdisc->ops->drop != NULL &&
1684                    (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1685                        if (cl->qdisc->q.qlen == 0) {
1686                                update_vf(cl, 0, 0);
1687                                set_passive(cl);
1688                        } else {
1689                                list_move_tail(&cl->dlist, &q->droplist);
1690                        }
1691                        cl->qstats.drops++;
1692                        sch->qstats.drops++;
1693                        sch->q.qlen--;
1694                        return len;
1695                }
1696        }
1697        return 0;
1698}
1699
1700static const struct Qdisc_class_ops hfsc_class_ops = {
1701        .change         = hfsc_change_class,
1702        .delete         = hfsc_delete_class,
1703        .graft          = hfsc_graft_class,
1704        .leaf           = hfsc_class_leaf,
1705        .qlen_notify    = hfsc_qlen_notify,
1706        .get            = hfsc_get_class,
1707        .put            = hfsc_put_class,
1708        .bind_tcf       = hfsc_bind_tcf,
1709        .unbind_tcf     = hfsc_unbind_tcf,
1710        .tcf_chain      = hfsc_tcf_chain,
1711        .dump           = hfsc_dump_class,
1712        .dump_stats     = hfsc_dump_class_stats,
1713        .walk           = hfsc_walk
1714};
1715
1716static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1717        .id             = "hfsc",
1718        .init           = hfsc_init_qdisc,
1719        .change         = hfsc_change_qdisc,
1720        .reset          = hfsc_reset_qdisc,
1721        .destroy        = hfsc_destroy_qdisc,
1722        .dump           = hfsc_dump_qdisc,
1723        .enqueue        = hfsc_enqueue,
1724        .dequeue        = hfsc_dequeue,
1725        .peek           = qdisc_peek_dequeued,
1726        .drop           = hfsc_drop,
1727        .cl_ops         = &hfsc_class_ops,
1728        .priv_size      = sizeof(struct hfsc_sched),
1729        .owner          = THIS_MODULE
1730};
1731
1732static int __init
1733hfsc_init(void)
1734{
1735        return register_qdisc(&hfsc_qdisc_ops);
1736}
1737
1738static void __exit
1739hfsc_cleanup(void)
1740{
1741        unregister_qdisc(&hfsc_qdisc_ops);
1742}
1743
1744MODULE_LICENSE("GPL");
1745module_init(hfsc_init);
1746module_exit(hfsc_cleanup);
1747