linux/sound/pci/cmipci.c
<<
>>
Prefs
   1/*
   2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   4 *
   5 *   This program is free software; you can redistribute it and/or modify
   6 *   it under the terms of the GNU General Public License as published by
   7 *   the Free Software Foundation; either version 2 of the License, or
   8 *   (at your option) any later version.
   9 *
  10 *   This program is distributed in the hope that it will be useful,
  11 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *   GNU General Public License for more details.
  14 *
  15 *   You should have received a copy of the GNU General Public License
  16 *   along with this program; if not, write to the Free Software
  17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19 
  20/* Does not work. Warning may block system in capture mode */
  21/* #define USE_VAR48KRATE */
  22
  23#include <asm/io.h>
  24#include <linux/delay.h>
  25#include <linux/interrupt.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/gameport.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mutex.h>
  32#include <sound/core.h>
  33#include <sound/info.h>
  34#include <sound/control.h>
  35#include <sound/pcm.h>
  36#include <sound/rawmidi.h>
  37#include <sound/mpu401.h>
  38#include <sound/opl3.h>
  39#include <sound/sb.h>
  40#include <sound/asoundef.h>
  41#include <sound/initval.h>
  42
  43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  45MODULE_LICENSE("GPL");
  46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
  47                "{C-Media,CMI8738B},"
  48                "{C-Media,CMI8338A},"
  49                "{C-Media,CMI8338B}}");
  50
  51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
  52#define SUPPORT_JOYSTICK 1
  53#endif
  54
  55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  57static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable switches */
  58static long mpu_port[SNDRV_CARDS];
  59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  60static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  61#ifdef SUPPORT_JOYSTICK
  62static int joystick_port[SNDRV_CARDS];
  63#endif
  64
  65module_param_array(index, int, NULL, 0444);
  66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  67module_param_array(id, charp, NULL, 0444);
  68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  69module_param_array(enable, bool, NULL, 0444);
  70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  71module_param_array(mpu_port, long, NULL, 0444);
  72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  73module_param_array(fm_port, long, NULL, 0444);
  74MODULE_PARM_DESC(fm_port, "FM port.");
  75module_param_array(soft_ac3, bool, NULL, 0444);
  76MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
  77#ifdef SUPPORT_JOYSTICK
  78module_param_array(joystick_port, int, NULL, 0444);
  79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  80#endif
  81
  82/*
  83 * CM8x38 registers definition
  84 */
  85
  86#define CM_REG_FUNCTRL0         0x00
  87#define CM_RST_CH1              0x00080000
  88#define CM_RST_CH0              0x00040000
  89#define CM_CHEN1                0x00020000      /* ch1: enable */
  90#define CM_CHEN0                0x00010000      /* ch0: enable */
  91#define CM_PAUSE1               0x00000008      /* ch1: pause */
  92#define CM_PAUSE0               0x00000004      /* ch0: pause */
  93#define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
  94#define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
  95
  96#define CM_REG_FUNCTRL1         0x04
  97#define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
  98#define CM_DSFC_SHIFT           13
  99#define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
 100#define CM_ASFC_SHIFT           10
 101#define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
 102#define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
 103#define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
 104#define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
 105#define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
 106#define CM_BREQ                 0x00000010      /* bus master enabled */
 107#define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
 108#define CM_UART_EN              0x00000004      /* legacy UART */
 109#define CM_JYSTK_EN             0x00000002      /* legacy joystick */
 110#define CM_ZVPORT               0x00000001      /* ZVPORT */
 111
 112#define CM_REG_CHFORMAT         0x08
 113
 114#define CM_CHB3D5C              0x80000000      /* 5,6 channels */
 115#define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
 116#define CM_CHB3D                0x20000000      /* 4 channels */
 117
 118#define CM_CHIP_MASK1           0x1f000000
 119#define CM_CHIP_037             0x01000000
 120#define CM_SETLAT48             0x00800000      /* set latency timer 48h */
 121#define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
 122#define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
 123#define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
 124#define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
 125#define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
 126/* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
 127
 128#define CM_ADCBITLEN_MASK       0x0000C000      
 129#define CM_ADCBITLEN_16         0x00000000
 130#define CM_ADCBITLEN_15         0x00004000
 131#define CM_ADCBITLEN_14         0x00008000
 132#define CM_ADCBITLEN_13         0x0000C000
 133
 134#define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
 135#define CM_ADCDACLEN_060        0x00000000
 136#define CM_ADCDACLEN_066        0x00001000
 137#define CM_ADCDACLEN_130        0x00002000
 138#define CM_ADCDACLEN_280        0x00003000
 139
 140#define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
 141#define CM_ADCDLEN_ORIGINAL     0x00000000
 142#define CM_ADCDLEN_EXTRA        0x00001000
 143#define CM_ADCDLEN_24K          0x00002000
 144#define CM_ADCDLEN_WEIGHT       0x00003000
 145
 146#define CM_CH1_SRATE_176K       0x00000800
 147#define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
 148#define CM_CH1_SRATE_88K        0x00000400
 149#define CM_CH0_SRATE_176K       0x00000200
 150#define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
 151#define CM_CH0_SRATE_88K        0x00000100
 152#define CM_CH0_SRATE_128K       0x00000300
 153#define CM_CH0_SRATE_MASK       0x00000300
 154
 155#define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
 156#define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
 157#define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
 158#define CM_SPDLOCKED            0x00000010
 159
 160#define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
 161#define CM_CH1FMT_SHIFT         2
 162#define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
 163#define CM_CH0FMT_SHIFT         0
 164
 165#define CM_REG_INT_HLDCLR       0x0C
 166#define CM_CHIP_MASK2           0xff000000
 167#define CM_CHIP_8768            0x20000000
 168#define CM_CHIP_055             0x08000000
 169#define CM_CHIP_039             0x04000000
 170#define CM_CHIP_039_6CH         0x01000000
 171#define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
 172#define CM_TDMA_INT_EN          0x00040000
 173#define CM_CH1_INT_EN           0x00020000
 174#define CM_CH0_INT_EN           0x00010000
 175
 176#define CM_REG_INT_STATUS       0x10
 177#define CM_INTR                 0x80000000
 178#define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
 179#define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
 180#define CM_UARTINT              0x00010000
 181#define CM_LTDMAINT             0x00008000
 182#define CM_HTDMAINT             0x00004000
 183#define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
 184#define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
 185#define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
 186#define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
 187#define CM_CH1BUSY              0x00000008
 188#define CM_CH0BUSY              0x00000004
 189#define CM_CHINT1               0x00000002
 190#define CM_CHINT0               0x00000001
 191
 192#define CM_REG_LEGACY_CTRL      0x14
 193#define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
 194#define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
 195#define CM_VMPU_330             0x00000000
 196#define CM_VMPU_320             0x20000000
 197#define CM_VMPU_310             0x40000000
 198#define CM_VMPU_300             0x60000000
 199#define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
 200#define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
 201#define CM_VSBSEL_220           0x00000000
 202#define CM_VSBSEL_240           0x04000000
 203#define CM_VSBSEL_260           0x08000000
 204#define CM_VSBSEL_280           0x0C000000
 205#define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
 206#define CM_FMSEL_388            0x00000000
 207#define CM_FMSEL_3C8            0x01000000
 208#define CM_FMSEL_3E0            0x02000000
 209#define CM_FMSEL_3E8            0x03000000
 210#define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
 211#define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
 212#define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
 213#define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
 214#define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 215#define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
 216#define CM_C_EECS               0x00040000
 217#define CM_C_EEDI46             0x00020000
 218#define CM_C_EECK46             0x00010000
 219#define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
 220#define CM_CENTR2LIN            0x00004000      /* line-in as center out */
 221#define CM_BASE2LIN             0x00002000      /* line-in as bass out */
 222#define CM_EXBASEN              0x00001000      /* external bass input enable */
 223
 224#define CM_REG_MISC_CTRL        0x18
 225#define CM_PWD                  0x80000000      /* power down */
 226#define CM_RESET                0x40000000
 227#define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
 228#define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
 229#define CM_TXVX                 0x08000000      /* model 037? */
 230#define CM_N4SPK3D              0x04000000      /* copy front to rear */
 231#define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
 232#define CM_SPDIF48K             0x01000000      /* write */
 233#define CM_SPATUS48K            0x01000000      /* read */
 234#define CM_ENDBDAC              0x00800000      /* enable double dac */
 235#define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
 236#define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
 237#define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
 238#define CM_FM_EN                0x00080000      /* enable legacy FM */
 239#define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
 240#define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
 241#define CM_VIDWPDSB             0x00010000      /* model 037? */
 242#define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
 243#define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
 244#define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
 245#define CM_VIDWPPRT             0x00002000      /* model 037? */
 246#define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
 247#define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
 248#define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
 249#define CM_ENCENTER             0x00000080
 250#define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
 251#define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
 252#define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
 253#define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
 254#define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
 255#define CM_UPDDMA_2048          0x00000000
 256#define CM_UPDDMA_1024          0x00000004
 257#define CM_UPDDMA_512           0x00000008
 258#define CM_UPDDMA_256           0x0000000C              
 259#define CM_TWAIT_MASK           0x00000003      /* model 037 */
 260#define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 261#define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
 262
 263#define CM_REG_TDMA_POSITION    0x1C
 264#define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
 265#define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
 266
 267        /* byte */
 268#define CM_REG_MIXER0           0x20
 269#define CM_REG_SBVR             0x20            /* write: sb16 version */
 270#define CM_REG_DEV              0x20            /* read: hardware device version */
 271
 272#define CM_REG_MIXER21          0x21
 273#define CM_UNKNOWN_21_MASK      0x78            /* ? */
 274#define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
 275#define CM_PROINV               0x02            /* SBPro left/right channel switching */
 276#define CM_X_SB16               0x01            /* SB16 compatible */
 277
 278#define CM_REG_SB16_DATA        0x22
 279#define CM_REG_SB16_ADDR        0x23
 280
 281#define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
 282#define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 283#define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
 284#define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
 285
 286#define CM_REG_MIXER1           0x24
 287#define CM_FMMUTE               0x80    /* mute FM */
 288#define CM_FMMUTE_SHIFT         7
 289#define CM_WSMUTE               0x40    /* mute PCM */
 290#define CM_WSMUTE_SHIFT         6
 291#define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
 292#define CM_REAR2LIN_SHIFT       5
 293#define CM_REAR2FRONT           0x10    /* exchange rear/front */
 294#define CM_REAR2FRONT_SHIFT     4
 295#define CM_WAVEINL              0x08    /* digital wave rec. left chan */
 296#define CM_WAVEINL_SHIFT        3
 297#define CM_WAVEINR              0x04    /* digical wave rec. right */
 298#define CM_WAVEINR_SHIFT        2
 299#define CM_X3DEN                0x02    /* 3D surround enable */
 300#define CM_X3DEN_SHIFT          1
 301#define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
 302#define CM_CDPLAY_SHIFT         0
 303
 304#define CM_REG_MIXER2           0x25
 305#define CM_RAUXREN              0x80    /* AUX right capture */
 306#define CM_RAUXREN_SHIFT        7
 307#define CM_RAUXLEN              0x40    /* AUX left capture */
 308#define CM_RAUXLEN_SHIFT        6
 309#define CM_VAUXRM               0x20    /* AUX right mute */
 310#define CM_VAUXRM_SHIFT         5
 311#define CM_VAUXLM               0x10    /* AUX left mute */
 312#define CM_VAUXLM_SHIFT         4
 313#define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
 314#define CM_VADMIC_SHIFT         1
 315#define CM_MICGAINZ             0x01    /* mic boost */
 316#define CM_MICGAINZ_SHIFT       0
 317
 318#define CM_REG_MIXER3           0x24
 319#define CM_REG_AUX_VOL          0x26
 320#define CM_VAUXL_MASK           0xf0
 321#define CM_VAUXR_MASK           0x0f
 322
 323#define CM_REG_MISC             0x27
 324#define CM_UNKNOWN_27_MASK      0xd8    /* ? */
 325#define CM_XGPO1                0x20
 326// #define CM_XGPBIO            0x04
 327#define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
 328#define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
 329#define CM_SPDVALID             0x02    /* spdif input valid check */
 330#define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
 331
 332#define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
 333/*
 334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 335 * or identical with AC97 codec?
