linux/net/sctp/auth.c
<<
>>
Prefs
   1/* SCTP kernel implementation
   2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
   3 *
   4 * This file is part of the SCTP kernel implementation
   5 *
   6 * This SCTP implementation is free software;
   7 * you can redistribute it and/or modify it under the terms of
   8 * the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2, or (at your option)
  10 * any later version.
  11 *
  12 * This SCTP implementation is distributed in the hope that it
  13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14 *                 ************************
  15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16 * See the GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with GNU CC; see the file COPYING.  If not, write to
  20 * the Free Software Foundation, 59 Temple Place - Suite 330,
  21 * Boston, MA 02111-1307, USA.
  22 *
  23 * Please send any bug reports or fixes you make to the
  24 * email address(es):
  25 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  26 *
  27 * Or submit a bug report through the following website:
  28 *    http://www.sf.net/projects/lksctp
  29 *
  30 * Written or modified by:
  31 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
  32 *
  33 * Any bugs reported given to us we will try to fix... any fixes shared will
  34 * be incorporated into the next SCTP release.
  35 */
  36
  37#include <linux/types.h>
  38#include <linux/crypto.h>
  39#include <linux/scatterlist.h>
  40#include <net/sctp/sctp.h>
  41#include <net/sctp/auth.h>
  42
  43static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  44        {
  45                /* id 0 is reserved.  as all 0 */
  46                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  47        },
  48        {
  49                .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  50                .hmac_name="hmac(sha1)",
  51                .hmac_len = SCTP_SHA1_SIG_SIZE,
  52        },
  53        {
  54                /* id 2 is reserved as well */
  55                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  56        },
  57#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
  58        {
  59                .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  60                .hmac_name="hmac(sha256)",
  61                .hmac_len = SCTP_SHA256_SIG_SIZE,
  62        }
  63#endif
  64};
  65
  66
  67void sctp_auth_key_put(struct sctp_auth_bytes *key)
  68{
  69        if (!key)
  70                return;
  71
  72        if (atomic_dec_and_test(&key->refcnt)) {
  73                kfree(key);
  74                SCTP_DBG_OBJCNT_DEC(keys);
  75        }
  76}
  77
  78/* Create a new key structure of a given length */
  79static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  80{
  81        struct sctp_auth_bytes *key;
  82
  83        /* Verify that we are not going to overflow INT_MAX */
  84        if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
  85                return NULL;
  86
  87        /* Allocate the shared key */
  88        key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  89        if (!key)
  90                return NULL;
  91
  92        key->len = key_len;
  93        atomic_set(&key->refcnt, 1);
  94        SCTP_DBG_OBJCNT_INC(keys);
  95
  96        return key;
  97}
  98
  99/* Create a new shared key container with a give key id */
 100struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
 101{
 102        struct sctp_shared_key *new;
 103
 104        /* Allocate the shared key container */
 105        new = kzalloc(sizeof(struct sctp_shared_key), gfp);
 106        if (!new)
 107                return NULL;
 108
 109        INIT_LIST_HEAD(&new->key_list);
 110        new->key_id = key_id;
 111
 112        return new;
 113}
 114
 115/* Free the shared key stucture */
 116static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
 117{
 118        BUG_ON(!list_empty(&sh_key->key_list));
 119        sctp_auth_key_put(sh_key->key);
 120        sh_key->key = NULL;
 121        kfree(sh_key);
 122}
 123
 124/* Destory the entire key list.  This is done during the
 125 * associon and endpoint free process.
 126 */
 127void sctp_auth_destroy_keys(struct list_head *keys)
 128{
 129        struct sctp_shared_key *ep_key;
 130        struct sctp_shared_key *tmp;
 131
 132        if (list_empty(keys))
 133                return;
 134
 135        key_for_each_safe(ep_key, tmp, keys) {
 136                list_del_init(&ep_key->key_list);
 137                sctp_auth_shkey_free(ep_key);
 138        }
 139}
 140
 141/* Compare two byte vectors as numbers.  Return values
 142 * are:
 143 *        0 - vectors are equal
 144 *      < 0 - vector 1 is smaller than vector2
 145 *      > 0 - vector 1 is greater than vector2
 146 *
 147 * Algorithm is:
 148 *      This is performed by selecting the numerically smaller key vector...
