linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <asm/uaccess.h>
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <linux/pagemap.h>
  31#include <asm/ioctls.h>
  32#include <linux/sunrpc/types.h>
  33#include <linux/sunrpc/cache.h>
  34#include <linux/sunrpc/stats.h>
  35#include <linux/sunrpc/rpc_pipe_fs.h>
  36
  37#define  RPCDBG_FACILITY RPCDBG_CACHE
  38
  39static int cache_defer_req(struct cache_req *req, struct cache_head *item);
  40static void cache_revisit_request(struct cache_head *item);
  41
  42static void cache_init(struct cache_head *h)
  43{
  44        time_t now = get_seconds();
  45        h->next = NULL;
  46        h->flags = 0;
  47        kref_init(&h->ref);
  48        h->expiry_time = now + CACHE_NEW_EXPIRY;
  49        h->last_refresh = now;
  50}
  51
  52struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  53                                       struct cache_head *key, int hash)
  54{
  55        struct cache_head **head,  **hp;
  56        struct cache_head *new = NULL;
  57
  58        head = &detail->hash_table[hash];
  59
  60        read_lock(&detail->hash_lock);
  61
  62        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  63                struct cache_head *tmp = *hp;
  64                if (detail->match(tmp, key)) {
  65                        cache_get(tmp);
  66                        read_unlock(&detail->hash_lock);
  67                        return tmp;
  68                }
  69        }
  70        read_unlock(&detail->hash_lock);
  71        /* Didn't find anything, insert an empty entry */
  72
  73        new = detail->alloc();
  74        if (!new)
  75                return NULL;
  76        /* must fully initialise 'new', else
  77         * we might get lose if we need to
  78         * cache_put it soon.
  79         */
  80        cache_init(new);
  81        detail->init(new, key);
  82
  83        write_lock(&detail->hash_lock);
  84
  85        /* check if entry appeared while we slept */
  86        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  87                struct cache_head *tmp = *hp;
  88                if (detail->match(tmp, key)) {
  89                        cache_get(tmp);
  90                        write_unlock(&detail->hash_lock);
  91                        cache_put(new, detail);
  92                        return tmp;
  93                }
  94        }
  95        new->next = *head;
  96        *head = new;
  97        detail->entries++;
  98        cache_get(new);
  99        write_unlock(&detail->hash_lock);
 100
 101        return new;
 102}
 103EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 104
 105
 106static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 107
 108static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 109{
 110        head->expiry_time = expiry;
 111        head->last_refresh = get_seconds();
 112        set_bit(CACHE_VALID, &head->flags);
 113}
 114
 115static void cache_fresh_unlocked(struct cache_head *head,
 116                                 struct cache_detail *detail)
 117{
 118        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 119                cache_revisit_request(head);
 120                cache_dequeue(detail, head);
 121        }
 122}
 123
 124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 125                                       struct cache_head *new, struct cache_head *old, int hash)
 126{
 127        /* The 'old' entry is to be replaced by 'new'.
 128         * If 'old' is not VALID, we update it directly,
 129         * otherwise we need to replace it
 130         */
 131        struct cache_head **head;
 132        struct cache_head *tmp;
 133
 134        if (!test_bit(CACHE_VALID, &old->flags)) {
 135                write_lock(&detail->hash_lock);
 136                if (!test_bit(CACHE_VALID, &old->flags)) {
 137                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 138                                set_bit(CACHE_NEGATIVE, &old->flags);
 139                        else
 140                                detail->update(old, new);
 141                        cache_fresh_locked(old, new->expiry_time);
 142                        write_unlock(&detail->hash_lock);
 143                        cache_fresh_unlocked(old, detail);
 144                        return old;
 145                }
 146                write_unlock(&detail->hash_lock);
 147        }
 148        /* We need to insert a new entry */
 149        tmp = detail->alloc();
 150        if (!tmp) {
 151                cache_put(old, detail);
 152                return NULL;
 153        }
 154        cache_init(tmp);
 155        detail->init(tmp, old);
 156        head = &detail->hash_table[hash];
 157
 158        write_lock(&detail->hash_lock);
 159        if (test_bit(CACHE_NEGATIVE, &new->flags))
 160                set_bit(CACHE_NEGATIVE, &tmp->flags);
 161        else
 162                detail->update(tmp, new);
 163        tmp->next = *head;
 164        *head = tmp;
 165        detail->entries++;
 166        cache_get(tmp);
 167        cache_fresh_locked(tmp, new->expiry_time);
 168        cache_fresh_locked(old, 0);
 169        write_unlock(&detail->hash_lock);
 170        cache_fresh_unlocked(tmp, detail);
 171        cache_fresh_unlocked(old, detail);
 172        cache_put(old, detail);
 173        return tmp;
 174}
 175EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 176
 177static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 178{
 179        if (!cd->cache_upcall)
 180                return -EINVAL;
 181        return cd->cache_upcall(cd, h);
 182}
 183
 184static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
 185{
 186        if (!test_bit(CACHE_VALID, &h->flags) ||
 187            h->expiry_time < get_seconds())
 188                return -EAGAIN;
 189        else if (detail->flush_time > h->last_refresh)
 190                return -EAGAIN;
 191        else {
 192                /* entry is valid */
 193                if (test_bit(CACHE_NEGATIVE, &h->flags))
 194                        return -ENOENT;
 195                else
 196                        return 0;
 197        }
 198}
 199
 200/*
 201 * This is the generic cache management routine for all
 202 * the authentication caches.
 203 * It checks the currency of a cache item and will (later)
 204 * initiate an upcall to fill it if needed.
 205 *
 206 *
 207 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 208 * -EAGAIN if upcall is pending and request has been queued
 209 * -ETIMEDOUT if upcall failed or request could not be queue or
 210 *           upcall completed but item is still invalid (implying that
 211 *           the cache item has been replaced with a newer one).