 336 */
 337#define CM_REG_EXTERN_CODEC     CM_REG_AC97
 338
 339/*
 340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 341 */
 342#define CM_REG_MPU_PCI          0x40
 343
 344/*
 345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 346 */
 347#define CM_REG_FM_PCI           0x50
 348
 349/*
 350 * access from SB-mixer port
 351 */
 352#define CM_REG_EXTENT_IND       0xf0
 353#define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
 354#define CM_VPHONE_SHIFT         5
 355#define CM_VPHOM                0x10    /* Phone mute control */
 356#define CM_VSPKM                0x08    /* Speaker mute control, default high */
 357#define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
 358#define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
 359#define CM_VADMIC3              0x01    /* Mic record boost */
 360
 361/*
 362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 364 * unit (readonly?).
 365 */
 366#define CM_REG_PLL              0xf8
 367
 368/*
 369 * extended registers
 370 */
 371#define CM_REG_CH0_FRAME1       0x80    /* write: base address */
 372#define CM_REG_CH0_FRAME2       0x84    /* read: current address */
 373#define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
 374#define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
 375
 376#define CM_REG_EXT_MISC         0x90
 377#define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
 378#define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
 379#define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
 380#define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
 381#define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
 382#define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
 383#define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
 384#define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
 385
 386/*
 387 * size of i/o region
 388 */
 389#define CM_EXTENT_CODEC   0x100
 390#define CM_EXTENT_MIDI    0x2
 391#define CM_EXTENT_SYNTH   0x4
 392
 393
 394/*
 395 * channels for playback / capture
 396 */
 397#define CM_CH_PLAY      0
 398#define CM_CH_CAPT      1
 399
 400/*
 401 * flags to check device open/close
 402 */
 403#define CM_OPEN_NONE    0
 404#define CM_OPEN_CH_MASK 0x01
 405#define CM_OPEN_DAC     0x10
 406#define CM_OPEN_ADC     0x20
 407#define CM_OPEN_SPDIF   0x40
 408#define CM_OPEN_MCHAN   0x80
 409#define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
 410#define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
 411#define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 412#define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
 413#define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 414#define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 415
 416
 417#if CM_CH_PLAY == 1
 418#define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
 419#define CM_PLAYBACK_SPDF        CM_SPDF_1
 420#define CM_CAPTURE_SPDF         CM_SPDF_0
 421#else
 422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 423#define CM_PLAYBACK_SPDF        CM_SPDF_0
 424#define CM_CAPTURE_SPDF         CM_SPDF_1
 425#endif
 426
 427
 428/*
 429 * driver data
 430 */
 431
 432struct cmipci_pcm {
 433        struct snd_pcm_substream *substream;
 434        u8 running;             /* dac/adc running? */
 435        u8 fmt;                 /* format bits */
 436        u8 is_dac;
 437        u8 needs_silencing;
 438        unsigned int dma_size;  /* in frames */
 439        unsigned int shift;
 440        unsigned int ch;        /* channel (0/1) */
 441        unsigned int offset;    /* physical address of the buffer */
 442};
 443
 444/* mixer elements toggled/resumed during ac3 playback */
 445struct cmipci_mixer_auto_switches {
 446        const char *name;       /* switch to toggle */
 447        int toggle_on;          /* value to change when ac3 mode */
 448};
 449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 450        {"PCM Playback Switch", 0},
 451        {"IEC958 Output Switch", 1},
 452        {"IEC958 Mix Analog", 0},
 453        // {"IEC958 Out To DAC", 1}, // no longer used
 454        {"IEC958 Loop", 0},
 455};
 456#define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
 457
 458struct cmipci {
 459        struct snd_card *card;
 460
 461        struct pci_dev *pci;
 462        unsigned int device;    /* device ID */
 463        int irq;
 464
 465        unsigned long iobase;
 466        unsigned int ctrl;      /* FUNCTRL0 current value */
 467
 468        struct snd_pcm *pcm;            /* DAC/ADC PCM */
 469        struct snd_pcm *pcm2;   /* 2nd DAC */
 470        struct snd_pcm *pcm_spdif;      /* SPDIF */
 471
 472        int chip_version;
 473        int max_channels;
 474        unsigned int can_ac3_sw: 1;
 475        unsigned int can_ac3_hw: 1;
 476        unsigned int can_multi_ch: 1;
 477        unsigned int can_96k: 1;        /* samplerate above 48k */
 478        unsigned int do_soft_ac3: 1;
 479
 480        unsigned int spdif_playback_avail: 1;   /* spdif ready? */
 481        unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
 482        int spdif_counter;      /* for software AC3 */
 483
 484        unsigned int dig_status;
 485        unsigned int dig_pcm_status;
 486
 487        struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 488
 489        int opened[2];  /* open mode */
 490        struct mutex open_mutex;
 491
 492        unsigned int mixer_insensitive: 1;
 493        struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 494        int mixer_res_status[CM_SAVED_MIXERS];
 495
 496        struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
 497
 498        /* external MIDI */
 499        struct snd_rawmidi *rmidi;
 500
 501#ifdef SUPPORT_JOYSTICK
 502        struct gameport *gameport;
 503#endif
 504
 505        spinlock_t reg_lock;
 506
 507#ifdef CONFIG_PM
 508        unsigned int saved_regs[0x20];
 509        unsigned char saved_mixers[0x20];
 510#endif
 511};
 512
 513
 514/* read/write operations for dword register */
 515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 516{
 517        outl(data, cm->iobase + cmd);
 518}
 519
 520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 521{
 522        return inl(cm->iobase + cmd);
 523}
 524
 525/* read/write operations for word register */
 526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 527{
 528        outw(data, cm->iobase + cmd);
 529}
 530
 531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 532{
 533        return inw(cm->iobase + cmd);
 534}
 535
 536/* read/write operations for byte register */
 537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 538{
 539        outb(data, cm->iobase + cmd);
 540}
 541
 542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 543{
 544        return inb(cm->iobase + cmd);
 545}
 546
 547/* bit operations for dword register */
 548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 549{
 550        unsigned int val, oval;
 551        val = oval = inl(cm->iobase + cmd);
 552        val |= flag;
 553        if (val == oval)
 554                return 0;
 555        outl(val, cm->iobase + cmd);
 556        return 1;
 557}
 558
 559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 560{
 561        unsigned int val, oval;
 562        val = oval = inl(cm->iobase + cmd);
 563        val &= ~flag;
 564        if (val == oval)
 565                return 0;
 566        outl(val, cm->iobase + cmd);
 567        return 1;
 568}
 569
 570/* bit operations for byte register */
 571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 572{
 573        unsigned char val, oval;
 574        val = oval = inb(cm->iobase + cmd);
 575        val |= flag;
 576        if (val == oval)
 577                return 0;
 578        outb(val, cm->iobase + cmd);
 579        return 1;
 580}
 581
 582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 583{
 584        unsigned char val, oval;
 585        val = oval = inb(cm->iobase + cmd);
 586        val &= ~flag;
 587        if (val == oval)
 588                return 0;
 589        outb(val, cm->iobase + cmd);
 590        return 1;
 591}
 592
 593
 594/*
 595 * PCM interface
 596 */
 597
 598/*
 599 * calculate frequency
 600 */
 601
 602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 603
 604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 605{
 606        unsigned int i;
 607
 608        for (i = 0; i < ARRAY_SIZE(rates); i++) {
 609                if (rates[i] == rate)
 610                        return i;
 611        }
 612        snd_BUG();
 613        return 0;
 614}
 615
 616#ifdef USE_VAR48KRATE
 617/*
 618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 619 * does it this way .. maybe not.  Never get any information from C-Media about
 620 * that <werner@suse.de>.
 621 */
 622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 623{
 624        unsigned int delta, tolerance;
 625        int xm, xn, xr;
 626
 627        for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 628                rate <<= 1;
 629        *n = -1;
 630        if (*r > 0xff)
 631                goto out;
 632        tolerance = rate*CM_TOLERANCE_RATE;
 633
 634        for (xn = (1+2); xn < (0x1f+2); xn++) {
 635                for (xm = (1+2); xm < (0xff+2); xm++) {
 636                        xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 637
 638                        if (xr < rate)
 639                                delta = rate - xr;
 640                        else
 641                                delta = xr - rate;
 642
 643                        /*
 644                         * If we found one, remember this,
 645                         * and try to find a closer one
 646                         */
 647                        if (delta < tolerance) {
 648                                tolerance = delta;
 649                                *m = xm - 2;
 650                                *n = xn - 2;
 651                        }
 652                }
 653        }
 654out:
 655        return (*n > -1);
 656}
 657
 658/*
 659 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
 660 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
 661 * at the register CM_REG_FUNCTRL1 (0x04).
 662 * Problem: other ways are also possible (any information about that?)
 663 */
 664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 665{
 666        unsigned int reg = CM_REG_PLL + slot;
 667        /*
 668         * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 669         * for DSFC/ASFC (000 upto 111).
 670         */
 671
 672        /* FIXME: Init (Do we've to set an other register first before programming?) */
 673
 674        /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 675        snd_cmipci_write_b(cm, reg, rate>>8);
 676        snd_cmipci_write_b(cm, reg, rate&0xff);
 677
 678        /* FIXME: Setup (Do we've to set an other register first to enable this?) */
 679}
 680#endif /* USE_VAR48KRATE */
 681
 682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
 683                                struct snd_pcm_hw_params *hw_params)
 684{
 685        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 686}
 687
 688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 689                                          struct snd_pcm_hw_params *hw_params)
 690{
 691        struct cmipci *cm = snd_pcm_substream_chip(substream);
 692        if (params_channels(hw_params) > 2) {
 693                mutex_lock(&cm->open_mutex);
 694                if (cm->opened[CM_CH_PLAY]) {
 695                        mutex_unlock(&cm->open_mutex);
 696                        return -EBUSY;
 697                }
 698                /* reserve the channel A */
 699                cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 700                mutex_unlock(&cm->open_mutex);
 701        }
 702        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 703}
 704
 705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 706{
 707        int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 708        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 709        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 710        udelay(10);
 711}
 712
 713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
 714{
 715        return snd_pcm_lib_free_pages(substream);
 716}
 717
 718
 719/*
 720 */
 721
 722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 724        .count = 3,
 725        .list = hw_channels,
 726        .mask = 0,
 727};
 728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 729        .count = 4,
 730        .list = hw_channels,
 731        .mask = 0,
 732};
 733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 734        .count = 5,
 735        .list = hw_channels,
 736        .mask = 0,
 737};
 738
 739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 740{
 741        if (channels > 2) {
 742                if (!cm->can_multi_ch || !rec->ch)
 743                        return -EINVAL;
 744                if (rec->fmt != 0x03) /* stereo 16bit only */
 745                        return -EINVAL;
 746        }
 747
 748        if (cm->can_multi_ch) {
 749                spin_lock_irq(&cm->reg_lock);
 750                if (channels > 2) {
 751                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 752                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 753                } else {
 754                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 755                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 756                }
 757                if (channels == 8)
 758                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 759                else
 760                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 761                if (channels == 6) {
 762                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 763                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 764                } else {
 765                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 766                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 767                }
 768                if (channels == 4)
 769                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 770                else
 771                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 772                spin_unlock_irq(&cm->reg_lock);
 773        }
 774        return 0;
 775}
 776
 777
 778/*
 779 * prepare playback/capture channel
 780 * channel to be used must have been set in rec->ch.
