linux/sound/pci/sis7019.c
<<
>>
Prefs
   1/*
   2 *  Driver for SiS7019 Audio Accelerator
   3 *
   4 *  Copyright (C) 2004-2007, David Dillow
   5 *  Written by David Dillow <dave@thedillows.org>
   6 *  Inspired by the Trident 4D-WaveDX/NX driver.
   7 *
   8 *  All rights reserved.
   9 *
  10 *  This program is free software; you can redistribute it and/or modify
  11 *  it under the terms of the GNU General Public License as published by
  12 *  the Free Software Foundation, version 2.
  13 *
  14 *  This program is distributed in the hope that it will be useful,
  15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 *  GNU General Public License for more details.
  18 *
  19 *  You should have received a copy of the GNU General Public License
  20 *  along with this program; if not, write to the Free Software
  21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/pci.h>
  26#include <linux/time.h>
  27#include <linux/moduleparam.h>
  28#include <linux/interrupt.h>
  29#include <linux/delay.h>
  30#include <sound/core.h>
  31#include <sound/ac97_codec.h>
  32#include <sound/initval.h>
  33#include "sis7019.h"
  34
  35MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
  36MODULE_DESCRIPTION("SiS7019");
  37MODULE_LICENSE("GPL");
  38MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
  39
  40static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
  41static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
  42static int enable = 1;
  43
  44module_param(index, int, 0444);
  45MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
  46module_param(id, charp, 0444);
  47MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
  48module_param(enable, bool, 0444);
  49MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
  50
  51static struct pci_device_id snd_sis7019_ids[] = {
  52        { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
  53        { 0, }
  54};
  55
  56MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
  57
  58/* There are three timing modes for the voices.
  59 *
  60 * For both playback and capture, when the buffer is one or two periods long,
  61 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
  62 * to let us know when the periods have ended.
  63 *
  64 * When performing playback with more than two periods per buffer, we set
  65 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
  66 * reach it. We then update the offset and continue on until we are
  67 * interrupted for the next period.
  68 *
  69 * Capture channels do not have a SSO, so we allocate a playback channel to
  70 * use as a timer for the capture periods. We use the SSO on the playback
  71 * channel to clock out virtual periods, and adjust the virtual period length
  72 * to maintain synchronization. This algorithm came from the Trident driver.
  73 *
  74 * FIXME: It'd be nice to make use of some of the synth features in the
  75 * hardware, but a woeful lack of documentation is a significant roadblock.
  76 */
  77struct voice {
  78        u16 flags;
  79#define         VOICE_IN_USE            1
  80#define         VOICE_CAPTURE           2
  81#define         VOICE_SSO_TIMING        4
  82#define         VOICE_SYNC_TIMING       8
  83        u16 sync_cso;
  84        u16 period_size;
  85        u16 buffer_size;
  86        u16 sync_period_size;
  87        u16 sync_buffer_size;
  88        u32 sso;
  89        u32 vperiod;
  90        struct snd_pcm_substream *substream;
  91        struct voice *timing;
  92        void __iomem *ctrl_base;
  93        void __iomem *wave_base;
  94        void __iomem *sync_base;
  95        int num;
  96};
  97
  98/* We need four pages to store our wave parameters during a suspend. If
  99 * we're not doing power management, we still need to allocate a page
 100 * for the silence buffer.
 101 */
 102#ifdef CONFIG_PM
 103#define SIS_SUSPEND_PAGES       4
 104#else
 105#define SIS_SUSPEND_PAGES       1
 106#endif
 107
 108struct sis7019 {
 109        unsigned long ioport;
 110        void __iomem *ioaddr;
 111        int irq;
 112        int codecs_present;
 113
 114        struct pci_dev *pci;
 115        struct snd_pcm *pcm;
 116        struct snd_card *card;
 117        struct snd_ac97 *ac97[3];
 118
 119        /* Protect against more than one thread hitting the AC97
 120         * registers (in a more polite manner than pounding the hardware
 121         * semaphore)
 122         */
 123        struct mutex ac97_mutex;
 124
 125        /* voice_lock protects allocation/freeing of the voice descriptions
 126         */
 127        spinlock_t voice_lock;
 128
 129        struct voice voices[64];
 130        struct voice capture_voice;
 131
 132        /* Allocate pages to store the internal wave state during
 133         * suspends. When we're operating, this can be used as a silence
 134         * buffer for a timing channel.
 135         */
 136        void *suspend_state[SIS_SUSPEND_PAGES];
 137
 138        int silence_users;
 139        dma_addr_t silence_dma_addr;
 140};
 141
 142#define SIS_PRIMARY_CODEC_PRESENT       0x0001
 143#define SIS_SECONDARY_CODEC_PRESENT     0x0002
 144#define SIS_TERTIARY_CODEC_PRESENT      0x0004
 145
 146/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 147 * documented range of 8-0xfff8 samples. Given that they are 0-based,
 148 * that places our period/buffer range at 9-0xfff9 samples. That makes the
 149 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 150 * max samples / min samples gives us the max periods in a buffer.
 151 *
 152 * We'll add a constraint upon open that limits the period and buffer sample
 153 * size to values that are legal for the hardware.