 149 *      If the key vectors are equal as numbers but differ in length ...
 150 *      the shorter vector is considered smaller
 151 *
 152 * Examples (with small values):
 153 *      000123456789 > 123456789 (first number is longer)
 154 *      000123456789 < 234567891 (second number is larger numerically)
 155 *      123456789 > 2345678      (first number is both larger & longer)
 156 */
 157static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 158                              struct sctp_auth_bytes *vector2)
 159{
 160        int diff;
 161        int i;
 162        const __u8 *longer;
 163
 164        diff = vector1->len - vector2->len;
 165        if (diff) {
 166                longer = (diff > 0) ? vector1->data : vector2->data;
 167
 168                /* Check to see if the longer number is
 169                 * lead-zero padded.  If it is not, it
 170                 * is automatically larger numerically.
 171                 */
 172                for (i = 0; i < abs(diff); i++ ) {
 173                        if (longer[i] != 0)
 174                                return diff;
 175                }
 176        }
 177
 178        /* lengths are the same, compare numbers */
 179        return memcmp(vector1->data, vector2->data, vector1->len);
 180}
 181
 182/*
 183 * Create a key vector as described in SCTP-AUTH, Section 6.1
 184 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 185 *    parameter sent by each endpoint are concatenated as byte vectors.
 186 *    These parameters include the parameter type, parameter length, and
 187 *    the parameter value, but padding is omitted; all padding MUST be
 188 *    removed from this concatenation before proceeding with further
 189 *    computation of keys.  Parameters which were not sent are simply
 190 *    omitted from the concatenation process.  The resulting two vectors
 191 *    are called the two key vectors.
 192 */
 193static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 194                        sctp_random_param_t *random,
 195                        sctp_chunks_param_t *chunks,
 196                        sctp_hmac_algo_param_t *hmacs,
 197                        gfp_t gfp)
 198{
 199        struct sctp_auth_bytes *new;
 200        __u32   len;
 201        __u32   offset = 0;
 202
 203        len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
 204        if (chunks)
 205                len += ntohs(chunks->param_hdr.length);
 206
 207        new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
 208        if (!new)
 209                return NULL;
 210
 211        new->len = len;
 212
 213        memcpy(new->data, random, ntohs(random->param_hdr.length));
 214        offset += ntohs(random->param_hdr.length);
 215
 216        if (chunks) {
 217                memcpy(new->data + offset, chunks,
 218                        ntohs(chunks->param_hdr.length));
 219                offset += ntohs(chunks->param_hdr.length);
 220        }
 221
 222        memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
 223
 224        return new;
 225}
 226
 227
 228/* Make a key vector based on our local parameters */
 229static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 230                                    const struct sctp_association *asoc,
 231                                    gfp_t gfp)
 232{
 233        return sctp_auth_make_key_vector(
 234                                    (sctp_random_param_t*)asoc->c.auth_random,
 235                                    (sctp_chunks_param_t*)asoc->c.auth_chunks,
 236                                    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
 237                                    gfp);
 238}
 239
 240/* Make a key vector based on peer's parameters */
 241static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 242                                    const struct sctp_association *asoc,
 243                                    gfp_t gfp)
 244{
 245        return sctp_auth_make_key_vector(asoc->peer.peer_random,
 246                                         asoc->peer.peer_chunks,
 247                                         asoc->peer.peer_hmacs,
 248                                         gfp);
 249}
 250
 251
 252/* Set the value of the association shared key base on the parameters
 253 * given.  The algorithm is:
 254 *    From the endpoint pair shared keys and the key vectors the
 255 *    association shared keys are computed.  This is performed by selecting
 256 *    the numerically smaller key vector and concatenating it to the
 257 *    endpoint pair shared key, and then concatenating the numerically
 258 *    larger key vector to that.  The result of the concatenation is the
 259 *    association shared key.