 781 */
 782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 783                                 struct snd_pcm_substream *substream)
 784{
 785        unsigned int reg, freq, freq_ext, val;
 786        unsigned int period_size;
 787        struct snd_pcm_runtime *runtime = substream->runtime;
 788
 789        rec->fmt = 0;
 790        rec->shift = 0;
 791        if (snd_pcm_format_width(runtime->format) >= 16) {
 792                rec->fmt |= 0x02;
 793                if (snd_pcm_format_width(runtime->format) > 16)
 794                        rec->shift++; /* 24/32bit */
 795        }
 796        if (runtime->channels > 1)
 797                rec->fmt |= 0x01;
 798        if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 799                snd_printd("cannot set dac channels\n");
 800                return -EINVAL;
 801        }
 802
 803        rec->offset = runtime->dma_addr;
 804        /* buffer and period sizes in frame */
 805        rec->dma_size = runtime->buffer_size << rec->shift;
 806        period_size = runtime->period_size << rec->shift;
 807        if (runtime->channels > 2) {
 808                /* multi-channels */
 809                rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 810                period_size = (period_size * runtime->channels) / 2;
 811        }
 812
 813        spin_lock_irq(&cm->reg_lock);
 814
 815        /* set buffer address */
 816        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 817        snd_cmipci_write(cm, reg, rec->offset);
 818        /* program sample counts */
 819        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 820        snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 821        snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 822
 823        /* set adc/dac flag */
 824        val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 825        if (rec->is_dac)
 826                cm->ctrl &= ~val;
 827        else
 828                cm->ctrl |= val;
 829        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 830        //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
 831
 832        /* set sample rate */
 833        freq = 0;
 834        freq_ext = 0;
 835        if (runtime->rate > 48000)
 836                switch (runtime->rate) {
 837                case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 838                case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 839                case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 840                default:     snd_BUG(); break;
 841                }
 842        else
 843                freq = snd_cmipci_rate_freq(runtime->rate);
 844        val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 845        if (rec->ch) {
 846                val &= ~CM_DSFC_MASK;
 847                val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 848        } else {
 849                val &= ~CM_ASFC_MASK;
 850                val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 851        }
 852        snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 853        //snd_printd("cmipci: functrl1 = %08x\n", val);
 854
 855        /* set format */
 856        val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 857        if (rec->ch) {
 858                val &= ~CM_CH1FMT_MASK;
 859                val |= rec->fmt << CM_CH1FMT_SHIFT;
 860        } else {
 861                val &= ~CM_CH0FMT_MASK;
 862                val |= rec->fmt << CM_CH0FMT_SHIFT;
 863        }
 864        if (cm->can_96k) {
 865                val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 866                val |= freq_ext << (rec->ch * 2);
 867        }
 868        snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 869        //snd_printd("cmipci: chformat = %08x\n", val);
 870
 871        if (!rec->is_dac && cm->chip_version) {
 872                if (runtime->rate > 44100)
 873                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 874                else
 875                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 876        }
 877
 878        rec->running = 0;
 879        spin_unlock_irq(&cm->reg_lock);
 880
 881        return 0;
 882}
 883
 884/*
 885 * PCM trigger/stop
 886 */
 887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 888                                  int cmd)
 889{
 890        unsigned int inthld, chen, reset, pause;
 891        int result = 0;
 892
 893        inthld = CM_CH0_INT_EN << rec->ch;
 894        chen = CM_CHEN0 << rec->ch;
 895        reset = CM_RST_CH0 << rec->ch;
 896        pause = CM_PAUSE0 << rec->ch;
 897
 898        spin_lock(&cm->reg_lock);
 899        switch (cmd) {
 900        case SNDRV_PCM_TRIGGER_START:
 901                rec->running = 1;
 902                /* set interrupt */
 903                snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 904                cm->ctrl |= chen;
 905                /* enable channel */
 906                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 907                //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
 908                break;
 909        case SNDRV_PCM_TRIGGER_STOP:
 910                rec->running = 0;
 911                /* disable interrupt */
 912                snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 913                /* reset */
 914                cm->ctrl &= ~chen;
 915                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 916                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 917                rec->needs_silencing = rec->is_dac;
 918                break;
 919        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 920        case SNDRV_PCM_TRIGGER_SUSPEND:
 921                cm->ctrl |= pause;
 922                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 923                break;
 924        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 925        case SNDRV_PCM_TRIGGER_RESUME:
 926                cm->ctrl &= ~pause;
 927                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 928                break;
 929        default:
 930                result = -EINVAL;
 931                break;
 932        }
 933        spin_unlock(&cm->reg_lock);
 934        return result;
 935}
 936
 937/*
 938 * return the current pointer
 939 */
 940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 941                                                struct snd_pcm_substream *substream)
 942{
 943        size_t ptr;
 944        unsigned int reg;
 945        if (!rec->running)
 946                return 0;
 947#if 1 // this seems better..
 948        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 949        ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
 950        ptr >>= rec->shift;
 951#else
 952        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 953        ptr = snd_cmipci_read(cm, reg) - rec->offset;
 954        ptr = bytes_to_frames(substream->runtime, ptr);
 955#endif
 956        if (substream->runtime->channels > 2)
 957                ptr = (ptr * 2) / substream->runtime->channels;
 958        return ptr;
 959}
 960
 961/*
 962 * playback
 963 */
 964
 965static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 966                                       int cmd)
 967{
 968        struct cmipci *cm = snd_pcm_substream_chip(substream);
 969        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 970}
 971
 972static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 973{
 974        struct cmipci *cm = snd_pcm_substream_chip(substream);
 975        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 976}
 977
 978
 979
 980/*
 981 * capture
 982 */
 983
 984static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 985                                     int cmd)
 986{
 987        struct cmipci *cm = snd_pcm_substream_chip(substream);
 988        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 989}
 990
 991static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 992{
 993        struct cmipci *cm = snd_pcm_substream_chip(substream);
 994        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 995}
 996
 997
 998/*
 999 * hw preparation for spdif
1000 */
1001
1002static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1003                                         struct snd_ctl_elem_info *uinfo)
1004{
1005        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1006        uinfo->count = 1;
1007        return 0;
1008}
1009
1010static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1011                                        struct snd_ctl_elem_value *ucontrol)
1012{
1013        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1014        int i;
1015
1016        spin_lock_irq(&chip->reg_lock);
1017        for (i = 0; i < 4; i++)
1018                ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1019        spin_unlock_irq(&chip->reg_lock);
1020        return 0;
1021}
1022
1023static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1024                                         struct snd_ctl_elem_value *ucontrol)
1025{
1026        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1027        int i, change;
1028        unsigned int val;
1029
1030        val = 0;
1031        spin_lock_irq(&chip->reg_lock);
1032        for (i = 0; i < 4; i++)
1033                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1034        change = val != chip->dig_status;
1035        chip->dig_status = val;
1036        spin_unlock_irq(&chip->reg_lock);
1037        return change;
1038}
1039
1040static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1041{
1042        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1043        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1044        .info =         snd_cmipci_spdif_default_info,
1045        .get =          snd_cmipci_spdif_default_get,
1046        .put =          snd_cmipci_spdif_default_put
1047};
1048
1049static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1050                                      struct snd_ctl_elem_info *uinfo)
1051{
1052        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1053        uinfo->count = 1;
1054        return 0;
1055}
1056
1057static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1058                                     struct snd_ctl_elem_value *ucontrol)
1059{
1060        ucontrol->value.iec958.status[0] = 0xff;
1061        ucontrol->value.iec958.status[1] = 0xff;
1062        ucontrol->value.iec958.status[2] = 0xff;
1063        ucontrol->value.iec958.status[3] = 0xff;
1064        return 0;
1065}
1066
1067static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1068{
1069        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1070        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1071        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1072        .info =         snd_cmipci_spdif_mask_info,
1073        .get =          snd_cmipci_spdif_mask_get,
1074};
1075
1076static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1077                                        struct snd_ctl_elem_info *uinfo)
1078{
1079        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1080        uinfo->count = 1;
1081        return 0;
1082}
1083
1084static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1085                                       struct snd_ctl_elem_value *ucontrol)
1086{
1087        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1088        int i;
1089
1090        spin_lock_irq(&chip->reg_lock);
1091        for (i = 0; i < 4; i++)
1092                ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1093        spin_unlock_irq(&chip->reg_lock);
1094        return 0;
1095}
1096
1097static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1098                                       struct snd_ctl_elem_value *ucontrol)
1099{
1100        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1101        int i, change;
1102        unsigned int val;
1103
1104        val = 0;
1105        spin_lock_irq(&chip->reg_lock);
1106        for (i = 0; i < 4; i++)
1107                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1108        change = val != chip->dig_pcm_status;
1109        chip->dig_pcm_status = val;
1110        spin_unlock_irq(&chip->reg_lock);
1111        return change;
1112}
1113
1114static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1115{
1116        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1117        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1118        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1119        .info =         snd_cmipci_spdif_stream_info,
1120        .get =          snd_cmipci_spdif_stream_get,
1121        .put =          snd_cmipci_spdif_stream_put
1122};
1123
1124/*
1125 */
1126
1127/* save mixer setting and mute for AC3 playback */
1128static int save_mixer_state(struct cmipci *cm)
1129{
1130        if (! cm->mixer_insensitive) {
1131                struct snd_ctl_elem_value *val;
1132                unsigned int i;
1133
1134                val = kmalloc(sizeof(*val), GFP_ATOMIC);
1135                if (!val)
1136                        return -ENOMEM;
1137                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1138                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1139                        if (ctl) {
1140                                int event;
1141                                memset(val, 0, sizeof(*val));
1142                                ctl->get(ctl, val);
1143                                cm->mixer_res_status[i] = val->value.integer.value[0];
1144                                val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1145                                event = SNDRV_CTL_EVENT_MASK_INFO;
1146                                if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1147                                        ctl->put(ctl, val); /* toggle */
1148                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1149                                }
1150                                ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1151                                snd_ctl_notify(cm->card, event, &ctl->id);
1152                        }
1153                }
1154                kfree(val);
1155                cm->mixer_insensitive = 1;
1156        }
1157        return 0;
1158}
1159
1160
1161/* restore the previously saved mixer status */
1162static void restore_mixer_state(struct cmipci *cm)
1163{
1164        if (cm->mixer_insensitive) {
1165                struct snd_ctl_elem_value *val;
1166                unsigned int i;
1167
1168                val = kmalloc(sizeof(*val), GFP_KERNEL);
1169                if (!val)
1170                        return;
1171                cm->mixer_insensitive = 0; /* at first clear this;
1172                                              otherwise the changes will be ignored */
1173                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1174                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1175                        if (ctl) {
1176                                int event;
1177
1178                                memset(val, 0, sizeof(*val));
1179                                ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1180                                ctl->get(ctl, val);
1181                                event = SNDRV_CTL_EVENT_MASK_INFO;
1182                                if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1183                                        val->value.integer.value[0] = cm->mixer_res_status[i];
1184                                        ctl->put(ctl, val);
1185                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1186                                }
1187                                snd_ctl_notify(cm->card, event, &ctl->id);
1188                        }
1189                }
1190                kfree(val);
1191        }
1192}
1193
1194/* spinlock held! */
1195static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1196{
1197        if (do_ac3) {
1198                /* AC3EN for 037 */
1199                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200                /* AC3EN for 039 */
1201                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1202        
1203                if (cm->can_ac3_hw) {
1204                        /* SPD24SEL for 037, 0x02 */
1205                        /* SPD24SEL for 039, 0x20, but cannot be set */
1206                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1208                } else { /* can_ac3_sw */
1209                        /* SPD32SEL for 037 & 039, 0x20 */
1210                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1211                        /* set 176K sample rate to fix 033 HW bug */
1212                        if (cm->chip_version == 33) {
1213                                if (rate >= 48000) {
1214                                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215                                } else {
1216                                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1217                                }
1218                        }
1219                }
1220
1221        } else {
1222                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1223                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1224
1225                if (cm->can_ac3_hw) {
1226                        /* chip model >= 37 */
1227                        if (snd_pcm_format_width(subs->runtime->format) > 16) {
1228                                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1229                                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1230                        } else {
1231                                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1232                                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1233                        }
1234                } else {
1235                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1236                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1237                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1238                }
1239        }
1240}
1241
1242static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1243{
1244        int rate, err;
1245
1246        rate = subs->runtime->rate;
1247
1248        if (up && do_ac3)
1249                if ((err = save_mixer_state(cm)) < 0)
1250                        return err;
1251
1252        spin_lock_irq(&cm->reg_lock);
1253        cm->spdif_playback_avail = up;
1254        if (up) {
1255                /* they are controlled via "IEC958 Output Switch" */
1256                /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257                /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258                if (cm->spdif_playback_enabled)
1259                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260                setup_ac3(cm, subs, do_ac3, rate);
1261
1262                if (rate == 48000 || rate == 96000)
1263                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1264                else
1265                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1266                if (rate > 48000)
1267                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1268                else
1269                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270        } else {
1271                /* they are controlled via "IEC958 Output Switch" */
1272                /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1273                /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1274                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1275                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1276                setup_ac3(cm, subs, 0, 0);
1277        }
1278        spin_unlock_irq(&cm->reg_lock);
1279        return 0;
1280}
1281
1282
1283/*
1284 * preparation
1285 */
1286
1287/* playback - enable spdif only on the certain condition */
1288static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1289{
1290        struct cmipci *cm = snd_pcm_substream_chip(substream);
1291        int rate = substream->runtime->rate;
1292        int err, do_spdif, do_ac3 = 0;
1293
1294        do_spdif = (rate >= 44100 && rate <= 96000 &&
1295                    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1296                    substream->runtime->channels == 2);
1297        if (do_spdif && cm->can_ac3_hw) 
1298                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1299        if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1300                return err;
1301        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1302}
1303
1304/* playback  (via device #2) - enable spdif always */
1305static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1306{
1307        struct cmipci *cm = snd_pcm_substream_chip(substream);
1308        int err, do_ac3;
1309
1310        if (cm->can_ac3_hw) 
1311                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1312        else
1313                do_ac3 = 1; /* doesn't matter */
1314        if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1315                return err;
1316        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1317}
1318
1319/*
1320 * Apparently, the samples last played on channel A stay in some buffer, even
1321 * after the channel is reset, and get added to the data for the rear DACs when
1322 * playing a multichannel stream on channel B.  This is likely to generate
1323 * wraparounds and thus distortions.
