linux/Documentation/lguest/lguest.c
<<
>>
Prefs
   1/*P:100
   2 * This is the Launcher code, a simple program which lays out the "physical"
   3 * memory for the new Guest by mapping the kernel image and the virtual
   4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
   5 * control it.
   6:*/
   7#define _LARGEFILE64_SOURCE
   8#define _GNU_SOURCE
   9#include <stdio.h>
  10#include <string.h>
  11#include <unistd.h>
  12#include <err.h>
  13#include <stdint.h>
  14#include <stdlib.h>
  15#include <elf.h>
  16#include <sys/mman.h>
  17#include <sys/param.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <sys/wait.h>
  21#include <sys/eventfd.h>
  22#include <fcntl.h>
  23#include <stdbool.h>
  24#include <errno.h>
  25#include <ctype.h>
  26#include <sys/socket.h>
  27#include <sys/ioctl.h>
  28#include <sys/time.h>
  29#include <time.h>
  30#include <netinet/in.h>
  31#include <net/if.h>
  32#include <linux/sockios.h>
  33#include <linux/if_tun.h>
  34#include <sys/uio.h>
  35#include <termios.h>
  36#include <getopt.h>
  37#include <assert.h>
  38#include <sched.h>
  39#include <limits.h>
  40#include <stddef.h>
  41#include <signal.h>
  42#include <pwd.h>
  43#include <grp.h>
  44
  45#include <linux/virtio_config.h>
  46#include <linux/virtio_net.h>
  47#include <linux/virtio_blk.h>
  48#include <linux/virtio_console.h>
  49#include <linux/virtio_rng.h>
  50#include <linux/virtio_ring.h>
  51#include <asm/bootparam.h>
  52#include "../../include/linux/lguest_launcher.h"
  53/*L:110
  54 * We can ignore the 42 include files we need for this program, but I do want
  55 * to draw attention to the use of kernel-style types.
  56 *
  57 * As Linus said, "C is a Spartan language, and so should your naming be."  I
  58 * like these abbreviations, so we define them here.  Note that u64 is always
  59 * unsigned long long, which works on all Linux systems: this means that we can
  60 * use %llu in printf for any u64.
  61 */
  62typedef unsigned long long u64;
  63typedef uint32_t u32;
  64typedef uint16_t u16;
  65typedef uint8_t u8;
  66/*:*/
  67
  68#define PAGE_PRESENT 0x7        /* Present, RW, Execute */
  69#define BRIDGE_PFX "bridge:"
  70#ifndef SIOCBRADDIF
  71#define SIOCBRADDIF     0x89a2          /* add interface to bridge      */
  72#endif
  73/* We can have up to 256 pages for devices. */
  74#define DEVICE_PAGES 256
  75/* This will occupy 3 pages: it must be a power of 2. */
  76#define VIRTQUEUE_NUM 256
  77
  78/*L:120
  79 * verbose is both a global flag and a macro.  The C preprocessor allows
  80 * this, and although I wouldn't recommend it, it works quite nicely here.
  81 */
  82static bool verbose;
  83#define verbose(args...) \
  84        do { if (verbose) printf(args); } while(0)
  85/*:*/
  86
  87/* The pointer to the start of guest memory. */
  88static void *guest_base;
  89/* The maximum guest physical address allowed, and maximum possible. */
  90static unsigned long guest_limit, guest_max;
  91/* The /dev/lguest file descriptor. */
  92static int lguest_fd;
  93
  94/* a per-cpu variable indicating whose vcpu is currently running */
  95static unsigned int __thread cpu_id;
  96
  97/* This is our list of devices. */
  98struct device_list {
  99        /* Counter to assign interrupt numbers. */
 100        unsigned int next_irq;
 101
 102        /* Counter to print out convenient device numbers. */
 103        unsigned int device_num;
 104
 105        /* The descriptor page for the devices. */
 106        u8 *descpage;
 107
 108        /* A single linked list of devices. */
 109        struct device *dev;
 110        /* And a pointer to the last device for easy append. */
 111        struct device *lastdev;
 112};
 113
 114/* The list of Guest devices, based on command line arguments. */
 115static struct device_list devices;
 116
 117/* The device structure describes a single device. */
 118struct device {
 119        /* The linked-list pointer. */
 120        struct device *next;
 121
 122        /* The device's descriptor, as mapped into the Guest. */
 123        struct lguest_device_desc *desc;
 124
 125        /* We can't trust desc values once Guest has booted: we use these. */
 126        unsigned int feature_len;
 127        unsigned int num_vq;
 128
 129        /* The name of this device, for --verbose. */
 130        const char *name;
 131
 132        /* Any queues attached to this device */
 133        struct virtqueue *vq;
 134
 135        /* Is it operational */
 136        bool running;
 137
 138        /* Does Guest want an intrrupt on empty? */
 139        bool irq_on_empty;
 140
 141        /* Device-specific data. */
 142        void *priv;
 143};
 144
 145/* The virtqueue structure describes a queue attached to a device. */
 146struct virtqueue {
 147        struct virtqueue *next;
 148
 149        /* Which device owns me. */
 150        struct device *dev;
 151
 152        /* The configuration for this queue. */
 153        struct lguest_vqconfig config;
 154
 155        /* The actual ring of buffers. */
 156        struct vring vring;
 157
 158        /* Last available index we saw. */
 159        u16 last_avail_idx;
 160
 161        /* How many are used since we sent last irq? */
 162        unsigned int pending_used;
 163
 164        /* Eventfd where Guest notifications arrive. */
 165        int eventfd;
 166
 167        /* Function for the thread which is servicing this virtqueue. */
 168        void (*service)(struct virtqueue *vq);
 169        pid_t thread;
 170};
 171
 172/* Remember the arguments to the program so we can "reboot" */
 173static char **main_args;
 174
 175/* The original tty settings to restore on exit. */
 176static struct termios orig_term;
 177
 178/*
 179 * We have to be careful with barriers: our devices are all run in separate
 180 * threads and so we need to make sure that changes visible to the Guest happen
 181 * in precise order.
 182 */
 183#define wmb() __asm__ __volatile__("" : : : "memory")
 184#define mb() __asm__ __volatile__("" : : : "memory")
 185
 186/*
 187 * Convert an iovec element to the given type.
 188 *
 189 * This is a fairly ugly trick: we need to know the size of the type and
 190 * alignment requirement to check the pointer is kosher.  It's also nice to
 191 * have the name of the type in case we report failure.
 192 *
 193 * Typing those three things all the time is cumbersome and error prone, so we
 194 * have a macro which sets them all up and passes to the real function.
 195 */
 196#define convert(iov, type) \
 197        ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
 198
 199static void *_convert(struct iovec *iov, size_t size, size_t align,
 200                      const char *name)
 201{
 202        if (iov->iov_len != size)
 203                errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
 204        if ((unsigned long)iov->iov_base % align != 0)
 205                errx(1, "Bad alignment %p for %s", iov->iov_base, name);
 206        return iov->iov_base;
 207}
 208
 209/* Wrapper for the last available index.  Makes it easier to change. */
 210#define lg_last_avail(vq)       ((vq)->last_avail_idx)
 211
 212/*
 213 * The virtio configuration space is defined to be little-endian.  x86 is
 214 * little-endian too, but it's nice to be explicit so we have these helpers.
 215 */
 216#define cpu_to_le16(v16) (v16)
 217#define cpu_to_le32(v32) (v32)
 218#define cpu_to_le64(v64) (v64)
 219#define le16_to_cpu(v16) (v16)
 220#define le32_to_cpu(v32) (v32)
 221#define le64_to_cpu(v64) (v64)
 222
 223/* Is this iovec empty? */
 224static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
 225{
 226        unsigned int i;
 227
 228        for (i = 0; i < num_iov; i++)
 229                if (iov[i].iov_len)
 230                        return false;
 231        return true;
 232}
 233
 234/* Take len bytes from the front of this iovec. */
 235static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
 236{
 237        unsigned int i;
 238
 239        for (i = 0; i < num_iov; i++) {
 240                unsigned int used;
 241
 242                used = iov[i].iov_len < len ? iov[i].iov_len : len;
 243                iov[i].iov_base += used;
 244                iov[i].iov_len -= used;
 245                len -= used;
 246        }
 247        assert(len == 0);
 248}
 249
 250/* The device virtqueue descriptors are followed by feature bitmasks. */
 251static u8 *get_feature_bits(struct device *dev)
 252{
 253        return (u8 *)(dev->desc + 1)
 254                + dev->num_vq * sizeof(struct lguest_vqconfig);
 255}
 256
 257/*L:100
 258 * The Launcher code itself takes us out into userspace, that scary place where
 259 * pointers run wild and free!  Unfortunately, like most userspace programs,
 260 * it's quite boring (which is why everyone likes to hack on the kernel!).