 260 */
 261static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 262                        struct sctp_shared_key *ep_key,
 263                        struct sctp_auth_bytes *first_vector,
 264                        struct sctp_auth_bytes *last_vector,
 265                        gfp_t gfp)
 266{
 267        struct sctp_auth_bytes *secret;
 268        __u32 offset = 0;
 269        __u32 auth_len;
 270
 271        auth_len = first_vector->len + last_vector->len;
 272        if (ep_key->key)
 273                auth_len += ep_key->key->len;
 274
 275        secret = sctp_auth_create_key(auth_len, gfp);
 276        if (!secret)
 277                return NULL;
 278
 279        if (ep_key->key) {
 280                memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 281                offset += ep_key->key->len;
 282        }
 283
 284        memcpy(secret->data + offset, first_vector->data, first_vector->len);
 285        offset += first_vector->len;
 286
 287        memcpy(secret->data + offset, last_vector->data, last_vector->len);
 288
 289        return secret;
 290}
 291
 292/* Create an association shared key.  Follow the algorithm
 293 * described in SCTP-AUTH, Section 6.1
 294 */
 295static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 296                                 const struct sctp_association *asoc,
 297                                 struct sctp_shared_key *ep_key,
 298                                 gfp_t gfp)
 299{
 300        struct sctp_auth_bytes *local_key_vector;
 301        struct sctp_auth_bytes *peer_key_vector;
 302        struct sctp_auth_bytes  *first_vector,
 303                                *last_vector;
 304        struct sctp_auth_bytes  *secret = NULL;
 305        int     cmp;
 306
 307
 308        /* Now we need to build the key vectors
 309         * SCTP-AUTH , Section 6.1
 310         *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 311         *    parameter sent by each endpoint are concatenated as byte vectors.
 312         *    These parameters include the parameter type, parameter length, and
 313         *    the parameter value, but padding is omitted; all padding MUST be
 314         *    removed from this concatenation before proceeding with further
 315         *    computation of keys.  Parameters which were not sent are simply
 316         *    omitted from the concatenation process.  The resulting two vectors
 317         *    are called the two key vectors.
 318         */
 319
 320        local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 321        peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 322
 323        if (!peer_key_vector || !local_key_vector)
 324                goto out;
 325
 326        /* Figure out the order in wich the key_vectors will be
 327         * added to the endpoint shared key.
 328         * SCTP-AUTH, Section 6.1:
 329         *   This is performed by selecting the numerically smaller key
 330         *   vector and concatenating it to the endpoint pair shared
 331         *   key, and then concatenating the numerically larger key
 332         *   vector to that.  If the key vectors are equal as numbers
 333         *   but differ in length, then the concatenation order is the
 334         *   endpoint shared key, followed by the shorter key vector,
 335         *   followed by the longer key vector.  Otherwise, the key
 336         *   vectors are identical, and may be concatenated to the
 337         *   endpoint pair key in any order.
 338         */
 339        cmp = sctp_auth_compare_vectors(local_key_vector,
 340                                        peer_key_vector);
 341        if (cmp < 0) {
 342                first_vector = local_key_vector;
 343                last_vector = peer_key_vector;
 344        } else {
 345                first_vector = peer_key_vector;
 346                last_vector = local_key_vector;
 347        }
 348
 349        secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 350                                            gfp);
 351out:
 352        kfree(local_key_vector);
 353        kfree(peer_key_vector);
 354
 355        return secret;
 356}
 357
 358/*
 359 * Populate the association overlay list with the list
 360 * from the endpoint.
 361 */
 362int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 363                                struct sctp_association *asoc,
 364                                gfp_t gfp)
 365{
 366        struct sctp_shared_key *sh_key;
 367        struct sctp_shared_key *new;
 368
 369        BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 370
 371        key_for_each(sh_key, &ep->endpoint_shared_keys) {
 372                new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 373                if (!new)
 374                        goto nomem;
 375
 376                new->key = sh_key->key;
 377                sctp_auth_key_hold(new->key);
 378                list_add(&new->key_list, &asoc->endpoint_shared_keys);
 379        }
 380
 381        return 0;
 382
 383nomem:
 384        sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 385        return -ENOMEM;
 386}
 387
 388
 389/* Public interface to creat the association shared key.
