linux/arch/cris/arch-v10/drivers/axisflashmap.c
<<
>>
Prefs
   1/*
   2 * Physical mapping layer for MTD using the Axis partitiontable format
   3 *
   4 * Copyright (c) 2001, 2002 Axis Communications AB
   5 *
   6 * This file is under the GPL.
   7 *
   8 * First partition is always sector 0 regardless of if we find a partitiontable
   9 * or not. In the start of the next sector, there can be a partitiontable that
  10 * tells us what other partitions to define. If there isn't, we use a default
  11 * partition split defined below.
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/kernel.h>
  18#include <linux/init.h>
  19#include <linux/slab.h>
  20
  21#include <linux/mtd/concat.h>
  22#include <linux/mtd/map.h>
  23#include <linux/mtd/mtd.h>
  24#include <linux/mtd/mtdram.h>
  25#include <linux/mtd/partitions.h>
  26
  27#include <asm/axisflashmap.h>
  28#include <asm/mmu.h>
  29#include <arch/sv_addr_ag.h>
  30
  31#ifdef CONFIG_CRIS_LOW_MAP
  32#define FLASH_UNCACHED_ADDR  KSEG_8
  33#define FLASH_CACHED_ADDR    KSEG_5
  34#else
  35#define FLASH_UNCACHED_ADDR  KSEG_E
  36#define FLASH_CACHED_ADDR    KSEG_F
  37#endif
  38
  39#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
  40#define flash_data __u8
  41#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
  42#define flash_data __u16
  43#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
  44#define flash_data __u32
  45#endif
  46
  47/* From head.S */
  48extern unsigned long romfs_start, romfs_length, romfs_in_flash;
  49
  50/* The master mtd for the entire flash. */
  51struct mtd_info* axisflash_mtd = NULL;
  52
  53/* Map driver functions. */
  54
  55static map_word flash_read(struct map_info *map, unsigned long ofs)
  56{
  57        map_word tmp;
  58        tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
  59        return tmp;
  60}
  61
  62static void flash_copy_from(struct map_info *map, void *to,
  63                            unsigned long from, ssize_t len)
  64{
  65        memcpy(to, (void *)(map->map_priv_1 + from), len);
  66}
  67
  68static void flash_write(struct map_info *map, map_word d, unsigned long adr)
  69{
  70        *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
  71}
  72
  73/*
  74 * The map for chip select e0.
  75 *
  76 * We run into tricky coherence situations if we mix cached with uncached
  77 * accesses to we only use the uncached version here.
  78 *
  79 * The size field is the total size where the flash chips may be mapped on the
  80 * chip select. MTD probes should find all devices there and it does not matter
  81 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
  82 * probes will ignore them.
  83 *
  84 * The start address in map_priv_1 is in virtual memory so we cannot use
  85 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
  86 * address of cse0.
  87 */
  88static struct map_info map_cse0 = {
  89        .name = "cse0",
  90        .size = MEM_CSE0_SIZE,
  91        .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
  92        .read = flash_read,
  93        .copy_from = flash_copy_from,
  94        .write = flash_write,
  95        .map_priv_1 = FLASH_UNCACHED_ADDR
  96};
  97
  98/*
  99 * The map for chip select e1.
 100 *
 101 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
 102 * address, but there isn't.
 103 */
 104static struct map_info map_cse1 = {
 105        .name = "cse1",
 106        .size = MEM_CSE1_SIZE,
 107        .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 108        .read = flash_read,
 109        .copy_from = flash_copy_from,
 110        .write = flash_write,
 111        .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
 112};
 113
 114/* If no partition-table was found, we use this default-set. */
 115#define MAX_PARTITIONS         7
 116#define NUM_DEFAULT_PARTITIONS 3
 117
 118/*
 119 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
 120 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
 121 * to use JFFS.
 122 */
 123static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
 124        {
 125                .name = "boot firmware",
 126                .size = CONFIG_ETRAX_PTABLE_SECTOR,
 127                .offset = 0
 128        },
 129        {
 130                .name = "kernel",
 131                .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
 132                .offset = CONFIG_ETRAX_PTABLE_SECTOR
 133        },
 134        {
 135                .name = "filesystem",
 136                .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
 137                .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
 138        }
 139};
 140
 141/* Initialize the ones normally used. */
 142static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
 143        {
 144                .name = "part0",
 145                .size = CONFIG_ETRAX_PTABLE_SECTOR,
 146                .offset = 0
 147        },
 148        {
 149                .name = "part1",
 150                .size = 0,
 151                .offset = 0
 152        },
 153        {
 154                .name = "part2",
 155                .size = 0,
 156                .offset = 0
 157        },
 158        {
 159                .name = "part3",
 160                .size = 0,
 161                .offset = 0
 162        },
 163        {
 164                .name = "part4",
 165                .size = 0,
 166                .offset = 0
 167        },
 168        {
 169                .name = "part5",
 170                .size = 0,
 171                .offset = 0
 172        },
 173        {
 174                .name = "part6",
 175                .size = 0,
 176                .offset = 0
 177        },
 178};
 179
 180#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 181/* Main flash device */
 182static struct mtd_partition main_partition = {
 183        .name = "main",
 184        .size = 0,
 185        .offset = 0
 186};
 187#endif
 188
 189/*
 190 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
 191 * chips in that order (because the amd_flash-driver is faster).