 154 */
 155static struct snd_pcm_hardware sis_playback_hw_info = {
 156        .info = (SNDRV_PCM_INFO_MMAP |
 157                 SNDRV_PCM_INFO_MMAP_VALID |
 158                 SNDRV_PCM_INFO_INTERLEAVED |
 159                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 160                 SNDRV_PCM_INFO_SYNC_START |
 161                 SNDRV_PCM_INFO_RESUME),
 162        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 163                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 164        .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 165        .rate_min = 4000,
 166        .rate_max = 48000,
 167        .channels_min = 1,
 168        .channels_max = 2,
 169        .buffer_bytes_max = (0xfff9 * 4),
 170        .period_bytes_min = 9,
 171        .period_bytes_max = (0xfff9 * 4),
 172        .periods_min = 1,
 173        .periods_max = (0xfff9 / 9),
 174};
 175
 176static struct snd_pcm_hardware sis_capture_hw_info = {
 177        .info = (SNDRV_PCM_INFO_MMAP |
 178                 SNDRV_PCM_INFO_MMAP_VALID |
 179                 SNDRV_PCM_INFO_INTERLEAVED |
 180                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 181                 SNDRV_PCM_INFO_SYNC_START |
 182                 SNDRV_PCM_INFO_RESUME),
 183        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 184                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 185        .rates = SNDRV_PCM_RATE_48000,
 186        .rate_min = 4000,
 187        .rate_max = 48000,
 188        .channels_min = 1,
 189        .channels_max = 2,
 190        .buffer_bytes_max = (0xfff9 * 4),
 191        .period_bytes_min = 9,
 192        .period_bytes_max = (0xfff9 * 4),
 193        .periods_min = 1,
 194        .periods_max = (0xfff9 / 9),
 195};
 196
 197static void sis_update_sso(struct voice *voice, u16 period)
 198{
 199        void __iomem *base = voice->ctrl_base;
 200
 201        voice->sso += period;
 202        if (voice->sso >= voice->buffer_size)
 203                voice->sso -= voice->buffer_size;
 204
 205        /* Enforce the documented hardware minimum offset */
 206        if (voice->sso < 8)
 207                voice->sso = 8;
 208
 209        /* The SSO is in the upper 16 bits of the register. */
 210        writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 211}
 212
 213static void sis_update_voice(struct voice *voice)
 214{
 215        if (voice->flags & VOICE_SSO_TIMING) {
 216                sis_update_sso(voice, voice->period_size);
 217        } else if (voice->flags & VOICE_SYNC_TIMING) {
 218                int sync;
 219
 220                /* If we've not hit the end of the virtual period, update
 221                 * our records and keep going.
 222                 */
 223                if (voice->vperiod > voice->period_size) {
 224                        voice->vperiod -= voice->period_size;
 225                        if (voice->vperiod < voice->period_size)
 226                                sis_update_sso(voice, voice->vperiod);
 227                        else
 228                                sis_update_sso(voice, voice->period_size);
 229                        return;
 230                }
 231
 232                /* Calculate our relative offset between the target and
 233                 * the actual CSO value. Since we're operating in a loop,
 234                 * if the value is more than half way around, we can
 235                 * consider ourselves wrapped.
 236                 */
 237                sync = voice->sync_cso;
 238                sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 239                if (sync > (voice->sync_buffer_size / 2))
 240                        sync -= voice->sync_buffer_size;
 241
 242                /* If sync is positive, then we interrupted too early, and
 243                 * we'll need to come back in a few samples and try again.
 244                 * There's a minimum wait, as it takes some time for the DMA
 245                 * engine to startup, etc...
 246                 */
 247                if (sync > 0) {
 248                        if (sync < 16)
 249                                sync = 16;
 250                        sis_update_sso(voice, sync);
 251                        return;
 252                }
 253
 254                /* Ok, we interrupted right on time, or (hopefully) just
 255                 * a bit late. We'll adjst our next waiting period based
 256                 * on how close we got.
 257                 *
 258                 * We need to stay just behind the actual channel to ensure
 259                 * it really is past a period when we get our interrupt --
 260                 * otherwise we'll fall into the early code above and have
 261                 * a minimum wait time, which makes us quite late here,
 262                 * eating into the user's time to refresh the buffer, esp.
 263                 * if using small periods.
 264                 *
 265                 * If we're less than 9 samples behind, we're on target.
 266                 */
 267                if (sync > -9)
 268                        voice->vperiod = voice->sync_period_size + 1;
 269                else
 270                        voice->vperiod = voice->sync_period_size - 4;
 271
 272                if (voice->vperiod < voice->buffer_size) {
 273                        sis_update_sso(voice, voice->vperiod);
 274                        voice->vperiod = 0;
 275                } else
 276                        sis_update_sso(voice, voice->period_size);
 277
 278                sync = voice->sync_cso + voice->sync_period_size;
 279                if (sync >= voice->sync_buffer_size)
 280                        sync -= voice->sync_buffer_size;
 281                voice->sync_cso = sync;
 282        }
 283
 284        snd_pcm_period_elapsed(voice->substream);
 285}
 286
 287static void sis_voice_irq(u32 status, struct voice *voice)
 288{
 289        int bit;
 290
 291        while (status) {
 292                bit = __ffs(status);
 293                status >>= bit + 1;
 294                voice += bit;
 295                sis_update_voice(voice);
 296                voice++;
 297        }
 298}
 299
 300static irqreturn_t sis_interrupt(int irq, void *dev)
 301{
 302        struct sis7019 *sis = dev;
 303        unsigned long io = sis->ioport;
 304        struct voice *voice;
 305        u32 intr, status;
 306
 307        /* We only use the DMA interrupts, and we don't enable any other
 308         * source of interrupts. But, it is possible to see an interupt
 309         * status that didn't actually interrupt us, so eliminate anything
 310         * we're not expecting to avoid falsely claiming an IRQ, and an
 311         * ensuing endless loop.