 390 * See code above for the algorithm.
 391 */
 392int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 393{
 394        struct sctp_auth_bytes  *secret;
 395        struct sctp_shared_key *ep_key;
 396
 397        /* If we don't support AUTH, or peer is not capable
 398         * we don't need to do anything.
 399         */
 400        if (!sctp_auth_enable || !asoc->peer.auth_capable)
 401                return 0;
 402
 403        /* If the key_id is non-zero and we couldn't find an
 404         * endpoint pair shared key, we can't compute the
 405         * secret.
 406         * For key_id 0, endpoint pair shared key is a NULL key.
 407         */
 408        ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 409        BUG_ON(!ep_key);
 410
 411        secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 412        if (!secret)
 413                return -ENOMEM;
 414
 415        sctp_auth_key_put(asoc->asoc_shared_key);
 416        asoc->asoc_shared_key = secret;
 417
 418        return 0;
 419}
 420
 421
 422/* Find the endpoint pair shared key based on the key_id */
 423struct sctp_shared_key *sctp_auth_get_shkey(
 424                                const struct sctp_association *asoc,
 425                                __u16 key_id)
 426{
 427        struct sctp_shared_key *key;
 428
 429        /* First search associations set of endpoint pair shared keys */
 430        key_for_each(key, &asoc->endpoint_shared_keys) {
 431                if (key->key_id == key_id)
 432                        return key;
 433        }
 434
 435        return NULL;
 436}
 437
 438/*
 439 * Initialize all the possible digest transforms that we can use.  Right now
 440 * now, the supported digests are SHA1 and SHA256.  We do this here once
 441 * because of the restrictiong that transforms may only be allocated in
 442 * user context.  This forces us to pre-allocated all possible transforms
 443 * at the endpoint init time.
 444 */
 445int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 446{
 447        struct crypto_hash *tfm = NULL;
 448        __u16   id;
 449
 450        /* if the transforms are already allocted, we are done */
 451        if (!sctp_auth_enable) {
 452                ep->auth_hmacs = NULL;
 453                return 0;
 454        }
 455
 456        if (ep->auth_hmacs)
 457                return 0;
 458
 459        /* Allocated the array of pointers to transorms */
 460        ep->auth_hmacs = kzalloc(
 461                            sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
 462                            gfp);
 463        if (!ep->auth_hmacs)
 464                return -ENOMEM;
 465
 466        for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 467
 468                /* See is we support the id.  Supported IDs have name and
 469                 * length fields set, so that we can allocated and use
 470                 * them.  We can safely just check for name, for without the
 471                 * name, we can't allocate the TFM.
 472                 */
 473                if (!sctp_hmac_list[id].hmac_name)
 474                        continue;
 475
 476                /* If this TFM has been allocated, we are all set */
 477                if (ep->auth_hmacs[id])
 478                        continue;
 479
 480                /* Allocate the ID */
 481                tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
 482                                        CRYPTO_ALG_ASYNC);
 483                if (IS_ERR(tfm))
 484                        goto out_err;
 485
 486                ep->auth_hmacs[id] = tfm;
 487        }
 488
 489        return 0;
 490
 491out_err:
 492        /* Clean up any successful allocations */
 493        sctp_auth_destroy_hmacs(ep->auth_hmacs);
 494        return -ENOMEM;
 495}
 496
 497/* Destroy the hmac tfm array */
 498void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
 499{
 500        int i;
 501
 502        if (!auth_hmacs)
 503                return;
 504
 505        for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
 506        {
 507                if (auth_hmacs[i])
 508                        crypto_free_hash(auth_hmacs[i]);
 509        }
 510        kfree(auth_hmacs);
 511}
 512
 513
 514struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 515{
 516        return &sctp_hmac_list[hmac_id];
 517}
 518
 519/* Get an hmac description information that we can use to build
 520 * the AUTH chunk
 521 */
 522struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 523{
 524        struct sctp_hmac_algo_param *hmacs;
 525        __u16 n_elt;
 526        __u16 id = 0;
 527        int i;
 528
 529        /* If we have a default entry, use it */
 530        if (asoc->default_hmac_id)
 531                return &sctp_hmac_list[asoc->default_hmac_id];
 532
 533        /* Since we do not have a default entry, find the first entry
 534         * we support and return that.  Do not cache that id.