1324 * To avoid this, we play at least one zero sample after the actual stream has
1325 * stopped.
1326 */
1327static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1328{
1329        struct snd_pcm_runtime *runtime = rec->substream->runtime;
1330        unsigned int reg, val;
1331
1332        if (rec->needs_silencing && runtime && runtime->dma_area) {
1333                /* set up a small silence buffer */
1334                memset(runtime->dma_area, 0, PAGE_SIZE);
1335                reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1336                val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1337                snd_cmipci_write(cm, reg, val);
1338        
1339                /* configure for 16 bits, 2 channels, 8 kHz */
1340                if (runtime->channels > 2)
1341                        set_dac_channels(cm, rec, 2);
1342                spin_lock_irq(&cm->reg_lock);
1343                val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1344                val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1345                val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1346                snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1347                val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1348                val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1349                val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1350                if (cm->can_96k)
1351                        val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1352                snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1353        
1354                /* start stream (we don't need interrupts) */
1355                cm->ctrl |= CM_CHEN0 << rec->ch;
1356                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1357                spin_unlock_irq(&cm->reg_lock);
1358
1359                msleep(1);
1360
1361                /* stop and reset stream */
1362                spin_lock_irq(&cm->reg_lock);
1363                cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1364                val = CM_RST_CH0 << rec->ch;
1365                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1366                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1367                spin_unlock_irq(&cm->reg_lock);
1368
1369                rec->needs_silencing = 0;
1370        }
1371}
1372
1373static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1374{
1375        struct cmipci *cm = snd_pcm_substream_chip(substream);
1376        setup_spdif_playback(cm, substream, 0, 0);
1377        restore_mixer_state(cm);
1378        snd_cmipci_silence_hack(cm, &cm->channel[0]);
1379        return snd_cmipci_hw_free(substream);
1380}
1381
1382static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1383{
1384        struct cmipci *cm = snd_pcm_substream_chip(substream);
1385        snd_cmipci_silence_hack(cm, &cm->channel[1]);
1386        return snd_cmipci_hw_free(substream);
1387}
1388
1389/* capture */
1390static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1391{
1392        struct cmipci *cm = snd_pcm_substream_chip(substream);
1393        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1394}
1395
1396/* capture with spdif (via device #2) */
1397static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1398{
1399        struct cmipci *cm = snd_pcm_substream_chip(substream);
1400
1401        spin_lock_irq(&cm->reg_lock);
1402        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1403        if (cm->can_96k) {
1404                if (substream->runtime->rate > 48000)
1405                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1406                else
1407                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1408        }
1409        if (snd_pcm_format_width(substream->runtime->format) > 16)
1410                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1411        else
1412                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1413
1414        spin_unlock_irq(&cm->reg_lock);
1415
1416        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1417}
1418
1419static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1420{
1421        struct cmipci *cm = snd_pcm_substream_chip(subs);
1422
1423        spin_lock_irq(&cm->reg_lock);
1424        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1425        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1426        spin_unlock_irq(&cm->reg_lock);
1427
1428        return snd_cmipci_hw_free(subs);
1429}
1430
1431
1432/*
1433 * interrupt handler
1434 */
1435static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1436{
1437        struct cmipci *cm = dev_id;
1438        unsigned int status, mask = 0;
1439        
1440        /* fastpath out, to ease interrupt sharing */
1441        status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1442        if (!(status & CM_INTR))
1443                return IRQ_NONE;
1444
1445        /* acknowledge interrupt */
1446        spin_lock(&cm->reg_lock);
1447        if (status & CM_CHINT0)
1448                mask |= CM_CH0_INT_EN;
1449        if (status & CM_CHINT1)
1450                mask |= CM_CH1_INT_EN;
1451        snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1452        snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1453        spin_unlock(&cm->reg_lock);
1454
1455        if (cm->rmidi && (status & CM_UARTINT))
1456                snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1457
1458        if (cm->pcm) {
1459                if ((status & CM_CHINT0) && cm->channel[0].running)
1460                        snd_pcm_period_elapsed(cm->channel[0].substream);
1461                if ((status & CM_CHINT1) && cm->channel[1].running)
1462                        snd_pcm_period_elapsed(cm->channel[1].substream);
1463        }
1464        return IRQ_HANDLED;
1465}
1466
1467/*
1468 * h/w infos
1469 */
1470
1471/* playback on channel A */
1472static struct snd_pcm_hardware snd_cmipci_playback =
1473{
1474        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1475                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1476                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1477        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1478        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1479        .rate_min =             5512,
1480        .rate_max =             48000,
1481        .channels_min =         1,
1482        .channels_max =         2,
1483        .buffer_bytes_max =     (128*1024),
1484        .period_bytes_min =     64,
1485        .period_bytes_max =     (128*1024),
1486        .periods_min =          2,
1487        .periods_max =          1024,
1488        .fifo_size =            0,
1489};
1490
1491/* capture on channel B */
1492static struct snd_pcm_hardware snd_cmipci_capture =
1493{
1494        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1495                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1496                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1497        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1498        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1499        .rate_min =             5512,
1500        .rate_max =             48000,
1501        .channels_min =         1,
1502        .channels_max =         2,
1503        .buffer_bytes_max =     (128*1024),
1504        .period_bytes_min =     64,
1505        .period_bytes_max =     (128*1024),
1506        .periods_min =          2,
1507        .periods_max =          1024,
1508        .fifo_size =            0,
1509};
1510
1511/* playback on channel B - stereo 16bit only? */
1512static struct snd_pcm_hardware snd_cmipci_playback2 =
1513{
1514        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1515                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1516                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1517        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1518        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1519        .rate_min =             5512,
1520        .rate_max =             48000,
1521        .channels_min =         2,
1522        .channels_max =         2,
1523        .buffer_bytes_max =     (128*1024),
1524        .period_bytes_min =     64,
1525        .period_bytes_max =     (128*1024),
1526        .periods_min =          2,
1527        .periods_max =          1024,
1528        .fifo_size =            0,
1529};
1530
1531/* spdif playback on channel A */
1532static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1533{
1534        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1535                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1536                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1537        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1538        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1539        .rate_min =             44100,
1540        .rate_max =             48000,
1541        .channels_min =         2,
1542        .channels_max =         2,
1543        .buffer_bytes_max =     (128*1024),
1544        .period_bytes_min =     64,
1545        .period_bytes_max =     (128*1024),
1546        .periods_min =          2,
1547        .periods_max =          1024,
1548        .fifo_size =            0,
1549};
1550
1551/* spdif playback on channel A (32bit, IEC958 subframes) */
1552static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1553{
1554        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1555                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1556                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1557        .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1558        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1559        .rate_min =             44100,
1560        .rate_max =             48000,
1561        .channels_min =         2,
1562        .channels_max =         2,
1563        .buffer_bytes_max =     (128*1024),
1564        .period_bytes_min =     64,
1565        .period_bytes_max =     (128*1024),
1566        .periods_min =          2,
1567        .periods_max =          1024,
1568        .fifo_size =            0,
1569};
1570
1571/* spdif capture on channel B */
1572static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1573{
1574        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1575                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1576                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1577        .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1578                                SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1579        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1580        .rate_min =             44100,
1581        .rate_max =             48000,
1582        .channels_min =         2,
1583        .channels_max =         2,
1584        .buffer_bytes_max =     (128*1024),
1585        .period_bytes_min =     64,
1586        .period_bytes_max =     (128*1024),
1587        .periods_min =          2,
1588        .periods_max =          1024,
1589        .fifo_size =            0,
1590};
1591
1592static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1593                        32000, 44100, 48000, 88200, 96000, 128000 };
1594static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1595                .count = ARRAY_SIZE(rate_constraints),
1596                .list = rate_constraints,
1597                .mask = 0,
1598};
1599
1600/*
1601 * check device open/close
1602 */
1603static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1604{
1605        int ch = mode & CM_OPEN_CH_MASK;
1606
1607        /* FIXME: a file should wait until the device becomes free
1608         * when it's opened on blocking mode.  however, since the current
1609         * pcm framework doesn't pass file pointer before actually opened,
1610         * we can't know whether blocking mode or not in open callback..