 312         */
 313        intr = inl(io + SIS_GISR);
 314        intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 315                SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 316        if (!intr)
 317                return IRQ_NONE;
 318
 319        do {
 320                status = inl(io + SIS_PISR_A);
 321                if (status) {
 322                        sis_voice_irq(status, sis->voices);
 323                        outl(status, io + SIS_PISR_A);
 324                }
 325
 326                status = inl(io + SIS_PISR_B);
 327                if (status) {
 328                        sis_voice_irq(status, &sis->voices[32]);
 329                        outl(status, io + SIS_PISR_B);
 330                }
 331
 332                status = inl(io + SIS_RISR);
 333                if (status) {
 334                        voice = &sis->capture_voice;
 335                        if (!voice->timing)
 336                                snd_pcm_period_elapsed(voice->substream);
 337
 338                        outl(status, io + SIS_RISR);
 339                }
 340
 341                outl(intr, io + SIS_GISR);
 342                intr = inl(io + SIS_GISR);
 343                intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 344                        SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 345        } while (intr);
 346
 347        return IRQ_HANDLED;
 348}
 349
 350static u32 sis_rate_to_delta(unsigned int rate)
 351{
 352        u32 delta;
 353
 354        /* This was copied from the trident driver, but it seems its gotten
 355         * around a bit... nevertheless, it works well.
 356         *
 357         * We special case 44100 and 8000 since rounding with the equation
 358         * does not give us an accurate enough value. For 11025 and 22050
 359         * the equation gives us the best answer. All other frequencies will
 360         * also use the equation. JDW
 361         */
 362        if (rate == 44100)
 363                delta = 0xeb3;
 364        else if (rate == 8000)
 365                delta = 0x2ab;
 366        else if (rate == 48000)
 367                delta = 0x1000;
 368        else
 369                delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
 370        return delta;
 371}
 372
 373static void __sis_map_silence(struct sis7019 *sis)
 374{
 375        /* Helper function: must hold sis->voice_lock on entry */
 376        if (!sis->silence_users)
 377                sis->silence_dma_addr = pci_map_single(sis->pci,
 378                                                sis->suspend_state[0],
 379                                                4096, PCI_DMA_TODEVICE);
 380        sis->silence_users++;
 381}
 382
 383static void __sis_unmap_silence(struct sis7019 *sis)
 384{
 385        /* Helper function: must hold sis->voice_lock on entry */
 386        sis->silence_users--;
 387        if (!sis->silence_users)
 388                pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
 389                                        PCI_DMA_TODEVICE);
 390}
 391
 392static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 393{
 394        unsigned long flags;
 395
 396        spin_lock_irqsave(&sis->voice_lock, flags);
 397        if (voice->timing) {
 398                __sis_unmap_silence(sis);
 399                voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 400                                                VOICE_SYNC_TIMING);
 401                voice->timing = NULL;
 402        }
 403        voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 404        spin_unlock_irqrestore(&sis->voice_lock, flags);
 405}
 406
 407static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 408{
 409        /* Must hold the voice_lock on entry */
 410        struct voice *voice;
 411        int i;
 412
 413        for (i = 0; i < 64; i++) {
 414                voice = &sis->voices[i];
 415                if (voice->flags & VOICE_IN_USE)
 416                        continue;
 417                voice->flags |= VOICE_IN_USE;
 418                goto found_one;
 419        }
 420        voice = NULL;
 421
 422found_one:
 423        return voice;
 424}
 425
 426static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 427{
 428        struct voice *voice;
 429        unsigned long flags;
 430
 431        spin_lock_irqsave(&sis->voice_lock, flags);
 432        voice = __sis_alloc_playback_voice(sis);
 433        spin_unlock_irqrestore(&sis->voice_lock, flags);
 434
 435        return voice;
 436}
 437
 438static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 439                                        struct snd_pcm_hw_params *hw_params)
 440{
 441        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 442        struct snd_pcm_runtime *runtime = substream->runtime;
 443        struct voice *voice = runtime->private_data;
 444        unsigned int period_size, buffer_size;
 445        unsigned long flags;
 446        int needed;
 447
 448        /* If there are one or two periods per buffer, we don't need a
 449         * timing voice, as we can use the capture channel's interrupts
 450         * to clock out the periods.
 451         */
 452        period_size = params_period_size(hw_params);
 453        buffer_size = params_buffer_size(hw_params);
 454        needed = (period_size != buffer_size &&
 455                        period_size != (buffer_size / 2));
 456
 457        if (needed && !voice->timing) {
 458                spin_lock_irqsave(&sis->voice_lock, flags);
 459                voice->timing = __sis_alloc_playback_voice(sis);
 460                if (voice->timing)
 461                        __sis_map_silence(sis);
 462                spin_unlock_irqrestore(&sis->voice_lock, flags);
 463                if (!voice->timing)
 464                        return -ENOMEM;
 465                voice->timing->substream = substream;
 466        } else if (!needed && voice->timing) {
 467                sis_free_voice(sis, voice);
 468                voice->timing = NULL;
 469        }
 470
 471        return 0;
 472}
 473
 474static int sis_playback_open(struct snd_pcm_substream *substream)
 475{
 476        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 477        struct snd_pcm_runtime *runtime = substream->runtime;
 478        struct voice *voice;
 479
 480        voice = sis_alloc_playback_voice(sis);
 481        if (!voice)
 482                return -EAGAIN;
 483
 484        voice->substream = substream;
 485        runtime->private_data = voice;
 486        runtime->hw = sis_playback_hw_info;
 487        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 488                                                9, 0xfff9);
 489        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 490                                                9, 0xfff9);
 491        snd_pcm_set_sync(substream);
 492        return 0;
 493}
 494
 495static int sis_substream_close(struct snd_pcm_substream *substream)
 496{
 497        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 498        struct snd_pcm_runtime *runtime = substream->runtime;
 499        struct voice *voice = runtime->private_data;
 500
 501        sis_free_voice(sis, voice);
 502        return 0;
 503}
 504
 505static int sis_playback_hw_params(struct snd_pcm_substream *substream,
 506                                        struct snd_pcm_hw_params *hw_params)
 507{
 508        return snd_pcm_lib_malloc_pages(substream,
 509                                        params_buffer_bytes(hw_params));
 510}
 511
 512static int sis_hw_free(struct snd_pcm_substream *substream)
 513{
 514        return snd_pcm_lib_free_pages(substream);
 515}
 516
 517static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 518{
 519        struct snd_pcm_runtime *runtime = substream->runtime;
 520        struct voice *voice = runtime->private_data;
 521        void __iomem *ctrl_base = voice->ctrl_base;
 522        void __iomem *wave_base = voice->wave_base;
 523        u32 format, dma_addr, control, sso_eso, delta, reg;
 524        u16 leo;
 525
 526        /* We rely on the PCM core to ensure that the parameters for this
 527         * substream do not change on us while we're programming the HW.