 535         */
 536        hmacs = asoc->peer.peer_hmacs;
 537        if (!hmacs)
 538                return NULL;
 539
 540        n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 541        for (i = 0; i < n_elt; i++) {
 542                id = ntohs(hmacs->hmac_ids[i]);
 543
 544                /* Check the id is in the supported range */
 545                if (id > SCTP_AUTH_HMAC_ID_MAX)
 546                        continue;
 547
 548                /* See is we support the id.  Supported IDs have name and
 549                 * length fields set, so that we can allocated and use
 550                 * them.  We can safely just check for name, for without the
 551                 * name, we can't allocate the TFM.
 552                 */
 553                if (!sctp_hmac_list[id].hmac_name)
 554                        continue;
 555
 556                break;
 557        }
 558
 559        if (id == 0)
 560                return NULL;
 561
 562        return &sctp_hmac_list[id];
 563}
 564
 565static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 566{
 567        int  found = 0;
 568        int  i;
 569
 570        for (i = 0; i < n_elts; i++) {
 571                if (hmac_id == hmacs[i]) {
 572                        found = 1;
 573                        break;
 574                }
 575        }
 576
 577        return found;
 578}
 579
 580/* See if the HMAC_ID is one that we claim as supported */
 581int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 582                                    __be16 hmac_id)
 583{
 584        struct sctp_hmac_algo_param *hmacs;
 585        __u16 n_elt;
 586
 587        if (!asoc)
 588                return 0;
 589
 590        hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 591        n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 592
 593        return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 594}
 595
 596
 597/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 598 * Section 6.1:
 599 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 600 *   algorithm it supports.
 601 */
 602void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 603                                     struct sctp_hmac_algo_param *hmacs)
 604{
 605        struct sctp_endpoint *ep;
 606        __u16   id;
 607        int     i;
 608        int     n_params;
 609
 610        /* if the default id is already set, use it */
 611        if (asoc->default_hmac_id)
 612                return;
 613
 614        n_params = (ntohs(hmacs->param_hdr.length)
 615                                - sizeof(sctp_paramhdr_t)) >> 1;
 616        ep = asoc->ep;
 617        for (i = 0; i < n_params; i++) {
 618                id = ntohs(hmacs->hmac_ids[i]);
 619
 620                /* Check the id is in the supported range */
 621                if (id > SCTP_AUTH_HMAC_ID_MAX)
 622                        continue;
 623
 624                /* If this TFM has been allocated, use this id */
 625                if (ep->auth_hmacs[id]) {
 626                        asoc->default_hmac_id = id;
 627                        break;
 628                }
 629        }
 630}
 631
 632
 633/* Check to see if the given chunk is supposed to be authenticated */
 634static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
 635{
 636        unsigned short len;
 637        int found = 0;
 638        int i;
 639
 640        if (!param || param->param_hdr.length == 0)
 641                return 0;
 642
 643        len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
 644
 645        /* SCTP-AUTH, Section 3.2
 646         *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 647         *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 648         *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 649         *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 650         */
 651        for (i = 0; !found && i < len; i++) {
 652                switch (param->chunks[i]) {
 653                    case SCTP_CID_INIT:
 654                    case SCTP_CID_INIT_ACK:
 655                    case SCTP_CID_SHUTDOWN_COMPLETE:
 656                    case SCTP_CID_AUTH:
 657                        break;
 658
 659                    default:
 660                        if (param->chunks[i] == chunk)
 661                            found = 1;
 662                        break;
 663                }
 664        }
 665
 666        return found;
 667}
 668
 669/* Check if peer requested that this chunk is authenticated */
 670int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
 671{
 672        if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
 673                return 0;
 674
 675        return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 676}
 677
 678/* Check if we requested that peer authenticate this chunk. */
 679int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
 680{
 681        if (!sctp_auth_enable || !asoc)
 682                return 0;
 683
 684        return __sctp_auth_cid(chunk,
 685                              (struct sctp_chunks_param *)asoc->c.auth_chunks);
 686}
 687
 688/* SCTP-AUTH: Section 6.2:
 689 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 690 *    the hash function H as described by the MAC Identifier and the shared
 691 *    association key K based on the endpoint pair shared key described by
 692 *    the shared key identifier.  The 'data' used for the computation of
 693 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 694 *    zero (as shown in Figure 6) followed by all chunks that are placed
 695 *    after the AUTH chunk in the SCTP packet.
