linux/net/wireless/reg.c
<<
>>
Prefs
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12/**
  13 * DOC: Wireless regulatory infrastructure
  14 *
  15 * The usual implementation is for a driver to read a device EEPROM to
  16 * determine which regulatory domain it should be operating under, then
  17 * looking up the allowable channels in a driver-local table and finally
  18 * registering those channels in the wiphy structure.
  19 *
  20 * Another set of compliance enforcement is for drivers to use their
  21 * own compliance limits which can be stored on the EEPROM. The host
  22 * driver or firmware may ensure these are used.
  23 *
  24 * In addition to all this we provide an extra layer of regulatory
  25 * conformance. For drivers which do not have any regulatory
  26 * information CRDA provides the complete regulatory solution.
  27 * For others it provides a community effort on further restrictions
  28 * to enhance compliance.
  29 *
  30 * Note: When number of rules --> infinity we will not be able to
  31 * index on alpha2 any more, instead we'll probably have to
  32 * rely on some SHA1 checksum of the regdomain for example.
  33 *
  34 */
  35#include <linux/kernel.h>
  36#include <linux/list.h>
  37#include <linux/random.h>
  38#include <linux/nl80211.h>
  39#include <linux/platform_device.h>
  40#include <net/cfg80211.h>
  41#include "core.h"
  42#include "reg.h"
  43#include "nl80211.h"
  44
  45/* Receipt of information from last regulatory request */
  46static struct regulatory_request *last_request;
  47
  48/* To trigger userspace events */
  49static struct platform_device *reg_pdev;
  50
  51/*
  52 * Central wireless core regulatory domains, we only need two,
  53 * the current one and a world regulatory domain in case we have no
  54 * information to give us an alpha2
  55 */
  56const struct ieee80211_regdomain *cfg80211_regdomain;
  57
  58/*
  59 * We use this as a place for the rd structure built from the
  60 * last parsed country IE to rest until CRDA gets back to us with
  61 * what it thinks should apply for the same country
  62 */
  63static const struct ieee80211_regdomain *country_ie_regdomain;
  64
  65/*
  66 * Protects static reg.c components:
  67 *     - cfg80211_world_regdom
  68 *     - cfg80211_regdom
  69 *     - country_ie_regdomain
  70 *     - last_request
  71 */
  72DEFINE_MUTEX(reg_mutex);
  73#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
  74
  75/* Used to queue up regulatory hints */
  76static LIST_HEAD(reg_requests_list);
  77static spinlock_t reg_requests_lock;
  78
  79/* Used to queue up beacon hints for review */
  80static LIST_HEAD(reg_pending_beacons);
  81static spinlock_t reg_pending_beacons_lock;
  82
  83/* Used to keep track of processed beacon hints */
  84static LIST_HEAD(reg_beacon_list);
  85
  86struct reg_beacon {
  87        struct list_head list;
  88        struct ieee80211_channel chan;
  89};
  90
  91/* We keep a static world regulatory domain in case of the absence of CRDA */
  92static const struct ieee80211_regdomain world_regdom = {
  93        .n_reg_rules = 5,
  94        .alpha2 =  "00",
  95        .reg_rules = {
  96                /* IEEE 802.11b/g, channels 1..11 */
  97                REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
  98                /* IEEE 802.11b/g, channels 12..13. No HT40
  99                 * channel fits here. */
 100                REG_RULE(2467-10, 2472+10, 20, 6, 20,
 101                        NL80211_RRF_PASSIVE_SCAN |
 102                        NL80211_RRF_NO_IBSS),
 103                /* IEEE 802.11 channel 14 - Only JP enables
 104                 * this and for 802.11b only */
 105                REG_RULE(2484-10, 2484+10, 20, 6, 20,
 106                        NL80211_RRF_PASSIVE_SCAN |
 107                        NL80211_RRF_NO_IBSS |
 108                        NL80211_RRF_NO_OFDM),
 109                /* IEEE 802.11a, channel 36..48 */
 110                REG_RULE(5180-10, 5240+10, 40, 6, 20,
 111                        NL80211_RRF_PASSIVE_SCAN |
 112                        NL80211_RRF_NO_IBSS),
 113
 114                /* NB: 5260 MHz - 5700 MHz requies DFS */
 115
 116                /* IEEE 802.11a, channel 149..165 */
 117                REG_RULE(5745-10, 5825+10, 40, 6, 20,
 118                        NL80211_RRF_PASSIVE_SCAN |
 119                        NL80211_RRF_NO_IBSS),
 120        }
 121};
 122
 123static const struct ieee80211_regdomain *cfg80211_world_regdom =
 124        &world_regdom;
 125
 126static char *ieee80211_regdom = "00";
 127
 128module_param(ieee80211_regdom, charp, 0444);
 129MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 130
 131#ifdef CONFIG_WIRELESS_OLD_REGULATORY
 132/*
 133 * We assume 40 MHz bandwidth for the old regulatory work.
 134 * We make emphasis we are using the exact same frequencies
 135 * as before
 136 */
 137
 138static const struct ieee80211_regdomain us_regdom = {
 139        .n_reg_rules = 6,
 140        .alpha2 =  "US",
 141        .reg_rules = {
 142                /* IEEE 802.11b/g, channels 1..11 */
 143                REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
 144                /* IEEE 802.11a, channel 36 */
 145                REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
 146                /* IEEE 802.11a, channel 40 */
 147                REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
 148                /* IEEE 802.11a, channel 44 */
 149                REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
 150                /* IEEE 802.11a, channels 48..64 */
 151                REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
 152                /* IEEE 802.11a, channels 149..165, outdoor */
 153                REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
 154        }
 155};
 156
 157static const struct ieee80211_regdomain jp_regdom = {
 158        .n_reg_rules = 3,
 159        .alpha2 =  "JP",
 160        .reg_rules = {
 161                /* IEEE 802.11b/g, channels 1..14 */
 162                REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
 163                /* IEEE 802.11a, channels 34..48 */
 164                REG_RULE(5170-10, 5240+10, 40, 6, 20,
 165                        NL80211_RRF_PASSIVE_SCAN),
 166                /* IEEE 802.11a, channels 52..64 */
 167                REG_RULE(5260-10, 5320+10, 40, 6, 20,
 168                        NL80211_RRF_NO_IBSS |
 169                        NL80211_RRF_DFS),
 170        }
 171};
 172
 173static const struct ieee80211_regdomain eu_regdom = {
 174        .n_reg_rules = 6,
 175        /*
 176         * This alpha2 is bogus, we leave it here just for stupid
 177         * backward compatibility
 178         */
 179        .alpha2 =  "EU",
 180        .reg_rules = {
 181                /* IEEE 802.11b/g, channels 1..13 */
 182                REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
 183                /* IEEE 802.11a, channel 36 */
 184                REG_RULE(5180-10, 5180+10, 40, 6, 23,
 185                        NL80211_RRF_PASSIVE_SCAN),
 186                /* IEEE 802.11a, channel 40 */
 187                REG_RULE(5200-10, 5200+10, 40, 6, 23,
 188                        NL80211_RRF_PASSIVE_SCAN),
 189                /* IEEE 802.11a, channel 44 */
 190                REG_RULE(5220-10, 5220+10, 40, 6, 23,
 191                        NL80211_RRF_PASSIVE_SCAN),
 192                /* IEEE 802.11a, channels 48..64 */
 193                REG_RULE(5240-10, 5320+10, 40, 6, 20,
 194                        NL80211_RRF_NO_IBSS |
 195                        NL80211_RRF_DFS),
 196                /* IEEE 802.11a, channels 100..140 */
 197                REG_RULE(5500-10, 5700+10, 40, 6, 30,
 198                        NL80211_RRF_NO_IBSS |
 199                        NL80211_RRF_DFS),
 200        }
 201};
 202
 203static const struct ieee80211_regdomain *static_regdom(char *alpha2)
 204{
 205        if (alpha2[0] == 'U' && alpha2[1] == 'S')
 206                return &us_regdom;
 207        if (alpha2[0] == 'J' && alpha2[1] == 'P')
 208                return &jp_regdom;
 209        if (alpha2[0] == 'E' && alpha2[1] == 'U')
 210                return &eu_regdom;
 211        /* Default, as per the old rules */
 212        return &us_regdom;
 213}
 214
 215static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
 216{
 217        if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
 218                return true;
 219        return false;
 220}
 221#else
 222static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
 223{
 224        return false;
 225}
 226#endif
 227
 228static void reset_regdomains(void)
 229{
 230        /* avoid freeing static information or freeing something twice */
 231        if (cfg80211_regdomain == cfg80211_world_regdom)
 232                cfg80211_regdomain = NULL;
 233        if (cfg80211_world_regdom == &world_regdom)
 234                cfg80211_world_regdom = NULL;
 235        if (cfg80211_regdomain == &world_regdom)
 236                cfg80211_regdomain = NULL;
 237        if (is_old_static_regdom(cfg80211_regdomain))
 238                cfg80211_regdomain = NULL;
 239
 240        kfree(cfg80211_regdomain);
 241        kfree(cfg80211_world_regdom);
 242
 243        cfg80211_world_regdom = &world_regdom;
 244        cfg80211_regdomain = NULL;
 245}
 246
 247/*
 248 * Dynamic world regulatory domain requested by the wireless
 249 * core upon initialization
 250 */
 251static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 252{
 253        BUG_ON(!last_request);
 254
 255        reset_regdomains();
 256
 257        cfg80211_world_regdom = rd;
 258        cfg80211_regdomain = rd;
 259}
 260
 261bool is_world_regdom(const char *alpha2)
 262{
 263        if (!alpha2)
 264                return false;
 265        if (alpha2[0] == '0' && alpha2[1] == '0')
 266                return true;
 267        return false;
 268}
 269
 270static bool is_alpha2_set(const char *alpha2)
 271{
 272        if (!alpha2)
 273                return false;
 274        if (alpha2[0] != 0 && alpha2[1] != 0)
 275                return true;
 276        return false;
 277}
 278
 279static bool is_alpha_upper(char letter)
 280{
 281        /* ASCII A - Z */
 282        if (letter >= 65 && letter <= 90)
 283                return true;
 284        return false;
 285}
 286
 287static bool is_unknown_alpha2(const char *alpha2)
 288{
 289        if (!alpha2)
 290                return false;
 291        /*
 292         * Special case where regulatory domain was built by driver
 293         * but a specific alpha2 cannot be determined
 294         */
 295        if (alpha2[0] == '9' && alpha2[1] == '9')
 296                return true;
 297        return false;
 298}
 299
 300static bool is_intersected_alpha2(const char *alpha2)
 301{
 302        if (!alpha2)
 303                return false;
 304        /*
 305         * Special case where regulatory domain is the
 306         * result of an intersection between two regulatory domain
 307         * structures
 308         */
 309        if (alpha2[0] == '9' && alpha2[1] == '8')
 310                return true;
 311        return false;
 312}
 313
 314static bool is_an_alpha2(const char *alpha2)
 315{
 316        if (!alpha2)
 317                return false;
 318        if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
 319                return true;
 320        return false;
 321}
 322
 323static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 324{
 325        if (!alpha2_x || !alpha2_y)
 326                return false;
 327        if (alpha2_x[0] == alpha2_y[0] &&
 328                alpha2_x[1] == alpha2_y[1])
 329                return true;
 330        return false;
 331}
 332
 333static bool regdom_changes(const char *alpha2)
 334{
 335        assert_cfg80211_lock();
 336
 337        if (!cfg80211_regdomain)
 338                return true;
 339        if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
 340                return false;
 341        return true;
 342}
 343
 344/**
 345 * country_ie_integrity_changes - tells us if the country IE has changed
 346 * @checksum: checksum of country IE of fields we are interested in
 347 *
 348 * If the country IE has not changed you can ignore it safely. This is
 349 * useful to determine if two devices are seeing two different country IEs
 350 * even on the same alpha2. Note that this will return false if no IE has
 351 * been set on the wireless core yet.