 528         */
 529        format = 0;
 530        if (snd_pcm_format_width(runtime->format) == 8)
 531                format |= SIS_PLAY_DMA_FORMAT_8BIT;
 532        if (!snd_pcm_format_signed(runtime->format))
 533                format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 534        if (runtime->channels == 1)
 535                format |= SIS_PLAY_DMA_FORMAT_MONO;
 536
 537        /* The baseline setup is for a single period per buffer, and
 538         * we add bells and whistles as needed from there.
 539         */
 540        dma_addr = runtime->dma_addr;
 541        leo = runtime->buffer_size - 1;
 542        control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 543        sso_eso = leo;
 544
 545        if (runtime->period_size == (runtime->buffer_size / 2)) {
 546                control |= SIS_PLAY_DMA_INTR_AT_MLP;
 547        } else if (runtime->period_size != runtime->buffer_size) {
 548                voice->flags |= VOICE_SSO_TIMING;
 549                voice->sso = runtime->period_size - 1;
 550                voice->period_size = runtime->period_size;
 551                voice->buffer_size = runtime->buffer_size;
 552
 553                control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 554                control |= SIS_PLAY_DMA_INTR_AT_SSO;
 555                sso_eso |= (runtime->period_size - 1) << 16;
 556        }
 557
 558        delta = sis_rate_to_delta(runtime->rate);
 559
 560        /* Ok, we're ready to go, set up the channel.
 561         */
 562        writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 563        writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 564        writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 565        writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 566
 567        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 568                writel(0, wave_base + reg);
 569
 570        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 571        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 572        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 573                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 574                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 575                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 576
 577        /* Force PCI writes to post. */
 578        readl(ctrl_base);
 579
 580        return 0;
 581}
 582
 583static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 584{
 585        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 586        unsigned long io = sis->ioport;
 587        struct snd_pcm_substream *s;
 588        struct voice *voice;
 589        void *chip;
 590        int starting;
 591        u32 record = 0;
 592        u32 play[2] = { 0, 0 };
 593
 594        /* No locks needed, as the PCM core will hold the locks on the
 595         * substreams, and the HW will only start/stop the indicated voices
 596         * without changing the state of the others.
 597         */
 598        switch (cmd) {
 599        case SNDRV_PCM_TRIGGER_START:
 600        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 601        case SNDRV_PCM_TRIGGER_RESUME:
 602                starting = 1;
 603                break;
 604        case SNDRV_PCM_TRIGGER_STOP:
 605        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 606        case SNDRV_PCM_TRIGGER_SUSPEND:
 607                starting = 0;
 608                break;
 609        default:
 610                return -EINVAL;
 611        }
 612
 613        snd_pcm_group_for_each_entry(s, substream) {
 614                /* Make sure it is for us... */
 615                chip = snd_pcm_substream_chip(s);
 616                if (chip != sis)
 617                        continue;
 618
 619                voice = s->runtime->private_data;
 620                if (voice->flags & VOICE_CAPTURE) {
 621                        record |= 1 << voice->num;
 622                        voice = voice->timing;
 623                }
 624
 625                /* voice could be NULL if this a recording stream, and it
 626                 * doesn't have an external timing channel.
 627                 */
 628                if (voice)
 629                        play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 630
 631                snd_pcm_trigger_done(s, substream);
 632        }
 633
 634        if (starting) {
 635                if (record)
 636                        outl(record, io + SIS_RECORD_START_REG);
 637                if (play[0])
 638                        outl(play[0], io + SIS_PLAY_START_A_REG);
 639                if (play[1])
 640                        outl(play[1], io + SIS_PLAY_START_B_REG);
 641        } else {
 642                if (record)
 643                        outl(record, io + SIS_RECORD_STOP_REG);
 644                if (play[0])
 645                        outl(play[0], io + SIS_PLAY_STOP_A_REG);
 646                if (play[1])
 647                        outl(play[1], io + SIS_PLAY_STOP_B_REG);
 648        }
 649        return 0;
 650}
 651
 652static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 653{
 654        struct snd_pcm_runtime *runtime = substream->runtime;
 655        struct voice *voice = runtime->private_data;
 656        u32 cso;
 657
 658        cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 659        cso &= 0xffff;
 660        return cso;
 661}
 662
 663static int sis_capture_open(struct snd_pcm_substream *substream)
 664{
 665        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 666        struct snd_pcm_runtime *runtime = substream->runtime;
 667        struct voice *voice = &sis->capture_voice;
 668        unsigned long flags;
 669
 670        /* FIXME: The driver only supports recording from one channel
 671         * at the moment, but it could support more.
