linux/arch/alpha/kernel/core_t2.c
<<
>>
Prefs
   1/*
   2 *      linux/arch/alpha/kernel/core_t2.c
   3 *
   4 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
   5 * December 1996.
   6 *
   7 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
   8 *
   9 * Code common to all T2 core logic chips.
  10 */
  11
  12#define __EXTERN_INLINE
  13#include <asm/io.h>
  14#include <asm/core_t2.h>
  15#undef __EXTERN_INLINE
  16
  17#include <linux/types.h>
  18#include <linux/pci.h>
  19#include <linux/sched.h>
  20#include <linux/init.h>
  21
  22#include <asm/ptrace.h>
  23#include <asm/delay.h>
  24
  25#include "proto.h"
  26#include "pci_impl.h"
  27
  28/* For dumping initial DMA window settings. */
  29#define DEBUG_PRINT_INITIAL_SETTINGS 0
  30
  31/* For dumping final DMA window settings. */
  32#define DEBUG_PRINT_FINAL_SETTINGS 0
  33
  34/*
  35 * By default, we direct-map starting at 2GB, in order to allow the
  36 * maximum size direct-map window (2GB) to match the maximum amount of
  37 * memory (2GB) that can be present on SABLEs. But that limits the
  38 * floppy to DMA only via the scatter/gather window set up for 8MB
  39 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
  40 *
  41 * For now, this seems a reasonable trade-off: even though most SABLEs
  42 * have less than 1GB of memory, floppy usage/performance will not
  43 * really be affected by forcing it to go via scatter/gather...
  44 */
  45#define T2_DIRECTMAP_2G 1
  46
  47#if T2_DIRECTMAP_2G
  48# define T2_DIRECTMAP_START     0x80000000UL
  49# define T2_DIRECTMAP_LENGTH    0x80000000UL
  50#else
  51# define T2_DIRECTMAP_START     0x40000000UL
  52# define T2_DIRECTMAP_LENGTH    0x40000000UL
  53#endif
  54
  55/* The ISA scatter/gather window settings. */
  56#define T2_ISA_SG_START         0x00800000UL
  57#define T2_ISA_SG_LENGTH        0x00800000UL
  58
  59/*
  60 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
  61 * One plausible explanation is that the i/o controller does not properly
  62 * handle the system transaction.  Another involves timing.  Ho hum.
  63 */
  64
  65/*
  66 * BIOS32-style PCI interface:
  67 */
  68
  69#define DEBUG_CONFIG 0
  70
  71#if DEBUG_CONFIG
  72# define DBG(args)      printk args
  73#else
  74# define DBG(args)
  75#endif
  76
  77static volatile unsigned int t2_mcheck_any_expected;
  78static volatile unsigned int t2_mcheck_last_taken;
  79
  80/* Place to save the DMA Window registers as set up by SRM
  81   for restoration during shutdown. */
  82static struct
  83{
  84        struct {
  85                unsigned long wbase;
  86                unsigned long wmask;
  87                unsigned long tbase;
  88        } window[2];
  89        unsigned long hae_1;
  90        unsigned long hae_2;
  91        unsigned long hae_3;
  92        unsigned long hae_4;
  93        unsigned long hbase;
  94} t2_saved_config __attribute((common));
  95
  96/*
  97 * Given a bus, device, and function number, compute resulting
  98 * configuration space address and setup the T2_HAXR2 register
  99 * accordingly.  It is therefore not safe to have concurrent
 100 * invocations to configuration space access routines, but there
 101 * really shouldn't be any need for this.
 102 *
 103 * Type 0:
 104 *
 105 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 106 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 107 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 108 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 109 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 110 *
 111 *      31:11   Device select bit.
 112 *      10:8    Function number
 113 *       7:2    Register number
 114 *
 115 * Type 1:
 116 *
 117 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 118 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 120 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 122 *
 123 *      31:24   reserved
 124 *      23:16   bus number (8 bits = 128 possible buses)
 125 *      15:11   Device number (5 bits)
 126 *      10:8    function number
 127 *       7:2    register number
 128 *  
 129 * Notes:
 130 *      The function number selects which function of a multi-function device 
 131 *      (e.g., SCSI and Ethernet).
 132 * 
 133 *      The register selects a DWORD (32 bit) register offset.  Hence it
 134 *      doesn't get shifted by 2 bits as we want to "drop" the bottom two
 135 *      bits.