 352 */
 353static bool country_ie_integrity_changes(u32 checksum)
 354{
 355        /* If no IE has been set then the checksum doesn't change */
 356        if (unlikely(!last_request->country_ie_checksum))
 357                return false;
 358        if (unlikely(last_request->country_ie_checksum != checksum))
 359                return true;
 360        return false;
 361}
 362
 363/*
 364 * This lets us keep regulatory code which is updated on a regulatory
 365 * basis in userspace.
 366 */
 367static int call_crda(const char *alpha2)
 368{
 369        char country_env[9 + 2] = "COUNTRY=";
 370        char *envp[] = {
 371                country_env,
 372                NULL
 373        };
 374
 375        if (!is_world_regdom((char *) alpha2))
 376                printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
 377                        alpha2[0], alpha2[1]);
 378        else
 379                printk(KERN_INFO "cfg80211: Calling CRDA to update world "
 380                        "regulatory domain\n");
 381
 382        country_env[8] = alpha2[0];
 383        country_env[9] = alpha2[1];
 384
 385        return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
 386}
 387
 388/* Used by nl80211 before kmalloc'ing our regulatory domain */
 389bool reg_is_valid_request(const char *alpha2)
 390{
 391        assert_cfg80211_lock();
 392
 393        if (!last_request)
 394                return false;
 395
 396        return alpha2_equal(last_request->alpha2, alpha2);
 397}
 398
 399/* Sanity check on a regulatory rule */
 400static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
 401{
 402        const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 403        u32 freq_diff;
 404
 405        if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
 406                return false;
 407
 408        if (freq_range->start_freq_khz > freq_range->end_freq_khz)
 409                return false;
 410
 411        freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 412
 413        if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
 414                        freq_range->max_bandwidth_khz > freq_diff)
 415                return false;
 416
 417        return true;
 418}
 419
 420static bool is_valid_rd(const struct ieee80211_regdomain *rd)
 421{
 422        const struct ieee80211_reg_rule *reg_rule = NULL;
 423        unsigned int i;
 424
 425        if (!rd->n_reg_rules)
 426                return false;
 427
 428        if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
 429                return false;
 430
 431        for (i = 0; i < rd->n_reg_rules; i++) {
 432                reg_rule = &rd->reg_rules[i];
 433                if (!is_valid_reg_rule(reg_rule))
 434                        return false;
 435        }
 436
 437        return true;
 438}
 439
 440static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
 441                            u32 center_freq_khz,
 442                            u32 bw_khz)
 443{
 444        u32 start_freq_khz, end_freq_khz;
 445
 446        start_freq_khz = center_freq_khz - (bw_khz/2);
 447        end_freq_khz = center_freq_khz + (bw_khz/2);
 448
 449        if (start_freq_khz >= freq_range->start_freq_khz &&
 450            end_freq_khz <= freq_range->end_freq_khz)
 451                return true;
 452
 453        return false;
 454}
 455
 456/**
 457 * freq_in_rule_band - tells us if a frequency is in a frequency band
 458 * @freq_range: frequency rule we want to query
 459 * @freq_khz: frequency we are inquiring about
 460 *
 461 * This lets us know if a specific frequency rule is or is not relevant to
 462 * a specific frequency's band. Bands are device specific and artificial
 463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 464 * safe for now to assume that a frequency rule should not be part of a
 465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 466 * This resolution can be lowered and should be considered as we add
 467 * regulatory rule support for other "bands".
 468 **/
 469static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
 470        u32 freq_khz)
 471{
 472#define ONE_GHZ_IN_KHZ  1000000
 473        if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
 474                return true;
 475        if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
 476                return true;
 477        return false;
 478#undef ONE_GHZ_IN_KHZ
 479}
 480
 481/*
 482 * Converts a country IE to a regulatory domain. A regulatory domain
 483 * structure has a lot of information which the IE doesn't yet have,
 484 * so for the other values we use upper max values as we will intersect
 485 * with our userspace regulatory agent to get lower bounds.
 486 */
 487static struct ieee80211_regdomain *country_ie_2_rd(
 488                                u8 *country_ie,
 489                                u8 country_ie_len,
 490                                u32 *checksum)
 491{
 492        struct ieee80211_regdomain *rd = NULL;
 493        unsigned int i = 0;
 494        char alpha2[2];
 495        u32 flags = 0;
 496        u32 num_rules = 0, size_of_regd = 0;
 497        u8 *triplets_start = NULL;
 498        u8 len_at_triplet = 0;
 499        /* the last channel we have registered in a subband (triplet) */
 500        int last_sub_max_channel = 0;
 501
 502        *checksum = 0xDEADBEEF;
 503
 504        /* Country IE requirements */
 505        BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
 506                country_ie_len & 0x01);
 507
 508        alpha2[0] = country_ie[0];
 509        alpha2[1] = country_ie[1];
 510
 511        /*
 512         * Third octet can be:
 513         *    'I' - Indoor
 514         *    'O' - Outdoor
 515         *
 516         *  anything else we assume is no restrictions
 517         */
 518        if (country_ie[2] == 'I')
 519                flags = NL80211_RRF_NO_OUTDOOR;
 520        else if (country_ie[2] == 'O')
 521                flags = NL80211_RRF_NO_INDOOR;
 522
 523        country_ie += 3;
 524        country_ie_len -= 3;
 525
 526        triplets_start = country_ie;
 527        len_at_triplet = country_ie_len;
 528
 529        *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
 530
 531        /*
 532         * We need to build a reg rule for each triplet, but first we must
 533         * calculate the number of reg rules we will need. We will need one
 534         * for each channel subband
 535         */
 536        while (country_ie_len >= 3) {
 537                int end_channel = 0;
 538                struct ieee80211_country_ie_triplet *triplet =
 539                        (struct ieee80211_country_ie_triplet *) country_ie;
 540                int cur_sub_max_channel = 0, cur_channel = 0;
 541
 542                if (triplet->ext.reg_extension_id >=
 543                                IEEE80211_COUNTRY_EXTENSION_ID) {
 544                        country_ie += 3;
 545                        country_ie_len -= 3;
 546                        continue;
 547                }
 548
 549                /* 2 GHz */
 550                if (triplet->chans.first_channel <= 14)
 551                        end_channel = triplet->chans.first_channel +
 552                                triplet->chans.num_channels;
 553                else
 554                        /*
 555                         * 5 GHz -- For example in country IEs if the first
 556                         * channel given is 36 and the number of channels is 4
 557                         * then the individual channel numbers defined for the
 558                         * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
 559                         * and not 36, 37, 38, 39.