 261 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
 262 * you through this section.  Or, maybe not.
 263 *
 264 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
 265 * memory and stores it in "guest_base".  In other words, Guest physical ==
 266 * Launcher virtual with an offset.
 267 *
 268 * This can be tough to get your head around, but usually it just means that we
 269 * use these trivial conversion functions when the Guest gives us its
 270 * "physical" addresses:
 271 */
 272static void *from_guest_phys(unsigned long addr)
 273{
 274        return guest_base + addr;
 275}
 276
 277static unsigned long to_guest_phys(const void *addr)
 278{
 279        return (addr - guest_base);
 280}
 281
 282/*L:130
 283 * Loading the Kernel.
 284 *
 285 * We start with couple of simple helper routines.  open_or_die() avoids
 286 * error-checking code cluttering the callers:
 287 */
 288static int open_or_die(const char *name, int flags)
 289{
 290        int fd = open(name, flags);
 291        if (fd < 0)
 292                err(1, "Failed to open %s", name);
 293        return fd;
 294}
 295
 296/* map_zeroed_pages() takes a number of pages. */
 297static void *map_zeroed_pages(unsigned int num)
 298{
 299        int fd = open_or_die("/dev/zero", O_RDONLY);
 300        void *addr;
 301
 302        /*
 303         * We use a private mapping (ie. if we write to the page, it will be
 304         * copied). We allocate an extra two pages PROT_NONE to act as guard
 305         * pages against read/write attempts that exceed allocated space.
 306         */
 307        addr = mmap(NULL, getpagesize() * (num+2),
 308                    PROT_NONE, MAP_PRIVATE, fd, 0);
 309
 310        if (addr == MAP_FAILED)
 311                err(1, "Mmapping %u pages of /dev/zero", num);
 312
 313        if (mprotect(addr + getpagesize(), getpagesize() * num,
 314                     PROT_READ|PROT_WRITE) == -1)
 315                err(1, "mprotect rw %u pages failed", num);
 316
 317        /*
 318         * One neat mmap feature is that you can close the fd, and it
 319         * stays mapped.
 320         */
 321        close(fd);
 322
 323        /* Return address after PROT_NONE page */
 324        return addr + getpagesize();
 325}
 326
 327/* Get some more pages for a device. */
 328static void *get_pages(unsigned int num)
 329{
 330        void *addr = from_guest_phys(guest_limit);
 331
 332        guest_limit += num * getpagesize();
 333        if (guest_limit > guest_max)
 334                errx(1, "Not enough memory for devices");
 335        return addr;
 336}
 337
 338/*
 339 * This routine is used to load the kernel or initrd.  It tries mmap, but if
 340 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
 341 * it falls back to reading the memory in.
 342 */
 343static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
 344{
 345        ssize_t r;
 346
 347        /*
 348         * We map writable even though for some segments are marked read-only.
 349         * The kernel really wants to be writable: it patches its own
 350         * instructions.
 351         *
 352         * MAP_PRIVATE means that the page won't be copied until a write is
 353         * done to it.  This allows us to share untouched memory between
 354         * Guests.
 355         */
 356        if (mmap(addr, len, PROT_READ|PROT_WRITE,
 357                 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
 358                return;
 359
 360        /* pread does a seek and a read in one shot: saves a few lines. */
 361        r = pread(fd, addr, len, offset);
 362        if (r != len)
 363                err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
 364}
 365
 366/*
 367 * This routine takes an open vmlinux image, which is in ELF, and maps it into
 368 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
 369 * by all modern binaries on Linux including the kernel.
 370 *
 371 * The ELF headers give *two* addresses: a physical address, and a virtual
 372 * address.  We use the physical address; the Guest will map itself to the
 373 * virtual address.
 374 *
 375 * We return the starting address.
 376 */
 377static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 378{
 379        Elf32_Phdr phdr[ehdr->e_phnum];
 380        unsigned int i;
 381
 382        /*
 383         * Sanity checks on the main ELF header: an x86 executable with a
 384         * reasonable number of correctly-sized program headers.
 385         */
 386        if (ehdr->e_type != ET_EXEC
 387            || ehdr->e_machine != EM_386
 388            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
 389            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
 390                errx(1, "Malformed elf header");
 391
 392        /*
 393         * An ELF executable contains an ELF header and a number of "program"
 394         * headers which indicate which parts ("segments") of the program to
 395         * load where.
 396         */
 397
 398        /* We read in all the program headers at once: */
 399        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
 400                err(1, "Seeking to program headers");
 401        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
 402                err(1, "Reading program headers");
 403
 404        /*
 405         * Try all the headers: there are usually only three.  A read-only one,
 406         * a read-write one, and a "note" section which we don't load.
 407         */
 408        for (i = 0; i < ehdr->e_phnum; i++) {
 409                /* If this isn't a loadable segment, we ignore it */
 410                if (phdr[i].p_type != PT_LOAD)
 411                        continue;
 412
 413                verbose("Section %i: size %i addr %p\n",
 414                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 415
 416                /* We map this section of the file at its physical address. */
 417                map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
 418                       phdr[i].p_offset, phdr[i].p_filesz);
 419        }
 420
 421        /* The entry point is given in the ELF header. */
 422        return ehdr->e_entry;
 423}
 424
 425/*L:150
 426 * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
 427 * to jump into it and it will unpack itself.  We used to have to perform some
 428 * hairy magic because the unpacking code scared me.
 429 *
 430 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
 431 * a small patch to jump over the tricky bits in the Guest, so now we just read
 432 * the funky header so we know where in the file to load, and away we go!
 433 */
 434static unsigned long load_bzimage(int fd)
 435{
 436        struct boot_params boot;
 437        int r;
 438        /* Modern bzImages get loaded at 1M. */
 439        void *p = from_guest_phys(0x100000);
 440
 441        /*
 442         * Go back to the start of the file and read the header.  It should be
 443         * a Linux boot header (see Documentation/x86/i386/boot.txt)
 444         */
 445        lseek(fd, 0, SEEK_SET);
 446        read(fd, &boot, sizeof(boot));
 447
 448        /* Inside the setup_hdr, we expect the magic "HdrS" */
 449        if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
 450                errx(1, "This doesn't look like a bzImage to me");
 451
 452        /* Skip over the extra sectors of the header. */
 453        lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
 454
 455        /* Now read everything into memory. in nice big chunks. */
 456        while ((r = read(fd, p, 65536)) > 0)
 457                p += r;
 458
 459        /* Finally, code32_start tells us where to enter the kernel. */
 460        return boot.hdr.code32_start;
 461}
 462
 463/*L:140
 464 * Loading the kernel is easy when it's a "vmlinux", but most kernels
 465 * come wrapped up in the self-decompressing "bzImage" format.  With a little
 466 * work, we can load those, too.
 467 */
 468static unsigned long load_kernel(int fd)
 469{
 470        Elf32_Ehdr hdr;
 471
 472        /* Read in the first few bytes. */
 473        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
 474                err(1, "Reading kernel");
 475
 476        /* If it's an ELF file, it starts with "\177ELF" */
 477        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
 478                return map_elf(fd, &hdr);
 479
 480        /* Otherwise we assume it's a bzImage, and try to load it. */
 481        return load_bzimage(fd);
 482}
 483
 484/*
 485 * This is a trivial little helper to align pages.  Andi Kleen hated it because
 486 * it calls getpagesize() twice: "it's dumb code."
 487 *
 488 * Kernel guys get really het up about optimization, even when it's not
 489 * necessary.  I leave this code as a reaction against that.
 490 */
 491static inline unsigned long page_align(unsigned long addr)
 492{
 493        /* Add upwards and truncate downwards. */
 494        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 495}
 496
 497/*L:180
 498 * An "initial ram disk" is a disk image loaded into memory along with the
 499 * kernel which the kernel can use to boot from without needing any drivers.
 500 * Most distributions now use this as standard: the initrd contains the code to
 501 * load the appropriate driver modules for the current machine.
 502 *
 503 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
 504 * kernels.  He sent me this (and tells me when I break it).
 505 */
 506static unsigned long load_initrd(const char *name, unsigned long mem)
 507{
 508        int ifd;
 509        struct stat st;
 510        unsigned long len;
 511
 512        ifd = open_or_die(name, O_RDONLY);
 513        /* fstat() is needed to get the file size. */
 514        if (fstat(ifd, &st) < 0)
 515                err(1, "fstat() on initrd '%s'", name);
 516
 517        /*
 518         * We map the initrd at the top of memory, but mmap wants it to be
 519         * page-aligned, so we round the size up for that.