 696 */
 697void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 698                              struct sk_buff *skb,
 699                              struct sctp_auth_chunk *auth,
 700                              gfp_t gfp)
 701{
 702        struct scatterlist sg;
 703        struct hash_desc desc;
 704        struct sctp_auth_bytes *asoc_key;
 705        __u16 key_id, hmac_id;
 706        __u8 *digest;
 707        unsigned char *end;
 708        int free_key = 0;
 709
 710        /* Extract the info we need:
 711         * - hmac id
 712         * - key id
 713         */
 714        key_id = ntohs(auth->auth_hdr.shkey_id);
 715        hmac_id = ntohs(auth->auth_hdr.hmac_id);
 716
 717        if (key_id == asoc->active_key_id)
 718                asoc_key = asoc->asoc_shared_key;
 719        else {
 720                struct sctp_shared_key *ep_key;
 721
 722                ep_key = sctp_auth_get_shkey(asoc, key_id);
 723                if (!ep_key)
 724                        return;
 725
 726                asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 727                if (!asoc_key)
 728                        return;
 729
 730                free_key = 1;
 731        }
 732
 733        /* set up scatter list */
 734        end = skb_tail_pointer(skb);
 735        sg_init_one(&sg, auth, end - (unsigned char *)auth);
 736
 737        desc.tfm = asoc->ep->auth_hmacs[hmac_id];
 738        desc.flags = 0;
 739
 740        digest = auth->auth_hdr.hmac;
 741        if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
 742                goto free;
 743
 744        crypto_hash_digest(&desc, &sg, sg.length, digest);
 745
 746free:
 747        if (free_key)
 748                sctp_auth_key_put(asoc_key);
 749}
 750
 751/* API Helpers */
 752
 753/* Add a chunk to the endpoint authenticated chunk list */
 754int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 755{
 756        struct sctp_chunks_param *p = ep->auth_chunk_list;
 757        __u16 nchunks;
 758        __u16 param_len;
 759
 760        /* If this chunk is already specified, we are done */
 761        if (__sctp_auth_cid(chunk_id, p))
 762                return 0;
 763
 764        /* Check if we can add this chunk to the array */
 765        param_len = ntohs(p->param_hdr.length);
 766        nchunks = param_len - sizeof(sctp_paramhdr_t);
 767        if (nchunks == SCTP_NUM_CHUNK_TYPES)
 768                return -EINVAL;
 769
 770        p->chunks[nchunks] = chunk_id;
 771        p->param_hdr.length = htons(param_len + 1);
 772        return 0;
 773}
 774
 775/* Add hmac identifires to the endpoint list of supported hmac ids */
 776int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 777                           struct sctp_hmacalgo *hmacs)
 778{
 779        int has_sha1 = 0;
 780        __u16 id;
 781        int i;
 782
 783        /* Scan the list looking for unsupported id.  Also make sure that
 784         * SHA1 is specified.
 785         */
 786        for (i = 0; i < hmacs->shmac_num_idents; i++) {
 787                id = hmacs->shmac_idents[i];
 788
 789                if (id > SCTP_AUTH_HMAC_ID_MAX)
 790                        return -EOPNOTSUPP;
 791
 792                if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 793                        has_sha1 = 1;
 794
 795                if (!sctp_hmac_list[id].hmac_name)
 796                        return -EOPNOTSUPP;
 797        }
 798
 799        if (!has_sha1)
 800                return -EINVAL;
 801
 802        memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
 803                hmacs->shmac_num_idents * sizeof(__u16));
 804        ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
 805                                hmacs->shmac_num_idents * sizeof(__u16));
 806        return 0;
 807}
 808
 809/* Set a new shared key on either endpoint or association.  If the
 810 * the key with a same ID already exists, replace the key (remove the
 811 * old key and add a new one).