 560                         *
 561                         * See: http://tinyurl.com/11d-clarification
 562                         */
 563                        end_channel =  triplet->chans.first_channel +
 564                                (4 * (triplet->chans.num_channels - 1));
 565
 566                cur_channel = triplet->chans.first_channel;
 567                cur_sub_max_channel = end_channel;
 568
 569                /* Basic sanity check */
 570                if (cur_sub_max_channel < cur_channel)
 571                        return NULL;
 572
 573                /*
 574                 * Do not allow overlapping channels. Also channels
 575                 * passed in each subband must be monotonically
 576                 * increasing
 577                 */
 578                if (last_sub_max_channel) {
 579                        if (cur_channel <= last_sub_max_channel)
 580                                return NULL;
 581                        if (cur_sub_max_channel <= last_sub_max_channel)
 582                                return NULL;
 583                }
 584
 585                /*
 586                 * When dot11RegulatoryClassesRequired is supported
 587                 * we can throw ext triplets as part of this soup,
 588                 * for now we don't care when those change as we
 589                 * don't support them
 590                 */
 591                *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
 592                  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
 593                  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
 594
 595                last_sub_max_channel = cur_sub_max_channel;
 596
 597                country_ie += 3;
 598                country_ie_len -= 3;
 599                num_rules++;
 600
 601                /*
 602                 * Note: this is not a IEEE requirement but
 603                 * simply a memory requirement
 604                 */
 605                if (num_rules > NL80211_MAX_SUPP_REG_RULES)
 606                        return NULL;
 607        }
 608
 609        country_ie = triplets_start;
 610        country_ie_len = len_at_triplet;
 611
 612        size_of_regd = sizeof(struct ieee80211_regdomain) +
 613                (num_rules * sizeof(struct ieee80211_reg_rule));
 614
 615        rd = kzalloc(size_of_regd, GFP_KERNEL);
 616        if (!rd)
 617                return NULL;
 618
 619        rd->n_reg_rules = num_rules;
 620        rd->alpha2[0] = alpha2[0];
 621        rd->alpha2[1] = alpha2[1];
 622
 623        /* This time around we fill in the rd */
 624        while (country_ie_len >= 3) {
 625                int end_channel = 0;
 626                struct ieee80211_country_ie_triplet *triplet =
 627                        (struct ieee80211_country_ie_triplet *) country_ie;
 628                struct ieee80211_reg_rule *reg_rule = NULL;
 629                struct ieee80211_freq_range *freq_range = NULL;
 630                struct ieee80211_power_rule *power_rule = NULL;
 631
 632                /*
 633                 * Must parse if dot11RegulatoryClassesRequired is true,
 634                 * we don't support this yet
 635                 */
 636                if (triplet->ext.reg_extension_id >=
 637                                IEEE80211_COUNTRY_EXTENSION_ID) {
 638                        country_ie += 3;
 639                        country_ie_len -= 3;
 640                        continue;
 641                }
 642
 643                reg_rule = &rd->reg_rules[i];
 644                freq_range = &reg_rule->freq_range;
 645                power_rule = &reg_rule->power_rule;
 646
 647                reg_rule->flags = flags;
 648
 649                /* 2 GHz */
 650                if (triplet->chans.first_channel <= 14)
 651                        end_channel = triplet->chans.first_channel +
 652                                triplet->chans.num_channels;
 653                else
 654                        end_channel =  triplet->chans.first_channel +
 655                                (4 * (triplet->chans.num_channels - 1));
 656
 657                /*
 658                 * The +10 is since the regulatory domain expects
 659                 * the actual band edge, not the center of freq for
 660                 * its start and end freqs, assuming 20 MHz bandwidth on
 661                 * the channels passed
 662                 */
 663                freq_range->start_freq_khz =
 664                        MHZ_TO_KHZ(ieee80211_channel_to_frequency(
 665                                triplet->chans.first_channel) - 10);
 666                freq_range->end_freq_khz =
 667                        MHZ_TO_KHZ(ieee80211_channel_to_frequency(
 668                                end_channel) + 10);
 669
 670                /*
 671                 * These are large arbitrary values we use to intersect later.
 672                 * Increment this if we ever support >= 40 MHz channels
 673                 * in IEEE 802.11
 674                 */
 675                freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
 676                power_rule->max_antenna_gain = DBI_TO_MBI(100);
 677                power_rule->max_eirp = DBM_TO_MBM(100);
 678
 679                country_ie += 3;
 680                country_ie_len -= 3;
 681                i++;
 682
 683                BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
 684        }
 685
 686        return rd;
 687}
 688
 689
 690/*
 691 * Helper for regdom_intersect(), this does the real
 692 * mathematical intersection fun
 693 */
 694static int reg_rules_intersect(
 695        const struct ieee80211_reg_rule *rule1,
 696        const struct ieee80211_reg_rule *rule2,
 697        struct ieee80211_reg_rule *intersected_rule)
 698{
 699        const struct ieee80211_freq_range *freq_range1, *freq_range2;
 700        struct ieee80211_freq_range *freq_range;
 701        const struct ieee80211_power_rule *power_rule1, *power_rule2;
 702        struct ieee80211_power_rule *power_rule;
 703        u32 freq_diff;
 704
 705        freq_range1 = &rule1->freq_range;
 706        freq_range2 = &rule2->freq_range;
 707        freq_range = &intersected_rule->freq_range;
 708
 709        power_rule1 = &rule1->power_rule;
 710        power_rule2 = &rule2->power_rule;
 711        power_rule = &intersected_rule->power_rule;
 712
 713        freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
 714                freq_range2->start_freq_khz);
 715        freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
 716                freq_range2->end_freq_khz);
 717        freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
 718                freq_range2->max_bandwidth_khz);
 719
 720        freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 721        if (freq_range->max_bandwidth_khz > freq_diff)
 722                freq_range->max_bandwidth_khz = freq_diff;
 723
 724        power_rule->max_eirp = min(power_rule1->max_eirp,
 725                power_rule2->max_eirp);
 726        power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
 727                power_rule2->max_antenna_gain);
 728
 729        intersected_rule->flags = (rule1->flags | rule2->flags);
 730
 731        if (!is_valid_reg_rule(intersected_rule))
 732                return -EINVAL;
 733
 734        return 0;
 735}
 736
 737/**
 738 * regdom_intersect - do the intersection between two regulatory domains
 739 * @rd1: first regulatory domain
 740 * @rd2: second regulatory domain
 741 *
 742 * Use this function to get the intersection between two regulatory domains.
 743 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 744 * as no one single alpha2 can represent this regulatory domain.
 745 *
 746 * Returns a pointer to the regulatory domain structure which will hold the
 747 * resulting intersection of rules between rd1 and rd2. We will
 748 * kzalloc() this structure for you.
 749 */
 750static struct ieee80211_regdomain *regdom_intersect(
 751        const struct ieee80211_regdomain *rd1,
 752        const struct ieee80211_regdomain *rd2)
 753{
 754        int r, size_of_regd;
 755        unsigned int x, y;
 756        unsigned int num_rules = 0, rule_idx = 0;
 757        const struct ieee80211_reg_rule *rule1, *rule2;
 758        struct ieee80211_reg_rule *intersected_rule;
 759        struct ieee80211_regdomain *rd;
 760        /* This is just a dummy holder to help us count */
 761        struct ieee80211_reg_rule irule;
 762
 763        /* Uses the stack temporarily for counter arithmetic */
 764        intersected_rule = &irule;
 765
 766        memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
 767
 768        if (!rd1 || !rd2)
 769                return NULL;
 770
 771        /*
 772         * First we get a count of the rules we'll need, then we actually
 773         * build them. This is to so we can malloc() and free() a
 774         * regdomain once. The reason we use reg_rules_intersect() here
 775         * is it will return -EINVAL if the rule computed makes no sense.
 776         * All rules that do check out OK are valid.