 520         */
 521        len = page_align(st.st_size);
 522        map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
 523        /*
 524         * Once a file is mapped, you can close the file descriptor.  It's a
 525         * little odd, but quite useful.
 526         */
 527        close(ifd);
 528        verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
 529
 530        /* We return the initrd size. */
 531        return len;
 532}
 533/*:*/
 534
 535/*
 536 * Simple routine to roll all the commandline arguments together with spaces
 537 * between them.
 538 */
 539static void concat(char *dst, char *args[])
 540{
 541        unsigned int i, len = 0;
 542
 543        for (i = 0; args[i]; i++) {
 544                if (i) {
 545                        strcat(dst+len, " ");
 546                        len++;
 547                }
 548                strcpy(dst+len, args[i]);
 549                len += strlen(args[i]);
 550        }
 551        /* In case it's empty. */
 552        dst[len] = '\0';
 553}
 554
 555/*L:185
 556 * This is where we actually tell the kernel to initialize the Guest.  We
 557 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
 558 * the base of Guest "physical" memory, the top physical page to allow and the
 559 * entry point for the Guest.
 560 */
 561static void tell_kernel(unsigned long start)
 562{
 563        unsigned long args[] = { LHREQ_INITIALIZE,
 564                                 (unsigned long)guest_base,
 565                                 guest_limit / getpagesize(), start };
 566        verbose("Guest: %p - %p (%#lx)\n",
 567                guest_base, guest_base + guest_limit, guest_limit);
 568        lguest_fd = open_or_die("/dev/lguest", O_RDWR);
 569        if (write(lguest_fd, args, sizeof(args)) < 0)
 570                err(1, "Writing to /dev/lguest");
 571}
 572/*:*/
 573
 574/*L:200
 575 * Device Handling.
 576 *
 577 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
 578 * We need to make sure it's not trying to reach into the Launcher itself, so
 579 * we have a convenient routine which checks it and exits with an error message
 580 * if something funny is going on:
 581 */
 582static void *_check_pointer(unsigned long addr, unsigned int size,
 583                            unsigned int line)
 584{
 585        /*
 586         * Check if the requested address and size exceeds the allocated memory,
 587         * or addr + size wraps around.
 588         */
 589        if ((addr + size) > guest_limit || (addr + size) < addr)
 590                errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
 591        /*
 592         * We return a pointer for the caller's convenience, now we know it's
 593         * safe to use.
 594         */
 595        return from_guest_phys(addr);
 596}
 597/* A macro which transparently hands the line number to the real function. */
 598#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 599
 600/*
 601 * Each buffer in the virtqueues is actually a chain of descriptors.  This
 602 * function returns the next descriptor in the chain, or vq->vring.num if we're
 603 * at the end.
 604 */
 605static unsigned next_desc(struct vring_desc *desc,
 606                          unsigned int i, unsigned int max)
 607{
 608        unsigned int next;
 609
 610        /* If this descriptor says it doesn't chain, we're done. */
 611        if (!(desc[i].flags & VRING_DESC_F_NEXT))
 612                return max;
 613
 614        /* Check they're not leading us off end of descriptors. */
 615        next = desc[i].next;
 616        /* Make sure compiler knows to grab that: we don't want it changing! */
 617        wmb();
 618
 619        if (next >= max)
 620                errx(1, "Desc next is %u", next);
 621
 622        return next;
 623}
 624
 625/*
 626 * This actually sends the interrupt for this virtqueue, if we've used a
 627 * buffer.
 628 */
 629static void trigger_irq(struct virtqueue *vq)
 630{
 631        unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
 632
 633        /* Don't inform them if nothing used. */
 634        if (!vq->pending_used)
 635                return;
 636        vq->pending_used = 0;
 637
 638        /* If they don't want an interrupt, don't send one... */
 639        if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
 640                /* ... unless they've asked us to force one on empty. */
 641                if (!vq->dev->irq_on_empty
 642                    || lg_last_avail(vq) != vq->vring.avail->idx)
 643                        return;
 644        }
 645
 646        /* Send the Guest an interrupt tell them we used something up. */
 647        if (write(lguest_fd, buf, sizeof(buf)) != 0)
 648                err(1, "Triggering irq %i", vq->config.irq);
 649}
 650
 651/*
 652 * This looks in the virtqueue for the first available buffer, and converts
 653 * it to an iovec for convenient access.  Since descriptors consist of some
 654 * number of output then some number of input descriptors, it's actually two
 655 * iovecs, but we pack them into one and note how many of each there were.
 656 *
 657 * This function waits if necessary, and returns the descriptor number found.
 658 */
 659static unsigned wait_for_vq_desc(struct virtqueue *vq,
 660                                 struct iovec iov[],
 661                                 unsigned int *out_num, unsigned int *in_num)
 662{
 663        unsigned int i, head, max;
 664        struct vring_desc *desc;
 665        u16 last_avail = lg_last_avail(vq);
 666
 667        /* There's nothing available? */
 668        while (last_avail == vq->vring.avail->idx) {
 669                u64 event;
 670
 671                /*
 672                 * Since we're about to sleep, now is a good time to tell the
 673                 * Guest about what we've used up to now.
 674                 */
 675                trigger_irq(vq);
 676
 677                /* OK, now we need to know about added descriptors. */
 678                vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
 679
 680                /*
 681                 * They could have slipped one in as we were doing that: make
 682                 * sure it's written, then check again.
 683                 */
 684                mb();
 685                if (last_avail != vq->vring.avail->idx) {
 686                        vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 687                        break;
 688                }
 689
 690                /* Nothing new?  Wait for eventfd to tell us they refilled. */
 691                if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
 692                        errx(1, "Event read failed?");
 693
 694                /* We don't need to be notified again. */
 695                vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 696        }
 697
 698        /* Check it isn't doing very strange things with descriptor numbers. */
 699        if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
 700                errx(1, "Guest moved used index from %u to %u",
 701                     last_avail, vq->vring.avail->idx);
 702
 703        /*
 704         * Grab the next descriptor number they're advertising, and increment
 705         * the index we've seen.
 706         */
 707        head = vq->vring.avail->ring[last_avail % vq->vring.num];
 708        lg_last_avail(vq)++;
 709
 710        /* If their number is silly, that's a fatal mistake. */
 711        if (head >= vq->vring.num)
 712                errx(1, "Guest says index %u is available", head);
 713
 714        /* When we start there are none of either input nor output. */
 715        *out_num = *in_num = 0;
 716
 717        max = vq->vring.num;
 718        desc = vq->vring.desc;
 719        i = head;
 720
 721        /*
 722         * If this is an indirect entry, then this buffer contains a descriptor
 723         * table which we handle as if it's any normal descriptor chain.
 724         */
 725        if (desc[i].flags & VRING_DESC_F_INDIRECT) {
 726                if (desc[i].len % sizeof(struct vring_desc))
 727                        errx(1, "Invalid size for indirect buffer table");
 728
 729                max = desc[i].len / sizeof(struct vring_desc);
 730                desc = check_pointer(desc[i].addr, desc[i].len);
 731                i = 0;
 732        }
 733
 734        do {
 735                /* Grab the first descriptor, and check it's OK. */
 736                iov[*out_num + *in_num].iov_len = desc[i].len;
 737                iov[*out_num + *in_num].iov_base
 738                        = check_pointer(desc[i].addr, desc[i].len);
 739                /* If this is an input descriptor, increment that count. */
 740                if (desc[i].flags & VRING_DESC_F_WRITE)
 741                        (*in_num)++;
 742                else {
 743                        /*
 744                         * If it's an output descriptor, they're all supposed
 745                         * to come before any input descriptors.
 746                         */
 747                        if (*in_num)
 748                                errx(1, "Descriptor has out after in");
 749                        (*out_num)++;
 750                }
 751
 752                /* If we've got too many, that implies a descriptor loop. */
 753                if (*out_num + *in_num > max)
 754                        errx(1, "Looped descriptor");
 755        } while ((i = next_desc(desc, i, max)) != max);
 756
 757        return head;
 758}
 759
 760/*
 761 * After we've used one of their buffers, we tell the Guest about it.  Sometime
 762 * later we'll want to send them an interrupt using trigger_irq(); note that
 763 * wait_for_vq_desc() does that for us if it has to wait.
 764 */
 765static void add_used(struct virtqueue *vq, unsigned int head, int len)
 766{
 767        struct vring_used_elem *used;
 768
 769        /*
 770         * The virtqueue contains a ring of used buffers.  Get a pointer to the
 771         * next entry in that used ring.
