linux/arch/arm/kernel/perf_event.c
<<
>>
Prefs
   1#undef DEBUG
   2
   3/*
   4 * ARM performance counter support.
   5 *
   6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
   7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
   8 *
   9 * This code is based on the sparc64 perf event code, which is in turn based
  10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  11 * code.
  12 */
  13#define pr_fmt(fmt) "hw perfevents: " fmt
  14
  15#include <linux/interrupt.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/perf_event.h>
  19#include <linux/platform_device.h>
  20#include <linux/spinlock.h>
  21#include <linux/uaccess.h>
  22
  23#include <asm/cputype.h>
  24#include <asm/irq.h>
  25#include <asm/irq_regs.h>
  26#include <asm/pmu.h>
  27#include <asm/stacktrace.h>
  28
  29static struct platform_device *pmu_device;
  30
  31/*
  32 * Hardware lock to serialize accesses to PMU registers. Needed for the
  33 * read/modify/write sequences.
  34 */
  35static DEFINE_RAW_SPINLOCK(pmu_lock);
  36
  37/*
  38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
  39 * another platform that supports more, we need to increase this to be the
  40 * largest of all platforms.
  41 *
  42 * ARMv7 supports up to 32 events:
  43 *  cycle counter CCNT + 31 events counters CNT0..30.
  44 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  45 */
  46#define ARMPMU_MAX_HWEVENTS             33
  47
  48/* The events for a given CPU. */
  49struct cpu_hw_events {
  50        /*
  51         * The events that are active on the CPU for the given index. Index 0
  52         * is reserved.
  53         */
  54        struct perf_event       *events[ARMPMU_MAX_HWEVENTS];
  55
  56        /*
  57         * A 1 bit for an index indicates that the counter is being used for
  58         * an event. A 0 means that the counter can be used.
  59         */
  60        unsigned long           used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  61
  62        /*
  63         * A 1 bit for an index indicates that the counter is actively being
  64         * used.
  65         */
  66        unsigned long           active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  67};
  68static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  69
  70struct arm_pmu {
  71        enum arm_perf_pmu_ids id;
  72        const char      *name;
  73        irqreturn_t     (*handle_irq)(int irq_num, void *dev);
  74        void            (*enable)(struct hw_perf_event *evt, int idx);
  75        void            (*disable)(struct hw_perf_event *evt, int idx);
  76        int             (*get_event_idx)(struct cpu_hw_events *cpuc,
  77                                         struct hw_perf_event *hwc);
  78        u32             (*read_counter)(int idx);
  79        void            (*write_counter)(int idx, u32 val);
  80        void            (*start)(void);
  81        void            (*stop)(void);
  82        const unsigned  (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  83                                    [PERF_COUNT_HW_CACHE_OP_MAX]
  84                                    [PERF_COUNT_HW_CACHE_RESULT_MAX];
  85        const unsigned  (*event_map)[PERF_COUNT_HW_MAX];
  86        u32             raw_event_mask;
  87        int             num_events;
  88        u64             max_period;
  89};
  90
  91/* Set at runtime when we know what CPU type we are. */
  92static const struct arm_pmu *armpmu;
  93
  94enum arm_perf_pmu_ids
  95armpmu_get_pmu_id(void)
  96{
  97        int id = -ENODEV;
  98
  99        if (armpmu != NULL)
 100                id = armpmu->id;
 101
 102        return id;
 103}
 104EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
 105
 106int
 107armpmu_get_max_events(void)
 108{
 109        int max_events = 0;
 110
 111        if (armpmu != NULL)
 112                max_events = armpmu->num_events;
 113
 114        return max_events;
 115}
 116EXPORT_SYMBOL_GPL(armpmu_get_max_events);
 117
 118int perf_num_counters(void)
 119{
 120        return armpmu_get_max_events();
 121}
 122EXPORT_SYMBOL_GPL(perf_num_counters);
 123
 124#define HW_OP_UNSUPPORTED               0xFFFF
 125
 126#define C(_x) \
 127        PERF_COUNT_HW_CACHE_##_x
 128
 129#define CACHE_OP_UNSUPPORTED            0xFFFF
 130
 131static int
 132armpmu_map_cache_event(u64 config)
 133{
 134        unsigned int cache_type, cache_op, cache_result, ret;
 135
 136        cache_type = (config >>  0) & 0xff;
 137        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 138                return -EINVAL;
 139
 140        cache_op = (config >>  8) & 0xff;
 141        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 142                return -EINVAL;
 143
 144        cache_result = (config >> 16) & 0xff;
 145        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 146                return -EINVAL;
 147
 148        ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
 149
 150        if (ret == CACHE_OP_UNSUPPORTED)
 151                return -ENOENT;
 152
 153        return ret;
 154}
 155
 156static int
 157armpmu_map_event(u64 config)
 158{
 159        int mapping = (*armpmu->event_map)[config];