 777         */
 778
 779        for (x = 0; x < rd1->n_reg_rules; x++) {
 780                rule1 = &rd1->reg_rules[x];
 781                for (y = 0; y < rd2->n_reg_rules; y++) {
 782                        rule2 = &rd2->reg_rules[y];
 783                        if (!reg_rules_intersect(rule1, rule2,
 784                                        intersected_rule))
 785                                num_rules++;
 786                        memset(intersected_rule, 0,
 787                                        sizeof(struct ieee80211_reg_rule));
 788                }
 789        }
 790
 791        if (!num_rules)
 792                return NULL;
 793
 794        size_of_regd = sizeof(struct ieee80211_regdomain) +
 795                ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
 796
 797        rd = kzalloc(size_of_regd, GFP_KERNEL);
 798        if (!rd)
 799                return NULL;
 800
 801        for (x = 0; x < rd1->n_reg_rules; x++) {
 802                rule1 = &rd1->reg_rules[x];
 803                for (y = 0; y < rd2->n_reg_rules; y++) {
 804                        rule2 = &rd2->reg_rules[y];
 805                        /*
 806                         * This time around instead of using the stack lets
 807                         * write to the target rule directly saving ourselves
 808                         * a memcpy()
 809                         */
 810                        intersected_rule = &rd->reg_rules[rule_idx];
 811                        r = reg_rules_intersect(rule1, rule2,
 812                                intersected_rule);
 813                        /*
 814                         * No need to memset here the intersected rule here as
 815                         * we're not using the stack anymore
 816                         */
 817                        if (r)
 818                                continue;
 819                        rule_idx++;
 820                }
 821        }
 822
 823        if (rule_idx != num_rules) {
 824                kfree(rd);
 825                return NULL;
 826        }
 827
 828        rd->n_reg_rules = num_rules;
 829        rd->alpha2[0] = '9';
 830        rd->alpha2[1] = '8';
 831
 832        return rd;
 833}
 834
 835/*
 836 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 837 * want to just have the channel structure use these
 838 */
 839static u32 map_regdom_flags(u32 rd_flags)
 840{
 841        u32 channel_flags = 0;
 842        if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
 843                channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
 844        if (rd_flags & NL80211_RRF_NO_IBSS)
 845                channel_flags |= IEEE80211_CHAN_NO_IBSS;
 846        if (rd_flags & NL80211_RRF_DFS)
 847                channel_flags |= IEEE80211_CHAN_RADAR;
 848        return channel_flags;
 849}
 850
 851static int freq_reg_info_regd(struct wiphy *wiphy,
 852                              u32 center_freq,
 853                              u32 desired_bw_khz,
 854                              const struct ieee80211_reg_rule **reg_rule,
 855                              const struct ieee80211_regdomain *custom_regd)
 856{
 857        int i;
 858        bool band_rule_found = false;
 859        const struct ieee80211_regdomain *regd;
 860        bool bw_fits = false;
 861
 862        if (!desired_bw_khz)
 863                desired_bw_khz = MHZ_TO_KHZ(20);
 864
 865        regd = custom_regd ? custom_regd : cfg80211_regdomain;
 866
 867        /*
 868         * Follow the driver's regulatory domain, if present, unless a country
 869         * IE has been processed or a user wants to help complaince further
 870         */
 871        if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
 872            last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
 873            wiphy->regd)
 874                regd = wiphy->regd;
 875
 876        if (!regd)
 877                return -EINVAL;
 878
 879        for (i = 0; i < regd->n_reg_rules; i++) {
 880                const struct ieee80211_reg_rule *rr;
 881                const struct ieee80211_freq_range *fr = NULL;
 882                const struct ieee80211_power_rule *pr = NULL;
 883
 884                rr = &regd->reg_rules[i];
 885                fr = &rr->freq_range;
 886                pr = &rr->power_rule;
 887
 888                /*
 889                 * We only need to know if one frequency rule was
 890                 * was in center_freq's band, that's enough, so lets
 891                 * not overwrite it once found
 892                 */
 893                if (!band_rule_found)
 894                        band_rule_found = freq_in_rule_band(fr, center_freq);
 895
 896                bw_fits = reg_does_bw_fit(fr,
 897                                          center_freq,
 898                                          desired_bw_khz);
 899
 900                if (band_rule_found && bw_fits) {
 901                        *reg_rule = rr;
 902                        return 0;
 903                }
 904        }
 905
 906        if (!band_rule_found)
 907                return -ERANGE;
 908
 909        return -EINVAL;
 910}
 911EXPORT_SYMBOL(freq_reg_info);
 912
 913int freq_reg_info(struct wiphy *wiphy,
 914                  u32 center_freq,
 915                  u32 desired_bw_khz,
 916                  const struct ieee80211_reg_rule **reg_rule)
 917{
 918        assert_cfg80211_lock();
 919        return freq_reg_info_regd(wiphy,
 920                                  center_freq,
 921                                  desired_bw_khz,
 922                                  reg_rule,
 923                                  NULL);
 924}
 925
 926/*
 927 * Note that right now we assume the desired channel bandwidth
 928 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 929 * per channel, the primary and the extension channel). To support
 930 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 931 * new ieee80211_channel.target_bw and re run the regulatory check
 932 * on the wiphy with the target_bw specified. Then we can simply use
 933 * that below for the desired_bw_khz below.
 934 */
 935static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
 936                           unsigned int chan_idx)
 937{
 938        int r;
 939        u32 flags, bw_flags = 0;
 940        u32 desired_bw_khz = MHZ_TO_KHZ(20);
 941        const struct ieee80211_reg_rule *reg_rule = NULL;
 942        const struct ieee80211_power_rule *power_rule = NULL;
 943        const struct ieee80211_freq_range *freq_range = NULL;
 944        struct ieee80211_supported_band *sband;
 945        struct ieee80211_channel *chan;
 946        struct wiphy *request_wiphy = NULL;
 947
 948        assert_cfg80211_lock();
 949
 950        request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
 951
 952        sband = wiphy->bands[band];
 953        BUG_ON(chan_idx >= sband->n_channels);
 954        chan = &sband->channels[chan_idx];
 955
 956        flags = chan->orig_flags;
 957
 958        r = freq_reg_info(wiphy,
 959                          MHZ_TO_KHZ(chan->center_freq),
 960                          desired_bw_khz,
 961                          &reg_rule);
 962
 963        if (r) {
 964                /*
 965                 * This means no regulatory rule was found in the country IE
 966                 * with a frequency range on the center_freq's band, since
 967                 * IEEE-802.11 allows for a country IE to have a subset of the
 968                 * regulatory information provided in a country we ignore
 969                 * disabling the channel unless at least one reg rule was
 970                 * found on the center_freq's band. For details see this
 971                 * clarification:
 972                 *
 973                 * http://tinyurl.com/11d-clarification
 974                 */
 975                if (r == -ERANGE &&
 976                    last_request->initiator ==
 977                    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
 978#ifdef CONFIG_CFG80211_REG_DEBUG
 979                        printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
 980                                "intact on %s - no rule found in band on "
 981                                "Country IE\n",
 982                                chan->center_freq, wiphy_name(wiphy));
 983#endif
 984                } else {
 985                /*
 986                 * In this case we know the country IE has at least one reg rule
 987                 * for the band so we respect its band definitions
 988                 */
 989#ifdef CONFIG_CFG80211_REG_DEBUG
 990                        if (last_request->initiator ==
 991                            NL80211_REGDOM_SET_BY_COUNTRY_IE)
 992                                printk(KERN_DEBUG "cfg80211: Disabling "
 993                                        "channel %d MHz on %s due to "
 994                                        "Country IE\n",
 995                                        chan->center_freq, wiphy_name(wiphy));
 996#endif
 997                        flags |= IEEE80211_CHAN_DISABLED;
 998                        chan->flags = flags;
 999                }
1000                return;
1001        }
1002
1003        power_rule = &reg_rule->power_rule;
1004        freq_range = &reg_rule->freq_range;
1005
1006        if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007                bw_flags = IEEE80211_CHAN_NO_HT40;
1008
1009        if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010            request_wiphy && request_wiphy == wiphy &&
1011            request_wiphy->strict_regulatory) {
1012                /*
1013                 * This gaurantees the driver's requested regulatory domain
1014                 * will always be used as a base for further regulatory
1015                 * settings
1016                 */
1017                chan->flags = chan->orig_flags =
1018                        map_regdom_flags(reg_rule->flags) | bw_flags;
1019                chan->max_antenna_gain = chan->orig_mag =
1020                        (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021                chan->max_power = chan->orig_mpwr =
1022                        (int) MBM_TO_DBM(power_rule->max_eirp);
1023                return;
1024        }
1025
1026        chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1027        chan->max_antenna_gain = min(chan->orig_mag,
1028                (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1029        if (chan->orig_mpwr)
1030                chan->max_power = min(chan->orig_mpwr,
1031                        (int) MBM_TO_DBM(power_rule->max_eirp));
1032        else
1033                chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1034}
1035
1036static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1037{
1038        unsigned int i;
1039        struct ieee80211_supported_band *sband;
1040
1041        BUG_ON(!wiphy->bands[band]);
1042        sband = wiphy->bands[band];
1043
1044        for (i = 0; i < sband->n_channels; i++)
1045                handle_channel(wiphy, band, i);
1046}
1047
1048static bool ignore_reg_update(struct wiphy *wiphy,
1049                              enum nl80211_reg_initiator initiator)
1050{
1051        if (!last_request)
1052                return true;
1053        if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1054                  wiphy->custom_regulatory)
1055                return true;
1056        /*
1057         * wiphy->regd will be set once the device has its own
1058         * desired regulatory domain set
1059         */
1060        if (wiphy->strict_regulatory && !wiphy->regd &&
1061            !is_world_regdom(last_request->alpha2))
1062                return true;
1063        return false;
1064}
1065
1066static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1067{
1068        struct cfg80211_registered_device *rdev;
1069
1070        list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1071                wiphy_update_regulatory(&rdev->wiphy, initiator);
1072}
1073
1074static void handle_reg_beacon(struct wiphy *wiphy,
1075                              unsigned int chan_idx,
1076                              struct reg_beacon *reg_beacon)
1077{
1078        struct ieee80211_supported_band *sband;
1079        struct ieee80211_channel *chan;
1080        bool channel_changed = false;
1081        struct ieee80211_channel chan_before;
1082
1083        assert_cfg80211_lock();
1084
1085        sband = wiphy->bands[reg_beacon->chan.band];
1086        chan = &sband->channels[chan_idx];
1087
1088        if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1089                return;
1090
1091        if (chan->beacon_found)
1092                return;
1093
1094        chan->beacon_found = true;
1095
1096        if (wiphy->disable_beacon_hints)
1097                return;
1098
1099        chan_before.center_freq = chan->center_freq;
1100        chan_before.flags = chan->flags;
1101
1102        if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1103                chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104                channel_changed = true;
1105        }
1106
1107        if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1108                chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1109                channel_changed = true;
1110        }
1111
1112        if (channel_changed)
1113                nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1114}
1115
1116/*
1117 * Called when a scan on a wiphy finds a beacon on
1118 * new channel
1119 */
1120static void wiphy_update_new_beacon(struct wiphy *wiphy,
1121                                    struct reg_beacon *reg_beacon)
1122{
1123        unsigned int i;
1124        struct ieee80211_supported_band *sband;
1125
1126        assert_cfg80211_lock();
1127
1128        if (!wiphy->bands[reg_beacon->chan.band])
1129                return;
1130
1131        sband = wiphy->bands[reg_beacon->chan.band];
1132
1133        for (i = 0; i < sband->n_channels; i++)
1134                handle_reg_beacon(wiphy, i, reg_beacon);
1135}
1136
1137/*
1138 * Called upon reg changes or a new wiphy is added
1139 */
1140static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1141{
1142        unsigned int i;
1143        struct ieee80211_supported_band *sband;
1144        struct reg_beacon *reg_beacon;
1145
1146        assert_cfg80211_lock();
1147
1148        if (list_empty(&reg_beacon_list))
1149                return;
1150
1151        list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1152                if (!wiphy->bands[reg_beacon->chan.band])
1153                        continue;
1154                sband = wiphy->bands[reg_beacon->chan.band];
1155                for (i = 0; i < sband->n_channels; i++)
1156                        handle_reg_beacon(wiphy, i, reg_beacon);
1157        }
1158}
1159
1160static bool reg_is_world_roaming(struct wiphy *wiphy)
1161{
1162        if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1163            (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1164                return true;
1165        if (last_request &&
1166            last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1167            wiphy->custom_regulatory)
1168                return true;
1169        return false;
1170}
1171
1172/* Reap the advantages of previously found beacons */
1173static void reg_process_beacons(struct wiphy *wiphy)
1174{
1175        /*
1176         * Means we are just firing up cfg80211, so no beacons would
1177         * have been processed yet.