 772         */
 773        used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
 774        used->id = head;
 775        used->len = len;
 776        /* Make sure buffer is written before we update index. */
 777        wmb();
 778        vq->vring.used->idx++;
 779        vq->pending_used++;
 780}
 781
 782/* And here's the combo meal deal.  Supersize me! */
 783static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
 784{
 785        add_used(vq, head, len);
 786        trigger_irq(vq);
 787}
 788
 789/*
 790 * The Console
 791 *
 792 * We associate some data with the console for our exit hack.
 793 */
 794struct console_abort {
 795        /* How many times have they hit ^C? */
 796        int count;
 797        /* When did they start? */
 798        struct timeval start;
 799};
 800
 801/* This is the routine which handles console input (ie. stdin). */
 802static void console_input(struct virtqueue *vq)
 803{
 804        int len;
 805        unsigned int head, in_num, out_num;
 806        struct console_abort *abort = vq->dev->priv;
 807        struct iovec iov[vq->vring.num];
 808
 809        /* Make sure there's a descriptor available. */
 810        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
 811        if (out_num)
 812                errx(1, "Output buffers in console in queue?");
 813
 814        /* Read into it.  This is where we usually wait. */
 815        len = readv(STDIN_FILENO, iov, in_num);
 816        if (len <= 0) {
 817                /* Ran out of input? */
 818                warnx("Failed to get console input, ignoring console.");
 819                /*
 820                 * For simplicity, dying threads kill the whole Launcher.  So
 821                 * just nap here.
 822                 */
 823                for (;;)
 824                        pause();
 825        }
 826
 827        /* Tell the Guest we used a buffer. */
 828        add_used_and_trigger(vq, head, len);
 829
 830        /*
 831         * Three ^C within one second?  Exit.
 832         *
 833         * This is such a hack, but works surprisingly well.  Each ^C has to
 834         * be in a buffer by itself, so they can't be too fast.  But we check
 835         * that we get three within about a second, so they can't be too
 836         * slow.
 837         */
 838        if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
 839                abort->count = 0;
 840                return;
 841        }
 842
 843        abort->count++;
 844        if (abort->count == 1)
 845                gettimeofday(&abort->start, NULL);
 846        else if (abort->count == 3) {
 847                struct timeval now;
 848                gettimeofday(&now, NULL);
 849                /* Kill all Launcher processes with SIGINT, like normal ^C */
 850                if (now.tv_sec <= abort->start.tv_sec+1)
 851                        kill(0, SIGINT);
 852                abort->count = 0;
 853        }
 854}
 855
 856/* This is the routine which handles console output (ie. stdout). */
 857static void console_output(struct virtqueue *vq)
 858{
 859        unsigned int head, out, in;
 860        struct iovec iov[vq->vring.num];
 861
 862        /* We usually wait in here, for the Guest to give us something. */
 863        head = wait_for_vq_desc(vq, iov, &out, &in);
 864        if (in)
 865                errx(1, "Input buffers in console output queue?");
 866
 867        /* writev can return a partial write, so we loop here. */
 868        while (!iov_empty(iov, out)) {
 869                int len = writev(STDOUT_FILENO, iov, out);
 870                if (len <= 0)
 871                        err(1, "Write to stdout gave %i", len);
 872                iov_consume(iov, out, len);
 873        }
 874
 875        /*
 876         * We're finished with that buffer: if we're going to sleep,
 877         * wait_for_vq_desc() will prod the Guest with an interrupt.
 878         */
 879        add_used(vq, head, 0);
 880}
 881
 882/*
 883 * The Network
 884 *
 885 * Handling output for network is also simple: we get all the output buffers
 886 * and write them to /dev/net/tun.
 887 */
 888struct net_info {
 889        int tunfd;
 890};
 891
 892static void net_output(struct virtqueue *vq)
 893{
 894        struct net_info *net_info = vq->dev->priv;
 895        unsigned int head, out, in;
 896        struct iovec iov[vq->vring.num];
 897
 898        /* We usually wait in here for the Guest to give us a packet. */
 899        head = wait_for_vq_desc(vq, iov, &out, &in);
 900        if (in)
 901                errx(1, "Input buffers in net output queue?");
 902        /*
 903         * Send the whole thing through to /dev/net/tun.  It expects the exact
 904         * same format: what a coincidence!
 905         */
 906        if (writev(net_info->tunfd, iov, out) < 0)
 907                errx(1, "Write to tun failed?");
 908
 909        /*
 910         * Done with that one; wait_for_vq_desc() will send the interrupt if
 911         * all packets are processed.
 912         */
 913        add_used(vq, head, 0);
 914}
 915
 916/*
 917 * Handling network input is a bit trickier, because I've tried to optimize it.
 918 *
 919 * First we have a helper routine which tells is if from this file descriptor
 920 * (ie. the /dev/net/tun device) will block:
 921 */
 922static bool will_block(int fd)
 923{
 924        fd_set fdset;
 925        struct timeval zero = { 0, 0 };
 926        FD_ZERO(&fdset);
 927        FD_SET(fd, &fdset);
 928        return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
 929}
 930
 931/*
 932 * This handles packets coming in from the tun device to our Guest.  Like all
 933 * service routines, it gets called again as soon as it returns, so you don't
 934 * see a while(1) loop here.
 935 */
 936static void net_input(struct virtqueue *vq)
 937{
 938        int len;
 939        unsigned int head, out, in;
 940        struct iovec iov[vq->vring.num];
 941        struct net_info *net_info = vq->dev->priv;
 942
 943        /*
 944         * Get a descriptor to write an incoming packet into.  This will also
 945         * send an interrupt if they're out of descriptors.
 946         */
 947        head = wait_for_vq_desc(vq, iov, &out, &in);
 948        if (out)
 949                errx(1, "Output buffers in net input queue?");
 950
 951        /*
 952         * If it looks like we'll block reading from the tun device, send them
 953         * an interrupt.
 954         */
 955        if (vq->pending_used && will_block(net_info->tunfd))
 956                trigger_irq(vq);
 957
 958        /*
 959         * Read in the packet.  This is where we normally wait (when there's no
 960         * incoming network traffic).
 961         */
 962        len = readv(net_info->tunfd, iov, in);
 963        if (len <= 0)
 964                err(1, "Failed to read from tun.");
 965
 966        /*
 967         * Mark that packet buffer as used, but don't interrupt here.  We want
 968         * to wait until we've done as much work as we can.
 969         */
 970        add_used(vq, head, len);
 971}
 972/*:*/
 973
 974/* This is the helper to create threads: run the service routine in a loop. */
 975static int do_thread(void *_vq)
 976{
 977        struct virtqueue *vq = _vq;
 978
 979        for (;;)
 980                vq->service(vq);
 981        return 0;
 982}
 983
 984/*
 985 * When a child dies, we kill our entire process group with SIGTERM.  This
 986 * also has the side effect that the shell restores the console for us!
 987 */
 988static void kill_launcher(int signal)
 989{
 990        kill(0, SIGTERM);
 991}
 992
 993static void reset_device(struct device *dev)
 994{
 995        struct virtqueue *vq;
 996
 997        verbose("Resetting device %s\n", dev->name);
 998
 999        /* Clear any features they've acked. */
1000        memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
1001
1002        /* We're going to be explicitly killing threads, so ignore them. */
1003        signal(SIGCHLD, SIG_IGN);
1004
1005        /* Zero out the virtqueues, get rid of their threads */
1006        for (vq = dev->vq; vq; vq = vq->next) {
1007                if (vq->thread != (pid_t)-1) {
1008                        kill(vq->thread, SIGTERM);
1009                        waitpid(vq->thread, NULL, 0);
1010                        vq->thread = (pid_t)-1;
1011                }
1012                memset(vq->vring.desc, 0,
1013                       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1014                lg_last_avail(vq) = 0;
1015        }
1016        dev->running = false;
1017
1018        /* Now we care if threads die. */
1019        signal(SIGCHLD, (void *)kill_launcher);
1020}
1021
1022/*L:216
1023 * This actually creates the thread which services the virtqueue for a device.
1024 */
1025static void create_thread(struct virtqueue *vq)
1026{
1027        /*
1028         * Create stack for thread.  Since the stack grows upwards, we point
1029         * the stack pointer to the end of this region.
1030         */
1031        char *stack = malloc(32768);
1032        unsigned long args[] = { LHREQ_EVENTFD,
1033                                 vq->config.pfn*getpagesize(), 0 };
1034
1035        /* Create a zero-initialized eventfd. */
1036        vq->eventfd = eventfd(0, 0);
1037        if (vq->eventfd < 0)
1038                err(1, "Creating eventfd");
1039        args[2] = vq->eventfd;
1040
1041        /*
1042         * Attach an eventfd to this virtqueue: it will go off when the Guest
1043         * does an LHCALL_NOTIFY for this vq.