 160        return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
 161}
 162
 163static int
 164armpmu_map_raw_event(u64 config)
 165{
 166        return (int)(config & armpmu->raw_event_mask);
 167}
 168
 169static int
 170armpmu_event_set_period(struct perf_event *event,
 171                        struct hw_perf_event *hwc,
 172                        int idx)
 173{
 174        s64 left = local64_read(&hwc->period_left);
 175        s64 period = hwc->sample_period;
 176        int ret = 0;
 177
 178        if (unlikely(left <= -period)) {
 179                left = period;
 180                local64_set(&hwc->period_left, left);
 181                hwc->last_period = period;
 182                ret = 1;
 183        }
 184
 185        if (unlikely(left <= 0)) {
 186                left += period;
 187                local64_set(&hwc->period_left, left);
 188                hwc->last_period = period;
 189                ret = 1;
 190        }
 191
 192        if (left > (s64)armpmu->max_period)
 193                left = armpmu->max_period;
 194
 195        local64_set(&hwc->prev_count, (u64)-left);
 196
 197        armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
 198
 199        perf_event_update_userpage(event);
 200
 201        return ret;
 202}
 203
 204static u64
 205armpmu_event_update(struct perf_event *event,
 206                    struct hw_perf_event *hwc,
 207                    int idx)
 208{
 209        int shift = 64 - 32;
 210        s64 prev_raw_count, new_raw_count;
 211        u64 delta;
 212
 213again:
 214        prev_raw_count = local64_read(&hwc->prev_count);
 215        new_raw_count = armpmu->read_counter(idx);
 216
 217        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 218                             new_raw_count) != prev_raw_count)
 219                goto again;
 220
 221        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 222        delta >>= shift;
 223
 224        local64_add(delta, &event->count);
 225        local64_sub(delta, &hwc->period_left);
 226
 227        return new_raw_count;
 228}
 229
 230static void
 231armpmu_read(struct perf_event *event)
 232{
 233        struct hw_perf_event *hwc = &event->hw;
 234
 235        /* Don't read disabled counters! */
 236        if (hwc->idx < 0)
 237                return;
 238
 239        armpmu_event_update(event, hwc, hwc->idx);
 240}
 241
 242static void
 243armpmu_stop(struct perf_event *event, int flags)
 244{
 245        struct hw_perf_event *hwc = &event->hw;
 246
 247        if (!armpmu)
 248                return;
 249
 250        /*
 251         * ARM pmu always has to update the counter, so ignore
 252         * PERF_EF_UPDATE, see comments in armpmu_start().
 253         */
 254        if (!(hwc->state & PERF_HES_STOPPED)) {
 255                armpmu->disable(hwc, hwc->idx);
 256                barrier(); /* why? */
 257                armpmu_event_update(event, hwc, hwc->idx);
 258                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 259        }
 260}
 261
 262static void
 263armpmu_start(struct perf_event *event, int flags)
 264{
 265        struct hw_perf_event *hwc = &event->hw;
 266
 267        if (!armpmu)
 268                return;
 269
 270        /*
 271         * ARM pmu always has to reprogram the period, so ignore
 272         * PERF_EF_RELOAD, see the comment below.
 273         */
 274        if (flags & PERF_EF_RELOAD)
 275                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 276
 277        hwc->state = 0;
 278        /*
 279         * Set the period again. Some counters can't be stopped, so when we
 280         * were stopped we simply disabled the IRQ source and the counter
 281         * may have been left counting. If we don't do this step then we may
 282         * get an interrupt too soon or *way* too late if the overflow has
 283         * happened since disabling.
 284         */
 285        armpmu_event_set_period(event, hwc, hwc->idx);
 286        armpmu->enable(hwc, hwc->idx);
 287}
 288
 289static void
 290armpmu_del(struct perf_event *event, int flags)
 291{
 292        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 293        struct hw_perf_event *hwc = &event->hw;
 294        int idx = hwc->idx;
 295
 296        WARN_ON(idx < 0);
 297
 298        clear_bit(idx, cpuc->active_mask);
 299        armpmu_stop(event, PERF_EF_UPDATE);
 300        cpuc->events[idx] = NULL;
 301        clear_bit(idx, cpuc->used_mask);
 302
 303        perf_event_update_userpage(event);
 304}
 305
 306static int
 307armpmu_add(struct perf_event *event, int flags)
 308{
 309        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 310        struct hw_perf_event *hwc = &event->hw;
 311        int idx;
 312        int err = 0;
 313
 314        perf_pmu_disable(event->pmu);
 315
 316        /* If we don't have a space for the counter then finish early. */
 317        idx = armpmu->get_event_idx(cpuc, hwc);
 318        if (idx < 0) {
 319                err = idx;
 320                goto out;
 321        }
 322
 323        /*
 324         * If there is an event in the counter we are going to use then make
 325         * sure it is disabled.