1611         */
1612        mutex_lock(&cm->open_mutex);
1613        if (cm->opened[ch]) {
1614                mutex_unlock(&cm->open_mutex);
1615                return -EBUSY;
1616        }
1617        cm->opened[ch] = mode;
1618        cm->channel[ch].substream = subs;
1619        if (! (mode & CM_OPEN_DAC)) {
1620                /* disable dual DAC mode */
1621                cm->channel[ch].is_dac = 0;
1622                spin_lock_irq(&cm->reg_lock);
1623                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1624                spin_unlock_irq(&cm->reg_lock);
1625        }
1626        mutex_unlock(&cm->open_mutex);
1627        return 0;
1628}
1629
1630static void close_device_check(struct cmipci *cm, int mode)
1631{
1632        int ch = mode & CM_OPEN_CH_MASK;
1633
1634        mutex_lock(&cm->open_mutex);
1635        if (cm->opened[ch] == mode) {
1636                if (cm->channel[ch].substream) {
1637                        snd_cmipci_ch_reset(cm, ch);
1638                        cm->channel[ch].running = 0;
1639                        cm->channel[ch].substream = NULL;
1640                }
1641                cm->opened[ch] = 0;
1642                if (! cm->channel[ch].is_dac) {
1643                        /* enable dual DAC mode again */
1644                        cm->channel[ch].is_dac = 1;
1645                        spin_lock_irq(&cm->reg_lock);
1646                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1647                        spin_unlock_irq(&cm->reg_lock);
1648                }
1649        }
1650        mutex_unlock(&cm->open_mutex);
1651}
1652
1653/*
1654 */
1655
1656static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1657{
1658        struct cmipci *cm = snd_pcm_substream_chip(substream);
1659        struct snd_pcm_runtime *runtime = substream->runtime;
1660        int err;
1661
1662        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1663                return err;
1664        runtime->hw = snd_cmipci_playback;
1665        if (cm->chip_version == 68) {
1666                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1667                                     SNDRV_PCM_RATE_96000;
1668                runtime->hw.rate_max = 96000;
1669        } else if (cm->chip_version == 55) {
1670                err = snd_pcm_hw_constraint_list(runtime, 0,
1671                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1672                if (err < 0)
1673                        return err;
1674                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1675                runtime->hw.rate_max = 128000;
1676        }
1677        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1678        cm->dig_pcm_status = cm->dig_status;
1679        return 0;
1680}
1681
1682static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1683{
1684        struct cmipci *cm = snd_pcm_substream_chip(substream);
1685        struct snd_pcm_runtime *runtime = substream->runtime;
1686        int err;
1687
1688        if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1689                return err;
1690        runtime->hw = snd_cmipci_capture;
1691        if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1692                runtime->hw.rate_min = 41000;
1693                runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1694        } else if (cm->chip_version == 55) {
1695                err = snd_pcm_hw_constraint_list(runtime, 0,
1696                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1697                if (err < 0)
1698                        return err;
1699                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1700                runtime->hw.rate_max = 128000;
1701        }
1702        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1703        return 0;
1704}
1705
1706static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1707{
1708        struct cmipci *cm = snd_pcm_substream_chip(substream);
1709        struct snd_pcm_runtime *runtime = substream->runtime;
1710        int err;
1711
1712        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1713                return err;
1714        runtime->hw = snd_cmipci_playback2;
1715        mutex_lock(&cm->open_mutex);
1716        if (! cm->opened[CM_CH_PLAY]) {
1717                if (cm->can_multi_ch) {
1718                        runtime->hw.channels_max = cm->max_channels;
1719                        if (cm->max_channels == 4)
1720                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1721                        else if (cm->max_channels == 6)
1722                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1723                        else if (cm->max_channels == 8)
1724                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1725                }
1726        }
1727        mutex_unlock(&cm->open_mutex);
1728        if (cm->chip_version == 68) {
1729                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1730                                     SNDRV_PCM_RATE_96000;
1731                runtime->hw.rate_max = 96000;
1732        } else if (cm->chip_version == 55) {
1733                err = snd_pcm_hw_constraint_list(runtime, 0,
1734                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1735                if (err < 0)
1736                        return err;
1737                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1738                runtime->hw.rate_max = 128000;
1739        }
1740        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1741        return 0;
1742}
1743
1744static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1745{
1746        struct cmipci *cm = snd_pcm_substream_chip(substream);
1747        struct snd_pcm_runtime *runtime = substream->runtime;
1748        int err;
1749
1750        if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1751                return err;
1752        if (cm->can_ac3_hw) {
1753                runtime->hw = snd_cmipci_playback_spdif;
1754                if (cm->chip_version >= 37) {
1755                        runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1756                        snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1757                }
1758                if (cm->can_96k) {
1759                        runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1760                                             SNDRV_PCM_RATE_96000;
1761                        runtime->hw.rate_max = 96000;
1762                }
1763        } else {
1764                runtime->hw = snd_cmipci_playback_iec958_subframe;
1765        }
1766        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1767        cm->dig_pcm_status = cm->dig_status;
1768        return 0;
1769}
1770
1771static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1772{
1773        struct cmipci *cm = snd_pcm_substream_chip(substream);
1774        struct snd_pcm_runtime *runtime = substream->runtime;
1775        int err;
1776
1777        if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1778                return err;
1779        runtime->hw = snd_cmipci_capture_spdif;
1780        if (cm->can_96k && !(cm->chip_version == 68)) {
1781                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1782                                     SNDRV_PCM_RATE_96000;
1783                runtime->hw.rate_max = 96000;
1784        }
1785        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1786        return 0;
1787}
1788
1789
1790/*
1791 */
1792
1793static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1794{
1795        struct cmipci *cm = snd_pcm_substream_chip(substream);
1796        close_device_check(cm, CM_OPEN_PLAYBACK);
1797        return 0;
1798}
1799
1800static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1801{
1802        struct cmipci *cm = snd_pcm_substream_chip(substream);
1803        close_device_check(cm, CM_OPEN_CAPTURE);
1804        return 0;
1805}
1806
1807static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1808{
1809        struct cmipci *cm = snd_pcm_substream_chip(substream);
1810        close_device_check(cm, CM_OPEN_PLAYBACK2);
1811        close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1812        return 0;
1813}
1814
1815static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1816{
1817        struct cmipci *cm = snd_pcm_substream_chip(substream);
1818        close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1819        return 0;
1820}
1821
1822static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1823{
1824        struct cmipci *cm = snd_pcm_substream_chip(substream);
1825        close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1826        return 0;
1827}
1828
1829
1830/*
1831 */
1832
1833static struct snd_pcm_ops snd_cmipci_playback_ops = {
1834        .open =         snd_cmipci_playback_open,
1835        .close =        snd_cmipci_playback_close,
1836        .ioctl =        snd_pcm_lib_ioctl,
1837        .hw_params =    snd_cmipci_hw_params,
1838        .hw_free =      snd_cmipci_playback_hw_free,
1839        .prepare =      snd_cmipci_playback_prepare,
1840        .trigger =      snd_cmipci_playback_trigger,
1841        .pointer =      snd_cmipci_playback_pointer,
1842};
1843
1844static struct snd_pcm_ops snd_cmipci_capture_ops = {
1845        .open =         snd_cmipci_capture_open,
1846        .close =        snd_cmipci_capture_close,
1847        .ioctl =        snd_pcm_lib_ioctl,
1848        .hw_params =    snd_cmipci_hw_params,
1849        .hw_free =      snd_cmipci_hw_free,
1850        .prepare =      snd_cmipci_capture_prepare,
1851        .trigger =      snd_cmipci_capture_trigger,
1852        .pointer =      snd_cmipci_capture_pointer,
1853};
1854
1855static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1856        .open =         snd_cmipci_playback2_open,
1857        .close =        snd_cmipci_playback2_close,
1858        .ioctl =        snd_pcm_lib_ioctl,
1859        .hw_params =    snd_cmipci_playback2_hw_params,
1860        .hw_free =      snd_cmipci_playback2_hw_free,
1861        .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1862        .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1863        .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1864};
1865
1866static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1867        .open =         snd_cmipci_playback_spdif_open,
1868        .close =        snd_cmipci_playback_spdif_close,
1869        .ioctl =        snd_pcm_lib_ioctl,
1870        .hw_params =    snd_cmipci_hw_params,
1871        .hw_free =      snd_cmipci_playback_hw_free,
1872        .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1873        .trigger =      snd_cmipci_playback_trigger,
1874        .pointer =      snd_cmipci_playback_pointer,
1875};
1876
1877static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1878        .open =         snd_cmipci_capture_spdif_open,
1879        .close =        snd_cmipci_capture_spdif_close,
1880        .ioctl =        snd_pcm_lib_ioctl,
1881        .hw_params =    snd_cmipci_hw_params,
1882        .hw_free =      snd_cmipci_capture_spdif_hw_free,
1883        .prepare =      snd_cmipci_capture_spdif_prepare,
1884        .trigger =      snd_cmipci_capture_trigger,
1885        .pointer =      snd_cmipci_capture_pointer,
1886};
1887
1888
1889/*
1890 */
1891
1892static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1893{
1894        struct snd_pcm *pcm;
1895        int err;
1896
1897        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1898        if (err < 0)
1899                return err;
1900
1901        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1902        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1903
1904        pcm->private_data = cm;
1905        pcm->info_flags = 0;
1906        strcpy(pcm->name, "C-Media PCI DAC/ADC");
1907        cm->pcm = pcm;
1908
1909        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1910                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1911
1912        return 0;
1913}
1914
1915static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1916{
1917        struct snd_pcm *pcm;
1918        int err;
1919
1920        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1921        if (err < 0)
1922                return err;
1923
1924        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1925
1926        pcm->private_data = cm;
1927        pcm->info_flags = 0;
1928        strcpy(pcm->name, "C-Media PCI 2nd DAC");
1929        cm->pcm2 = pcm;
1930
1931        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1932                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1933
1934        return 0;
1935}
1936
1937static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1938{
1939        struct snd_pcm *pcm;
1940        int err;
1941
1942        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1943        if (err < 0)
1944                return err;
1945
1946        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1947        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1948
1949        pcm->private_data = cm;
1950        pcm->info_flags = 0;
1951        strcpy(pcm->name, "C-Media PCI IEC958");
1952        cm->pcm_spdif = pcm;
1953
1954        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1955                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1956
1957        return 0;
1958}
1959
1960/*
1961 * mixer interface:
1962 * - CM8338/8738 has a compatible mixer interface with SB16, but
1963 *   lack of some elements like tone control, i/o gain and AGC.