1044         */
1045        if (write(lguest_fd, &args, sizeof(args)) != 0)
1046                err(1, "Attaching eventfd");
1047
1048        /*
1049         * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1050         * we get a signal if it dies.
1051         */
1052        vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1053        if (vq->thread == (pid_t)-1)
1054                err(1, "Creating clone");
1055
1056        /* We close our local copy now the child has it. */
1057        close(vq->eventfd);
1058}
1059
1060static bool accepted_feature(struct device *dev, unsigned int bit)
1061{
1062        const u8 *features = get_feature_bits(dev) + dev->feature_len;
1063
1064        if (dev->feature_len < bit / CHAR_BIT)
1065                return false;
1066        return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
1067}
1068
1069static void start_device(struct device *dev)
1070{
1071        unsigned int i;
1072        struct virtqueue *vq;
1073
1074        verbose("Device %s OK: offered", dev->name);
1075        for (i = 0; i < dev->feature_len; i++)
1076                verbose(" %02x", get_feature_bits(dev)[i]);
1077        verbose(", accepted");
1078        for (i = 0; i < dev->feature_len; i++)
1079                verbose(" %02x", get_feature_bits(dev)
1080                        [dev->feature_len+i]);
1081
1082        dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1083
1084        for (vq = dev->vq; vq; vq = vq->next) {
1085                if (vq->service)
1086                        create_thread(vq);
1087        }
1088        dev->running = true;
1089}
1090
1091static void cleanup_devices(void)
1092{
1093        struct device *dev;
1094
1095        for (dev = devices.dev; dev; dev = dev->next)
1096                reset_device(dev);
1097
1098        /* If we saved off the original terminal settings, restore them now. */
1099        if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1100                tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1101}
1102
1103/* When the Guest tells us they updated the status field, we handle it. */
1104static void update_device_status(struct device *dev)
1105{
1106        /* A zero status is a reset, otherwise it's a set of flags. */
1107        if (dev->desc->status == 0)
1108                reset_device(dev);
1109        else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1110                warnx("Device %s configuration FAILED", dev->name);
1111                if (dev->running)
1112                        reset_device(dev);
1113        } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1114                if (!dev->running)
1115                        start_device(dev);
1116        }
1117}
1118
1119/*L:215
1120 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
1121 * particular, it's used to notify us of device status changes during boot.
1122 */
1123static void handle_output(unsigned long addr)
1124{
1125        struct device *i;
1126
1127        /* Check each device. */
1128        for (i = devices.dev; i; i = i->next) {
1129                struct virtqueue *vq;
1130
1131                /*
1132                 * Notifications to device descriptors mean they updated the
1133                 * device status.
1134                 */
1135                if (from_guest_phys(addr) == i->desc) {
1136                        update_device_status(i);
1137                        return;
1138                }
1139
1140                /*
1141                 * Devices *can* be used before status is set to DRIVER_OK.
1142                 * The original plan was that they would never do this: they
1143                 * would always finish setting up their status bits before
1144                 * actually touching the virtqueues.  In practice, we allowed
1145                 * them to, and they do (eg. the disk probes for partition
1146                 * tables as part of initialization).
1147                 *
1148                 * If we see this, we start the device: once it's running, we
1149                 * expect the device to catch all the notifications.
1150                 */
1151                for (vq = i->vq; vq; vq = vq->next) {
1152                        if (addr != vq->config.pfn*getpagesize())
1153                                continue;
1154                        if (i->running)
1155                                errx(1, "Notification on running %s", i->name);
1156                        /* This just calls create_thread() for each virtqueue */
1157                        start_device(i);
1158                        return;
1159                }
1160        }
1161
1162        /*
1163         * Early console write is done using notify on a nul-terminated string
1164         * in Guest memory.  It's also great for hacking debugging messages
1165         * into a Guest.
1166         */
1167        if (addr >= guest_limit)
1168                errx(1, "Bad NOTIFY %#lx", addr);
1169
1170        write(STDOUT_FILENO, from_guest_phys(addr),
1171              strnlen(from_guest_phys(addr), guest_limit - addr));
1172}
1173
1174/*L:190
1175 * Device Setup
1176 *
1177 * All devices need a descriptor so the Guest knows it exists, and a "struct
1178 * device" so the Launcher can keep track of it.  We have common helper
1179 * routines to allocate and manage them.
1180 */
1181
1182/*
1183 * The layout of the device page is a "struct lguest_device_desc" followed by a
1184 * number of virtqueue descriptors, then two sets of feature bits, then an
1185 * array of configuration bytes.  This routine returns the configuration
1186 * pointer.
1187 */
1188static u8 *device_config(const struct device *dev)
1189{
1190        return (void *)(dev->desc + 1)
1191                + dev->num_vq * sizeof(struct lguest_vqconfig)
1192                + dev->feature_len * 2;
1193}
1194
1195/*
1196 * This routine allocates a new "struct lguest_device_desc" from descriptor
1197 * table page just above the Guest's normal memory.  It returns a pointer to
1198 * that descriptor.
1199 */
1200static struct lguest_device_desc *new_dev_desc(u16 type)
1201{
1202        struct lguest_device_desc d = { .type = type };
1203        void *p;
1204
1205        /* Figure out where the next device config is, based on the last one. */
1206        if (devices.lastdev)
1207                p = device_config(devices.lastdev)
1208                        + devices.lastdev->desc->config_len;
1209        else
1210                p = devices.descpage;
1211
1212        /* We only have one page for all the descriptors. */
1213        if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1214                errx(1, "Too many devices");
1215
1216        /* p might not be aligned, so we memcpy in. */
1217        return memcpy(p, &d, sizeof(d));
1218}
1219
1220/*
1221 * Each device descriptor is followed by the description of its virtqueues.  We
1222 * specify how many descriptors the virtqueue is to have.
1223 */
1224static void add_virtqueue(struct device *dev, unsigned int num_descs,
1225                          void (*service)(struct virtqueue *))
1226{
1227        unsigned int pages;
1228        struct virtqueue **i, *vq = malloc(sizeof(*vq));
1229        void *p;
1230
1231        /* First we need some memory for this virtqueue. */
1232        pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1233                / getpagesize();
1234        p = get_pages(pages);
1235
1236        /* Initialize the virtqueue */
1237        vq->next = NULL;
1238        vq->last_avail_idx = 0;
1239        vq->dev = dev;
1240
1241        /*
1242         * This is the routine the service thread will run, and its Process ID
1243         * once it's running.
1244         */
1245        vq->service = service;
1246        vq->thread = (pid_t)-1;
1247
1248        /* Initialize the configuration. */
1249        vq->config.num = num_descs;
1250        vq->config.irq = devices.next_irq++;
1251        vq->config.pfn = to_guest_phys(p) / getpagesize();
1252
1253        /* Initialize the vring. */
1254        vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1255
1256        /*
1257         * Append virtqueue to this device's descriptor.  We use
1258         * device_config() to get the end of the device's current virtqueues;
1259         * we check that we haven't added any config or feature information
1260         * yet, otherwise we'd be overwriting them.
1261         */
1262        assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1263        memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1264        dev->num_vq++;
1265        dev->desc->num_vq++;
1266
1267        verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1268
1269        /*
1270         * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1271         * second.
1272         */
1273        for (i = &dev->vq; *i; i = &(*i)->next);
1274        *i = vq;
1275}
1276
1277/*
1278 * The first half of the feature bitmask is for us to advertise features.  The
1279 * second half is for the Guest to accept features.
1280 */
1281static void add_feature(struct device *dev, unsigned bit)
1282{
1283        u8 *features = get_feature_bits(dev);
1284
1285        /* We can't extend the feature bits once we've added config bytes */
1286        if (dev->desc->feature_len <= bit / CHAR_BIT) {
1287                assert(dev->desc->config_len == 0);
1288                dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1289        }
1290
1291        features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1292}
1293
1294/*
1295 * This routine sets the configuration fields for an existing device's
1296 * descriptor.  It only works for the last device, but that's OK because that's
1297 * how we use it.
1298 */
1299static void set_config(struct device *dev, unsigned len, const void *conf)
1300{
1301        /* Check we haven't overflowed our single page. */
1302        if (device_config(dev) + len > devices.descpage + getpagesize())
1303                errx(1, "Too many devices");
1304
1305        /* Copy in the config information, and store the length. */
1306        memcpy(device_config(dev), conf, len);
1307        dev->desc->config_len = len;
1308
1309        /* Size must fit in config_len field (8 bits)! */
1310        assert(dev->desc->config_len == len);
1311}
1312
1313/*
1314 * This routine does all the creation and setup of a new device, including
1315 * calling new_dev_desc() to allocate the descriptor and device memory.  We
1316 * don't actually start the service threads until later.