 212 * -ENOENT if cache entry was negative
 213 */
 214int cache_check(struct cache_detail *detail,
 215                    struct cache_head *h, struct cache_req *rqstp)
 216{
 217        int rv;
 218        long refresh_age, age;
 219
 220        /* First decide return status as best we can */
 221        rv = cache_is_valid(detail, h);
 222
 223        /* now see if we want to start an upcall */
 224        refresh_age = (h->expiry_time - h->last_refresh);
 225        age = get_seconds() - h->last_refresh;
 226
 227        if (rqstp == NULL) {
 228                if (rv == -EAGAIN)
 229                        rv = -ENOENT;
 230        } else if (rv == -EAGAIN || age > refresh_age/2) {
 231                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 232                                refresh_age, age);
 233                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 234                        switch (cache_make_upcall(detail, h)) {
 235                        case -EINVAL:
 236                                clear_bit(CACHE_PENDING, &h->flags);
 237                                cache_revisit_request(h);
 238                                if (rv == -EAGAIN) {
 239                                        set_bit(CACHE_NEGATIVE, &h->flags);
 240                                        cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
 241                                        cache_fresh_unlocked(h, detail);
 242                                        rv = -ENOENT;
 243                                }
 244                                break;
 245
 246                        case -EAGAIN:
 247                                clear_bit(CACHE_PENDING, &h->flags);
 248                                cache_revisit_request(h);
 249                                break;
 250                        }
 251                }
 252        }
 253
 254        if (rv == -EAGAIN) {
 255                if (cache_defer_req(rqstp, h) < 0) {
 256                        /* Request is not deferred */
 257                        rv = cache_is_valid(detail, h);
 258                        if (rv == -EAGAIN)
 259                                rv = -ETIMEDOUT;
 260                }
 261        }
 262        if (rv)
 263                cache_put(h, detail);
 264        return rv;
 265}
 266EXPORT_SYMBOL_GPL(cache_check);
 267
 268/*
 269 * caches need to be periodically cleaned.
 270 * For this we maintain a list of cache_detail and
 271 * a current pointer into that list and into the table
 272 * for that entry.
 273 *
 274 * Each time clean_cache is called it finds the next non-empty entry
 275 * in the current table and walks the list in that entry
 276 * looking for entries that can be removed.
 277 *
 278 * An entry gets removed if:
 279 * - The expiry is before current time
 280 * - The last_refresh time is before the flush_time for that cache
 281 *
 282 * later we might drop old entries with non-NEVER expiry if that table
 283 * is getting 'full' for some definition of 'full'
 284 *
 285 * The question of "how often to scan a table" is an interesting one
 286 * and is answered in part by the use of the "nextcheck" field in the
 287 * cache_detail.
 288 * When a scan of a table begins, the nextcheck field is set to a time
 289 * that is well into the future.
 290 * While scanning, if an expiry time is found that is earlier than the
 291 * current nextcheck time, nextcheck is set to that expiry time.
 292 * If the flush_time is ever set to a time earlier than the nextcheck
 293 * time, the nextcheck time is then set to that flush_time.
 294 *
 295 * A table is then only scanned if the current time is at least
 296 * the nextcheck time.
 297 *
 298 */
 299
 300static LIST_HEAD(cache_list);
 301static DEFINE_SPINLOCK(cache_list_lock);
 302static struct cache_detail *current_detail;
 303static int current_index;
 304
 305static void do_cache_clean(struct work_struct *work);
 306static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
 307
 308static void sunrpc_init_cache_detail(struct cache_detail *cd)
 309{
 310        rwlock_init(&cd->hash_lock);
 311        INIT_LIST_HEAD(&cd->queue);
 312        spin_lock(&cache_list_lock);
 313        cd->nextcheck = 0;
 314        cd->entries = 0;
 315        atomic_set(&cd->readers, 0);
 316        cd->last_close = 0;
 317        cd->last_warn = -1;
 318        list_add(&cd->others, &cache_list);
 319        spin_unlock(&cache_list_lock);
 320
 321        /* start the cleaning process */
 322        schedule_delayed_work(&cache_cleaner, 0);
 323}
 324
 325static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 326{
 327        cache_purge(cd);
 328        spin_lock(&cache_list_lock);
 329        write_lock(&cd->hash_lock);
 330        if (cd->entries || atomic_read(&cd->inuse)) {
 331                write_unlock(&cd->hash_lock);
 332                spin_unlock(&cache_list_lock);
 333                goto out;
 334        }
 335        if (current_detail == cd)
 336                current_detail = NULL;
 337        list_del_init(&cd->others);
 338        write_unlock(&cd->hash_lock);
 339        spin_unlock(&cache_list_lock);
 340        if (list_empty(&cache_list)) {
 341                /* module must be being unloaded so its safe to kill the worker */
 342                cancel_delayed_work_sync(&cache_cleaner);
 343        }
 344        return;
 345out:
 346        printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
 347}
 348
 349/* clean cache tries to find something to clean
 350 * and cleans it.
 351 * It returns 1 if it cleaned something,
 352 *            0 if it didn't find anything this time
 353 *           -1 if it fell off the end of the list.
 354 */
 355static int cache_clean(void)
 356{
 357        int rv = 0;
 358        struct list_head *next;
 359
 360        spin_lock(&cache_list_lock);
 361
 362        /* find a suitable table if we don't already have one */
 363        while (current_detail == NULL ||
 364            current_index >= current_detail->hash_size) {
 365                if (current_detail)
 366                        next = current_detail->others.next;
 367                else
 368                        next = cache_list.next;
 369                if (next == &cache_list) {
 370                        current_detail = NULL;
 371                        spin_unlock(&cache_list_lock);
 372                        return -1;
 373                }
 374                current_detail = list_entry(next, struct cache_detail, others);
 375                if (current_detail->nextcheck > get_seconds())
 376                        current_index = current_detail->hash_size;
 377                else {
 378                        current_index = 0;
 379                        current_detail->nextcheck = get_seconds()+30*60;
 380                }
 381        }
 382
 383        /* find a non-empty bucket in the table */
 384        while (current_detail &&
 385               current_index < current_detail->hash_size &&
 386               current_detail->hash_table[current_index] == NULL)
 387                current_index++;
 388
 389        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 390
 391        if (current_detail && current_index < current_detail->hash_size) {
 392                struct cache_head *ch, **cp;
 393                struct cache_detail *d;
 394
 395                write_lock(&current_detail->hash_lock);
 396
 397                /* Ok, now to clean this strand */
 398
 399                cp = & current_detail->hash_table[current_index];
 400                ch = *cp;
 401                for (; ch; cp= & ch->next, ch= *cp) {
 402                        if (current_detail->nextcheck > ch->expiry_time)
 403                                current_detail->nextcheck = ch->expiry_time+1;
 404                        if (ch->expiry_time >= get_seconds()
 405                            && ch->last_refresh >= current_detail->flush_time
 406                                )
 407                                continue;
 408                        if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
 409                                cache_dequeue(current_detail, ch);
 410
 411                        if (atomic_read(&ch->ref.refcount) == 1)
 412                                break;
 413                }
 414                if (ch) {
 415                        *cp = ch->next;
 416                        ch->next = NULL;
 417                        current_detail->entries--;
 418                        rv = 1;
 419                }
 420                write_unlock(&current_detail->hash_lock);
 421                d = current_detail;
 422                if (!ch)
 423                        current_index ++;
 424                spin_unlock(&cache_list_lock);
 425                if (ch) {
 426                        cache_revisit_request(ch);
 427                        cache_put(ch, d);
 428                }
 429        } else
 430                spin_unlock(&cache_list_lock);
 431
 432        return rv;
 433}
 434
 435/*
 436 * We want to regularly clean the cache, so we need to schedule some work ...