 812 */
 813int sctp_auth_set_key(struct sctp_endpoint *ep,
 814                      struct sctp_association *asoc,
 815                      struct sctp_authkey *auth_key)
 816{
 817        struct sctp_shared_key *cur_key = NULL;
 818        struct sctp_auth_bytes *key;
 819        struct list_head *sh_keys;
 820        int replace = 0;
 821
 822        /* Try to find the given key id to see if
 823         * we are doing a replace, or adding a new key
 824         */
 825        if (asoc)
 826                sh_keys = &asoc->endpoint_shared_keys;
 827        else
 828                sh_keys = &ep->endpoint_shared_keys;
 829
 830        key_for_each(cur_key, sh_keys) {
 831                if (cur_key->key_id == auth_key->sca_keynumber) {
 832                        replace = 1;
 833                        break;
 834                }
 835        }
 836
 837        /* If we are not replacing a key id, we need to allocate
 838         * a shared key.
 839         */
 840        if (!replace) {
 841                cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
 842                                                 GFP_KERNEL);
 843                if (!cur_key)
 844                        return -ENOMEM;
 845        }
 846
 847        /* Create a new key data based on the info passed in */
 848        key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 849        if (!key)
 850                goto nomem;
 851
 852        memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 853
 854        /* If we are replacing, remove the old keys data from the
 855         * key id.  If we are adding new key id, add it to the
 856         * list.
 857         */
 858        if (replace)
 859                sctp_auth_key_put(cur_key->key);
 860        else
 861                list_add(&cur_key->key_list, sh_keys);
 862
 863        cur_key->key = key;
 864        sctp_auth_key_hold(key);
 865
 866        return 0;
 867nomem:
 868        if (!replace)
 869                sctp_auth_shkey_free(cur_key);
 870
 871        return -ENOMEM;
 872}
 873
 874int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 875                             struct sctp_association *asoc,
 876                             __u16  key_id)
 877{
 878        struct sctp_shared_key *key;
 879        struct list_head *sh_keys;
 880        int found = 0;
 881
 882        /* The key identifier MUST correst to an existing key */
 883        if (asoc)
 884                sh_keys = &asoc->endpoint_shared_keys;
 885        else
 886                sh_keys = &ep->endpoint_shared_keys;
 887
 888        key_for_each(key, sh_keys) {
 889                if (key->key_id == key_id) {
 890                        found = 1;
 891                        break;
 892                }
 893        }
 894
 895        if (!found)
 896                return -EINVAL;
 897
 898        if (asoc) {
 899                asoc->active_key_id = key_id;
 900                sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 901        } else
 902                ep->active_key_id = key_id;
 903
 904        return 0;
 905}
 906
 907int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 908                         struct sctp_association *asoc,
 909                         __u16  key_id)
 910{
 911        struct sctp_shared_key *key;
 912        struct list_head *sh_keys;
 913        int found = 0;
 914
 915        /* The key identifier MUST NOT be the current active key
 916         * The key identifier MUST correst to an existing key
 917         */
 918        if (asoc) {
 919                if (asoc->active_key_id == key_id)
 920                        return -EINVAL;
 921
 922                sh_keys = &asoc->endpoint_shared_keys;
 923        } else {
 924                if (ep->active_key_id == key_id)
 925                        return -EINVAL;
 926
 927                sh_keys = &ep->endpoint_shared_keys;
 928        }
 929
 930        key_for_each(key, sh_keys) {
 931                if (key->key_id == key_id) {
 932                        found = 1;
 933                        break;
 934                }
 935        }
 936
 937        if (!found)
 938                return -EINVAL;
 939
 940        /* Delete the shared key */
 941        list_del_init(&key->key_list);
 942        sctp_auth_shkey_free(key);
 943
 944        return 0;
 945}
 946