 672         */
 673        spin_lock_irqsave(&sis->voice_lock, flags);
 674        if (voice->flags & VOICE_IN_USE)
 675                voice = NULL;
 676        else
 677                voice->flags |= VOICE_IN_USE;
 678        spin_unlock_irqrestore(&sis->voice_lock, flags);
 679
 680        if (!voice)
 681                return -EAGAIN;
 682
 683        voice->substream = substream;
 684        runtime->private_data = voice;
 685        runtime->hw = sis_capture_hw_info;
 686        runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 687        snd_pcm_limit_hw_rates(runtime);
 688        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 689                                                9, 0xfff9);
 690        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 691                                                9, 0xfff9);
 692        snd_pcm_set_sync(substream);
 693        return 0;
 694}
 695
 696static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 697                                        struct snd_pcm_hw_params *hw_params)
 698{
 699        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 700        int rc;
 701
 702        rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 703                                                params_rate(hw_params));
 704        if (rc)
 705                goto out;
 706
 707        rc = snd_pcm_lib_malloc_pages(substream,
 708                                        params_buffer_bytes(hw_params));
 709        if (rc < 0)
 710                goto out;
 711
 712        rc = sis_alloc_timing_voice(substream, hw_params);
 713
 714out:
 715        return rc;
 716}
 717
 718static void sis_prepare_timing_voice(struct voice *voice,
 719                                        struct snd_pcm_substream *substream)
 720{
 721        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 722        struct snd_pcm_runtime *runtime = substream->runtime;
 723        struct voice *timing = voice->timing;
 724        void __iomem *play_base = timing->ctrl_base;
 725        void __iomem *wave_base = timing->wave_base;
 726        u16 buffer_size, period_size;
 727        u32 format, control, sso_eso, delta;
 728        u32 vperiod, sso, reg;
 729
 730        /* Set our initial buffer and period as large as we can given a
 731         * single page of silence.
 732         */
 733        buffer_size = 4096 / runtime->channels;
 734        buffer_size /= snd_pcm_format_size(runtime->format, 1);
 735        period_size = buffer_size;
 736
 737        /* Initially, we want to interrupt just a bit behind the end of
 738         * the period we're clocking out. 10 samples seems to give a good
 739         * delay.
 740         *
 741         * We want to spread our interrupts throughout the virtual period,
 742         * so that we don't end up with two interrupts back to back at the
 743         * end -- this helps minimize the effects of any jitter. Adjust our
 744         * clocking period size so that the last period is at least a fourth
 745         * of a full period.
 746         *
 747         * This is all moot if we don't need to use virtual periods.
 748         */
 749        vperiod = runtime->period_size + 10;
 750        if (vperiod > period_size) {
 751                u16 tail = vperiod % period_size;
 752                u16 quarter_period = period_size / 4;
 753
 754                if (tail && tail < quarter_period) {
 755                        u16 loops = vperiod / period_size;
 756
 757                        tail = quarter_period - tail;
 758                        tail += loops - 1;
 759                        tail /= loops;
 760                        period_size -= tail;
 761                }
 762
 763                sso = period_size - 1;
 764        } else {
 765                /* The initial period will fit inside the buffer, so we
 766                 * don't need to use virtual periods -- disable them.
 767                 */
 768                period_size = runtime->period_size;
 769                sso = vperiod - 1;
 770                vperiod = 0;
 771        }
 772
 773        /* The interrupt handler implements the timing syncronization, so
 774         * setup its state.
 775         */
 776        timing->flags |= VOICE_SYNC_TIMING;
 777        timing->sync_base = voice->ctrl_base;
 778        timing->sync_cso = runtime->period_size - 1;
 779        timing->sync_period_size = runtime->period_size;
 780        timing->sync_buffer_size = runtime->buffer_size;
 781        timing->period_size = period_size;
 782        timing->buffer_size = buffer_size;
 783        timing->sso = sso;
 784        timing->vperiod = vperiod;
 785
 786        /* Using unsigned samples with the all-zero silence buffer
 787         * forces the output to the lower rail, killing playback.
 788         * So ignore unsigned vs signed -- it doesn't change the timing.
 789         */
 790        format = 0;
 791        if (snd_pcm_format_width(runtime->format) == 8)
 792                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 793        if (runtime->channels == 1)
 794                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 795
 796        control = timing->buffer_size - 1;
 797        control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 798        sso_eso = timing->buffer_size - 1;
 799        sso_eso |= timing->sso << 16;
 800
 801        delta = sis_rate_to_delta(runtime->rate);
 802
 803        /* We've done the math, now configure the channel.
 804         */
 805        writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 806        writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 807        writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 808        writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 809
 810        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 811                writel(0, wave_base + reg);
 812
 813        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 814        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 815        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 816                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 817                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 818                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 819}
 820
 821static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 822{
 823        struct snd_pcm_runtime *runtime = substream->runtime;
 824        struct voice *voice = runtime->private_data;
 825        void __iomem *rec_base = voice->ctrl_base;
 826        u32 format, dma_addr, control;
 827        u16 leo;
 828
 829        /* We rely on the PCM core to ensure that the parameters for this
 830         * substream do not change on us while we're programming the HW.
 831         */
 832        format = 0;
 833        if (snd_pcm_format_width(runtime->format) == 8)
 834                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 835        if (!snd_pcm_format_signed(runtime->format))
 836                format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 837        if (runtime->channels == 1)
 838                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 839
 840        dma_addr = runtime->dma_addr;
 841        leo = runtime->buffer_size - 1;
 842        control = leo | SIS_CAPTURE_DMA_LOOP;
 843
 844        /* If we've got more than two periods per buffer, then we have
 845         * use a timing voice to clock out the periods. Otherwise, we can
 846         * use the capture channel's interrupts.