 437 */
 438static void do_cache_clean(struct work_struct *work)
 439{
 440        int delay = 5;
 441        if (cache_clean() == -1)
 442                delay = round_jiffies_relative(30*HZ);
 443
 444        if (list_empty(&cache_list))
 445                delay = 0;
 446
 447        if (delay)
 448                schedule_delayed_work(&cache_cleaner, delay);
 449}
 450
 451
 452/*
 453 * Clean all caches promptly.  This just calls cache_clean
 454 * repeatedly until we are sure that every cache has had a chance to
 455 * be fully cleaned
 456 */
 457void cache_flush(void)
 458{
 459        while (cache_clean() != -1)
 460                cond_resched();
 461        while (cache_clean() != -1)
 462                cond_resched();
 463}
 464EXPORT_SYMBOL_GPL(cache_flush);
 465
 466void cache_purge(struct cache_detail *detail)
 467{
 468        detail->flush_time = LONG_MAX;
 469        detail->nextcheck = get_seconds();
 470        cache_flush();
 471        detail->flush_time = 1;
 472}
 473EXPORT_SYMBOL_GPL(cache_purge);
 474
 475
 476/*
 477 * Deferral and Revisiting of Requests.
 478 *
 479 * If a cache lookup finds a pending entry, we
 480 * need to defer the request and revisit it later.
 481 * All deferred requests are stored in a hash table,
 482 * indexed by "struct cache_head *".
 483 * As it may be wasteful to store a whole request
 484 * structure, we allow the request to provide a
 485 * deferred form, which must contain a
 486 * 'struct cache_deferred_req'
 487 * This cache_deferred_req contains a method to allow
 488 * it to be revisited when cache info is available
 489 */
 490
 491#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 492#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 493
 494#define DFR_MAX 300     /* ??? */
 495
 496static DEFINE_SPINLOCK(cache_defer_lock);
 497static LIST_HEAD(cache_defer_list);
 498static struct list_head cache_defer_hash[DFR_HASHSIZE];
 499static int cache_defer_cnt;
 500
 501static int cache_defer_req(struct cache_req *req, struct cache_head *item)
 502{
 503        struct cache_deferred_req *dreq, *discard;
 504        int hash = DFR_HASH(item);
 505
 506        if (cache_defer_cnt >= DFR_MAX) {
 507                /* too much in the cache, randomly drop this one,
 508                 * or continue and drop the oldest below
 509                 */
 510                if (net_random()&1)
 511                        return -ENOMEM;
 512        }
 513        dreq = req->defer(req);
 514        if (dreq == NULL)
 515                return -ENOMEM;
 516
 517        dreq->item = item;
 518
 519        spin_lock(&cache_defer_lock);
 520
 521        list_add(&dreq->recent, &cache_defer_list);
 522
 523        if (cache_defer_hash[hash].next == NULL)
 524                INIT_LIST_HEAD(&cache_defer_hash[hash]);
 525        list_add(&dreq->hash, &cache_defer_hash[hash]);
 526
 527        /* it is in, now maybe clean up */
 528        discard = NULL;
 529        if (++cache_defer_cnt > DFR_MAX) {
 530                discard = list_entry(cache_defer_list.prev,
 531                                     struct cache_deferred_req, recent);
 532                list_del_init(&discard->recent);
 533                list_del_init(&discard->hash);
 534                cache_defer_cnt--;
 535        }
 536        spin_unlock(&cache_defer_lock);
 537
 538        if (discard)
 539                /* there was one too many */
 540                discard->revisit(discard, 1);
 541
 542        if (!test_bit(CACHE_PENDING, &item->flags)) {
 543                /* must have just been validated... */
 544                cache_revisit_request(item);
 545                return -EAGAIN;
 546        }
 547        return 0;
 548}
 549
 550static void cache_revisit_request(struct cache_head *item)
 551{
 552        struct cache_deferred_req *dreq;
 553        struct list_head pending;
 554
 555        struct list_head *lp;
 556        int hash = DFR_HASH(item);
 557
 558        INIT_LIST_HEAD(&pending);
 559        spin_lock(&cache_defer_lock);
 560
 561        lp = cache_defer_hash[hash].next;
 562        if (lp) {
 563                while (lp != &cache_defer_hash[hash]) {
 564                        dreq = list_entry(lp, struct cache_deferred_req, hash);
 565                        lp = lp->next;
 566                        if (dreq->item == item) {
 567                                list_del_init(&dreq->hash);
 568                                list_move(&dreq->recent, &pending);
 569                                cache_defer_cnt--;
 570                        }
 571                }
 572        }
 573        spin_unlock(&cache_defer_lock);
 574
 575        while (!list_empty(&pending)) {
 576                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 577                list_del_init(&dreq->recent);
 578                dreq->revisit(dreq, 0);
 579        }
 580}
 581
 582void cache_clean_deferred(void *owner)
 583{
 584        struct cache_deferred_req *dreq, *tmp;
 585        struct list_head pending;
 586
 587
 588        INIT_LIST_HEAD(&pending);
 589        spin_lock(&cache_defer_lock);
 590
 591        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 592                if (dreq->owner == owner) {
 593                        list_del_init(&dreq->hash);
 594                        list_move(&dreq->recent, &pending);
 595                        cache_defer_cnt--;
 596                }
 597        }
 598        spin_unlock(&cache_defer_lock);
 599
 600        while (!list_empty(&pending)) {
 601                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 602                list_del_init(&dreq->recent);
 603                dreq->revisit(dreq, 1);
 604        }
 605}
 606
 607/*
 608 * communicate with user-space
 609 *
 610 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 611 * On read, you get a full request, or block.