 136 */
 137
 138static int
 139mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
 140             unsigned long *pci_addr, unsigned char *type1)
 141{
 142        unsigned long addr;
 143        u8 bus = pbus->number;
 144
 145        DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
 146             " addr=0x%lx, type1=0x%x)\n",
 147             bus, device_fn, where, pci_addr, type1));
 148
 149        if (bus == 0) {
 150                int device = device_fn >> 3;
 151
 152                /* Type 0 configuration cycle.  */
 153
 154                if (device > 8) {
 155                        DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
 156                             device));
 157                        return -1;
 158                }
 159
 160                *type1 = 0;
 161                addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
 162        } else {
 163                /* Type 1 configuration cycle.  */
 164                *type1 = 1;
 165                addr = (bus << 16) | (device_fn << 8) | (where);
 166        }
 167        *pci_addr = addr;
 168        DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
 169        return 0;
 170}
 171
 172/*
 173 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
 174 *       to do type1 access. This is protected by the use of spinlock IRQ
 175 *       primitives in the wrapper functions pci_{read,write}_config_*()
 176 *       defined in drivers/pci/pci.c.
 177 */
 178static unsigned int
 179conf_read(unsigned long addr, unsigned char type1)
 180{
 181        unsigned int value, cpu, taken;
 182        unsigned long t2_cfg = 0;
 183
 184        cpu = smp_processor_id();
 185
 186        DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
 187
 188        /* If Type1 access, must set T2 CFG.  */
 189        if (type1) {
 190                t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 191                *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
 192                mb();
 193        }
 194        mb();
 195        draina();
 196
 197        mcheck_expected(cpu) = 1;
 198        mcheck_taken(cpu) = 0;
 199        t2_mcheck_any_expected |= (1 << cpu);
 200        mb();
 201
 202        /* Access configuration space. */
 203        value = *(vuip)addr;
 204        mb();
 205        mb();  /* magic */
 206
 207        /* Wait for possible mcheck. Also, this lets other CPUs clear
 208           their mchecks as well, as they can reliably tell when
 209           another CPU is in the midst of handling a real mcheck via
 210           the "taken" function. */
 211        udelay(100);
 212
 213        if ((taken = mcheck_taken(cpu))) {
 214                mcheck_taken(cpu) = 0;
 215                t2_mcheck_last_taken |= (1 << cpu);
 216                value = 0xffffffffU;
 217                mb();
 218        }
 219        mcheck_expected(cpu) = 0;
 220        t2_mcheck_any_expected = 0;
 221        mb();
 222
 223        /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 224        if (type1) {
 225                *(vulp)T2_HAE_3 = t2_cfg;
 226                mb();
 227        }
 228
 229        return value;
 230}
 231
 232static void
 233conf_write(unsigned long addr, unsigned int value, unsigned char type1)
 234{
 235        unsigned int cpu, taken;
 236        unsigned long t2_cfg = 0;
 237
 238        cpu = smp_processor_id();
 239
 240        /* If Type1 access, must set T2 CFG.  */
 241        if (type1) {
 242                t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 243                *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
 244                mb();
 245        }
 246        mb();
 247        draina();
 248
 249        mcheck_expected(cpu) = 1;
 250        mcheck_taken(cpu) = 0;
 251        t2_mcheck_any_expected |= (1 << cpu);
 252        mb();
 253
 254        /* Access configuration space.  */
 255        *(vuip)addr = value;
 256        mb();
 257        mb();  /* magic */
 258
 259        /* Wait for possible mcheck. Also, this lets other CPUs clear
 260           their mchecks as well, as they can reliably tell when
 261           this CPU is in the midst of handling a real mcheck via
 262           the "taken" function. */
 263        udelay(100);
 264
 265        if ((taken = mcheck_taken(cpu))) {
 266                mcheck_taken(cpu) = 0;
 267                t2_mcheck_last_taken |= (1 << cpu);
 268                mb();
 269        }
 270        mcheck_expected(cpu) = 0;
 271        t2_mcheck_any_expected = 0;
 272        mb();
 273
 274        /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 275        if (type1) {
 276                *(vulp)T2_HAE_3 = t2_cfg;
 277                mb();
 278        }
 279}
 280
 281static int
 282t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
 283               int size, u32 *value)
 284{
 285        unsigned long addr, pci_addr;
 286        unsigned char type1;
 287        int shift;
 288        long mask;
 289
 290        if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 291                return PCIBIOS_DEVICE_NOT_FOUND;
 292
 293        mask = (size - 1) * 8;
 294        shift = (where & 3) * 8;
 295        addr = (pci_addr << 5) + mask + T2_CONF;
 296        *value = conf_read(addr, type1) >> (shift);
 297        return PCIBIOS_SUCCESSFUL;
 298}
 299
 300static int 
 301t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
 302                u32 value)
 303{
 304        unsigned long addr, pci_addr;
 305        unsigned char type1;
 306        long mask;
 307
 308        if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 309                return PCIBIOS_DEVICE_NOT_FOUND;
 310
 311        mask = (size - 1) * 8;
 312        addr = (pci_addr << 5) + mask + T2_CONF;
 313        conf_write(addr, value << ((where & 3) * 8), type1);
 314        return PCIBIOS_SUCCESSFUL;
 315}
 316
 317struct pci_ops t2_pci_ops = 
 318{
 319        .read =         t2_read_config,
 320        .write =        t2_write_config,