 847         */
 848        if (voice->timing) {
 849                sis_prepare_timing_voice(voice, substream);
 850        } else {
 851                control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 852                if (runtime->period_size != runtime->buffer_size)
 853                        control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 854        }
 855
 856        writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 857        writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 858        writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 859
 860        /* Force the writes to post. */
 861        readl(rec_base);
 862
 863        return 0;
 864}
 865
 866static struct snd_pcm_ops sis_playback_ops = {
 867        .open = sis_playback_open,
 868        .close = sis_substream_close,
 869        .ioctl = snd_pcm_lib_ioctl,
 870        .hw_params = sis_playback_hw_params,
 871        .hw_free = sis_hw_free,
 872        .prepare = sis_pcm_playback_prepare,
 873        .trigger = sis_pcm_trigger,
 874        .pointer = sis_pcm_pointer,
 875};
 876
 877static struct snd_pcm_ops sis_capture_ops = {
 878        .open = sis_capture_open,
 879        .close = sis_substream_close,
 880        .ioctl = snd_pcm_lib_ioctl,
 881        .hw_params = sis_capture_hw_params,
 882        .hw_free = sis_hw_free,
 883        .prepare = sis_pcm_capture_prepare,
 884        .trigger = sis_pcm_trigger,
 885        .pointer = sis_pcm_pointer,
 886};
 887
 888static int __devinit sis_pcm_create(struct sis7019 *sis)
 889{
 890        struct snd_pcm *pcm;
 891        int rc;
 892
 893        /* We have 64 voices, and the driver currently records from
 894         * only one channel, though that could change in the future.
 895         */
 896        rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 897        if (rc)
 898                return rc;
 899
 900        pcm->private_data = sis;
 901        strcpy(pcm->name, "SiS7019");
 902        sis->pcm = pcm;
 903
 904        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 905        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 906
 907        /* Try to preallocate some memory, but it's not the end of the
 908         * world if this fails.
 909         */
 910        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
 911                                snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
 912
 913        return 0;
 914}
 915
 916static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 917{
 918        unsigned long io = sis->ioport;
 919        unsigned short val = 0xffff;
 920        u16 status;
 921        u16 rdy;
 922        int count;
 923        static const u16 codec_ready[3] = {
 924                SIS_AC97_STATUS_CODEC_READY,
 925                SIS_AC97_STATUS_CODEC2_READY,
 926                SIS_AC97_STATUS_CODEC3_READY,
 927        };
 928
 929        rdy = codec_ready[codec];
 930
 931
 932        /* Get the AC97 semaphore -- software first, so we don't spin
 933         * pounding out IO reads on the hardware semaphore...
 934         */
 935        mutex_lock(&sis->ac97_mutex);
 936
 937        count = 0xffff;
 938        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 939                udelay(1);
 940
 941        if (!count)
 942                goto timeout;
 943
 944        /* ... and wait for any outstanding commands to complete ...
 945         */
 946        count = 0xffff;
 947        do {
 948                status = inw(io + SIS_AC97_STATUS);
 949                if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 950                        break;
 951
 952                udelay(1);
 953        } while (--count);
 954
 955        if (!count)
 956                goto timeout_sema;
 957
 958        /* ... before sending our command and waiting for it to finish ...
 959         */
 960        outl(cmd, io + SIS_AC97_CMD);
 961        udelay(10);
 962
 963        count = 0xffff;
 964        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 965                udelay(1);
 966
 967        /* ... and reading the results (if any).
 968         */
 969        val = inl(io + SIS_AC97_CMD) >> 16;
 970
 971timeout_sema:
 972        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 973timeout:
 974        mutex_unlock(&sis->ac97_mutex);
 975
 976        if (!count) {
 977                printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
 978                                        codec, cmd);
 979        }
 980
 981        return val;
 982}
 983
 984static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 985                                unsigned short val)
 986{
 987        static const u32 cmd[3] = {
 988                SIS_AC97_CMD_CODEC_WRITE,
 989                SIS_AC97_CMD_CODEC2_WRITE,
 990                SIS_AC97_CMD_CODEC3_WRITE,
 991        };
 992        sis_ac97_rw(ac97->private_data, ac97->num,
 993                        (val << 16) | (reg << 8) | cmd[ac97->num]);
 994}
 995
 996static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
 997{
 998        static const u32 cmd[3] = {
 999                SIS_AC97_CMD_CODEC_READ,
1000                SIS_AC97_CMD_CODEC2_READ,
1001                SIS_AC97_CMD_CODEC3_READ,
1002        };
1003        return sis_ac97_rw(ac97->private_data, ac97->num,
1004                                        (reg << 8) | cmd[ac97->num]);
1005}
1006
1007static int __devinit sis_mixer_create(struct sis7019 *sis)
1008{
1009        struct snd_ac97_bus *bus;
1010        struct snd_ac97_template ac97;
1011        static struct snd_ac97_bus_ops ops = {
1012                .write = sis_ac97_write,
1013                .read = sis_ac97_read,
1014        };
1015        int rc;
1016
1017        memset(&ac97, 0, sizeof(ac97));
1018        ac97.private_data = sis;
1019
1020        rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1021        if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1022                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1023        ac97.num = 1;
1024        if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1025                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1026        ac97.num = 2;
1027        if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1028                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1029
1030        /* If we return an error here, then snd_card_free() should
1031         * free up any ac97 codecs that got created, as well as the bus.
1032         */
1033        return rc;
1034}
1035
1036static void sis_free_suspend(struct sis7019 *sis)
1037{
1038        int i;
1039
1040        for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1041                kfree(sis->suspend_state[i]);
1042}
1043
1044static int sis_chip_free(struct sis7019 *sis)
1045{
1046        /* Reset the chip, and disable all interrputs.