 192 */
 193static struct mtd_info *probe_cs(struct map_info *map_cs)
 194{
 195        struct mtd_info *mtd_cs = NULL;
 196
 197        printk(KERN_INFO
 198               "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
 199               map_cs->name, map_cs->size, map_cs->map_priv_1);
 200
 201#ifdef CONFIG_MTD_CFI
 202        mtd_cs = do_map_probe("cfi_probe", map_cs);
 203#endif
 204#ifdef CONFIG_MTD_JEDECPROBE
 205        if (!mtd_cs)
 206                mtd_cs = do_map_probe("jedec_probe", map_cs);
 207#endif
 208
 209        return mtd_cs;
 210}
 211
 212/*
 213 * Probe each chip select individually for flash chips. If there are chips on
 214 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
 215 * so that MTD partitions can cross chip boundries.
 216 *
 217 * The only known restriction to how you can mount your chips is that each
 218 * chip select must hold similar flash chips. But you need external hardware
 219 * to do that anyway and you can put totally different chips on cse0 and cse1
 220 * so it isn't really much of a restriction.
 221 */
 222static struct mtd_info *flash_probe(void)
 223{
 224        struct mtd_info *mtd_cse0;
 225        struct mtd_info *mtd_cse1;
 226        struct mtd_info *mtd_cse;
 227
 228        mtd_cse0 = probe_cs(&map_cse0);
 229        mtd_cse1 = probe_cs(&map_cse1);
 230
 231        if (!mtd_cse0 && !mtd_cse1) {
 232                /* No chip found. */
 233                return NULL;
 234        }
 235
 236        if (mtd_cse0 && mtd_cse1) {
 237#ifdef CONFIG_MTD_CONCAT
 238                struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
 239
 240                /* Since the concatenation layer adds a small overhead we
 241                 * could try to figure out if the chips in cse0 and cse1 are
 242                 * identical and reprobe the whole cse0+cse1 window. But since
 243                 * flash chips are slow, the overhead is relatively small.
 244                 * So we use the MTD concatenation layer instead of further
 245                 * complicating the probing procedure.
 246                 */
 247                mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
 248                                            "cse0+cse1");
 249#else
 250                printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
 251                       "(mis)configuration!\n", map_cse0.name, map_cse1.name);
 252                mtd_cse = NULL;
 253#endif
 254                if (!mtd_cse) {
 255                        printk(KERN_ERR "%s and %s: Concatenation failed!\n",
 256                               map_cse0.name, map_cse1.name);
 257
 258                        /* The best we can do now is to only use what we found
 259                         * at cse0.
 260                         */
 261                        mtd_cse = mtd_cse0;
 262                        map_destroy(mtd_cse1);
 263                }
 264        } else {
 265                mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
 266        }
 267
 268        return mtd_cse;
 269}
 270
 271/*
 272 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 273 * and register the partitions with MTD.
 274 */
 275static int __init init_axis_flash(void)
 276{
 277        struct mtd_info *mymtd;
 278        int err = 0;
 279        int pidx = 0;
 280        struct partitiontable_head *ptable_head = NULL;
 281        struct partitiontable_entry *ptable;
 282        int use_default_ptable = 1; /* Until proven otherwise. */
 283        const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";
 284
 285        if (!(mymtd = flash_probe())) {
 286                /* There's no reason to use this module if no flash chip can
 287                 * be identified. Make sure that's understood.
 288                 */
 289                printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
 290        } else {
 291                printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
 292                       mymtd->name, mymtd->size);
 293                axisflash_mtd = mymtd;
 294        }
 295
 296        if (mymtd) {
 297                mymtd->owner = THIS_MODULE;
 298                ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
 299                              CONFIG_ETRAX_PTABLE_SECTOR +
 300                              PARTITION_TABLE_OFFSET);
 301        }
 302        pidx++;  /* First partition is always set to the default. */
 303
 304        if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
 305            && (ptable_head->size <
 306                (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
 307                PARTITIONTABLE_END_MARKER_SIZE))
 308            && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
 309                                  ptable_head->size -
 310                                  PARTITIONTABLE_END_MARKER_SIZE)
 311                == PARTITIONTABLE_END_MARKER)) {
 312                /* Looks like a start, sane length and end of a
 313                 * partition table, lets check csum etc.