 326         */
 327        event->hw.idx = idx;
 328        armpmu->disable(hwc, idx);
 329        cpuc->events[idx] = event;
 330        set_bit(idx, cpuc->active_mask);
 331
 332        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 333        if (flags & PERF_EF_START)
 334                armpmu_start(event, PERF_EF_RELOAD);
 335
 336        /* Propagate our changes to the userspace mapping. */
 337        perf_event_update_userpage(event);
 338
 339out:
 340        perf_pmu_enable(event->pmu);
 341        return err;
 342}
 343
 344static struct pmu pmu;
 345
 346static int
 347validate_event(struct cpu_hw_events *cpuc,
 348               struct perf_event *event)
 349{
 350        struct hw_perf_event fake_event = event->hw;
 351
 352        if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
 353                return 1;
 354
 355        return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
 356}
 357
 358static int
 359validate_group(struct perf_event *event)
 360{
 361        struct perf_event *sibling, *leader = event->group_leader;
 362        struct cpu_hw_events fake_pmu;
 363
 364        memset(&fake_pmu, 0, sizeof(fake_pmu));
 365
 366        if (!validate_event(&fake_pmu, leader))
 367                return -ENOSPC;
 368
 369        list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 370                if (!validate_event(&fake_pmu, sibling))
 371                        return -ENOSPC;
 372        }
 373
 374        if (!validate_event(&fake_pmu, event))
 375                return -ENOSPC;
 376
 377        return 0;
 378}
 379
 380static int
 381armpmu_reserve_hardware(void)
 382{
 383        int i, err = -ENODEV, irq;
 384
 385        pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
 386        if (IS_ERR(pmu_device)) {
 387                pr_warning("unable to reserve pmu\n");
 388                return PTR_ERR(pmu_device);
 389        }
 390
 391        init_pmu(ARM_PMU_DEVICE_CPU);
 392
 393        if (pmu_device->num_resources < 1) {
 394                pr_err("no irqs for PMUs defined\n");
 395                return -ENODEV;
 396        }
 397
 398        for (i = 0; i < pmu_device->num_resources; ++i) {
 399                irq = platform_get_irq(pmu_device, i);
 400                if (irq < 0)
 401                        continue;
 402
 403                err = request_irq(irq, armpmu->handle_irq,
 404                                  IRQF_DISABLED | IRQF_NOBALANCING,
 405                                  "armpmu", NULL);
 406                if (err) {
 407                        pr_warning("unable to request IRQ%d for ARM perf "
 408                                "counters\n", irq);
 409                        break;
 410                }
 411        }
 412
 413        if (err) {
 414                for (i = i - 1; i >= 0; --i) {
 415                        irq = platform_get_irq(pmu_device, i);
 416                        if (irq >= 0)
 417                                free_irq(irq, NULL);
 418                }
 419                release_pmu(pmu_device);
 420                pmu_device = NULL;
 421        }
 422
 423        return err;
 424}
 425
 426static void
 427armpmu_release_hardware(void)
 428{
 429        int i, irq;
 430
 431        for (i = pmu_device->num_resources - 1; i >= 0; --i) {
 432                irq = platform_get_irq(pmu_device, i);
 433                if (irq >= 0)
 434                        free_irq(irq, NULL);
 435        }
 436        armpmu->stop();
 437
 438        release_pmu(pmu_device);
 439        pmu_device = NULL;
 440}
 441
 442static atomic_t active_events = ATOMIC_INIT(0);
 443static DEFINE_MUTEX(pmu_reserve_mutex);
 444
 445static void
 446hw_perf_event_destroy(struct perf_event *event)
 447{
 448        if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
 449                armpmu_release_hardware();
 450                mutex_unlock(&pmu_reserve_mutex);
 451        }
 452}
 453
 454static int
 455__hw_perf_event_init(struct perf_event *event)
 456{
 457        struct hw_perf_event *hwc = &event->hw;
 458        int mapping, err;
 459
 460        /* Decode the generic type into an ARM event identifier. */
 461        if (PERF_TYPE_HARDWARE == event->attr.type) {
 462                mapping = armpmu_map_event(event->attr.config);
 463        } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
 464                mapping = armpmu_map_cache_event(event->attr.config);
 465        } else if (PERF_TYPE_RAW == event->attr.type) {
 466                mapping = armpmu_map_raw_event(event->attr.config);
 467        } else {
 468                pr_debug("event type %x not supported\n", event->attr.type);
 469                return -EOPNOTSUPP;
 470        }
 471
 472        if (mapping < 0) {
 473                pr_debug("event %x:%llx not supported\n", event->attr.type,
 474                         event->attr.config);
 475                return mapping;
 476        }
 477
 478        /*
 479         * Check whether we need to exclude the counter from certain modes.