1178         */
1179        if (!last_request)
1180                return;
1181        if (!reg_is_world_roaming(wiphy))
1182                return;
1183        wiphy_update_beacon_reg(wiphy);
1184}
1185
1186static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1187{
1188        if (!chan)
1189                return true;
1190        if (chan->flags & IEEE80211_CHAN_DISABLED)
1191                return true;
1192        /* This would happen when regulatory rules disallow HT40 completely */
1193        if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1194                return true;
1195        return false;
1196}
1197
1198static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1199                                         enum ieee80211_band band,
1200                                         unsigned int chan_idx)
1201{
1202        struct ieee80211_supported_band *sband;
1203        struct ieee80211_channel *channel;
1204        struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1205        unsigned int i;
1206
1207        assert_cfg80211_lock();
1208
1209        sband = wiphy->bands[band];
1210        BUG_ON(chan_idx >= sband->n_channels);
1211        channel = &sband->channels[chan_idx];
1212
1213        if (is_ht40_not_allowed(channel)) {
1214                channel->flags |= IEEE80211_CHAN_NO_HT40;
1215                return;
1216        }
1217
1218        /*
1219         * We need to ensure the extension channels exist to
1220         * be able to use HT40- or HT40+, this finds them (or not)
1221         */
1222        for (i = 0; i < sband->n_channels; i++) {
1223                struct ieee80211_channel *c = &sband->channels[i];
1224                if (c->center_freq == (channel->center_freq - 20))
1225                        channel_before = c;
1226                if (c->center_freq == (channel->center_freq + 20))
1227                        channel_after = c;
1228        }
1229
1230        /*
1231         * Please note that this assumes target bandwidth is 20 MHz,
1232         * if that ever changes we also need to change the below logic
1233         * to include that as well.
1234         */
1235        if (is_ht40_not_allowed(channel_before))
1236                channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1237        else
1238                channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1239
1240        if (is_ht40_not_allowed(channel_after))
1241                channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1242        else
1243                channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1244}
1245
1246static void reg_process_ht_flags_band(struct wiphy *wiphy,
1247                                      enum ieee80211_band band)
1248{
1249        unsigned int i;
1250        struct ieee80211_supported_band *sband;
1251
1252        BUG_ON(!wiphy->bands[band]);
1253        sband = wiphy->bands[band];
1254
1255        for (i = 0; i < sband->n_channels; i++)
1256                reg_process_ht_flags_channel(wiphy, band, i);
1257}
1258
1259static void reg_process_ht_flags(struct wiphy *wiphy)
1260{
1261        enum ieee80211_band band;
1262
1263        if (!wiphy)
1264                return;
1265
1266        for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1267                if (wiphy->bands[band])
1268                        reg_process_ht_flags_band(wiphy, band);
1269        }
1270
1271}
1272
1273void wiphy_update_regulatory(struct wiphy *wiphy,
1274                             enum nl80211_reg_initiator initiator)
1275{
1276        enum ieee80211_band band;
1277
1278        if (ignore_reg_update(wiphy, initiator))
1279                goto out;
1280        for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1281                if (wiphy->bands[band])
1282                        handle_band(wiphy, band);
1283        }
1284out:
1285        reg_process_beacons(wiphy);
1286        reg_process_ht_flags(wiphy);
1287        if (wiphy->reg_notifier)
1288                wiphy->reg_notifier(wiphy, last_request);
1289}
1290
1291static void handle_channel_custom(struct wiphy *wiphy,
1292                                  enum ieee80211_band band,
1293                                  unsigned int chan_idx,
1294                                  const struct ieee80211_regdomain *regd)
1295{
1296        int r;
1297        u32 desired_bw_khz = MHZ_TO_KHZ(20);
1298        u32 bw_flags = 0;
1299        const struct ieee80211_reg_rule *reg_rule = NULL;
1300        const struct ieee80211_power_rule *power_rule = NULL;
1301        const struct ieee80211_freq_range *freq_range = NULL;
1302        struct ieee80211_supported_band *sband;
1303        struct ieee80211_channel *chan;
1304
1305        assert_reg_lock();
1306
1307        sband = wiphy->bands[band];
1308        BUG_ON(chan_idx >= sband->n_channels);
1309        chan = &sband->channels[chan_idx];
1310
1311        r = freq_reg_info_regd(wiphy,
1312                               MHZ_TO_KHZ(chan->center_freq),
1313                               desired_bw_khz,
1314                               &reg_rule,
1315                               regd);
1316
1317        if (r) {
1318                chan->flags = IEEE80211_CHAN_DISABLED;
1319                return;
1320        }
1321
1322        power_rule = &reg_rule->power_rule;
1323        freq_range = &reg_rule->freq_range;
1324
1325        if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1326                bw_flags = IEEE80211_CHAN_NO_HT40;
1327
1328        chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1329        chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1330        chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1331}
1332
1333static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1334                               const struct ieee80211_regdomain *regd)
1335{
1336        unsigned int i;
1337        struct ieee80211_supported_band *sband;
1338
1339        BUG_ON(!wiphy->bands[band]);
1340        sband = wiphy->bands[band];
1341
1342        for (i = 0; i < sband->n_channels; i++)
1343                handle_channel_custom(wiphy, band, i, regd);
1344}
1345
1346/* Used by drivers prior to wiphy registration */
1347void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1348                                   const struct ieee80211_regdomain *regd)
1349{
1350        enum ieee80211_band band;
1351        unsigned int bands_set = 0;
1352
1353        mutex_lock(&reg_mutex);
1354        for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1355                if (!wiphy->bands[band])
1356                        continue;
1357                handle_band_custom(wiphy, band, regd);
1358                bands_set++;
1359        }
1360        mutex_unlock(&reg_mutex);
1361
1362        /*
1363         * no point in calling this if it won't have any effect
1364         * on your device's supportd bands.
1365         */
1366        WARN_ON(!bands_set);
1367}
1368EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1369
1370static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1371                         const struct ieee80211_regdomain *src_regd)
1372{
1373        struct ieee80211_regdomain *regd;
1374        int size_of_regd = 0;
1375        unsigned int i;
1376
1377        size_of_regd = sizeof(struct ieee80211_regdomain) +
1378          ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1379
1380        regd = kzalloc(size_of_regd, GFP_KERNEL);
1381        if (!regd)
1382                return -ENOMEM;
1383
1384        memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1385
1386        for (i = 0; i < src_regd->n_reg_rules; i++)
1387                memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1388                        sizeof(struct ieee80211_reg_rule));
1389
1390        *dst_regd = regd;
1391        return 0;
1392}
1393
1394/*
1395 * Return value which can be used by ignore_request() to indicate
1396 * it has been determined we should intersect two regulatory domains
1397 */
1398#define REG_INTERSECT   1
1399
1400/* This has the logic which determines when a new request
1401 * should be ignored. */
1402static int ignore_request(struct wiphy *wiphy,
1403                          struct regulatory_request *pending_request)
1404{
1405        struct wiphy *last_wiphy = NULL;
1406
1407        assert_cfg80211_lock();
1408
1409        /* All initial requests are respected */
1410        if (!last_request)
1411                return 0;
1412
1413        switch (pending_request->initiator) {
1414        case NL80211_REGDOM_SET_BY_CORE:
1415                return -EINVAL;
1416        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1417
1418                last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1419
1420                if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1421                        return -EINVAL;
1422                if (last_request->initiator ==
1423                    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1424                        if (last_wiphy != wiphy) {
1425                                /*
1426                                 * Two cards with two APs claiming different
1427                                 * Country IE alpha2s. We could
1428                                 * intersect them, but that seems unlikely
1429                                 * to be correct. Reject second one for now.
1430                                 */
1431                                if (regdom_changes(pending_request->alpha2))
1432                                        return -EOPNOTSUPP;
1433                                return -EALREADY;
1434                        }
1435                        /*
1436                         * Two consecutive Country IE hints on the same wiphy.