1317 *
1318 * See what I mean about userspace being boring?
1319 */
1320static struct device *new_device(const char *name, u16 type)
1321{
1322        struct device *dev = malloc(sizeof(*dev));
1323
1324        /* Now we populate the fields one at a time. */
1325        dev->desc = new_dev_desc(type);
1326        dev->name = name;
1327        dev->vq = NULL;
1328        dev->feature_len = 0;
1329        dev->num_vq = 0;
1330        dev->running = false;
1331
1332        /*
1333         * Append to device list.  Prepending to a single-linked list is
1334         * easier, but the user expects the devices to be arranged on the bus
1335         * in command-line order.  The first network device on the command line
1336         * is eth0, the first block device /dev/vda, etc.
1337         */
1338        if (devices.lastdev)
1339                devices.lastdev->next = dev;
1340        else
1341                devices.dev = dev;
1342        devices.lastdev = dev;
1343
1344        return dev;
1345}
1346
1347/*
1348 * Our first setup routine is the console.  It's a fairly simple device, but
1349 * UNIX tty handling makes it uglier than it could be.
1350 */
1351static void setup_console(void)
1352{
1353        struct device *dev;
1354
1355        /* If we can save the initial standard input settings... */
1356        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1357                struct termios term = orig_term;
1358                /*
1359                 * Then we turn off echo, line buffering and ^C etc: We want a
1360                 * raw input stream to the Guest.
1361                 */
1362                term.c_lflag &= ~(ISIG|ICANON|ECHO);
1363                tcsetattr(STDIN_FILENO, TCSANOW, &term);
1364        }
1365
1366        dev = new_device("console", VIRTIO_ID_CONSOLE);
1367
1368        /* We store the console state in dev->priv, and initialize it. */
1369        dev->priv = malloc(sizeof(struct console_abort));
1370        ((struct console_abort *)dev->priv)->count = 0;
1371
1372        /*
1373         * The console needs two virtqueues: the input then the output.  When
1374         * they put something the input queue, we make sure we're listening to
1375         * stdin.  When they put something in the output queue, we write it to
1376         * stdout.
1377         */
1378        add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1379        add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1380
1381        verbose("device %u: console\n", ++devices.device_num);
1382}
1383/*:*/
1384
1385/*M:010
1386 * Inter-guest networking is an interesting area.  Simplest is to have a
1387 * --sharenet=<name> option which opens or creates a named pipe.  This can be
1388 * used to send packets to another guest in a 1:1 manner.
1389 *
1390 * More sopisticated is to use one of the tools developed for project like UML
1391 * to do networking.
1392 *
1393 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1394 * completely generic ("here's my vring, attach to your vring") and would work
1395 * for any traffic.  Of course, namespace and permissions issues need to be
1396 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1397 * multiple inter-guest channels behind one interface, although it would
1398 * require some manner of hotplugging new virtio channels.
1399 *
1400 * Finally, we could implement a virtio network switch in the kernel.
1401:*/
1402
1403static u32 str2ip(const char *ipaddr)
1404{
1405        unsigned int b[4];
1406
1407        if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1408                errx(1, "Failed to parse IP address '%s'", ipaddr);
1409        return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1410}
1411
1412static void str2mac(const char *macaddr, unsigned char mac[6])
1413{
1414        unsigned int m[6];
1415        if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1416                   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1417                errx(1, "Failed to parse mac address '%s'", macaddr);
1418        mac[0] = m[0];
1419        mac[1] = m[1];
1420        mac[2] = m[2];
1421        mac[3] = m[3];
1422        mac[4] = m[4];
1423        mac[5] = m[5];
1424}
1425
1426/*
1427 * This code is "adapted" from libbridge: it attaches the Host end of the
1428 * network device to the bridge device specified by the command line.
1429 *
1430 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1431 * dislike bridging), and I just try not to break it.
1432 */
1433static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1434{
1435        int ifidx;
1436        struct ifreq ifr;
1437
1438        if (!*br_name)
1439                errx(1, "must specify bridge name");
1440
1441        ifidx = if_nametoindex(if_name);
1442        if (!ifidx)
1443                errx(1, "interface %s does not exist!", if_name);
1444
1445        strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1446        ifr.ifr_name[IFNAMSIZ-1] = '\0';
1447        ifr.ifr_ifindex = ifidx;
1448        if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1449                err(1, "can't add %s to bridge %s", if_name, br_name);
1450}
1451
1452/*
1453 * This sets up the Host end of the network device with an IP address, brings
1454 * it up so packets will flow, the copies the MAC address into the hwaddr
1455 * pointer.
1456 */
1457static void configure_device(int fd, const char *tapif, u32 ipaddr)
1458{
1459        struct ifreq ifr;
1460        struct sockaddr_in sin;
1461
1462        memset(&ifr, 0, sizeof(ifr));
1463        strcpy(ifr.ifr_name, tapif);
1464
1465        /* Don't read these incantations.  Just cut & paste them like I did! */
1466        sin.sin_family = AF_INET;
1467        sin.sin_addr.s_addr = htonl(ipaddr);
1468        memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1469        if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1470                err(1, "Setting %s interface address", tapif);
1471        ifr.ifr_flags = IFF_UP;
1472        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1473                err(1, "Bringing interface %s up", tapif);
1474}
1475
1476static int get_tun_device(char tapif[IFNAMSIZ])
1477{
1478        struct ifreq ifr;
1479        int netfd;
1480
1481        /* Start with this zeroed.  Messy but sure. */
1482        memset(&ifr, 0, sizeof(ifr));
1483
1484        /*
1485         * We open the /dev/net/tun device and tell it we want a tap device.  A
1486         * tap device is like a tun device, only somehow different.  To tell
1487         * the truth, I completely blundered my way through this code, but it
1488         * works now!
1489         */
1490        netfd = open_or_die("/dev/net/tun", O_RDWR);
1491        ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1492        strcpy(ifr.ifr_name, "tap%d");
1493        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1494                err(1, "configuring /dev/net/tun");
1495
1496        if (ioctl(netfd, TUNSETOFFLOAD,
1497                  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1498                err(1, "Could not set features for tun device");
1499
1500        /*
1501         * We don't need checksums calculated for packets coming in this
1502         * device: trust us!
1503         */
1504        ioctl(netfd, TUNSETNOCSUM, 1);
1505
1506        memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1507        return netfd;
1508}
1509
1510/*L:195
1511 * Our network is a Host<->Guest network.  This can either use bridging or
1512 * routing, but the principle is the same: it uses the "tun" device to inject
1513 * packets into the Host as if they came in from a normal network card.  We
1514 * just shunt packets between the Guest and the tun device.
1515 */
1516static void setup_tun_net(char *arg)
1517{
1518        struct device *dev;
1519        struct net_info *net_info = malloc(sizeof(*net_info));
1520        int ipfd;
1521        u32 ip = INADDR_ANY;
1522        bool bridging = false;
1523        char tapif[IFNAMSIZ], *p;
1524        struct virtio_net_config conf;
1525
1526        net_info->tunfd = get_tun_device(tapif);
1527
1528        /* First we create a new network device. */
1529        dev = new_device("net", VIRTIO_ID_NET);
1530        dev->priv = net_info;
1531
1532        /* Network devices need a recv and a send queue, just like console. */
1533        add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1534        add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1535
1536        /*
1537         * We need a socket to perform the magic network ioctls to bring up the
1538         * tap interface, connect to the bridge etc.  Any socket will do!
1539         */
1540        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1541        if (ipfd < 0)
1542                err(1, "opening IP socket");
1543
1544        /* If the command line was --tunnet=bridge:<name> do bridging. */
1545        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1546                arg += strlen(BRIDGE_PFX);
1547                bridging = true;
1548        }
1549
1550        /* A mac address may follow the bridge name or IP address */
1551        p = strchr(arg, ':');
1552        if (p) {
1553                str2mac(p+1, conf.mac);
1554                add_feature(dev, VIRTIO_NET_F_MAC);
1555                *p = '\0';
1556        }
1557
1558        /* arg is now either an IP address or a bridge name */
1559        if (bridging)
1560                add_to_bridge(ipfd, tapif, arg);
1561        else
1562                ip = str2ip(arg);
1563
1564        /* Set up the tun device. */
1565        configure_device(ipfd, tapif, ip);
1566
1567        add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1568        /* Expect Guest to handle everything except UFO */
1569        add_feature(dev, VIRTIO_NET_F_CSUM);
1570        add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1571        add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1572        add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1573        add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1574        add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1575        add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1576        add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1577        /* We handle indirect ring entries */
1578        add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1579        set_config(dev, sizeof(conf), &conf);
1580
1581        /* We don't need the socket any more; setup is done. */
1582        close(ipfd);
1583
1584        devices.device_num++;
1585
1586        if (bridging)
1587                verbose("device %u: tun %s attached to bridge: %s\n",
1588                        devices.device_num, tapif, arg);
1589        else
1590                verbose("device %u: tun %s: %s\n",
1591                        devices.device_num, tapif, arg);
1592}
1593/*:*/
1594
1595/* This hangs off device->priv. */
1596struct vblk_info {
1597        /* The size of the file. */
1598        off64_t len;
1599
1600        /* The file descriptor for the file. */
1601        int fd;
1602
1603};
1604
1605/*L:210
1606 * The Disk
1607 *
1608 * The disk only has one virtqueue, so it only has one thread.  It is really
1609 * simple: the Guest asks for a block number and we read or write that position
1610 * in the file.