 612 * On write, an update request is processed.
 613 * Poll works if anything to read, and always allows write.
 614 *
 615 * Implemented by linked list of requests.  Each open file has
 616 * a ->private that also exists in this list.  New requests are added
 617 * to the end and may wakeup and preceding readers.
 618 * New readers are added to the head.  If, on read, an item is found with
 619 * CACHE_UPCALLING clear, we free it from the list.
 620 *
 621 */
 622
 623static DEFINE_SPINLOCK(queue_lock);
 624static DEFINE_MUTEX(queue_io_mutex);
 625
 626struct cache_queue {
 627        struct list_head        list;
 628        int                     reader; /* if 0, then request */
 629};
 630struct cache_request {
 631        struct cache_queue      q;
 632        struct cache_head       *item;
 633        char                    * buf;
 634        int                     len;
 635        int                     readers;
 636};
 637struct cache_reader {
 638        struct cache_queue      q;
 639        int                     offset; /* if non-0, we have a refcnt on next request */
 640};
 641
 642static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 643                          loff_t *ppos, struct cache_detail *cd)
 644{
 645        struct cache_reader *rp = filp->private_data;
 646        struct cache_request *rq;
 647        struct inode *inode = filp->f_path.dentry->d_inode;
 648        int err;
 649
 650        if (count == 0)
 651                return 0;
 652
 653        mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 654                              * readers on this file */
 655 again:
 656        spin_lock(&queue_lock);
 657        /* need to find next request */
 658        while (rp->q.list.next != &cd->queue &&
 659               list_entry(rp->q.list.next, struct cache_queue, list)
 660               ->reader) {
 661                struct list_head *next = rp->q.list.next;
 662                list_move(&rp->q.list, next);
 663        }
 664        if (rp->q.list.next == &cd->queue) {
 665                spin_unlock(&queue_lock);
 666                mutex_unlock(&inode->i_mutex);
 667                BUG_ON(rp->offset);
 668                return 0;
 669        }
 670        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 671        BUG_ON(rq->q.reader);
 672        if (rp->offset == 0)
 673                rq->readers++;
 674        spin_unlock(&queue_lock);
 675
 676        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 677                err = -EAGAIN;
 678                spin_lock(&queue_lock);
 679                list_move(&rp->q.list, &rq->q.list);
 680                spin_unlock(&queue_lock);
 681        } else {
 682                if (rp->offset + count > rq->len)
 683                        count = rq->len - rp->offset;
 684                err = -EFAULT;
 685                if (copy_to_user(buf, rq->buf + rp->offset, count))
 686                        goto out;
 687                rp->offset += count;
 688                if (rp->offset >= rq->len) {
 689                        rp->offset = 0;
 690                        spin_lock(&queue_lock);
 691                        list_move(&rp->q.list, &rq->q.list);
 692                        spin_unlock(&queue_lock);
 693                }
 694                err = 0;
 695        }
 696 out:
 697        if (rp->offset == 0) {
 698                /* need to release rq */
 699                spin_lock(&queue_lock);
 700                rq->readers--;
 701                if (rq->readers == 0 &&
 702                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 703                        list_del(&rq->q.list);
 704                        spin_unlock(&queue_lock);
 705                        cache_put(rq->item, cd);
 706                        kfree(rq->buf);
 707                        kfree(rq);
 708                } else
 709                        spin_unlock(&queue_lock);
 710        }
 711        if (err == -EAGAIN)
 712                goto again;
 713        mutex_unlock(&inode->i_mutex);
 714        return err ? err :  count;
 715}
 716
 717static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 718                                 size_t count, struct cache_detail *cd)
 719{
 720        ssize_t ret;
 721
 722        if (copy_from_user(kaddr, buf, count))
 723                return -EFAULT;
 724        kaddr[count] = '\0';
 725        ret = cd->cache_parse(cd, kaddr, count);
 726        if (!ret)
 727                ret = count;
 728        return ret;
 729}
 730
 731static ssize_t cache_slow_downcall(const char __user *buf,
 732                                   size_t count, struct cache_detail *cd)
 733{
 734        static char write_buf[8192]; /* protected by queue_io_mutex */
 735        ssize_t ret = -EINVAL;
 736
 737        if (count >= sizeof(write_buf))
 738                goto out;
 739        mutex_lock(&queue_io_mutex);
 740        ret = cache_do_downcall(write_buf, buf, count, cd);
 741        mutex_unlock(&queue_io_mutex);
 742out:
 743        return ret;
 744}
 745
 746static ssize_t cache_downcall(struct address_space *mapping,
 747                              const char __user *buf,
 748                              size_t count, struct cache_detail *cd)
 749{
 750        struct page *page;
 751        char *kaddr;
 752        ssize_t ret = -ENOMEM;
 753
 754        if (count >= PAGE_CACHE_SIZE)
 755                goto out_slow;
 756
 757        page = find_or_create_page(mapping, 0, GFP_KERNEL);
 758        if (!page)
 759                goto out_slow;
 760
 761        kaddr = kmap(page);
 762        ret = cache_do_downcall(kaddr, buf, count, cd);
 763        kunmap(page);
 764        unlock_page(page);
 765        page_cache_release(page);
 766        return ret;
 767out_slow:
 768        return cache_slow_downcall(buf, count, cd);
 769}
 770
 771static ssize_t cache_write(struct file *filp, const char __user *buf,
 772                           size_t count, loff_t *ppos,
 773                           struct cache_detail *cd)
 774{
 775        struct address_space *mapping = filp->f_mapping;
 776        struct inode *inode = filp->f_path.dentry->d_inode;
 777        ssize_t ret = -EINVAL;
 778
 779        if (!cd->cache_parse)
 780                goto out;
 781
 782        mutex_lock(&inode->i_mutex);
 783        ret = cache_downcall(mapping, buf, count, cd);
 784        mutex_unlock(&inode->i_mutex);
 785out:
 786        return ret;
 787}
 788
 789static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 790
 791static unsigned int cache_poll(struct file *filp, poll_table *wait,
 792                               struct cache_detail *cd)
 793{
 794        unsigned int mask;
 795        struct cache_reader *rp = filp->private_data;
 796        struct cache_queue *cq;
 797
 798        poll_wait(filp, &queue_wait, wait);
 799
 800        /* alway allow write */
 801        mask = POLL_OUT | POLLWRNORM;
 802
 803        if (!rp)
 804                return mask;
 805
 806        spin_lock(&queue_lock);
 807
 808        for (cq= &rp->q; &cq->list != &cd->queue;