1964 * - Access to native registers:
1965 *   - A 3D switch
1966 *   - Output mute switches
1967 */
1968
1969static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1970{
1971        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1972        outb(data, s->iobase + CM_REG_SB16_DATA);
1973}
1974
1975static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1976{
1977        unsigned char v;
1978
1979        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1980        v = inb(s->iobase + CM_REG_SB16_DATA);
1981        return v;
1982}
1983
1984/*
1985 * general mixer element
1986 */
1987struct cmipci_sb_reg {
1988        unsigned int left_reg, right_reg;
1989        unsigned int left_shift, right_shift;
1990        unsigned int mask;
1991        unsigned int invert: 1;
1992        unsigned int stereo: 1;
1993};
1994
1995#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1996 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1997
1998#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1999{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2000  .info = snd_cmipci_info_volume, \
2001  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2002  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2003}
2004
2005#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2006#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2007#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2008#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2009
2010static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2011{
2012        r->left_reg = val & 0xff;
2013        r->right_reg = (val >> 8) & 0xff;
2014        r->left_shift = (val >> 16) & 0x07;
2015        r->right_shift = (val >> 19) & 0x07;
2016        r->invert = (val >> 22) & 1;
2017        r->stereo = (val >> 23) & 1;
2018        r->mask = (val >> 24) & 0xff;
2019}
2020
2021static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2022                                  struct snd_ctl_elem_info *uinfo)
2023{
2024        struct cmipci_sb_reg reg;
2025
2026        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2027        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2028        uinfo->count = reg.stereo + 1;
2029        uinfo->value.integer.min = 0;
2030        uinfo->value.integer.max = reg.mask;
2031        return 0;
2032}
2033 
2034static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2035                                 struct snd_ctl_elem_value *ucontrol)
2036{
2037        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2038        struct cmipci_sb_reg reg;
2039        int val;
2040
2041        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2042        spin_lock_irq(&cm->reg_lock);
2043        val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2044        if (reg.invert)
2045                val = reg.mask - val;
2046        ucontrol->value.integer.value[0] = val;
2047        if (reg.stereo) {
2048                val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2049                if (reg.invert)
2050                        val = reg.mask - val;
2051                 ucontrol->value.integer.value[1] = val;
2052        }
2053        spin_unlock_irq(&cm->reg_lock);
2054        return 0;
2055}
2056
2057static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2058                                 struct snd_ctl_elem_value *ucontrol)
2059{
2060        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2061        struct cmipci_sb_reg reg;
2062        int change;
2063        int left, right, oleft, oright;
2064
2065        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2066        left = ucontrol->value.integer.value[0] & reg.mask;
2067        if (reg.invert)
2068                left = reg.mask - left;
2069        left <<= reg.left_shift;
2070        if (reg.stereo) {
2071                right = ucontrol->value.integer.value[1] & reg.mask;
2072                if (reg.invert)
2073                        right = reg.mask - right;
2074                right <<= reg.right_shift;
2075        } else
2076                right = 0;
2077        spin_lock_irq(&cm->reg_lock);
2078        oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2079        left |= oleft & ~(reg.mask << reg.left_shift);
2080        change = left != oleft;
2081        if (reg.stereo) {
2082                if (reg.left_reg != reg.right_reg) {
2083                        snd_cmipci_mixer_write(cm, reg.left_reg, left);
2084                        oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2085                } else
2086                        oright = left;
2087                right |= oright & ~(reg.mask << reg.right_shift);
2088                change |= right != oright;
2089                snd_cmipci_mixer_write(cm, reg.right_reg, right);
2090        } else
2091                snd_cmipci_mixer_write(cm, reg.left_reg, left);
2092        spin_unlock_irq(&cm->reg_lock);
2093        return change;
2094}
2095
2096/*
2097 * input route (left,right) -> (left,right)
2098 */
2099#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2100{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2101  .info = snd_cmipci_info_input_sw, \
2102  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2103  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2104}
2105
2106static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2107                                    struct snd_ctl_elem_info *uinfo)
2108{
2109        uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2110        uinfo->count = 4;
2111        uinfo->value.integer.min = 0;
2112        uinfo->value.integer.max = 1;
2113        return 0;
2114}
2115 
2116static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2117                                   struct snd_ctl_elem_value *ucontrol)
2118{
2119        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2120        struct cmipci_sb_reg reg;
2121        int val1, val2;
2122
2123        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124        spin_lock_irq(&cm->reg_lock);
2125        val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126        val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127        spin_unlock_irq(&cm->reg_lock);
2128        ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2129        ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2130        ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2131        ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2132        return 0;
2133}
2134
2135static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2136                                   struct snd_ctl_elem_value *ucontrol)
2137{
2138        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2139        struct cmipci_sb_reg reg;
2140        int change;
2141        int val1, val2, oval1, oval2;
2142
2143        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2144        spin_lock_irq(&cm->reg_lock);
2145        oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2146        oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2147        val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2148        val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149        val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2150        val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2151        val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2152        val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2153        change = val1 != oval1 || val2 != oval2;
2154        snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2155        snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2156        spin_unlock_irq(&cm->reg_lock);
2157        return change;
2158}
2159
2160/*
2161 * native mixer switches/volumes
2162 */
2163
2164#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2165{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2166  .info = snd_cmipci_info_native_mixer, \
2167  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2168  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2169}
2170
2171#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2172{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2173  .info = snd_cmipci_info_native_mixer, \
2174  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2175  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2176}
2177
2178#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2179{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180  .info = snd_cmipci_info_native_mixer, \
2181  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2183}
2184
2185#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187  .info = snd_cmipci_info_native_mixer, \
2188  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2190}
2191
2192static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2193                                        struct snd_ctl_elem_info *uinfo)
2194{
2195        struct cmipci_sb_reg reg;
2196
2197        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2198        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2199        uinfo->count = reg.stereo + 1;
2200        uinfo->value.integer.min = 0;
2201        uinfo->value.integer.max = reg.mask;
2202        return 0;
2203
2204}
2205
2206static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2207                                       struct snd_ctl_elem_value *ucontrol)
2208{
2209        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2210        struct cmipci_sb_reg reg;
2211        unsigned char oreg, val;
2212
2213        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2214        spin_lock_irq(&cm->reg_lock);
2215        oreg = inb(cm->iobase + reg.left_reg);
2216        val = (oreg >> reg.left_shift) & reg.mask;
2217        if (reg.invert)
2218                val = reg.mask - val;
2219        ucontrol->value.integer.value[0] = val;
2220        if (reg.stereo) {
2221                val = (oreg >> reg.right_shift) & reg.mask;
2222                if (reg.invert)
2223                        val = reg.mask - val;
2224                ucontrol->value.integer.value[1] = val;
2225        }
2226        spin_unlock_irq(&cm->reg_lock);
2227        return 0;
2228}
2229
2230static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2231                                       struct snd_ctl_elem_value *ucontrol)
2232{
2233        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2234        struct cmipci_sb_reg reg;
2235        unsigned char oreg, nreg, val;
2236
2237        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2238        spin_lock_irq(&cm->reg_lock);
2239        oreg = inb(cm->iobase + reg.left_reg);
2240        val = ucontrol->value.integer.value[0] & reg.mask;
2241        if (reg.invert)
2242                val = reg.mask - val;
2243        nreg = oreg & ~(reg.mask << reg.left_shift);
2244        nreg |= (val << reg.left_shift);
2245        if (reg.stereo) {
2246                val = ucontrol->value.integer.value[1] & reg.mask;
2247                if (reg.invert)
2248                        val = reg.mask - val;
2249                nreg &= ~(reg.mask << reg.right_shift);
2250                nreg |= (val << reg.right_shift);
2251        }
2252        outb(nreg, cm->iobase + reg.left_reg);
2253        spin_unlock_irq(&cm->reg_lock);
2254        return (nreg != oreg);
2255}
2256
2257/*
2258 * special case - check mixer sensitivity
2259 */
2260static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2261                                                 struct snd_ctl_elem_value *ucontrol)
2262{
2263        //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2264        return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2265}
2266
2267static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2268                                                 struct snd_ctl_elem_value *ucontrol)
2269{
2270        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2271        if (cm->mixer_insensitive) {
2272                /* ignored */
2273                return 0;
2274        }
2275        return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2276}
2277
2278
2279static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2280        CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2281        CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2282        CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2283        //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2284        { /* switch with sensitivity */
2285                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2286                .name = "PCM Playback Switch",
2287                .info = snd_cmipci_info_native_mixer,
2288                .get = snd_cmipci_get_native_mixer_sensitive,
2289                .put = snd_cmipci_put_native_mixer_sensitive,
2290                .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2291        },
2292        CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2293        CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2294        CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2295        CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2296        CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2297        CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2298        CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2299        CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2300        CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2301        CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2302        CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2303        CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2304        CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2305        CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2306        CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2307        CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2308        CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2309        CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2310        CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2311        CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2312        CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2313        CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2314        CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2315};
2316
2317/*
2318 * other switches
2319 */
2320
2321struct cmipci_switch_args {
2322        int reg;                /* register index */
2323        unsigned int mask;      /* mask bits */
2324        unsigned int mask_on;   /* mask bits to turn on */
2325        unsigned int is_byte: 1;                /* byte access? */
2326        unsigned int ac3_sensitive: 1;  /* access forbidden during
2327                                         * non-audio operation?
2328                                         */
2329};
2330
2331#define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2332
2333static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2334                                   struct snd_ctl_elem_value *ucontrol,
2335                                   struct cmipci_switch_args *args)
2336{
2337        unsigned int val;
2338        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2339
2340        spin_lock_irq(&cm->reg_lock);
2341        if (args->ac3_sensitive && cm->mixer_insensitive) {
2342                ucontrol->value.integer.value[0] = 0;
2343                spin_unlock_irq(&cm->reg_lock);
2344                return 0;
2345        }
2346        if (args->is_byte)
2347                val = inb(cm->iobase + args->reg);
2348        else
2349                val = snd_cmipci_read(cm, args->reg);
2350        ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2351        spin_unlock_irq(&cm->reg_lock);
2352        return 0;
2353}
2354
2355static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2356                                  struct snd_ctl_elem_value *ucontrol)
2357{
2358        struct cmipci_switch_args *args;
2359        args = (struct cmipci_switch_args *)kcontrol->private_value;
2360        if (snd_BUG_ON(!args))
2361                return -EINVAL;
2362        return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2363}
2364
2365static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2366                                   struct snd_ctl_elem_value *ucontrol,
2367                                   struct cmipci_switch_args *args)
2368{
2369        unsigned int val;
2370        int change;
2371        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2372
2373        spin_lock_irq(&cm->reg_lock);
2374        if (args->ac3_sensitive && cm->mixer_insensitive) {
2375                /* ignored */
2376                spin_unlock_irq(&cm->reg_lock);
2377                return 0;
2378        }
2379        if (args->is_byte)
2380                val = inb(cm->iobase + args->reg);
2381        else
2382                val = snd_cmipci_read(cm, args->reg);
2383        change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2384                        args->mask_on : (args->mask & ~args->mask_on));
2385        if (change) {
2386                val &= ~args->mask;
2387                if (ucontrol->value.integer.value[0])
2388                        val |= args->mask_on;
2389                else
2390                        val |= (args->mask & ~args->mask_on);
2391                if (args->is_byte)
2392                        outb((unsigned char)val, cm->iobase + args->reg);
2393                else
2394                        snd_cmipci_write(cm, args->reg, val);
2395        }
2396        spin_unlock_irq(&cm->reg_lock);
2397        return change;
2398}
2399
2400static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2401                                  struct snd_ctl_elem_value *ucontrol)
2402{
2403        struct cmipci_switch_args *args;
2404        args = (struct cmipci_switch_args *)kcontrol->private_value;
2405        if (snd_BUG_ON(!args))
2406                return -EINVAL;
2407        return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2408}
2409
2410#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2411static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2412  .reg = xreg, \
2413  .mask = xmask, \
2414  .mask_on = xmask_on, \
2415  .is_byte = xis_byte, \
2416  .ac3_sensitive = xac3, \
2417}
2418        
2419#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2420        DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2421
2422#if 0 /* these will be controlled in pcm device */
2423DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2424DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2425#endif
2426DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2427DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2428DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2429DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2430DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2431DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2432DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2433DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2434// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2435DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2436DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2437/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2438DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2439DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2440#if CM_CH_PLAY == 1
2441DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2442#else
2443DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2444#endif
2445DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2446// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2447// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2448// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2449DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2450
2451#define DEFINE_SWITCH(sname, stype, sarg) \
2452{ .name = sname, \
2453  .iface = stype, \
2454  .info = snd_cmipci_uswitch_info, \
2455  .get = snd_cmipci_uswitch_get, \
2456  .put = snd_cmipci_uswitch_put, \
2457  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2458}
2459
2460#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2461#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2462
2463
2464/*
2465 * callbacks for spdif output switch
2466 * needs toggle two registers..