1437                         * This should be picked up early by the driver/stack
1438                         */
1439                        if (WARN_ON(regdom_changes(pending_request->alpha2)))
1440                                return 0;
1441                        return -EALREADY;
1442                }
1443                return REG_INTERSECT;
1444        case NL80211_REGDOM_SET_BY_DRIVER:
1445                if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1446                        if (is_old_static_regdom(cfg80211_regdomain))
1447                                return 0;
1448                        if (regdom_changes(pending_request->alpha2))
1449                                return 0;
1450                        return -EALREADY;
1451                }
1452
1453                /*
1454                 * This would happen if you unplug and plug your card
1455                 * back in or if you add a new device for which the previously
1456                 * loaded card also agrees on the regulatory domain.
1457                 */
1458                if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1459                    !regdom_changes(pending_request->alpha2))
1460                        return -EALREADY;
1461
1462                return REG_INTERSECT;
1463        case NL80211_REGDOM_SET_BY_USER:
1464                if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1465                        return REG_INTERSECT;
1466                /*
1467                 * If the user knows better the user should set the regdom
1468                 * to their country before the IE is picked up
1469                 */
1470                if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1471                          last_request->intersect)
1472                        return -EOPNOTSUPP;
1473                /*
1474                 * Process user requests only after previous user/driver/core
1475                 * requests have been processed
1476                 */
1477                if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1478                    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1479                    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1480                        if (regdom_changes(last_request->alpha2))
1481                                return -EAGAIN;
1482                }
1483
1484                if (!is_old_static_regdom(cfg80211_regdomain) &&
1485                    !regdom_changes(pending_request->alpha2))
1486                        return -EALREADY;
1487
1488                return 0;
1489        }
1490
1491        return -EINVAL;
1492}
1493
1494/**
1495 * __regulatory_hint - hint to the wireless core a regulatory domain
1496 * @wiphy: if the hint comes from country information from an AP, this
1497 *      is required to be set to the wiphy that received the information
1498 * @pending_request: the regulatory request currently being processed
1499 *
1500 * The Wireless subsystem can use this function to hint to the wireless core
1501 * what it believes should be the current regulatory domain.
1502 *
1503 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1504 * already been set or other standard error codes.
1505 *
1506 * Caller must hold &cfg80211_mutex and &reg_mutex
1507 */
1508static int __regulatory_hint(struct wiphy *wiphy,
1509                             struct regulatory_request *pending_request)
1510{
1511        bool intersect = false;
1512        int r = 0;
1513
1514        assert_cfg80211_lock();
1515
1516        r = ignore_request(wiphy, pending_request);
1517
1518        if (r == REG_INTERSECT) {
1519                if (pending_request->initiator ==
1520                    NL80211_REGDOM_SET_BY_DRIVER) {
1521                        r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1522                        if (r) {
1523                                kfree(pending_request);
1524                                return r;
1525                        }
1526                }
1527                intersect = true;
1528        } else if (r) {
1529                /*
1530                 * If the regulatory domain being requested by the
1531                 * driver has already been set just copy it to the
1532                 * wiphy
1533                 */
1534                if (r == -EALREADY &&
1535                    pending_request->initiator ==
1536                    NL80211_REGDOM_SET_BY_DRIVER) {
1537                        r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1538                        if (r) {
1539                                kfree(pending_request);
1540                                return r;
1541                        }
1542                        r = -EALREADY;
1543                        goto new_request;
1544                }
1545                kfree(pending_request);
1546                return r;
1547        }
1548
1549new_request:
1550        kfree(last_request);
1551
1552        last_request = pending_request;
1553        last_request->intersect = intersect;
1554
1555        pending_request = NULL;
1556
1557        /* When r == REG_INTERSECT we do need to call CRDA */
1558        if (r < 0) {
1559                /*
1560                 * Since CRDA will not be called in this case as we already
1561                 * have applied the requested regulatory domain before we just
1562                 * inform userspace we have processed the request
1563                 */
1564                if (r == -EALREADY)
1565                        nl80211_send_reg_change_event(last_request);
1566                return r;
1567        }
1568
1569        return call_crda(last_request->alpha2);
1570}
1571
1572/* This processes *all* regulatory hints */
1573static void reg_process_hint(struct regulatory_request *reg_request)
1574{
1575        int r = 0;
1576        struct wiphy *wiphy = NULL;
1577
1578        BUG_ON(!reg_request->alpha2);
1579
1580        mutex_lock(&cfg80211_mutex);
1581        mutex_lock(&reg_mutex);
1582
1583        if (wiphy_idx_valid(reg_request->wiphy_idx))
1584                wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1585
1586        if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1587            !wiphy) {
1588                kfree(reg_request);
1589                goto out;
1590        }
1591
1592        r = __regulatory_hint(wiphy, reg_request);
1593        /* This is required so that the orig_* parameters are saved */
1594        if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1595                wiphy_update_regulatory(wiphy, reg_request->initiator);
1596out:
1597        mutex_unlock(&reg_mutex);
1598        mutex_unlock(&cfg80211_mutex);
1599}
1600
1601/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1602static void reg_process_pending_hints(void)
1603        {
1604        struct regulatory_request *reg_request;
1605
1606        spin_lock(&reg_requests_lock);
1607        while (!list_empty(&reg_requests_list)) {
1608                reg_request = list_first_entry(&reg_requests_list,
1609                                               struct regulatory_request,
1610                                               list);
1611                list_del_init(&reg_request->list);
1612
1613                spin_unlock(&reg_requests_lock);
1614                reg_process_hint(reg_request);
1615                spin_lock(&reg_requests_lock);
1616        }
1617        spin_unlock(&reg_requests_lock);
1618}
1619
1620/* Processes beacon hints -- this has nothing to do with country IEs */
1621static void reg_process_pending_beacon_hints(void)
1622{
1623        struct cfg80211_registered_device *rdev;
1624        struct reg_beacon *pending_beacon, *tmp;
1625
1626        /*
1627         * No need to hold the reg_mutex here as we just touch wiphys
1628         * and do not read or access regulatory variables.
1629         */
1630        mutex_lock(&cfg80211_mutex);
1631
1632        /* This goes through the _pending_ beacon list */
1633        spin_lock_bh(&reg_pending_beacons_lock);
1634
1635        if (list_empty(&reg_pending_beacons)) {
1636                spin_unlock_bh(&reg_pending_beacons_lock);
1637                goto out;
1638        }
1639
1640        list_for_each_entry_safe(pending_beacon, tmp,
1641                                 &reg_pending_beacons, list) {
1642
1643                list_del_init(&pending_beacon->list);
1644
1645                /* Applies the beacon hint to current wiphys */
1646                list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1647                        wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1648
1649                /* Remembers the beacon hint for new wiphys or reg changes */
1650                list_add_tail(&pending_beacon->list, &reg_beacon_list);
1651        }
1652
1653        spin_unlock_bh(&reg_pending_beacons_lock);
1654out:
1655        mutex_unlock(&cfg80211_mutex);
1656}
1657
1658static void reg_todo(struct work_struct *work)
1659{
1660        reg_process_pending_hints();
1661        reg_process_pending_beacon_hints();
1662}
1663
1664static DECLARE_WORK(reg_work, reg_todo);
1665
1666static void queue_regulatory_request(struct regulatory_request *request)
1667{
1668        spin_lock(&reg_requests_lock);
1669        list_add_tail(&request->list, &reg_requests_list);
1670        spin_unlock(&reg_requests_lock);
1671
1672        schedule_work(&reg_work);
1673}
1674
1675/* Core regulatory hint -- happens once during cfg80211_init() */
1676static int regulatory_hint_core(const char *alpha2)
1677{
1678        struct regulatory_request *request;
1679
1680        BUG_ON(last_request);
1681
1682        request = kzalloc(sizeof(struct regulatory_request),
1683                          GFP_KERNEL);
1684        if (!request)
1685                return -ENOMEM;
1686
1687        request->alpha2[0] = alpha2[0];
1688        request->alpha2[1] = alpha2[1];
1689        request->initiator = NL80211_REGDOM_SET_BY_CORE;
1690
1691        queue_regulatory_request(request);
1692
1693        /*
1694         * This ensures last_request is populated once modules
1695         * come swinging in and calling regulatory hints and
1696         * wiphy_apply_custom_regulatory().
1697         */
1698        flush_scheduled_work();
1699
1700        return 0;
1701}
1702
1703/* User hints */
1704int regulatory_hint_user(const char *alpha2)
1705{
1706        struct regulatory_request *request;
1707
1708        BUG_ON(!alpha2);
1709
1710        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1711        if (!request)
1712                return -ENOMEM;
1713
1714        request->wiphy_idx = WIPHY_IDX_STALE;
1715        request->alpha2[0] = alpha2[0];
1716        request->alpha2[1] = alpha2[1];
1717        request->initiator = NL80211_REGDOM_SET_BY_USER,
1718
1719        queue_regulatory_request(request);
1720
1721        return 0;
1722}
1723
1724/* Driver hints */
1725int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1726{
1727        struct regulatory_request *request;
1728
1729        BUG_ON(!alpha2);
1730        BUG_ON(!wiphy);
1731
1732        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1733        if (!request)
1734                return -ENOMEM;
1735
1736        request->wiphy_idx = get_wiphy_idx(wiphy);
1737
1738        /* Must have registered wiphy first */
1739        BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1740
1741        request->alpha2[0] = alpha2[0];
1742        request->alpha2[1] = alpha2[1];
1743        request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1744
1745        queue_regulatory_request(request);
1746
1747        return 0;
1748}
1749EXPORT_SYMBOL(regulatory_hint);
1750
1751/* Caller must hold reg_mutex */
1752static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1753                        u32 country_ie_checksum)
1754{
1755        struct wiphy *request_wiphy;
1756
1757        assert_reg_lock();
1758
1759        if (unlikely(last_request->initiator !=
1760            NL80211_REGDOM_SET_BY_COUNTRY_IE))
1761                return false;
1762
1763        request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1764
1765        if (!request_wiphy)
1766                return false;
1767
1768        if (likely(request_wiphy != wiphy))
1769                return !country_ie_integrity_changes(country_ie_checksum);
1770        /*
1771         * We should not have let these through at this point, they
1772         * should have been picked up earlier by the first alpha2 check
1773         * on the device
1774         */
1775        if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1776                return true;
1777        return false;
1778}
1779
1780/*
1781 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1782 * therefore cannot iterate over the rdev list here.