 809             cq = list_entry(cq->list.next, struct cache_queue, list))
 810                if (!cq->reader) {
 811                        mask |= POLLIN | POLLRDNORM;
 812                        break;
 813                }
 814        spin_unlock(&queue_lock);
 815        return mask;
 816}
 817
 818static int cache_ioctl(struct inode *ino, struct file *filp,
 819                       unsigned int cmd, unsigned long arg,
 820                       struct cache_detail *cd)
 821{
 822        int len = 0;
 823        struct cache_reader *rp = filp->private_data;
 824        struct cache_queue *cq;
 825
 826        if (cmd != FIONREAD || !rp)
 827                return -EINVAL;
 828
 829        spin_lock(&queue_lock);
 830
 831        /* only find the length remaining in current request,
 832         * or the length of the next request
 833         */
 834        for (cq= &rp->q; &cq->list != &cd->queue;
 835             cq = list_entry(cq->list.next, struct cache_queue, list))
 836                if (!cq->reader) {
 837                        struct cache_request *cr =
 838                                container_of(cq, struct cache_request, q);
 839                        len = cr->len - rp->offset;
 840                        break;
 841                }
 842        spin_unlock(&queue_lock);
 843
 844        return put_user(len, (int __user *)arg);
 845}
 846
 847static int cache_open(struct inode *inode, struct file *filp,
 848                      struct cache_detail *cd)
 849{
 850        struct cache_reader *rp = NULL;
 851
 852        if (!cd || !try_module_get(cd->owner))
 853                return -EACCES;
 854        nonseekable_open(inode, filp);
 855        if (filp->f_mode & FMODE_READ) {
 856                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 857                if (!rp)
 858                        return -ENOMEM;
 859                rp->offset = 0;
 860                rp->q.reader = 1;
 861                atomic_inc(&cd->readers);
 862                spin_lock(&queue_lock);
 863                list_add(&rp->q.list, &cd->queue);
 864                spin_unlock(&queue_lock);
 865        }
 866        filp->private_data = rp;
 867        return 0;
 868}
 869
 870static int cache_release(struct inode *inode, struct file *filp,
 871                         struct cache_detail *cd)
 872{
 873        struct cache_reader *rp = filp->private_data;
 874
 875        if (rp) {
 876                spin_lock(&queue_lock);
 877                if (rp->offset) {
 878                        struct cache_queue *cq;
 879                        for (cq= &rp->q; &cq->list != &cd->queue;
 880                             cq = list_entry(cq->list.next, struct cache_queue, list))
 881                                if (!cq->reader) {
 882                                        container_of(cq, struct cache_request, q)
 883                                                ->readers--;
 884                                        break;
 885                                }
 886                        rp->offset = 0;
 887                }
 888                list_del(&rp->q.list);
 889                spin_unlock(&queue_lock);
 890
 891                filp->private_data = NULL;
 892                kfree(rp);
 893
 894                cd->last_close = get_seconds();
 895                atomic_dec(&cd->readers);
 896        }
 897        module_put(cd->owner);
 898        return 0;
 899}
 900
 901
 902
 903static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
 904{
 905        struct cache_queue *cq;
 906        spin_lock(&queue_lock);
 907        list_for_each_entry(cq, &detail->queue, list)
 908                if (!cq->reader) {
 909                        struct cache_request *cr = container_of(cq, struct cache_request, q);
 910                        if (cr->item != ch)
 911                                continue;
 912                        if (cr->readers != 0)
 913                                continue;
 914                        list_del(&cr->q.list);
 915                        spin_unlock(&queue_lock);
 916                        cache_put(cr->item, detail);
 917                        kfree(cr->buf);
 918                        kfree(cr);
 919                        return;
 920                }
 921        spin_unlock(&queue_lock);
 922}
 923
 924/*
 925 * Support routines for text-based upcalls.
 926 * Fields are separated by spaces.
 927 * Fields are either mangled to quote space tab newline slosh with slosh
 928 * or a hexified with a leading \x
 929 * Record is terminated with newline.
 930 *
 931 */
 932
 933void qword_add(char **bpp, int *lp, char *str)
 934{
 935        char *bp = *bpp;
 936        int len = *lp;
 937        char c;
 938
 939        if (len < 0) return;
 940
 941        while ((c=*str++) && len)
 942                switch(c) {
 943                case ' ':
 944                case '\t':
 945                case '\n':
 946                case '\\':
 947                        if (len >= 4) {
 948                                *bp++ = '\\';
 949                                *bp++ = '0' + ((c & 0300)>>6);
 950                                *bp++ = '0' + ((c & 0070)>>3);
 951                                *bp++ = '0' + ((c & 0007)>>0);
 952                        }
 953                        len -= 4;
 954                        break;
 955                default:
 956                        *bp++ = c;
 957                        len--;
 958                }
 959        if (c || len <1) len = -1;
 960        else {
 961                *bp++ = ' ';
 962                len--;
 963        }
 964        *bpp = bp;
 965        *lp = len;
 966}
 967EXPORT_SYMBOL_GPL(qword_add);
 968
 969void qword_addhex(char **bpp, int *lp, char *buf, int blen)
 970{
 971        char *bp = *bpp;
 972        int len = *lp;
 973
 974        if (len < 0) return;
 975
 976        if (len > 2) {
 977                *bp++ = '\\';
 978                *bp++ = 'x';
 979                len -= 2;
 980                while (blen && len >= 2) {
 981                        unsigned char c = *buf++;
 982                        *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
 983                        *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
 984                        len -= 2;
 985                        blen--;
 986                }
 987        }
 988        if (blen || len<1) len = -1;
 989        else {
 990                *bp++ = ' ';
 991                len--;
 992        }
 993        *bpp = bp;
 994        *lp = len;
 995}
 996EXPORT_SYMBOL_GPL(qword_addhex);
 997
 998static void warn_no_listener(struct cache_detail *detail)
 999{
1000        if (detail->last_warn != detail->last_close) {
1001                detail->last_warn = detail->last_close;
1002                if (detail->warn_no_listener)
1003                        detail->warn_no_listener(detail, detail->last_close != 0);
1004        }
1005}
1006
1007/*
1008 * register an upcall request to user-space and queue it up for read() by the
1009 * upcall daemon.
1010 *
1011 * Each request is at most one page long.