2467 */
2468static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2469                                        struct snd_ctl_elem_value *ucontrol)
2470{
2471        int changed;
2472        changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2473        changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2474        return changed;
2475}
2476
2477static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2478                                        struct snd_ctl_elem_value *ucontrol)
2479{
2480        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2481        int changed;
2482        changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2483        changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2484        if (changed) {
2485                if (ucontrol->value.integer.value[0]) {
2486                        if (chip->spdif_playback_avail)
2487                                snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2488                } else {
2489                        if (chip->spdif_playback_avail)
2490                                snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2491                }
2492        }
2493        chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2494        return changed;
2495}
2496
2497
2498static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2499                                        struct snd_ctl_elem_info *uinfo)
2500{
2501        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2502        static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2503        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2504        uinfo->count = 1;
2505        uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2506        if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2507                uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2508        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2509        return 0;
2510}
2511
2512static inline unsigned int get_line_in_mode(struct cmipci *cm)
2513{
2514        unsigned int val;
2515        if (cm->chip_version >= 39) {
2516                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2517                if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2518                        return 2;
2519        }
2520        val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2521        if (val & CM_REAR2LIN)
2522                return 1;
2523        return 0;
2524}
2525
2526static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2527                                       struct snd_ctl_elem_value *ucontrol)
2528{
2529        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2530
2531        spin_lock_irq(&cm->reg_lock);
2532        ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2533        spin_unlock_irq(&cm->reg_lock);
2534        return 0;
2535}
2536
2537static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2538                                       struct snd_ctl_elem_value *ucontrol)
2539{
2540        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2541        int change;
2542
2543        spin_lock_irq(&cm->reg_lock);
2544        if (ucontrol->value.enumerated.item[0] == 2)
2545                change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2546        else
2547                change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2548        if (ucontrol->value.enumerated.item[0] == 1)
2549                change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2550        else
2551                change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2552        spin_unlock_irq(&cm->reg_lock);
2553        return change;
2554}
2555
2556static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2557                                       struct snd_ctl_elem_info *uinfo)
2558{
2559        static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2560        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2561        uinfo->count = 1;
2562        uinfo->value.enumerated.items = 2;
2563        if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2564                uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2565        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2566        return 0;
2567}
2568
2569static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2570                                      struct snd_ctl_elem_value *ucontrol)
2571{
2572        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2573        /* same bit as spdi_phase */
2574        spin_lock_irq(&cm->reg_lock);
2575        ucontrol->value.enumerated.item[0] = 
2576                (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2577        spin_unlock_irq(&cm->reg_lock);
2578        return 0;
2579}
2580
2581static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2582                                      struct snd_ctl_elem_value *ucontrol)
2583{
2584        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2585        int change;
2586
2587        spin_lock_irq(&cm->reg_lock);
2588        if (ucontrol->value.enumerated.item[0])
2589                change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2590        else
2591                change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2592        spin_unlock_irq(&cm->reg_lock);
2593        return change;
2594}
2595
2596/* both for CM8338/8738 */
2597static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2598        DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2599        {
2600                .name = "Line-In Mode",
2601                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2602                .info = snd_cmipci_line_in_mode_info,
2603                .get = snd_cmipci_line_in_mode_get,
2604                .put = snd_cmipci_line_in_mode_put,
2605        },
2606};
2607
2608/* for non-multichannel chips */
2609static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2610DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2611
2612/* only for CM8738 */
2613static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2614#if 0 /* controlled in pcm device */
2615        DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2616        DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2617        DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2618#endif
2619        // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2620        { .name = "IEC958 Output Switch",
2621          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2622          .info = snd_cmipci_uswitch_info,
2623          .get = snd_cmipci_spdout_enable_get,
2624          .put = snd_cmipci_spdout_enable_put,
2625        },
2626        DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2627        DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2628        DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2629//      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2630        DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2631        DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2632};
2633
2634/* only for model 033/037 */
2635static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2636        DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2637        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2638        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2639};
2640
2641/* only for model 039 or later */
2642static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2643        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2644        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2645        {
2646                .name = "Mic-In Mode",
2647                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2648                .info = snd_cmipci_mic_in_mode_info,
2649                .get = snd_cmipci_mic_in_mode_get,
2650                .put = snd_cmipci_mic_in_mode_put,
2651        }
2652};
2653
2654/* card control switches */
2655static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2656DEFINE_CARD_SWITCH("Modem", modem);
2657
2658
2659static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2660{
2661        struct snd_card *card;
2662        struct snd_kcontrol_new *sw;
2663        struct snd_kcontrol *kctl;
2664        unsigned int idx;
2665        int err;
2666
2667        if (snd_BUG_ON(!cm || !cm->card))
2668                return -EINVAL;
2669
2670        card = cm->card;
2671
2672        strcpy(card->mixername, "CMedia PCI");
2673
2674        spin_lock_irq(&cm->reg_lock);
2675        snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2676        spin_unlock_irq(&cm->reg_lock);
2677
2678        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2679                if (cm->chip_version == 68) {   // 8768 has no PCM volume
2680                        if (!strcmp(snd_cmipci_mixers[idx].name,
2681                                "PCM Playback Volume"))
2682                                continue;
2683                }
2684                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2685                        return err;
2686        }
2687
2688        /* mixer switches */
2689        sw = snd_cmipci_mixer_switches;
2690        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2691                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2692                if (err < 0)
2693                        return err;
2694        }
2695        if (! cm->can_multi_ch) {
2696                err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2697                if (err < 0)
2698                        return err;
2699        }
2700        if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2701            cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2702                sw = snd_cmipci_8738_mixer_switches;
2703                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2704                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2705                        if (err < 0)
2706                                return err;
2707                }
2708                if (cm->can_ac3_hw) {
2709                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2710                                return err;
2711                        kctl->id.device = pcm_spdif_device;
2712                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2713                                return err;
2714                        kctl->id.device = pcm_spdif_device;
2715                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2716                                return err;
2717                        kctl->id.device = pcm_spdif_device;
2718                }
2719                if (cm->chip_version <= 37) {
2720                        sw = snd_cmipci_old_mixer_switches;
2721                        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2722                                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2723                                if (err < 0)
2724                                        return err;
2725                        }
2726                }
2727        }
2728        if (cm->chip_version >= 39) {
2729                sw = snd_cmipci_extra_mixer_switches;
2730                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2731                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2732                        if (err < 0)
2733                                return err;
2734                }
2735        }
2736
2737        /* card switches */
2738        /*
2739         * newer chips don't have the register bits to force modem link
2740         * detection; the bit that was FLINKON now mutes CH1
2741         */
2742        if (cm->chip_version < 39) {
2743                err = snd_ctl_add(cm->card,
2744                                  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2745                if (err < 0)
2746                        return err;
2747        }
2748
2749        for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2750                struct snd_ctl_elem_id elem_id;
2751                struct snd_kcontrol *ctl;
2752                memset(&elem_id, 0, sizeof(elem_id));
2753                elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2754                strcpy(elem_id.name, cm_saved_mixer[idx].name);
2755                ctl = snd_ctl_find_id(cm->card, &elem_id);
2756                if (ctl)
2757                        cm->mixer_res_ctl[idx] = ctl;
2758        }
2759
2760        return 0;
2761}
2762
2763
2764/*
2765 * proc interface
2766 */
2767
2768#ifdef CONFIG_PROC_FS
2769static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2770                                 struct snd_info_buffer *buffer)
2771{
2772        struct cmipci *cm = entry->private_data;
2773        int i, v;
2774        
2775        snd_iprintf(buffer, "%s\n", cm->card->longname);
2776        for (i = 0; i < 0x94; i++) {
2777                if (i == 0x28)
2778                        i = 0x90;
2779                v = inb(cm->iobase + i);
2780                if (i % 4 == 0)
2781                        snd_iprintf(buffer, "\n%02x:", i);
2782                snd_iprintf(buffer, " %02x", v);
2783        }
2784        snd_iprintf(buffer, "\n");
2785}
2786
2787static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2788{
2789        struct snd_info_entry *entry;
2790
2791        if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2792                snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2793}
2794#else /* !CONFIG_PROC_FS */
2795static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2796#endif
2797
2798
2799static struct pci_device_id snd_cmipci_ids[] = {
2800        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2801        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2802        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2803        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2804        {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2805        {0,},
2806};
2807
2808
2809/*
2810 * check chip version and capabilities
2811 * driver name is modified according to the chip model
2812 */
2813static void __devinit query_chip(struct cmipci *cm)
2814{
2815        unsigned int detect;
2816
2817        /* check reg 0Ch, bit 24-31 */
2818        detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2819        if (! detect) {
2820                /* check reg 08h, bit 24-28 */
2821                detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2822                switch (detect) {
2823                case 0:
2824                        cm->chip_version = 33;
2825                        if (cm->do_soft_ac3)
2826                                cm->can_ac3_sw = 1;
2827                        else
2828                                cm->can_ac3_hw = 1;
2829                        break;
2830                case CM_CHIP_037:
2831                        cm->chip_version = 37;
2832                        cm->can_ac3_hw = 1;
2833                        break;
2834                default:
2835                        cm->chip_version = 39;
2836                        cm->can_ac3_hw = 1;
2837                        break;
2838                }
2839                cm->max_channels = 2;
2840        } else {
2841                if (detect & CM_CHIP_039) {
2842                        cm->chip_version = 39;
2843                        if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2844                                cm->max_channels = 6;
2845                        else
2846                                cm->max_channels = 4;
2847                } else if (detect & CM_CHIP_8768) {
2848                        cm->chip_version = 68;
2849                        cm->max_channels = 8;
2850                        cm->can_96k = 1;
2851                } else {
2852                        cm->chip_version = 55;
2853                        cm->max_channels = 6;
2854                        cm->can_96k = 1;
2855                }
2856                cm->can_ac3_hw = 1;
2857                cm->can_multi_ch = 1;
2858        }
2859}
2860
2861#ifdef SUPPORT_JOYSTICK
2862static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2863{
2864        static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2865        struct gameport *gp;
2866        struct resource *r = NULL;
2867        int i, io_port = 0;
2868
2869        if (joystick_port[dev] == 0)
2870                return -ENODEV;
2871
2872        if (joystick_port[dev] == 1) { /* auto-detect */
2873                for (i = 0; ports[i]; i++) {
2874                        io_port = ports[i];
2875                        r = request_region(io_port, 1, "CMIPCI gameport");
2876                        if (r)
2877                                break;
2878                }
2879        } else {
2880                io_port = joystick_port[dev];
2881                r = request_region(io_port, 1, "CMIPCI gameport");
2882        }
2883
2884        if (!r) {
2885                printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2886                return -EBUSY;
2887        }
2888
2889        cm->gameport = gp = gameport_allocate_port();
2890        if (!gp) {
2891                printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2892                release_and_free_resource(r);
2893                return -ENOMEM;
2894        }
2895        gameport_set_name(gp, "C-Media Gameport");
2896        gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2897        gameport_set_dev_parent(gp, &cm->pci->dev);
2898        gp->io = io_port;
2899        gameport_set_port_data(gp, r);
2900
2901        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2902
2903        gameport_register_port(cm->gameport);
2904
2905        return 0;
2906}
2907
2908static void snd_cmipci_free_gameport(struct cmipci *cm)
2909{
2910        if (cm->gameport) {
2911                struct resource *r = gameport_get_port_data(cm->gameport);
2912
2913                gameport_unregister_port(cm->gameport);
2914                cm->gameport = NULL;
2915
2916                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2917                release_and_free_resource(r);
2918        }
2919}
2920#else
2921static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2922static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2923#endif
2924
2925static int snd_cmipci_free(struct cmipci *cm)
2926{
2927        if (cm->irq >= 0) {