1611 *
1612 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1613 * slow: the Guest waits until the read is finished before running anything
1614 * else, even if it could have been doing useful work.
1615 *
1616 * We could have used async I/O, except it's reputed to suck so hard that
1617 * characters actually go missing from your code when you try to use it.
1618 */
1619static void blk_request(struct virtqueue *vq)
1620{
1621        struct vblk_info *vblk = vq->dev->priv;
1622        unsigned int head, out_num, in_num, wlen;
1623        int ret;
1624        u8 *in;
1625        struct virtio_blk_outhdr *out;
1626        struct iovec iov[vq->vring.num];
1627        off64_t off;
1628
1629        /*
1630         * Get the next request, where we normally wait.  It triggers the
1631         * interrupt to acknowledge previously serviced requests (if any).
1632         */
1633        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1634
1635        /*
1636         * Every block request should contain at least one output buffer
1637         * (detailing the location on disk and the type of request) and one
1638         * input buffer (to hold the result).
1639         */
1640        if (out_num == 0 || in_num == 0)
1641                errx(1, "Bad virtblk cmd %u out=%u in=%u",
1642                     head, out_num, in_num);
1643
1644        out = convert(&iov[0], struct virtio_blk_outhdr);
1645        in = convert(&iov[out_num+in_num-1], u8);
1646        /*
1647         * For historical reasons, block operations are expressed in 512 byte
1648         * "sectors".
1649         */
1650        off = out->sector * 512;
1651
1652        /*
1653         * In general the virtio block driver is allowed to try SCSI commands.
1654         * It'd be nice if we supported eject, for example, but we don't.
1655         */
1656        if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1657                fprintf(stderr, "Scsi commands unsupported\n");
1658                *in = VIRTIO_BLK_S_UNSUPP;
1659                wlen = sizeof(*in);
1660        } else if (out->type & VIRTIO_BLK_T_OUT) {
1661                /*
1662                 * Write
1663                 *
1664                 * Move to the right location in the block file.  This can fail
1665                 * if they try to write past end.
1666                 */
1667                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1668                        err(1, "Bad seek to sector %llu", out->sector);
1669
1670                ret = writev(vblk->fd, iov+1, out_num-1);
1671                verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1672
1673                /*
1674                 * Grr... Now we know how long the descriptor they sent was, we
1675                 * make sure they didn't try to write over the end of the block
1676                 * file (possibly extending it).
1677                 */
1678                if (ret > 0 && off + ret > vblk->len) {
1679                        /* Trim it back to the correct length */
1680                        ftruncate64(vblk->fd, vblk->len);
1681                        /* Die, bad Guest, die. */
1682                        errx(1, "Write past end %llu+%u", off, ret);
1683                }
1684
1685                wlen = sizeof(*in);
1686                *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1687        } else if (out->type & VIRTIO_BLK_T_FLUSH) {
1688                /* Flush */
1689                ret = fdatasync(vblk->fd);
1690                verbose("FLUSH fdatasync: %i\n", ret);
1691                wlen = sizeof(*in);
1692                *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1693        } else {
1694                /*
1695                 * Read
1696                 *
1697                 * Move to the right location in the block file.  This can fail
1698                 * if they try to read past end.
1699                 */
1700                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1701                        err(1, "Bad seek to sector %llu", out->sector);
1702
1703                ret = readv(vblk->fd, iov+1, in_num-1);
1704                verbose("READ from sector %llu: %i\n", out->sector, ret);
1705                if (ret >= 0) {
1706                        wlen = sizeof(*in) + ret;
1707                        *in = VIRTIO_BLK_S_OK;
1708                } else {
1709                        wlen = sizeof(*in);
1710                        *in = VIRTIO_BLK_S_IOERR;
1711                }
1712        }
1713
1714        /* Finished that request. */
1715        add_used(vq, head, wlen);
1716}
1717
1718/*L:198 This actually sets up a virtual block device. */
1719static void setup_block_file(const char *filename)
1720{
1721        struct device *dev;
1722        struct vblk_info *vblk;
1723        struct virtio_blk_config conf;
1724
1725        /* Creat the device. */
1726        dev = new_device("block", VIRTIO_ID_BLOCK);
1727
1728        /* The device has one virtqueue, where the Guest places requests. */
1729        add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1730
1731        /* Allocate the room for our own bookkeeping */
1732        vblk = dev->priv = malloc(sizeof(*vblk));
1733
1734        /* First we open the file and store the length. */
1735        vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1736        vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1737
1738        /* We support FLUSH. */
1739        add_feature(dev, VIRTIO_BLK_F_FLUSH);
1740
1741        /* Tell Guest how many sectors this device has. */
1742        conf.capacity = cpu_to_le64(vblk->len / 512);
1743
1744        /*
1745         * Tell Guest not to put in too many descriptors at once: two are used
1746         * for the in and out elements.
1747         */
1748        add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1749        conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1750
1751        /* Don't try to put whole struct: we have 8 bit limit. */
1752        set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1753
1754        verbose("device %u: virtblock %llu sectors\n",
1755                ++devices.device_num, le64_to_cpu(conf.capacity));
1756}
1757
1758/*L:211
1759 * Our random number generator device reads from /dev/random into the Guest's
1760 * input buffers.  The usual case is that the Guest doesn't want random numbers
1761 * and so has no buffers although /dev/random is still readable, whereas
1762 * console is the reverse.
1763 *
1764 * The same logic applies, however.
1765 */
1766struct rng_info {
1767        int rfd;
1768};
1769
1770static void rng_input(struct virtqueue *vq)
1771{
1772        int len;
1773        unsigned int head, in_num, out_num, totlen = 0;
1774        struct rng_info *rng_info = vq->dev->priv;
1775        struct iovec iov[vq->vring.num];
1776
1777        /* First we need a buffer from the Guests's virtqueue. */
1778        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1779        if (out_num)
1780                errx(1, "Output buffers in rng?");
1781
1782        /*
1783         * Just like the console write, we loop to cover the whole iovec.
1784         * In this case, short reads actually happen quite a bit.
1785         */
1786        while (!iov_empty(iov, in_num)) {
1787                len = readv(rng_info->rfd, iov, in_num);
1788                if (len <= 0)
1789                        err(1, "Read from /dev/random gave %i", len);
1790                iov_consume(iov, in_num, len);
1791                totlen += len;
1792        }
1793
1794        /* Tell the Guest about the new input. */
1795        add_used(vq, head, totlen);
1796}
1797
1798/*L:199
1799 * This creates a "hardware" random number device for the Guest.
1800 */
1801static void setup_rng(void)
1802{
1803        struct device *dev;
1804        struct rng_info *rng_info = malloc(sizeof(*rng_info));
1805
1806        /* Our device's privat info simply contains the /dev/random fd. */
1807        rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1808
1809        /* Create the new device. */
1810        dev = new_device("rng", VIRTIO_ID_RNG);
1811        dev->priv = rng_info;
1812
1813        /* The device has one virtqueue, where the Guest places inbufs. */
1814        add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1815
1816        verbose("device %u: rng\n", devices.device_num++);
1817}
1818/* That's the end of device setup. */
1819
1820/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1821static void __attribute__((noreturn)) restart_guest(void)
1822{
1823        unsigned int i;
1824
1825        /*
1826         * Since we don't track all open fds, we simply close everything beyond
1827         * stderr.
1828         */
1829        for (i = 3; i < FD_SETSIZE; i++)
1830                close(i);
1831
1832        /* Reset all the devices (kills all threads). */
1833        cleanup_devices();
1834
1835        execv(main_args[0], main_args);
1836        err(1, "Could not exec %s", main_args[0]);
1837}
1838
1839/*L:220
1840 * Finally we reach the core of the Launcher which runs the Guest, serves
1841 * its input and output, and finally, lays it to rest.