 321};
 322
 323static void __init
 324t2_direct_map_window1(unsigned long base, unsigned long length)
 325{
 326        unsigned long temp;
 327
 328        __direct_map_base = base;
 329        __direct_map_size = length;
 330
 331        temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 332        *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
 333        temp = (length - 1) & 0xfff00000UL;
 334        *(vulp)T2_WMASK1 = temp;
 335        *(vulp)T2_TBASE1 = 0;
 336
 337#if DEBUG_PRINT_FINAL_SETTINGS
 338        printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
 339               __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 340#endif
 341}
 342
 343static void __init
 344t2_sg_map_window2(struct pci_controller *hose,
 345                  unsigned long base,
 346                  unsigned long length)
 347{
 348        unsigned long temp;
 349
 350        /* Note we can only do 1 SG window, as the other is for direct, so
 351           do an ISA SG area, especially for the floppy. */
 352        hose->sg_isa = iommu_arena_new(hose, base, length, 0);
 353        hose->sg_pci = NULL;
 354
 355        temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 356        *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
 357        temp = (length - 1) & 0xfff00000UL;
 358        *(vulp)T2_WMASK2 = temp;
 359        *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
 360        mb();
 361
 362        t2_pci_tbi(hose, 0, -1); /* flush TLB all */
 363
 364#if DEBUG_PRINT_FINAL_SETTINGS
 365        printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
 366               __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 367#endif
 368}
 369
 370static void __init
 371t2_save_configuration(void)
 372{
 373#if DEBUG_PRINT_INITIAL_SETTINGS
 374        printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
 375        printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
 376        printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
 377        printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
 378        printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
 379
 380        printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
 381               *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 382        printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
 383               *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 384#endif
 385
 386        /*
 387         * Save the DMA Window registers.
 388         */
 389        t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
 390        t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
 391        t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
 392        t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
 393        t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
 394        t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
 395
 396        t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
 397        t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
 398        t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
 399        t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
 400        t2_saved_config.hbase = *(vulp)T2_HBASE;
 401}
 402
 403void __init
 404t2_init_arch(void)
 405{
 406        struct pci_controller *hose;
 407        struct resource *hae_mem;
 408        unsigned long temp;
 409        unsigned int i;
 410
 411        for (i = 0; i < NR_CPUS; i++) {
 412                mcheck_expected(i) = 0;
 413                mcheck_taken(i) = 0;
 414        }
 415        t2_mcheck_any_expected = 0;
 416        t2_mcheck_last_taken = 0;
 417
 418        /* Enable scatter/gather TLB use.  */
 419        temp = *(vulp)T2_IOCSR;
 420        if (!(temp & (0x1UL << 26))) {
 421                printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
 422                       temp);
 423                *(vulp)T2_IOCSR = temp | (0x1UL << 26);
 424                mb();   
 425                *(vulp)T2_IOCSR; /* read it back to make sure */
 426        }
 427
 428        t2_save_configuration();
 429
 430        /*
 431         * Create our single hose.
 432         */
 433        pci_isa_hose = hose = alloc_pci_controller();
 434        hose->io_space = &ioport_resource;
 435        hae_mem = alloc_resource();
 436        hae_mem->start = 0;
 437        hae_mem->end = T2_MEM_R1_MASK;
 438        hae_mem->name = pci_hae0_name;
 439        if (request_resource(&iomem_resource, hae_mem) < 0)
 440                printk(KERN_ERR "Failed to request HAE_MEM\n");
 441        hose->mem_space = hae_mem;
 442        hose->index = 0;
 443
 444        hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
 445        hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
 446        hose->sparse_io_base = T2_IO - IDENT_ADDR;
 447        hose->dense_io_base = 0;
 448
 449        /*
 450         * Set up the PCI->physical memory translation windows.
 451         *
 452         * Window 1 is direct mapped.
 453         * Window 2 is scatter/gather (for ISA).
 454         */
 455
 456        t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
 457
 458        /* Always make an ISA DMA window. */
 459        t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
 460
 461        *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
 462
 463        /* Zero HAE.  */
 464        *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
 465        *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
 466        *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
 467
 468        /*
 469         * We also now zero out HAE_4, the dense memory HAE, so that
 470         * we need not account for its "offset" when accessing dense
 471         * memory resources which we allocated in our normal way. This
 472         * HAE would need to stay untouched were we to keep the SRM
 473         * resource settings.