1783 */
1784void regulatory_hint_11d(struct wiphy *wiphy,
1785                        u8 *country_ie,
1786                        u8 country_ie_len)
1787{
1788        struct ieee80211_regdomain *rd = NULL;
1789        char alpha2[2];
1790        u32 checksum = 0;
1791        enum environment_cap env = ENVIRON_ANY;
1792        struct regulatory_request *request;
1793
1794        mutex_lock(&reg_mutex);
1795
1796        if (unlikely(!last_request))
1797                goto out;
1798
1799        /* IE len must be evenly divisible by 2 */
1800        if (country_ie_len & 0x01)
1801                goto out;
1802
1803        if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1804                goto out;
1805
1806        /*
1807         * Pending country IE processing, this can happen after we
1808         * call CRDA and wait for a response if a beacon was received before
1809         * we were able to process the last regulatory_hint_11d() call
1810         */
1811        if (country_ie_regdomain)
1812                goto out;
1813
1814        alpha2[0] = country_ie[0];
1815        alpha2[1] = country_ie[1];
1816
1817        if (country_ie[2] == 'I')
1818                env = ENVIRON_INDOOR;
1819        else if (country_ie[2] == 'O')
1820                env = ENVIRON_OUTDOOR;
1821
1822        /*
1823         * We will run this only upon a successful connection on cfg80211.
1824         * We leave conflict resolution to the workqueue, where can hold
1825         * cfg80211_mutex.
1826         */
1827        if (likely(last_request->initiator ==
1828            NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1829            wiphy_idx_valid(last_request->wiphy_idx)))
1830                goto out;
1831
1832        rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1833        if (!rd)
1834                goto out;
1835
1836        /*
1837         * This will not happen right now but we leave it here for the
1838         * the future when we want to add suspend/resume support and having
1839         * the user move to another country after doing so, or having the user
1840         * move to another AP. Right now we just trust the first AP.
1841         *
1842         * If we hit this before we add this support we want to be informed of
1843         * it as it would indicate a mistake in the current design
1844         */
1845        if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1846                goto free_rd_out;
1847
1848        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1849        if (!request)
1850                goto free_rd_out;
1851
1852        /*
1853         * We keep this around for when CRDA comes back with a response so
1854         * we can intersect with that
1855         */
1856        country_ie_regdomain = rd;
1857
1858        request->wiphy_idx = get_wiphy_idx(wiphy);
1859        request->alpha2[0] = rd->alpha2[0];
1860        request->alpha2[1] = rd->alpha2[1];
1861        request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1862        request->country_ie_checksum = checksum;
1863        request->country_ie_env = env;
1864
1865        mutex_unlock(&reg_mutex);
1866
1867        queue_regulatory_request(request);
1868
1869        return;
1870
1871free_rd_out:
1872        kfree(rd);
1873out:
1874        mutex_unlock(&reg_mutex);
1875}
1876
1877static bool freq_is_chan_12_13_14(u16 freq)
1878{
1879        if (freq == ieee80211_channel_to_frequency(12) ||
1880            freq == ieee80211_channel_to_frequency(13) ||
1881            freq == ieee80211_channel_to_frequency(14))
1882                return true;
1883        return false;
1884}
1885
1886int regulatory_hint_found_beacon(struct wiphy *wiphy,
1887                                 struct ieee80211_channel *beacon_chan,
1888                                 gfp_t gfp)
1889{
1890        struct reg_beacon *reg_beacon;
1891
1892        if (likely((beacon_chan->beacon_found ||
1893            (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1894            (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1895             !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1896                return 0;
1897
1898        reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1899        if (!reg_beacon)
1900                return -ENOMEM;
1901
1902#ifdef CONFIG_CFG80211_REG_DEBUG
1903        printk(KERN_DEBUG "cfg80211: Found new beacon on "
1904                "frequency: %d MHz (Ch %d) on %s\n",
1905                beacon_chan->center_freq,
1906                ieee80211_frequency_to_channel(beacon_chan->center_freq),
1907                wiphy_name(wiphy));
1908#endif
1909        memcpy(&reg_beacon->chan, beacon_chan,
1910                sizeof(struct ieee80211_channel));
1911
1912
1913        /*
1914         * Since we can be called from BH or and non-BH context
1915         * we must use spin_lock_bh()
1916         */
1917        spin_lock_bh(&reg_pending_beacons_lock);
1918        list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1919        spin_unlock_bh(&reg_pending_beacons_lock);
1920
1921        schedule_work(&reg_work);
1922
1923        return 0;
1924}
1925
1926static void print_rd_rules(const struct ieee80211_regdomain *rd)
1927{
1928        unsigned int i;
1929        const struct ieee80211_reg_rule *reg_rule = NULL;
1930        const struct ieee80211_freq_range *freq_range = NULL;
1931        const struct ieee80211_power_rule *power_rule = NULL;
1932
1933        printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1934                "(max_antenna_gain, max_eirp)\n");
1935
1936        for (i = 0; i < rd->n_reg_rules; i++) {
1937                reg_rule = &rd->reg_rules[i];
1938                freq_range = &reg_rule->freq_range;
1939                power_rule = &reg_rule->power_rule;
1940
1941                /*
1942                 * There may not be documentation for max antenna gain
1943                 * in certain regions
1944                 */
1945                if (power_rule->max_antenna_gain)
1946                        printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1947                                "(%d mBi, %d mBm)\n",
1948                                freq_range->start_freq_khz,
1949                                freq_range->end_freq_khz,
1950                                freq_range->max_bandwidth_khz,
1951                                power_rule->max_antenna_gain,
1952                                power_rule->max_eirp);
1953                else
1954                        printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1955                                "(N/A, %d mBm)\n",
1956                                freq_range->start_freq_khz,
1957                                freq_range->end_freq_khz,
1958                                freq_range->max_bandwidth_khz,
1959                                power_rule->max_eirp);
1960        }
1961}
1962
1963static void print_regdomain(const struct ieee80211_regdomain *rd)
1964{
1965
1966        if (is_intersected_alpha2(rd->alpha2)) {
1967
1968                if (last_request->initiator ==
1969                    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1970                        struct cfg80211_registered_device *rdev;
1971                        rdev = cfg80211_rdev_by_wiphy_idx(
1972                                last_request->wiphy_idx);
1973                        if (rdev) {
1974                                printk(KERN_INFO "cfg80211: Current regulatory "
1975                                        "domain updated by AP to: %c%c\n",
1976                                        rdev->country_ie_alpha2[0],
1977                                        rdev->country_ie_alpha2[1]);
1978                        } else
1979                                printk(KERN_INFO "cfg80211: Current regulatory "
1980                                        "domain intersected: \n");
1981                } else
1982                                printk(KERN_INFO "cfg80211: Current regulatory "
1983                                        "domain intersected: \n");
1984        } else if (is_world_regdom(rd->alpha2))
1985                printk(KERN_INFO "cfg80211: World regulatory "
1986                        "domain updated:\n");
1987        else {
1988                if (is_unknown_alpha2(rd->alpha2))
1989                        printk(KERN_INFO "cfg80211: Regulatory domain "
1990                                "changed to driver built-in settings "
1991                                "(unknown country)\n");
1992                else
1993                        printk(KERN_INFO "cfg80211: Regulatory domain "
1994                                "changed to country: %c%c\n",
1995                                rd->alpha2[0], rd->alpha2[1]);
1996        }
1997        print_rd_rules(rd);
1998}
1999
2000static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2001{
2002        printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2003                rd->alpha2[0], rd->alpha2[1]);
2004        print_rd_rules(rd);
2005}
2006
2007#ifdef CONFIG_CFG80211_REG_DEBUG
2008static void reg_country_ie_process_debug(
2009        const struct ieee80211_regdomain *rd,
2010        const struct ieee80211_regdomain *country_ie_regdomain,
2011        const struct ieee80211_regdomain *intersected_rd)
2012{
2013        printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2014        print_regdomain_info(country_ie_regdomain);
2015        printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2016        print_regdomain_info(rd);
2017        if (intersected_rd) {
2018                printk(KERN_DEBUG "cfg80211: We intersect both of these "
2019                        "and get:\n");
2020                print_regdomain_info(intersected_rd);
2021                return;
2022        }
2023        printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2024}
2025#else
2026static inline void reg_country_ie_process_debug(
2027        const struct ieee80211_regdomain *rd,
2028        const struct ieee80211_regdomain *country_ie_regdomain,
2029        const struct ieee80211_regdomain *intersected_rd)
2030{
2031}
2032#endif
2033
2034/* Takes ownership of rd only if it doesn't fail */
2035static int __set_regdom(const struct ieee80211_regdomain *rd)
2036{
2037        const struct ieee80211_regdomain *intersected_rd = NULL;
2038        struct cfg80211_registered_device *rdev = NULL;
2039        struct wiphy *request_wiphy;
2040        /* Some basic sanity checks first */
2041
2042        if (is_world_regdom(rd->alpha2)) {
2043                if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2044                        return -EINVAL;
2045                update_world_regdomain(rd);
2046                return 0;
2047        }
2048
2049        if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2050                        !is_unknown_alpha2(rd->alpha2))
2051                return -EINVAL;
2052
2053        if (!last_request)
2054                return -EINVAL;
2055
2056        /*
2057         * Lets only bother proceeding on the same alpha2 if the current
2058         * rd is non static (it means CRDA was present and was used last)
2059         * and the pending request came in from a country IE
2060         */
2061        if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062                /*
2063                 * If someone else asked us to change the rd lets only bother
2064                 * checking if the alpha2 changes if CRDA was already called
2065                 */
2066                if (!is_old_static_regdom(cfg80211_regdomain) &&
2067                    !regdom_changes(rd->alpha2))
2068                        return -EINVAL;
2069        }
2070
2071        /*
2072         * Now lets set the regulatory domain, update all driver channels
2073         * and finally inform them of what we have done, in case they want
2074         * to review or adjust their own settings based on their own
2075         * internal EEPROM data
2076         */
2077
2078        if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2079                return -EINVAL;
2080
2081        if (!is_valid_rd(rd)) {
2082                printk(KERN_ERR "cfg80211: Invalid "
2083                        "regulatory domain detected:\n");
2084                print_regdomain_info(rd);
2085                return -EINVAL;
2086        }
2087
2088        request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2089
2090        if (!last_request->intersect) {
2091                int r;
2092
2093                if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2094                        reset_regdomains();
2095                        cfg80211_regdomain = rd;
2096                        return 0;
2097                }
2098
2099                /*
2100                 * For a driver hint, lets copy the regulatory domain the
2101                 * driver wanted to the wiphy to deal with conflicts
2102                 */
2103
2104                /*
2105                 * Userspace could have sent two replies with only
2106                 * one kernel request.