 480         * The ARM performance counters are on all of the time so if someone
 481         * has asked us for some excludes then we have to fail.
 482         */
 483        if (event->attr.exclude_kernel || event->attr.exclude_user ||
 484            event->attr.exclude_hv || event->attr.exclude_idle) {
 485                pr_debug("ARM performance counters do not support "
 486                         "mode exclusion\n");
 487                return -EPERM;
 488        }
 489
 490        /*
 491         * We don't assign an index until we actually place the event onto
 492         * hardware. Use -1 to signify that we haven't decided where to put it
 493         * yet. For SMP systems, each core has it's own PMU so we can't do any
 494         * clever allocation or constraints checking at this point.
 495         */
 496        hwc->idx = -1;
 497
 498        /*
 499         * Store the event encoding into the config_base field. config and
 500         * event_base are unused as the only 2 things we need to know are
 501         * the event mapping and the counter to use. The counter to use is
 502         * also the indx and the config_base is the event type.
 503         */
 504        hwc->config_base            = (unsigned long)mapping;
 505        hwc->config                 = 0;
 506        hwc->event_base             = 0;
 507
 508        if (!hwc->sample_period) {
 509                hwc->sample_period  = armpmu->max_period;
 510                hwc->last_period    = hwc->sample_period;
 511                local64_set(&hwc->period_left, hwc->sample_period);
 512        }
 513
 514        err = 0;
 515        if (event->group_leader != event) {
 516                err = validate_group(event);
 517                if (err)
 518                        return -EINVAL;
 519        }
 520
 521        return err;
 522}
 523
 524static int armpmu_event_init(struct perf_event *event)
 525{
 526        int err = 0;
 527
 528        switch (event->attr.type) {
 529        case PERF_TYPE_RAW:
 530        case PERF_TYPE_HARDWARE:
 531        case PERF_TYPE_HW_CACHE:
 532                break;
 533
 534        default:
 535                return -ENOENT;
 536        }
 537
 538        if (!armpmu)
 539                return -ENODEV;
 540
 541        event->destroy = hw_perf_event_destroy;
 542
 543        if (!atomic_inc_not_zero(&active_events)) {
 544                if (atomic_read(&active_events) > armpmu->num_events) {
 545                        atomic_dec(&active_events);
 546                        return -ENOSPC;
 547                }
 548
 549                mutex_lock(&pmu_reserve_mutex);
 550                if (atomic_read(&active_events) == 0) {
 551                        err = armpmu_reserve_hardware();
 552                }
 553
 554                if (!err)
 555                        atomic_inc(&active_events);
 556                mutex_unlock(&pmu_reserve_mutex);
 557        }
 558
 559        if (err)
 560                return err;
 561
 562        err = __hw_perf_event_init(event);
 563        if (err)
 564                hw_perf_event_destroy(event);
 565
 566        return err;
 567}
 568
 569static void armpmu_enable(struct pmu *pmu)
 570{
 571        /* Enable all of the perf events on hardware. */
 572        int idx;
 573        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 574
 575        if (!armpmu)
 576                return;
 577
 578        for (idx = 0; idx <= armpmu->num_events; ++idx) {
 579                struct perf_event *event = cpuc->events[idx];
 580
 581                if (!event)
 582                        continue;
 583
 584                armpmu->enable(&event->hw, idx);
 585        }
 586
 587        armpmu->start();
 588}
 589
 590static void armpmu_disable(struct pmu *pmu)
 591{
 592        if (armpmu)
 593                armpmu->stop();
 594}
 595
 596static struct pmu pmu = {
 597        .pmu_enable     = armpmu_enable,
 598        .pmu_disable    = armpmu_disable,
 599        .event_init     = armpmu_event_init,
 600        .add            = armpmu_add,
 601        .del            = armpmu_del,
 602        .start          = armpmu_start,
 603        .stop           = armpmu_stop,
 604        .read           = armpmu_read,
 605};
 606
 607/* Include the PMU-specific implementations. */
 608#include "perf_event_xscale.c"
 609#include "perf_event_v6.c"
 610#include "perf_event_v7.c"
 611
 612static int __init