 474         *
 475         * Thus we can now run standard X servers on SABLE/LYNX. :-)
 476         */
 477        *(vulp)T2_HAE_4 = 0; mb();
 478}
 479
 480void
 481t2_kill_arch(int mode)
 482{
 483        /*
 484         * Restore the DMA Window registers.
 485         */
 486        *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
 487        *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
 488        *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
 489        *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
 490        *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
 491        *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
 492        mb();
 493
 494        *(vulp)T2_HAE_1 = srm_hae;
 495        *(vulp)T2_HAE_2 = t2_saved_config.hae_2;
 496        *(vulp)T2_HAE_3 = t2_saved_config.hae_3;
 497        *(vulp)T2_HAE_4 = t2_saved_config.hae_4;
 498        *(vulp)T2_HBASE = t2_saved_config.hbase;
 499        mb();
 500        *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
 501}
 502
 503void
 504t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
 505{
 506        unsigned long t2_iocsr;
 507
 508        t2_iocsr = *(vulp)T2_IOCSR;
 509
 510        /* set the TLB Clear bit */
 511        *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
 512        mb();
 513        *(vulp)T2_IOCSR; /* read it back to make sure */
 514
 515        /* clear the TLB Clear bit */
 516        *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
 517        mb();
 518        *(vulp)T2_IOCSR; /* read it back to make sure */
 519}
 520
 521#define SIC_SEIC (1UL << 33)    /* System Event Clear */
 522
 523static void
 524t2_clear_errors(int cpu)
 525{
 526        struct sable_cpu_csr *cpu_regs;
 527
 528        cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
 529                
 530        cpu_regs->sic &= ~SIC_SEIC;
 531
 532        /* Clear CPU errors.  */
 533        cpu_regs->bcce |= cpu_regs->bcce;
 534        cpu_regs->cbe  |= cpu_regs->cbe;
 535        cpu_regs->bcue |= cpu_regs->bcue;
 536        cpu_regs->dter |= cpu_regs->dter;
 537
 538        *(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
 539        *(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
 540
 541        mb();
 542        mb();  /* magic */
 543}
 544
 545/*
 546 * SABLE seems to have a "broadcast" style machine check, in that all
 547 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
 548 * space read/write faults, will also receive a second mcheck, upon
 549 * lowering IPL during completion processing in pci_read_config_byte()
 550 * et al.
 551 *
 552 * Hence all the taken/expected/any_expected/last_taken stuff...
 553 */
 554void
 555t2_machine_check(unsigned long vector, unsigned long la_ptr)
 556{
 557        int cpu = smp_processor_id();
 558#ifdef CONFIG_VERBOSE_MCHECK
 559        struct el_common *mchk_header = (struct el_common *)la_ptr;
 560#endif
 561
 562        /* Clear the error before any reporting.  */
 563        mb();
 564        mb();  /* magic */
 565        draina();
 566        t2_clear_errors(cpu);
 567
 568        /* This should not actually be done until the logout frame is
 569           examined, but, since we don't do that, go on and do this... */
 570        wrmces(0x7);
 571        mb();
 572
 573        /* Now, do testing for the anomalous conditions. */
 574        if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
 575                /*
 576                 * FUNKY: Received mcheck on a CPU and not
 577                 * expecting it, but another CPU is expecting one.
 578                 *
 579                 * Just dismiss it for now on this CPU...
 580                 */
 581#ifdef CONFIG_VERBOSE_MCHECK
 582                if (alpha_verbose_mcheck > 1) {
 583                        printk("t2_machine_check(cpu%d): any_expected 0x%x -"
 584                               " (assumed) spurious -"
 585                               " code 0x%x\n", cpu, t2_mcheck_any_expected,
 586                               (unsigned int)mchk_header->code);
 587                }
 588#endif
 589                return;
 590        }
 591
 592        if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
 593                if (t2_mcheck_last_taken & (1 << cpu)) {
 594#ifdef CONFIG_VERBOSE_MCHECK
 595                    if (alpha_verbose_mcheck > 1) {
 596                        printk("t2_machine_check(cpu%d): last_taken 0x%x - "
 597                               "unexpected mcheck - code 0x%x\n",
 598                               cpu, t2_mcheck_last_taken,
 599                               (unsigned int)mchk_header->code);
 600                    }
 601#endif
 602                    t2_mcheck_last_taken = 0;
 603                    mb();
 604                    return;
 605                } else {
 606                        t2_mcheck_last_taken = 0;
 607                        mb();
 608                }
 609        }
 610
 611#ifdef CONFIG_VERBOSE_MCHECK
 612        if (alpha_verbose_mcheck > 1) {
 613                printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
 614                       "any_expected 0x%x - code 0x%x\n",
 615                       (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
 616                       t2_mcheck_last_taken, t2_mcheck_any_expected,
 617                       (unsigned int)mchk_header->code);
 618        }
 619#endif
 620
 621        process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));
 622}
 623