2928                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2929                snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2930                snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2931                snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2932                snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2933                snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2934                snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2935
2936                /* reset mixer */
2937                snd_cmipci_mixer_write(cm, 0, 0);
2938
2939                free_irq(cm->irq, cm);
2940        }
2941
2942        snd_cmipci_free_gameport(cm);
2943        pci_release_regions(cm->pci);
2944        pci_disable_device(cm->pci);
2945        kfree(cm);
2946        return 0;
2947}
2948
2949static int snd_cmipci_dev_free(struct snd_device *device)
2950{
2951        struct cmipci *cm = device->device_data;
2952        return snd_cmipci_free(cm);
2953}
2954
2955static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2956{
2957        long iosynth;
2958        unsigned int val;
2959        struct snd_opl3 *opl3;
2960        int err;
2961
2962        if (!fm_port)
2963                goto disable_fm;
2964
2965        if (cm->chip_version >= 39) {
2966                /* first try FM regs in PCI port range */
2967                iosynth = cm->iobase + CM_REG_FM_PCI;
2968                err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2969                                      OPL3_HW_OPL3, 1, &opl3);
2970        } else {
2971                err = -EIO;
2972        }
2973        if (err < 0) {
2974                /* then try legacy ports */
2975                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2976                iosynth = fm_port;
2977                switch (iosynth) {
2978                case 0x3E8: val |= CM_FMSEL_3E8; break;
2979                case 0x3E0: val |= CM_FMSEL_3E0; break;
2980                case 0x3C8: val |= CM_FMSEL_3C8; break;
2981                case 0x388: val |= CM_FMSEL_388; break;
2982                default:
2983                        goto disable_fm;
2984                }
2985                snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2986                /* enable FM */
2987                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2988
2989                if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2990                                    OPL3_HW_OPL3, 0, &opl3) < 0) {
2991                        printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2992                               "skipping...\n", iosynth);
2993                        goto disable_fm;
2994                }
2995        }
2996        if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2997                printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2998                return err;
2999        }
3000        return 0;
3001
3002 disable_fm:
3003        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3004        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3005        return 0;
3006}
3007
3008static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3009                                       int dev, struct cmipci **rcmipci)
3010{
3011        struct cmipci *cm;
3012        int err;
3013        static struct snd_device_ops ops = {
3014                .dev_free =     snd_cmipci_dev_free,
3015        };
3016        unsigned int val;
3017        long iomidi = 0;
3018        int integrated_midi = 0;
3019        char modelstr[16];
3020        int pcm_index, pcm_spdif_index;
3021        static struct pci_device_id intel_82437vx[] = {
3022                { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3023                { },
3024        };
3025
3026        *rcmipci = NULL;
3027
3028        if ((err = pci_enable_device(pci)) < 0)
3029                return err;
3030
3031        cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3032        if (cm == NULL) {
3033                pci_disable_device(pci);
3034                return -ENOMEM;
3035        }
3036
3037        spin_lock_init(&cm->reg_lock);
3038        mutex_init(&cm->open_mutex);
3039        cm->device = pci->device;
3040        cm->card = card;
3041        cm->pci = pci;
3042        cm->irq = -1;
3043        cm->channel[0].ch = 0;
3044        cm->channel[1].ch = 1;
3045        cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3046
3047        if ((err = pci_request_regions(pci, card->driver)) < 0) {
3048                kfree(cm);
3049                pci_disable_device(pci);
3050                return err;
3051        }
3052        cm->iobase = pci_resource_start(pci, 0);
3053
3054        if (request_irq(pci->irq, snd_cmipci_interrupt,
3055                        IRQF_SHARED, card->driver, cm)) {
3056                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3057                snd_cmipci_free(cm);
3058                return -EBUSY;
3059        }
3060        cm->irq = pci->irq;
3061
3062        pci_set_master(cm->pci);
3063
3064        /*
3065         * check chip version, max channels and capabilities
3066         */
3067
3068        cm->chip_version = 0;
3069        cm->max_channels = 2;
3070        cm->do_soft_ac3 = soft_ac3[dev];
3071
3072        if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3073            pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3074                query_chip(cm);
3075        /* added -MCx suffix for chip supporting multi-channels */
3076        if (cm->can_multi_ch)
3077                sprintf(cm->card->driver + strlen(cm->card->driver),
3078                        "-MC%d", cm->max_channels);
3079        else if (cm->can_ac3_sw)
3080                strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3081
3082        cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3083        cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3084
3085#if CM_CH_PLAY == 1
3086        cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3087#else
3088        cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3089#endif
3090
3091        /* initialize codec registers */
3092        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3093        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3094        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3095        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3096        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3097        snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3098        snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3099
3100        snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3101        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3102#if CM_CH_PLAY == 1
3103        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3104#else
3105        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3106#endif
3107        if (cm->chip_version) {
3108                snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3109                snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3110        }
3111        /* Set Bus Master Request */
3112        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3113
3114        /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3115        switch (pci->device) {
3116        case PCI_DEVICE_ID_CMEDIA_CM8738:
3117        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3118                if (!pci_dev_present(intel_82437vx)) 
3119                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3120                break;
3121        default:
3122                break;
3123        }
3124
3125        if (cm->chip_version < 68) {
3126                val = pci->device < 0x110 ? 8338 : 8738;
3127        } else {
3128                switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3129                case 0:
3130                        val = 8769;
3131                        break;
3132                case 2:
3133                        val = 8762;
3134                        break;
3135                default:
3136                        switch ((pci->subsystem_vendor << 16) |
3137                                pci->subsystem_device) {
3138                        case 0x13f69761:
3139                        case 0x584d3741:
3140                        case 0x584d3751:
3141                        case 0x584d3761:
3142                        case 0x584d3771:
3143                        case 0x72848384:
3144                                val = 8770;
3145                                break;
3146                        default:
3147                                val = 8768;
3148                                break;
3149                        }
3150                }
3151        }
3152        sprintf(card->shortname, "C-Media CMI%d", val);
3153        if (cm->chip_version < 68)
3154                sprintf(modelstr, " (model %d)", cm->chip_version);
3155        else
3156                modelstr[0] = '\0';
3157        sprintf(card->longname, "%s%s at %#lx, irq %i",
3158                card->shortname, modelstr, cm->iobase, cm->irq);
3159
3160        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3161                snd_cmipci_free(cm);
3162                return err;
3163        }
3164
3165        if (cm->chip_version >= 39) {
3166                val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3167                if (val != 0x00 && val != 0xff) {
3168                        iomidi = cm->iobase + CM_REG_MPU_PCI;
3169                        integrated_midi = 1;
3170                }
3171        }
3172        if (!integrated_midi) {
3173                val = 0;
3174                iomidi = mpu_port[dev];
3175                switch (iomidi) {
3176                case 0x320: val = CM_VMPU_320; break;
3177                case 0x310: val = CM_VMPU_310; break;
3178                case 0x300: val = CM_VMPU_300; break;
3179                case 0x330: val = CM_VMPU_330; break;
3180                default:
3181                            iomidi = 0; break;
3182                }
3183                if (iomidi > 0) {
3184                        snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3185                        /* enable UART */
3186                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3187                        if (inb(iomidi + 1) == 0xff) {
3188                                snd_printk(KERN_ERR "cannot enable MPU-401 port"
3189                                           " at %#lx\n", iomidi);
3190                                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3191                                                     CM_UART_EN);
3192                                iomidi = 0;
3193                        }
3194                }
3195        }
3196
3197        if (cm->chip_version < 68) {
3198                err = snd_cmipci_create_fm(cm, fm_port[dev]);
3199                if (err < 0)
3200                        return err;
3201        }
3202
3203        /* reset mixer */
3204        snd_cmipci_mixer_write(cm, 0, 0);
3205
3206        snd_cmipci_proc_init(cm);
3207
3208        /* create pcm devices */
3209        pcm_index = pcm_spdif_index = 0;
3210        if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3211                return err;
3212        pcm_index++;
3213        if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3214                return err;
3215        pcm_index++;
3216        if (cm->can_ac3_hw || cm->can_ac3_sw) {
3217                pcm_spdif_index = pcm_index;
3218                if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3219                        return err;
3220        }
3221
3222        /* create mixer interface & switches */
3223        if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3224                return err;
3225
3226        if (iomidi > 0) {
3227                if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3228                                               iomidi,
3229                                               (integrated_midi ?
3230                                                MPU401_INFO_INTEGRATED : 0),
3231                                               cm->irq, 0, &cm->rmidi)) < 0) {
3232                        printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3233                }
3234        }
3235
3236#ifdef USE_VAR48KRATE
3237        for (val = 0; val < ARRAY_SIZE(rates); val++)
3238                snd_cmipci_set_pll(cm, rates[val], val);
3239
3240        /*
3241         * (Re-)Enable external switch spdo_48k
3242         */
3243        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3244#endif /* USE_VAR48KRATE */
3245
3246        if (snd_cmipci_create_gameport(cm, dev) < 0)
3247                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3248
3249        snd_card_set_dev(card, &pci->dev);
3250
3251        *rcmipci = cm;
3252        return 0;
3253}
3254
3255/*
3256 */
3257
3258MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3259
3260static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3261                                      const struct pci_device_id *pci_id)
3262{
3263        static int dev;
3264        struct snd_card *card;
3265        struct cmipci *cm;
3266        int err;
3267
3268        if (dev >= SNDRV_CARDS)
3269                return -ENODEV;
3270        if (! enable[dev]) {
3271                dev++;
3272                return -ENOENT;
3273        }
3274
3275        err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3276        if (err < 0)
3277                return err;
3278        
3279        switch (pci->device) {
3280        case PCI_DEVICE_ID_CMEDIA_CM8738:
3281        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3282                strcpy(card->driver, "CMI8738");
3283                break;
3284        case PCI_DEVICE_ID_CMEDIA_CM8338A:
3285        case PCI_DEVICE_ID_CMEDIA_CM8338B:
3286                strcpy(card->driver, "CMI8338");
3287                break;
3288        default:
3289                strcpy(card->driver, "CMIPCI");
3290                break;
3291        }
3292
3293        if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3294                snd_card_free(card);
3295                return err;
3296        }
3297        card->private_data = cm;
3298
3299        if ((err = snd_card_register(card)) < 0) {
3300                snd_card_free(card);
3301                return err;
3302        }
3303        pci_set_drvdata(pci, card);
3304        dev++;
3305        return 0;
3306
3307}
3308
3309static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3310{
3311        snd_card_free(pci_get_drvdata(pci));
3312        pci_set_drvdata(pci, NULL);
3313}
3314
3315
3316#ifdef CONFIG_PM
3317/*
3318 * power management
3319 */
3320static unsigned char saved_regs[] = {
3321        CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3322        CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3323        CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3324        CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3325        CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3326};
3327
3328static unsigned char saved_mixers[] = {
3329        SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3330        SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3331        SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3332        SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3333        SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3334        SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3335        CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3336        SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3337};
3338
3339static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3340{
3341        struct snd_card *card = pci_get_drvdata(pci);
3342        struct cmipci *cm = card->private_data;
3343        int i;
3344
3345        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3346        
3347        snd_pcm_suspend_all(cm->pcm);
3348        snd_pcm_suspend_all(cm->pcm2);
3349        snd_pcm_suspend_all(cm->pcm_spdif);
3350
3351        /* save registers */
3352        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3353                cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3354        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3355                cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3356
3357        /* disable ints */
3358        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3359
3360        pci_disable_device(pci);
3361        pci_save_state(pci);
3362        pci_set_power_state(pci, pci_choose_state(pci, state));
3363        return 0;
3364}
3365
3366static int snd_cmipci_resume(struct pci_dev *pci)
3367{
3368        struct snd_card *card = pci_get_drvdata(pci);
3369        struct cmipci *cm = card->private_data;
3370        int i;
3371
3372        pci_set_power_state(pci, PCI_D0);
3373        pci_restore_state(pci);
3374        if (pci_enable_device(pci) < 0) {
3375                printk(KERN_ERR "cmipci: pci_enable_device failed, "
3376                       "disabling device\n");
3377                snd_card_disconnect(card);
3378                return -EIO;
3379        }
3380        pci_set_master(pci);
3381
3382        /* reset / initialize to a sane state */
3383        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3384        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3385        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3386        snd_cmipci_mixer_write(cm, 0, 0);
3387
3388        /* restore registers */
3389        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3390                snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3391        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3392                snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3393
3394        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3395        return 0;
3396}
3397#endif /* CONFIG_PM */
3398
3399static struct pci_driver driver = {
3400        .name = "C-Media PCI",
3401        .id_table = snd_cmipci_ids,
3402        .probe = snd_cmipci_probe,
3403        .remove = __devexit_p(snd_cmipci_remove),
3404#ifdef CONFIG_PM
3405        .suspend = snd_cmipci_suspend,
3406        .resume = snd_cmipci_resume,
3407#endif
3408};
3409        
3410static int __init alsa_card_cmipci_init(void)
3411{
3412        return pci_register_driver(&driver);
3413}
3414
3415static void __exit alsa_card_cmipci_exit(void)
3416{
3417        pci_unregister_driver(&driver);
3418}
3419
3420module_init(alsa_card_cmipci_init)
3421module_exit(alsa_card_cmipci_exit)
3422