1012 */
1013int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1014                void (*cache_request)(struct cache_detail *,
1015                                      struct cache_head *,
1016                                      char **,
1017                                      int *))
1018{
1019
1020        char *buf;
1021        struct cache_request *crq;
1022        char *bp;
1023        int len;
1024
1025        if (atomic_read(&detail->readers) == 0 &&
1026            detail->last_close < get_seconds() - 30) {
1027                        warn_no_listener(detail);
1028                        return -EINVAL;
1029        }
1030
1031        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1032        if (!buf)
1033                return -EAGAIN;
1034
1035        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1036        if (!crq) {
1037                kfree(buf);
1038                return -EAGAIN;
1039        }
1040
1041        bp = buf; len = PAGE_SIZE;
1042
1043        cache_request(detail, h, &bp, &len);
1044
1045        if (len < 0) {
1046                kfree(buf);
1047                kfree(crq);
1048                return -EAGAIN;
1049        }
1050        crq->q.reader = 0;
1051        crq->item = cache_get(h);
1052        crq->buf = buf;
1053        crq->len = PAGE_SIZE - len;
1054        crq->readers = 0;
1055        spin_lock(&queue_lock);
1056        list_add_tail(&crq->q.list, &detail->queue);
1057        spin_unlock(&queue_lock);
1058        wake_up(&queue_wait);
1059        return 0;
1060}
1061EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1062
1063/*
1064 * parse a message from user-space and pass it
1065 * to an appropriate cache
1066 * Messages are, like requests, separated into fields by
1067 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1068 *
1069 * Message is
1070 *   reply cachename expiry key ... content....
1071 *
1072 * key and content are both parsed by cache
1073 */
1074
1075#define isodigit(c) (isdigit(c) && c <= '7')
1076int qword_get(char **bpp, char *dest, int bufsize)
1077{
1078        /* return bytes copied, or -1 on error */
1079        char *bp = *bpp;
1080        int len = 0;
1081
1082        while (*bp == ' ') bp++;
1083
1084        if (bp[0] == '\\' && bp[1] == 'x') {
1085                /* HEX STRING */
1086                bp += 2;
1087                while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1088                        int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1089                        bp++;
1090                        byte <<= 4;
1091                        byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1092                        *dest++ = byte;
1093                        bp++;
1094                        len++;
1095                }
1096        } else {
1097                /* text with \nnn octal quoting */
1098                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1099                        if (*bp == '\\' &&
1100                            isodigit(bp[1]) && (bp[1] <= '3') &&
1101                            isodigit(bp[2]) &&
1102                            isodigit(bp[3])) {
1103                                int byte = (*++bp -'0');
1104                                bp++;
1105                                byte = (byte << 3) | (*bp++ - '0');
1106                                byte = (byte << 3) | (*bp++ - '0');
1107                                *dest++ = byte;
1108                                len++;
1109                        } else {
1110                                *dest++ = *bp++;
1111                                len++;
1112                        }
1113                }
1114        }
1115
1116        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1117                return -1;
1118        while (*bp == ' ') bp++;
1119        *bpp = bp;
1120        *dest = '\0';
1121        return len;
1122}
1123EXPORT_SYMBOL_GPL(qword_get);
1124
1125
1126/*
1127 * support /proc/sunrpc/cache/$CACHENAME/content
1128 * as a seqfile.
1129 * We call ->cache_show passing NULL for the item to
1130 * get a header, then pass each real item in the cache
1131 */
1132
1133struct handle {
1134        struct cache_detail *cd;
1135};
1136
1137static void *c_start(struct seq_file *m, loff_t *pos)
1138        __acquires(cd->hash_lock)
1139{
1140        loff_t n = *pos;
1141        unsigned hash, entry;
1142        struct cache_head *ch;
1143        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1144
1145
1146        read_lock(&cd->hash_lock);
1147        if (!n--)
1148                return SEQ_START_TOKEN;
1149        hash = n >> 32;
1150        entry = n & ((1LL<<32) - 1);
1151
1152        for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1153                if (!entry--)
1154                        return ch;
1155        n &= ~((1LL<<32) - 1);
1156        do {
1157                hash++;
1158                n += 1LL<<32;
1159        } while(hash < cd->hash_size &&
1160                cd->hash_table[hash]==NULL);
1161        if (hash >= cd->hash_size)
1162                return NULL;
1163        *pos = n+1;
1164        return cd->hash_table[hash];
1165}
1166
1167static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1168{
1169        struct cache_head *ch = p;
1170        int hash = (*pos >> 32);
1171        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1172
1173        if (p == SEQ_START_TOKEN)
1174                hash = 0;
1175        else if (ch->next == NULL) {
1176                hash++;
1177                *pos += 1LL<<32;
1178        } else {
1179                ++*pos;
1180                return ch->next;
1181        }
1182        *pos &= ~((1LL<<32) - 1);
1183        while (hash < cd->hash_size &&
1184               cd->hash_table[hash] == NULL) {
1185                hash++;
1186                *pos += 1LL<<32;
1187        }
1188        if (hash >= cd->hash_size)
1189                return NULL;
1190        ++*pos;
1191        return cd->hash_table[hash];
1192}
1193
1194static void c_stop(struct seq_file *m, void *p)
1195        __releases(cd->hash_lock)
1196{
1197        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1198        read_unlock(&cd->hash_lock);
1199}
1200
1201static int c_show(struct seq_file *m, void *p)
1202{
1203        struct cache_head *cp = p;
1204        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1205
1206        if (p == SEQ_START_TOKEN)
1207                return cd->cache_show(m, cd, NULL);
1208
1209        ifdebug(CACHE)
1210                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1211                           cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1212        cache_get(cp);
1213        if (cache_check(cd, cp, NULL))
1214                /* cache_check does a cache_put on failure */
1215                seq_printf(m, "# ");
1216        else
1217                cache_put(cp, cd);
1218
1219        return cd->cache_show(m, cd, cp);
1220}
1221
1222static const struct seq_operations cache_content_op = {
1223        .start  = c_start,
1224        .next   = c_next,
1225        .stop   = c_stop,
1226        .show   = c_show,