 314                 */
 315                int ptable_ok = 0;
 316                struct partitiontable_entry *max_addr =
 317                        (struct partitiontable_entry *)
 318                        ((unsigned long)ptable_head + sizeof(*ptable_head) +
 319                         ptable_head->size);
 320                unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
 321                unsigned char *p;
 322                unsigned long csum = 0;
 323
 324                ptable = (struct partitiontable_entry *)
 325                        ((unsigned long)ptable_head + sizeof(*ptable_head));
 326
 327                /* Lets be PARANOID, and check the checksum. */
 328                p = (unsigned char*) ptable;
 329
 330                while (p <= (unsigned char*)max_addr) {
 331                        csum += *p++;
 332                        csum += *p++;
 333                        csum += *p++;
 334                        csum += *p++;
 335                }
 336                ptable_ok = (csum == ptable_head->checksum);
 337
 338                /* Read the entries and use/show the info.  */
 339                printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
 340                       (ptable_ok ? " valid" : "n invalid"), ptable_head,
 341                       max_addr);
 342
 343                /* We have found a working bootblock.  Now read the
 344                 * partition table.  Scan the table.  It ends when
 345                 * there is 0xffffffff, that is, empty flash.
 346                 */
 347                while (ptable_ok
 348                       && ptable->offset != 0xffffffff
 349                       && ptable < max_addr
 350                       && pidx < MAX_PARTITIONS) {
 351
 352                        axis_partitions[pidx].offset = offset + ptable->offset;
 353                        axis_partitions[pidx].size = ptable->size;
 354
 355                        printk(pmsg, pidx, axis_partitions[pidx].offset,
 356                               axis_partitions[pidx].size);
 357                        pidx++;
 358                        ptable++;
 359                }
 360                use_default_ptable = !ptable_ok;
 361        }
 362
 363        if (romfs_in_flash) {
 364                /* Add an overlapping device for the root partition (romfs). */
 365
 366                axis_partitions[pidx].name = "romfs";
 367                axis_partitions[pidx].size = romfs_length;
 368                axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
 369                axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
 370
 371                printk(KERN_INFO
 372                       " Adding readonly flash partition for romfs image:\n");
 373                printk(pmsg, pidx, axis_partitions[pidx].offset,
 374                       axis_partitions[pidx].size);
 375                pidx++;
 376        }
 377
 378#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 379        if (mymtd) {
 380                main_partition.size = mymtd->size;
 381                err = add_mtd_partitions(mymtd, &main_partition, 1);
 382                if (err)
 383                        panic("axisflashmap: Could not initialize "
 384                              "partition for whole main mtd device!\n");
 385        }
 386#endif
 387
 388        if (mymtd) {
 389                if (use_default_ptable) {
 390                        printk(KERN_INFO " Using default partition table.\n");
 391                        err = add_mtd_partitions(mymtd, axis_default_partitions,
 392                                                 NUM_DEFAULT_PARTITIONS);
 393                } else {
 394                        err = add_mtd_partitions(mymtd, axis_partitions, pidx);
 395                }
 396
 397                if (err)
 398                        panic("axisflashmap could not add MTD partitions!\n");
 399        }
 400
 401        if (!romfs_in_flash) {
 402                /* Create an RAM device for the root partition (romfs). */
 403
 404#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
 405                /* No use trying to boot this kernel from RAM. Panic! */
 406                printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
 407                       "device due to kernel (mis)configuration!\n");
 408                panic("This kernel cannot boot from RAM!\n");
 409#else
 410                struct mtd_info *mtd_ram;
 411
 412                mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
 413                if (!mtd_ram)
 414                        panic("axisflashmap couldn't allocate memory for "
 415                              "mtd_info!\n");
 416
 417                printk(KERN_INFO " Adding RAM partition for romfs image:\n");
 418                printk(pmsg, pidx, (unsigned)romfs_start,
 419                        (unsigned)romfs_length);
 420
 421                err = mtdram_init_device(mtd_ram,
 422                        (void *)romfs_start,
 423                        romfs_length,
 424                        "romfs");
 425                if (err)
 426                        panic("axisflashmap could not initialize MTD RAM "
 427                              "device!\n");
 428#endif
 429        }
 430        return err;
 431}
 432
 433/* This adds the above to the kernels init-call chain. */
 434module_init(init_axis_flash);
 435
 436EXPORT_SYMBOL(axisflash_mtd);
 437