 613init_hw_perf_events(void)
 614{
 615        unsigned long cpuid = read_cpuid_id();
 616        unsigned long implementor = (cpuid & 0xFF000000) >> 24;
 617        unsigned long part_number = (cpuid & 0xFFF0);
 618
 619        /* ARM Ltd CPUs. */
 620        if (0x41 == implementor) {
 621                switch (part_number) {
 622                case 0xB360:    /* ARM1136 */
 623                case 0xB560:    /* ARM1156 */
 624                case 0xB760:    /* ARM1176 */
 625                        armpmu = armv6pmu_init();
 626                        break;
 627                case 0xB020:    /* ARM11mpcore */
 628                        armpmu = armv6mpcore_pmu_init();
 629                        break;
 630                case 0xC080:    /* Cortex-A8 */
 631                        armpmu = armv7_a8_pmu_init();
 632                        break;
 633                case 0xC090:    /* Cortex-A9 */
 634                        armpmu = armv7_a9_pmu_init();
 635                        break;
 636                }
 637        /* Intel CPUs [xscale]. */
 638        } else if (0x69 == implementor) {
 639                part_number = (cpuid >> 13) & 0x7;
 640                switch (part_number) {
 641                case 1:
 642                        armpmu = xscale1pmu_init();
 643                        break;
 644                case 2:
 645                        armpmu = xscale2pmu_init();
 646                        break;
 647                }
 648        }
 649
 650        if (armpmu) {
 651                pr_info("enabled with %s PMU driver, %d counters available\n",
 652                        armpmu->name, armpmu->num_events);
 653        } else {
 654                pr_info("no hardware support available\n");
 655        }
 656
 657        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
 658
 659        return 0;
 660}
 661early_initcall(init_hw_perf_events);
 662
 663/*
 664 * Callchain handling code.
 665 */
 666
 667/*
 668 * The registers we're interested in are at the end of the variable
 669 * length saved register structure. The fp points at the end of this
 670 * structure so the address of this struct is:
 671 * (struct frame_tail *)(xxx->fp)-1
 672 *
 673 * This code has been adapted from the ARM OProfile support.
 674 */
 675struct frame_tail {
 676        struct frame_tail __user *fp;
 677        unsigned long sp;
 678        unsigned long lr;
 679} __attribute__((packed));
 680
 681/*
 682 * Get the return address for a single stackframe and return a pointer to the
 683 * next frame tail.
 684 */
 685static struct frame_tail __user *
 686user_backtrace(struct frame_tail __user *tail,
 687               struct perf_callchain_entry *entry)
 688{
 689        struct frame_tail buftail;
 690
 691        /* Also check accessibility of one struct frame_tail beyond */
 692        if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
 693                return NULL;
 694        if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
 695                return NULL;
 696
 697        perf_callchain_store(entry, buftail.lr);
 698
 699        /*
 700         * Frame pointers should strictly progress back up the stack
 701         * (towards higher addresses).
 702         */
 703        if (tail + 1 >= buftail.fp)
 704                return NULL;
 705
 706        return buftail.fp - 1;
 707}
 708
 709void
 710perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
 711{
 712        struct frame_tail __user *tail;
 713
 714
 715        tail = (struct frame_tail __user *)regs->ARM_fp - 1;
 716
 717        while (tail && !((unsigned long)tail & 0x3))
 718                tail = user_backtrace(tail, entry);
 719}
 720
 721/*
 722 * Gets called by walk_stackframe() for every stackframe. This will be called
 723 * whist unwinding the stackframe and is like a subroutine return so we use
 724 * the PC.
 725 */
 726static int
 727callchain_trace(struct stackframe *fr,
 728                void *data)
 729{
 730        struct perf_callchain_entry *entry = data;
 731        perf_callchain_store(entry, fr->pc);
 732        return 0;
 733}
 734
 735void
 736perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
 737{
 738        struct stackframe fr;
 739
 740        fr.fp = regs->ARM_fp;
 741        fr.sp = regs->ARM_sp;
 742        fr.lr = regs->ARM_lr;
 743        fr.pc = regs->ARM_pc;
 744        walk_stackframe(&fr, callchain_trace, entry);
 745}
 746