1047         */
1048        outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1049        udelay(10);
1050        outl(0, sis->ioport + SIS_GCR);
1051        outl(0, sis->ioport + SIS_GIER);
1052
1053        /* Now, free everything we allocated.
1054         */
1055        if (sis->irq >= 0)
1056                free_irq(sis->irq, sis);
1057
1058        if (sis->ioaddr)
1059                iounmap(sis->ioaddr);
1060
1061        pci_release_regions(sis->pci);
1062        pci_disable_device(sis->pci);
1063
1064        sis_free_suspend(sis);
1065        return 0;
1066}
1067
1068static int sis_dev_free(struct snd_device *dev)
1069{
1070        struct sis7019 *sis = dev->device_data;
1071        return sis_chip_free(sis);
1072}
1073
1074static int sis_chip_init(struct sis7019 *sis)
1075{
1076        unsigned long io = sis->ioport;
1077        void __iomem *ioaddr = sis->ioaddr;
1078        u16 status;
1079        int count;
1080        int i;
1081
1082        /* Reset the audio controller
1083         */
1084        outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1085        udelay(10);
1086        outl(0, io + SIS_GCR);
1087
1088        /* Get the AC-link semaphore, and reset the codecs
1089         */
1090        count = 0xffff;
1091        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1092                udelay(1);
1093
1094        if (!count)
1095                return -EIO;
1096
1097        outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1098        udelay(10);
1099
1100        count = 0xffff;
1101        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1102                udelay(1);
1103
1104        /* Now that we've finished the reset, find out what's attached.
1105         */
1106        status = inl(io + SIS_AC97_STATUS);
1107        if (status & SIS_AC97_STATUS_CODEC_READY)
1108                sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1109        if (status & SIS_AC97_STATUS_CODEC2_READY)
1110                sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1111        if (status & SIS_AC97_STATUS_CODEC3_READY)
1112                sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1113
1114        /* All done, let go of the semaphore, and check for errors
1115         */
1116        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1117        if (!sis->codecs_present || !count)
1118                return -EIO;
1119
1120        /* Let the hardware know that the audio driver is alive,
1121         * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1122         * record channels. We're going to want to use Variable Rate Audio
1123         * for recording, to avoid needlessly resampling from 48kHZ.
1124         */
1125        outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1126        outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1127                SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1128                SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1129                SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1130
1131        /* All AC97 PCM slots should be sourced from sub-mixer 0.
1132         */
1133        outl(0, io + SIS_AC97_PSR);
1134
1135        /* There is only one valid DMA setup for a PCI environment.
1136         */
1137        outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1138
1139        /* Reset the syncronization groups for all of the channels
1140         * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1141         * we'll need to change how we handle these. Until then, we just
1142         * assign sub-mixer 0 to all playback channels, and avoid any
1143         * attenuation on the audio.
1144         */
1145        outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1146        outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1147        outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1148        outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1149        outl(0, io + SIS_MIXER_SYNC_GROUP);
1150
1151        for (i = 0; i < 64; i++) {
1152                writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1153                writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1154                                SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1155        }
1156
1157        /* Don't attenuate any audio set for the wave amplifier.
1158         *
1159         * FIXME: Maximum attenuation is set for the music amp, which will
1160         * need to change if we start using the synth engine.
1161         */
1162        outl(0xffff0000, io + SIS_WEVCR);
1163
1164        /* Ensure that the wave engine is in normal operating mode.
1165         */
1166        outl(0, io + SIS_WECCR);
1167
1168        /* Go ahead and enable the DMA interrupts. They won't go live
1169         * until we start a channel.
1170         */
1171        outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1172                SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1173
1174        return 0;
1175}
1176
1177#ifdef CONFIG_PM
1178static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1179{
1180        struct snd_card *card = pci_get_drvdata(pci);
1181        struct sis7019 *sis = card->private_data;
1182        void __iomem *ioaddr = sis->ioaddr;
1183        int i;
1184
1185        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1186        snd_pcm_suspend_all(sis->pcm);
1187        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1188                snd_ac97_suspend(sis->ac97[0]);
1189        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1190                snd_ac97_suspend(sis->ac97[1]);
1191        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1192                snd_ac97_suspend(sis->ac97[2]);
1193
1194        /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1195         */
1196        if (sis->irq >= 0) {
1197                free_irq(sis->irq, sis);
1198                sis->irq = -1;
1199        }
1200
1201        /* Save the internal state away
1202         */
1203        for (i = 0; i < 4; i++) {
1204                memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1205                ioaddr += 4096;
1206        }
1207
1208        pci_disable_device(pci);
1209        pci_save_state(pci);
1210        pci_set_power_state(pci, pci_choose_state(pci, state));
1211        return 0;
1212}
1213
1214static int sis_resume(struct pci_dev *pci)
1215{
1216        struct snd_card *card = pci_get_drvdata(pci);
1217        struct sis7019 *sis = card->private_data;
1218        void __iomem *ioaddr = sis->ioaddr;
1219        int i;
1220
1221        pci_set_power_state(pci, PCI_D0);
1222        pci_restore_state(pci);
1223
1224        if (pci_enable_device(pci) < 0) {
1225                printk(KERN_ERR "sis7019: unable to re-enable device\n");
1226                goto error;
1227        }
1228
1229        if (sis_chip_init(sis)) {
1230                printk(KERN_ERR "sis7019: unable to re-init controller\n");
1231                goto error;
1232        }
1233
1234        if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1235                                card->shortname, sis)) {
1236                printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1237                goto error;
1238        }
1239
1240        /* Restore saved state, then clear out the page we use for the
1241         * silence buffer.