1227};
1228
1229static int content_open(struct inode *inode, struct file *file,
1230                        struct cache_detail *cd)
1231{
1232        struct handle *han;
1233
1234        if (!cd || !try_module_get(cd->owner))
1235                return -EACCES;
1236        han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1237        if (han == NULL)
1238                return -ENOMEM;
1239
1240        han->cd = cd;
1241        return 0;
1242}
1243
1244static int content_release(struct inode *inode, struct file *file,
1245                struct cache_detail *cd)
1246{
1247        int ret = seq_release_private(inode, file);
1248        module_put(cd->owner);
1249        return ret;
1250}
1251
1252static int open_flush(struct inode *inode, struct file *file,
1253                        struct cache_detail *cd)
1254{
1255        if (!cd || !try_module_get(cd->owner))
1256                return -EACCES;
1257        return nonseekable_open(inode, file);
1258}
1259
1260static int release_flush(struct inode *inode, struct file *file,
1261                        struct cache_detail *cd)
1262{
1263        module_put(cd->owner);
1264        return 0;
1265}
1266
1267static ssize_t read_flush(struct file *file, char __user *buf,
1268                          size_t count, loff_t *ppos,
1269                          struct cache_detail *cd)
1270{
1271        char tbuf[20];
1272        unsigned long p = *ppos;
1273        size_t len;
1274
1275        sprintf(tbuf, "%lu\n", cd->flush_time);
1276        len = strlen(tbuf);
1277        if (p >= len)
1278                return 0;
1279        len -= p;
1280        if (len > count)
1281                len = count;
1282        if (copy_to_user(buf, (void*)(tbuf+p), len))
1283                return -EFAULT;
1284        *ppos += len;
1285        return len;
1286}
1287
1288static ssize_t write_flush(struct file *file, const char __user *buf,
1289                           size_t count, loff_t *ppos,
1290                           struct cache_detail *cd)
1291{
1292        char tbuf[20];
1293        char *ep;
1294        long flushtime;
1295        if (*ppos || count > sizeof(tbuf)-1)
1296                return -EINVAL;
1297        if (copy_from_user(tbuf, buf, count))
1298                return -EFAULT;
1299        tbuf[count] = 0;
1300        flushtime = simple_strtoul(tbuf, &ep, 0);
1301        if (*ep && *ep != '\n')
1302                return -EINVAL;
1303
1304        cd->flush_time = flushtime;
1305        cd->nextcheck = get_seconds();
1306        cache_flush();
1307
1308        *ppos += count;
1309        return count;
1310}
1311
1312static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1313                                 size_t count, loff_t *ppos)
1314{
1315        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1316
1317        return cache_read(filp, buf, count, ppos, cd);
1318}
1319
1320static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1321                                  size_t count, loff_t *ppos)
1322{
1323        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1324
1325        return cache_write(filp, buf, count, ppos, cd);
1326}
1327
1328static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1329{
1330        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1331
1332        return cache_poll(filp, wait, cd);
1333}
1334
1335static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1336                              unsigned int cmd, unsigned long arg)
1337{
1338        struct cache_detail *cd = PDE(inode)->data;
1339
1340        return cache_ioctl(inode, filp, cmd, arg, cd);
1341}
1342
1343static int cache_open_procfs(struct inode *inode, struct file *filp)
1344{
1345        struct cache_detail *cd = PDE(inode)->data;
1346
1347        return cache_open(inode, filp, cd);
1348}
1349
1350static int cache_release_procfs(struct inode *inode, struct file *filp)
1351{
1352        struct cache_detail *cd = PDE(inode)->data;
1353
1354        return cache_release(inode, filp, cd);
1355}
1356
1357static const struct file_operations cache_file_operations_procfs = {
1358        .owner          = THIS_MODULE,
1359        .llseek         = no_llseek,
1360        .read           = cache_read_procfs,
1361        .write          = cache_write_procfs,
1362        .poll           = cache_poll_procfs,
1363        .ioctl          = cache_ioctl_procfs, /* for FIONREAD */
1364        .open           = cache_open_procfs,
1365        .release        = cache_release_procfs,
1366};
1367
1368static int content_open_procfs(struct inode *inode, struct file *filp)
1369{
1370        struct cache_detail *cd = PDE(inode)->data;
1371
1372        return content_open(inode, filp, cd);
1373}
1374
1375static int content_release_procfs(struct inode *inode, struct file *filp)
1376{
1377        struct cache_detail *cd = PDE(inode)->data;
1378
1379        return content_release(inode, filp, cd);
1380}
1381
1382static const struct file_operations content_file_operations_procfs = {
1383        .open           = content_open_procfs,
1384        .read           = seq_read,
1385        .llseek         = seq_lseek,
1386        .release        = content_release_procfs,
1387};
1388
1389static int open_flush_procfs(struct inode *inode, struct file *filp)
1390{
1391        struct cache_detail *cd = PDE(inode)->data;
1392
1393        return open_flush(inode, filp, cd);
1394}
1395
1396static int release_flush_procfs(struct inode *inode, struct file *filp)
1397{
1398        struct cache_detail *cd = PDE(inode)->data;
1399
1400        return release_flush(inode, filp, cd);
1401}
1402
1403static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1404                            size_t count, loff_t *ppos)
1405{
1406        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1407
1408        return read_flush(filp, buf, count, ppos, cd);
1409}
1410
1411static ssize_t write_flush_procfs(struct file *filp,
1412                                  const char __user *buf,
1413                                  size_t count, loff_t *ppos)
1414{
1415        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1416
1417        return write_flush(filp, buf, count, ppos, cd);
1418}
1419
1420static const struct file_operations cache_flush_operations_procfs = {
1421        .open           = open_flush_procfs,
1422        .read           = read_flush_procfs,
1423        .write          = write_flush_procfs,
1424        .release        = release_flush_procfs,
1425};
1426
1427static void remove_cache_proc_entries(struct cache_detail *cd)
1428{
1429        if (cd->u.procfs.proc_ent == NULL)
1430                return;
1431        if (cd->u.procfs.flush_ent)
1432                remove_proc_entry("flush", cd->u.procfs.proc_ent);
1433        if (cd->u.procfs.channel_ent)
1434                remove_proc_entry("channel", cd->u.procfs.proc_ent);
1435        if (cd->u.procfs.content_ent)
1436                remove_proc_entry("content", cd->u.procfs.proc_ent);
1437        cd->u.procfs.proc_ent = NULL;
1438        remove_proc_entry(cd->name, proc_net_rpc);
1439}
1440
1441#ifdef CONFIG_PROC_FS
1442static int create_cache_proc_entries(struct cache_detail *cd)