2107                 */
2108                if (request_wiphy->regd)
2109                        return -EALREADY;
2110
2111                r = reg_copy_regd(&request_wiphy->regd, rd);
2112                if (r)
2113                        return r;
2114
2115                reset_regdomains();
2116                cfg80211_regdomain = rd;
2117                return 0;
2118        }
2119
2120        /* Intersection requires a bit more work */
2121
2122        if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123
2124                intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2125                if (!intersected_rd)
2126                        return -EINVAL;
2127
2128                /*
2129                 * We can trash what CRDA provided now.
2130                 * However if a driver requested this specific regulatory
2131                 * domain we keep it for its private use
2132                 */
2133                if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2134                        request_wiphy->regd = rd;
2135                else
2136                        kfree(rd);
2137
2138                rd = NULL;
2139
2140                reset_regdomains();
2141                cfg80211_regdomain = intersected_rd;
2142
2143                return 0;
2144        }
2145
2146        /*
2147         * Country IE requests are handled a bit differently, we intersect
2148         * the country IE rd with what CRDA believes that country should have
2149         */
2150
2151        /*
2152         * Userspace could have sent two replies with only
2153         * one kernel request. By the second reply we would have
2154         * already processed and consumed the country_ie_regdomain.
2155         */
2156        if (!country_ie_regdomain)
2157                return -EALREADY;
2158        BUG_ON(rd == country_ie_regdomain);
2159
2160        /*
2161         * Intersect what CRDA returned and our what we
2162         * had built from the Country IE received
2163         */
2164
2165        intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2166
2167        reg_country_ie_process_debug(rd,
2168                                     country_ie_regdomain,
2169                                     intersected_rd);
2170
2171        kfree(country_ie_regdomain);
2172        country_ie_regdomain = NULL;
2173
2174        if (!intersected_rd)
2175                return -EINVAL;
2176
2177        rdev = wiphy_to_dev(request_wiphy);
2178
2179        rdev->country_ie_alpha2[0] = rd->alpha2[0];
2180        rdev->country_ie_alpha2[1] = rd->alpha2[1];
2181        rdev->env = last_request->country_ie_env;
2182
2183        BUG_ON(intersected_rd == rd);
2184
2185        kfree(rd);
2186        rd = NULL;
2187
2188        reset_regdomains();
2189        cfg80211_regdomain = intersected_rd;
2190
2191        return 0;
2192}
2193
2194
2195/*
2196 * Use this call to set the current regulatory domain. Conflicts with
2197 * multiple drivers can be ironed out later. Caller must've already
2198 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2199 */
2200int set_regdom(const struct ieee80211_regdomain *rd)
2201{
2202        int r;
2203
2204        assert_cfg80211_lock();
2205
2206        mutex_lock(&reg_mutex);
2207
2208        /* Note that this doesn't update the wiphys, this is done below */
2209        r = __set_regdom(rd);
2210        if (r) {
2211                kfree(rd);
2212                mutex_unlock(&reg_mutex);
2213                return r;
2214        }
2215
2216        /* This would make this whole thing pointless */
2217        if (!last_request->intersect)
2218                BUG_ON(rd != cfg80211_regdomain);
2219
2220        /* update all wiphys now with the new established regulatory domain */
2221        update_all_wiphy_regulatory(last_request->initiator);
2222
2223        print_regdomain(cfg80211_regdomain);
2224
2225        nl80211_send_reg_change_event(last_request);
2226
2227        mutex_unlock(&reg_mutex);
2228
2229        return r;
2230}
2231
2232/* Caller must hold cfg80211_mutex */
2233void reg_device_remove(struct wiphy *wiphy)
2234{
2235        struct wiphy *request_wiphy = NULL;
2236
2237        assert_cfg80211_lock();
2238
2239        mutex_lock(&reg_mutex);
2240
2241        kfree(wiphy->regd);
2242
2243        if (last_request)
2244                request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2245
2246        if (!request_wiphy || request_wiphy != wiphy)
2247                goto out;
2248
2249        last_request->wiphy_idx = WIPHY_IDX_STALE;
2250        last_request->country_ie_env = ENVIRON_ANY;
2251out:
2252        mutex_unlock(&reg_mutex);
2253}
2254
2255int regulatory_init(void)
2256{
2257        int err = 0;
2258
2259        reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2260        if (IS_ERR(reg_pdev))
2261                return PTR_ERR(reg_pdev);
2262
2263        spin_lock_init(&reg_requests_lock);
2264        spin_lock_init(&reg_pending_beacons_lock);
2265
2266#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2267        cfg80211_regdomain = static_regdom(ieee80211_regdom);
2268
2269        printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2270        print_regdomain_info(cfg80211_regdomain);
2271#else
2272        cfg80211_regdomain = cfg80211_world_regdom;
2273
2274#endif
2275        /* We always try to get an update for the static regdomain */
2276        err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2277        if (err) {
2278                if (err == -ENOMEM)
2279                        return err;
2280                /*
2281                 * N.B. kobject_uevent_env() can fail mainly for when we're out
2282                 * memory which is handled and propagated appropriately above
2283                 * but it can also fail during a netlink_broadcast() or during
2284                 * early boot for call_usermodehelper(). For now treat these
2285                 * errors as non-fatal.
2286                 */
2287                printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2288                        "to call CRDA during init");
2289#ifdef CONFIG_CFG80211_REG_DEBUG
2290                /* We want to find out exactly why when debugging */
2291                WARN_ON(err);
2292#endif
2293        }
2294
2295        /*
2296         * Finally, if the user set the module parameter treat it
2297         * as a user hint.
2298         */
2299        if (!is_world_regdom(ieee80211_regdom))
2300                regulatory_hint_user(ieee80211_regdom);
2301
2302        return 0;
2303}
2304
2305void regulatory_exit(void)
2306{
2307        struct regulatory_request *reg_request, *tmp;
2308        struct reg_beacon *reg_beacon, *btmp;
2309
2310        cancel_work_sync(&reg_work);
2311
2312        mutex_lock(&cfg80211_mutex);
2313        mutex_lock(&reg_mutex);
2314
2315        reset_regdomains();
2316
2317        kfree(country_ie_regdomain);
2318        country_ie_regdomain = NULL;
2319
2320        kfree(last_request);
2321
2322        platform_device_unregister(reg_pdev);
2323
2324        spin_lock_bh(&reg_pending_beacons_lock);
2325        if (!list_empty(&reg_pending_beacons)) {
2326                list_for_each_entry_safe(reg_beacon, btmp,
2327                                         &reg_pending_beacons, list) {
2328                        list_del(&reg_beacon->list);
2329                        kfree(reg_beacon);
2330                }
2331        }
2332        spin_unlock_bh(&reg_pending_beacons_lock);
2333
2334        if (!list_empty(&reg_beacon_list)) {
2335                list_for_each_entry_safe(reg_beacon, btmp,
2336                                         &reg_beacon_list, list) {
2337                        list_del(&reg_beacon->list);
2338                        kfree(reg_beacon);
2339                }
2340        }
2341
2342        spin_lock(&reg_requests_lock);
2343        if (!list_empty(&reg_requests_list)) {
2344                list_for_each_entry_safe(reg_request, tmp,
2345                                         &reg_requests_list, list) {
2346                        list_del(&reg_request->list);
2347                        kfree(reg_request);
2348                }
2349        }
2350        spin_unlock(&reg_requests_lock);
2351
2352        mutex_unlock(&reg_mutex);
2353        mutex_unlock(&cfg80211_mutex);
2354}
2355