1242         */
1243        for (i = 0; i < 4; i++) {
1244                memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1245                ioaddr += 4096;
1246        }
1247
1248        memset(sis->suspend_state[0], 0, 4096);
1249
1250        sis->irq = pci->irq;
1251        pci_set_master(pci);
1252
1253        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1254                snd_ac97_resume(sis->ac97[0]);
1255        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1256                snd_ac97_resume(sis->ac97[1]);
1257        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1258                snd_ac97_resume(sis->ac97[2]);
1259
1260        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1261        return 0;
1262
1263error:
1264        snd_card_disconnect(card);
1265        return -EIO;
1266}
1267#endif /* CONFIG_PM */
1268
1269static int sis_alloc_suspend(struct sis7019 *sis)
1270{
1271        int i;
1272
1273        /* We need 16K to store the internal wave engine state during a
1274         * suspend, but we don't need it to be contiguous, so play nice
1275         * with the memory system. We'll also use this area for a silence
1276         * buffer.
1277         */
1278        for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1279                sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1280                if (!sis->suspend_state[i])
1281                        return -ENOMEM;
1282        }
1283        memset(sis->suspend_state[0], 0, 4096);
1284
1285        return 0;
1286}
1287
1288static int __devinit sis_chip_create(struct snd_card *card,
1289                                        struct pci_dev *pci)
1290{
1291        struct sis7019 *sis = card->private_data;
1292        struct voice *voice;
1293        static struct snd_device_ops ops = {
1294                .dev_free = sis_dev_free,
1295        };
1296        int rc;
1297        int i;
1298
1299        rc = pci_enable_device(pci);
1300        if (rc)
1301                goto error_out;
1302
1303        if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1304                printk(KERN_ERR "sis7019: architecture does not support "
1305                                        "30-bit PCI busmaster DMA");
1306                goto error_out_enabled;
1307        }
1308
1309        memset(sis, 0, sizeof(*sis));
1310        mutex_init(&sis->ac97_mutex);
1311        spin_lock_init(&sis->voice_lock);
1312        sis->card = card;
1313        sis->pci = pci;
1314        sis->irq = -1;
1315        sis->ioport = pci_resource_start(pci, 0);
1316
1317        rc = pci_request_regions(pci, "SiS7019");
1318        if (rc) {
1319                printk(KERN_ERR "sis7019: unable request regions\n");
1320                goto error_out_enabled;
1321        }
1322
1323        rc = -EIO;
1324        sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1325        if (!sis->ioaddr) {
1326                printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1327                goto error_out_cleanup;
1328        }
1329
1330        rc = sis_alloc_suspend(sis);
1331        if (rc < 0) {
1332                printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1333                goto error_out_cleanup;
1334        }
1335
1336        rc = sis_chip_init(sis);
1337        if (rc)
1338                goto error_out_cleanup;
1339
1340        if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1341                                card->shortname, sis)) {
1342                printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1343                goto error_out_cleanup;
1344        }
1345
1346        sis->irq = pci->irq;
1347        pci_set_master(pci);
1348
1349        for (i = 0; i < 64; i++) {
1350                voice = &sis->voices[i];
1351                voice->num = i;
1352                voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1353                voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1354        }
1355
1356        voice = &sis->capture_voice;
1357        voice->flags = VOICE_CAPTURE;
1358        voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1359        voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1360
1361        rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1362        if (rc)
1363                goto error_out_cleanup;
1364
1365        snd_card_set_dev(card, &pci->dev);
1366
1367        return 0;
1368
1369error_out_cleanup:
1370        sis_chip_free(sis);
1371
1372error_out_enabled:
1373        pci_disable_device(pci);
1374
1375error_out:
1376        return rc;
1377}
1378
1379static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1380                                        const struct pci_device_id *pci_id)
1381{
1382        struct snd_card *card;
1383        struct sis7019 *sis;
1384        int rc;
1385
1386        rc = -ENOENT;
1387        if (!enable)
1388                goto error_out;
1389
1390        rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1391        if (rc < 0)
1392                goto error_out;
1393
1394        strcpy(card->driver, "SiS7019");
1395        strcpy(card->shortname, "SiS7019");
1396        rc = sis_chip_create(card, pci);
1397        if (rc)
1398                goto card_error_out;
1399
1400        sis = card->private_data;
1401
1402        rc = sis_mixer_create(sis);
1403        if (rc)
1404                goto card_error_out;
1405
1406        rc = sis_pcm_create(sis);
1407        if (rc)
1408                goto card_error_out;
1409
1410        snprintf(card->longname, sizeof(card->longname),
1411                        "%s Audio Accelerator with %s at 0x%lx, irq %d",
1412                        card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1413                        sis->ioport, sis->irq);
1414
1415        rc = snd_card_register(card);
1416        if (rc)
1417                goto card_error_out;
1418
1419        pci_set_drvdata(pci, card);
1420        return 0;
1421
1422card_error_out:
1423        snd_card_free(card);
1424
1425error_out:
1426        return rc;
1427}
1428
1429static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1430{
1431        snd_card_free(pci_get_drvdata(pci));
1432        pci_set_drvdata(pci, NULL);
1433}
1434
1435static struct pci_driver sis7019_driver = {
1436        .name = "SiS7019",
1437        .id_table = snd_sis7019_ids,
1438        .probe = snd_sis7019_probe,
1439        .remove = __devexit_p(snd_sis7019_remove),
1440
1441#ifdef CONFIG_PM
1442        .suspend = sis_suspend,
1443        .resume = sis_resume,
1444#endif
1445};
1446
1447static int __init sis7019_init(void)
1448{
1449        return pci_register_driver(&sis7019_driver);
1450}
1451
1452static void __exit sis7019_exit(void)
1453{
1454        pci_unregister_driver(&sis7019_driver);
1455}
1456
1457module_init(sis7019_init);
1458module_exit(sis7019_exit);
1459