1443{
1444        struct proc_dir_entry *p;
1445
1446        cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1447        if (cd->u.procfs.proc_ent == NULL)
1448                goto out_nomem;
1449        cd->u.procfs.channel_ent = NULL;
1450        cd->u.procfs.content_ent = NULL;
1451
1452        p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1453                             cd->u.procfs.proc_ent,
1454                             &cache_flush_operations_procfs, cd);
1455        cd->u.procfs.flush_ent = p;
1456        if (p == NULL)
1457                goto out_nomem;
1458
1459        if (cd->cache_upcall || cd->cache_parse) {
1460                p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1461                                     cd->u.procfs.proc_ent,
1462                                     &cache_file_operations_procfs, cd);
1463                cd->u.procfs.channel_ent = p;
1464                if (p == NULL)
1465                        goto out_nomem;
1466        }
1467        if (cd->cache_show) {
1468                p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1469                                cd->u.procfs.proc_ent,
1470                                &content_file_operations_procfs, cd);
1471                cd->u.procfs.content_ent = p;
1472                if (p == NULL)
1473                        goto out_nomem;
1474        }
1475        return 0;
1476out_nomem:
1477        remove_cache_proc_entries(cd);
1478        return -ENOMEM;
1479}
1480#else /* CONFIG_PROC_FS */
1481static int create_cache_proc_entries(struct cache_detail *cd)
1482{
1483        return 0;
1484}
1485#endif
1486
1487int cache_register(struct cache_detail *cd)
1488{
1489        int ret;
1490
1491        sunrpc_init_cache_detail(cd);
1492        ret = create_cache_proc_entries(cd);
1493        if (ret)
1494                sunrpc_destroy_cache_detail(cd);
1495        return ret;
1496}
1497EXPORT_SYMBOL_GPL(cache_register);
1498
1499void cache_unregister(struct cache_detail *cd)
1500{
1501        remove_cache_proc_entries(cd);
1502        sunrpc_destroy_cache_detail(cd);
1503}
1504EXPORT_SYMBOL_GPL(cache_unregister);
1505
1506static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1507                                 size_t count, loff_t *ppos)
1508{
1509        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1510
1511        return cache_read(filp, buf, count, ppos, cd);
1512}
1513
1514static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1515                                  size_t count, loff_t *ppos)
1516{
1517        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1518
1519        return cache_write(filp, buf, count, ppos, cd);
1520}
1521
1522static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1523{
1524        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1525
1526        return cache_poll(filp, wait, cd);
1527}
1528
1529static int cache_ioctl_pipefs(struct inode *inode, struct file *filp,
1530                              unsigned int cmd, unsigned long arg)
1531{
1532        struct cache_detail *cd = RPC_I(inode)->private;
1533
1534        return cache_ioctl(inode, filp, cmd, arg, cd);
1535}
1536
1537static int cache_open_pipefs(struct inode *inode, struct file *filp)
1538{
1539        struct cache_detail *cd = RPC_I(inode)->private;
1540
1541        return cache_open(inode, filp, cd);
1542}
1543
1544static int cache_release_pipefs(struct inode *inode, struct file *filp)
1545{
1546        struct cache_detail *cd = RPC_I(inode)->private;
1547
1548        return cache_release(inode, filp, cd);
1549}
1550
1551const struct file_operations cache_file_operations_pipefs = {
1552        .owner          = THIS_MODULE,
1553        .llseek         = no_llseek,
1554        .read           = cache_read_pipefs,
1555        .write          = cache_write_pipefs,
1556        .poll           = cache_poll_pipefs,
1557        .ioctl          = cache_ioctl_pipefs, /* for FIONREAD */
1558        .open           = cache_open_pipefs,
1559        .release        = cache_release_pipefs,
1560};
1561
1562static int content_open_pipefs(struct inode *inode, struct file *filp)
1563{
1564        struct cache_detail *cd = RPC_I(inode)->private;
1565
1566        return content_open(inode, filp, cd);
1567}
1568
1569static int content_release_pipefs(struct inode *inode, struct file *filp)
1570{
1571        struct cache_detail *cd = RPC_I(inode)->private;
1572
1573        return content_release(inode, filp, cd);
1574}
1575
1576const struct file_operations content_file_operations_pipefs = {
1577        .open           = content_open_pipefs,
1578        .read           = seq_read,
1579        .llseek         = seq_lseek,
1580        .release        = content_release_pipefs,
1581};
1582
1583static int open_flush_pipefs(struct inode *inode, struct file *filp)
1584{
1585        struct cache_detail *cd = RPC_I(inode)->private;
1586
1587        return open_flush(inode, filp, cd);
1588}
1589
1590static int release_flush_pipefs(struct inode *inode, struct file *filp)
1591{
1592        struct cache_detail *cd = RPC_I(inode)->private;
1593
1594        return release_flush(inode, filp, cd);
1595}
1596
1597static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1598                            size_t count, loff_t *ppos)
1599{
1600        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1601
1602        return read_flush(filp, buf, count, ppos, cd);
1603}
1604
1605static ssize_t write_flush_pipefs(struct file *filp,
1606                                  const char __user *buf,
1607                                  size_t count, loff_t *ppos)
1608{
1609        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1610
1611        return write_flush(filp, buf, count, ppos, cd);
1612}
1613
1614const struct file_operations cache_flush_operations_pipefs = {
1615        .open           = open_flush_pipefs,
1616        .read           = read_flush_pipefs,
1617        .write          = write_flush_pipefs,
1618        .release        = release_flush_pipefs,
1619};
1620
1621int sunrpc_cache_register_pipefs(struct dentry *parent,
1622                                 const char *name, mode_t umode,
1623                                 struct cache_detail *cd)
1624{
1625        struct qstr q;
1626        struct dentry *dir;
1627        int ret = 0;
1628
1629        sunrpc_init_cache_detail(cd);
1630        q.name = name;
1631        q.len = strlen(name);
1632        q.hash = full_name_hash(q.name, q.len);
1633        dir = rpc_create_cache_dir(parent, &q, umode, cd);
1634        if (!IS_ERR(dir))
1635                cd->u.pipefs.dir = dir;
1636        else {
1637                sunrpc_destroy_cache_detail(cd);
1638                ret = PTR_ERR(dir);
1639        }
1640        return ret;
1641}
1642EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1643
1644void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1645{
1646        rpc_remove_cache_dir(cd->u.pipefs.dir);
1647        cd->u.pipefs.dir = NULL;
1648        sunrpc_destroy_cache_detail(cd);
1649}
1650EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1651
1652