1842 */
1843static void __attribute__((noreturn)) run_guest(void)
1844{
1845        for (;;) {
1846                unsigned long notify_addr;
1847                int readval;
1848
1849                /* We read from the /dev/lguest device to run the Guest. */
1850                readval = pread(lguest_fd, &notify_addr,
1851                                sizeof(notify_addr), cpu_id);
1852
1853                /* One unsigned long means the Guest did HCALL_NOTIFY */
1854                if (readval == sizeof(notify_addr)) {
1855                        verbose("Notify on address %#lx\n", notify_addr);
1856                        handle_output(notify_addr);
1857                /* ENOENT means the Guest died.  Reading tells us why. */
1858                } else if (errno == ENOENT) {
1859                        char reason[1024] = { 0 };
1860                        pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1861                        errx(1, "%s", reason);
1862                /* ERESTART means that we need to reboot the guest */
1863                } else if (errno == ERESTART) {
1864                        restart_guest();
1865                /* Anything else means a bug or incompatible change. */
1866                } else
1867                        err(1, "Running guest failed");
1868        }
1869}
1870/*L:240
1871 * This is the end of the Launcher.  The good news: we are over halfway
1872 * through!  The bad news: the most fiendish part of the code still lies ahead
1873 * of us.
1874 *
1875 * Are you ready?  Take a deep breath and join me in the core of the Host, in
1876 * "make Host".
1877:*/
1878
1879static struct option opts[] = {
1880        { "verbose", 0, NULL, 'v' },
1881        { "tunnet", 1, NULL, 't' },
1882        { "block", 1, NULL, 'b' },
1883        { "rng", 0, NULL, 'r' },
1884        { "initrd", 1, NULL, 'i' },
1885        { "username", 1, NULL, 'u' },
1886        { "chroot", 1, NULL, 'c' },
1887        { NULL },
1888};
1889static void usage(void)
1890{
1891        errx(1, "Usage: lguest [--verbose] "
1892             "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1893             "|--block=<filename>|--initrd=<filename>]...\n"
1894             "<mem-in-mb> vmlinux [args...]");
1895}
1896
1897/*L:105 The main routine is where the real work begins: */
1898int main(int argc, char *argv[])
1899{
1900        /* Memory, code startpoint and size of the (optional) initrd. */
1901        unsigned long mem = 0, start, initrd_size = 0;
1902        /* Two temporaries. */
1903        int i, c;
1904        /* The boot information for the Guest. */
1905        struct boot_params *boot;
1906        /* If they specify an initrd file to load. */
1907        const char *initrd_name = NULL;
1908
1909        /* Password structure for initgroups/setres[gu]id */
1910        struct passwd *user_details = NULL;
1911
1912        /* Directory to chroot to */
1913        char *chroot_path = NULL;
1914
1915        /* Save the args: we "reboot" by execing ourselves again. */
1916        main_args = argv;
1917
1918        /*
1919         * First we initialize the device list.  We keep a pointer to the last
1920         * device, and the next interrupt number to use for devices (1:
1921         * remember that 0 is used by the timer).
1922         */
1923        devices.lastdev = NULL;
1924        devices.next_irq = 1;
1925
1926        /* We're CPU 0.  In fact, that's the only CPU possible right now. */
1927        cpu_id = 0;
1928
1929        /*
1930         * We need to know how much memory so we can set up the device
1931         * descriptor and memory pages for the devices as we parse the command
1932         * line.  So we quickly look through the arguments to find the amount
1933         * of memory now.
1934         */
1935        for (i = 1; i < argc; i++) {
1936                if (argv[i][0] != '-') {
1937                        mem = atoi(argv[i]) * 1024 * 1024;
1938                        /*
1939                         * We start by mapping anonymous pages over all of
1940                         * guest-physical memory range.  This fills it with 0,
1941                         * and ensures that the Guest won't be killed when it
1942                         * tries to access it.
1943                         */
1944                        guest_base = map_zeroed_pages(mem / getpagesize()
1945                                                      + DEVICE_PAGES);
1946                        guest_limit = mem;
1947                        guest_max = mem + DEVICE_PAGES*getpagesize();
1948                        devices.descpage = get_pages(1);
1949                        break;
1950                }
1951        }
1952
1953        /* The options are fairly straight-forward */
1954        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1955                switch (c) {
1956                case 'v':
1957                        verbose = true;
1958                        break;
1959                case 't':
1960                        setup_tun_net(optarg);
1961                        break;
1962                case 'b':
1963                        setup_block_file(optarg);
1964                        break;
1965                case 'r':
1966                        setup_rng();
1967                        break;
1968                case 'i':
1969                        initrd_name = optarg;
1970                        break;
1971                case 'u':
1972                        user_details = getpwnam(optarg);
1973                        if (!user_details)
1974                                err(1, "getpwnam failed, incorrect username?");
1975                        break;
1976                case 'c':
1977                        chroot_path = optarg;
1978                        break;
1979                default:
1980                        warnx("Unknown argument %s", argv[optind]);
1981                        usage();
1982                }
1983        }
1984        /*
1985         * After the other arguments we expect memory and kernel image name,
1986         * followed by command line arguments for the kernel.
1987         */
1988        if (optind + 2 > argc)
1989                usage();
1990
1991        verbose("Guest base is at %p\n", guest_base);
1992
1993        /* We always have a console device */
1994        setup_console();
1995
1996        /* Now we load the kernel */
1997        start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1998
1999        /* Boot information is stashed at physical address 0 */
2000        boot = from_guest_phys(0);
2001
2002        /* Map the initrd image if requested (at top of physical memory) */
2003        if (initrd_name) {
2004                initrd_size = load_initrd(initrd_name, mem);
2005                /*
2006                 * These are the location in the Linux boot header where the
2007                 * start and size of the initrd are expected to be found.
2008                 */
2009                boot->hdr.ramdisk_image = mem - initrd_size;
2010                boot->hdr.ramdisk_size = initrd_size;
2011                /* The bootloader type 0xFF means "unknown"; that's OK. */
2012                boot->hdr.type_of_loader = 0xFF;
2013        }
2014
2015        /*
2016         * The Linux boot header contains an "E820" memory map: ours is a
2017         * simple, single region.
2018         */
2019        boot->e820_entries = 1;
2020        boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2021        /*
2022         * The boot header contains a command line pointer: we put the command
2023         * line after the boot header.
2024         */
2025        boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2026        /* We use a simple helper to copy the arguments separated by spaces. */
2027        concat((char *)(boot + 1), argv+optind+2);
2028
2029        /* Boot protocol version: 2.07 supports the fields for lguest. */
2030        boot->hdr.version = 0x207;
2031
2032        /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2033        boot->hdr.hardware_subarch = 1;
2034
2035        /* Tell the entry path not to try to reload segment registers. */
2036        boot->hdr.loadflags |= KEEP_SEGMENTS;
2037
2038        /*
2039         * We tell the kernel to initialize the Guest: this returns the open
2040         * /dev/lguest file descriptor.
2041         */
2042        tell_kernel(start);
2043
2044        /* Ensure that we terminate if a device-servicing child dies. */
2045        signal(SIGCHLD, kill_launcher);
2046
2047        /* If we exit via err(), this kills all the threads, restores tty. */
2048        atexit(cleanup_devices);
2049
2050        /* If requested, chroot to a directory */
2051        if (chroot_path) {
2052                if (chroot(chroot_path) != 0)
2053                        err(1, "chroot(\"%s\") failed", chroot_path);
2054
2055                if (chdir("/") != 0)
2056                        err(1, "chdir(\"/\") failed");
2057
2058                verbose("chroot done\n");
2059        }
2060
2061        /* If requested, drop privileges */
2062        if (user_details) {
2063                uid_t u;
2064                gid_t g;
2065
2066                u = user_details->pw_uid;
2067                g = user_details->pw_gid;
2068
2069                if (initgroups(user_details->pw_name, g) != 0)
2070                        err(1, "initgroups failed");
2071
2072                if (setresgid(g, g, g) != 0)
2073                        err(1, "setresgid failed");
2074
2075                if (setresuid(u, u, u) != 0)
2076                        err(1, "setresuid failed");
2077
2078                verbose("Dropping privileges completed\n");
2079        }
2080
2081        /* Finally, run the Guest.  This doesn't return. */
2082        run_guest();
2083}
2084/*:*/
2085
2086/*M:999
2087 * Mastery is done: you now know everything I do.
2088 *
2089 * But surely you have seen code, features and bugs in your wanderings which
2090 * you now yearn to attack?  That is the real game, and I look forward to you
2091 * patching and forking lguest into the Your-Name-Here-visor.
2092 *
2093 * Farewell, and good coding!
2094 * Rusty Russell.
2095 */
2096