linux/arch/ia64/mm/contig.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1998-2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *      Stephane Eranian <eranian@hpl.hp.com>
   9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10 * Copyright (C) 1999 VA Linux Systems
  11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13 *
  14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15 * memory.
  16 */
  17#include <linux/bootmem.h>
  18#include <linux/efi.h>
  19#include <linux/mm.h>
  20#include <linux/nmi.h>
  21#include <linux/swap.h>
  22
  23#include <asm/meminit.h>
  24#include <asm/pgalloc.h>
  25#include <asm/pgtable.h>
  26#include <asm/sections.h>
  27#include <asm/mca.h>
  28
  29#ifdef CONFIG_VIRTUAL_MEM_MAP
  30static unsigned long max_gap;
  31#endif
  32
  33/**
  34 * show_mem - give short summary of memory stats
  35 *
  36 * Shows a simple page count of reserved and used pages in the system.
  37 * For discontig machines, it does this on a per-pgdat basis.
  38 */
  39void show_mem(void)
  40{
  41        int i, total_reserved = 0;
  42        int total_shared = 0, total_cached = 0;
  43        unsigned long total_present = 0;
  44        pg_data_t *pgdat;
  45
  46        printk(KERN_INFO "Mem-info:\n");
  47        show_free_areas();
  48        printk(KERN_INFO "Node memory in pages:\n");
  49        for_each_online_pgdat(pgdat) {
  50                unsigned long present;
  51                unsigned long flags;
  52                int shared = 0, cached = 0, reserved = 0;
  53
  54                pgdat_resize_lock(pgdat, &flags);
  55                present = pgdat->node_present_pages;
  56                for(i = 0; i < pgdat->node_spanned_pages; i++) {
  57                        struct page *page;
  58                        if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  59                                touch_nmi_watchdog();
  60                        if (pfn_valid(pgdat->node_start_pfn + i))
  61                                page = pfn_to_page(pgdat->node_start_pfn + i);
  62                        else {
  63#ifdef CONFIG_VIRTUAL_MEM_MAP
  64                                if (max_gap < LARGE_GAP)
  65                                        continue;
  66#endif
  67                                i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  68                                         i) - 1;
  69                                continue;
  70                        }
  71                        if (PageReserved(page))
  72                                reserved++;
  73                        else if (PageSwapCache(page))
  74                                cached++;
  75                        else if (page_count(page))
  76                                shared += page_count(page)-1;
  77                }
  78                pgdat_resize_unlock(pgdat, &flags);
  79                total_present += present;
  80                total_reserved += reserved;
  81                total_cached += cached;
  82                total_shared += shared;
  83                printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
  84                       "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  85                       present, reserved, shared, cached);
  86        }
  87        printk(KERN_INFO "%ld pages of RAM\n", total_present);
  88        printk(KERN_INFO "%d reserved pages\n", total_reserved);
  89        printk(KERN_INFO "%d pages shared\n", total_shared);
  90        printk(KERN_INFO "%d pages swap cached\n", total_cached);
  91        printk(KERN_INFO "Total of %ld pages in page table cache\n",
  92               quicklist_total_size());
  93        printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  94}
  95
  96
  97/* physical address where the bootmem map is located */
  98unsigned long bootmap_start;
  99
 100/**
 101 * find_bootmap_location - callback to find a memory area for the bootmap
 102 * @start: start of region
 103 * @end: end of region
 104 * @arg: unused callback data
 105 *
 106 * Find a place to put the bootmap and return its starting address in
 107 * bootmap_start.  This address must be page-aligned.
 108 */
 109static int __init
 110find_bootmap_location (u64 start, u64 end, void *arg)
 111{
 112        u64 needed = *(unsigned long *)arg;
 113        u64 range_start, range_end, free_start;
 114        int i;
 115
 116#if IGNORE_PFN0
 117        if (start == PAGE_OFFSET) {
 118                start += PAGE_SIZE;
 119                if (start >= end)
 120                        return 0;
 121        }
 122#endif
 123
 124        free_start = PAGE_OFFSET;
 125
 126        for (i = 0; i < num_rsvd_regions; i++) {
 127                range_start = max(start, free_start);
 128                range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
 129
 130                free_start = PAGE_ALIGN(rsvd_region[i].end);
 131
 132                if (range_end <= range_start)
 133                        continue; /* skip over empty range */
 134
 135                if (range_end - range_start >= needed) {
 136                        bootmap_start = __pa(range_start);
 137                        return -1;      /* done */
 138                }
 139
 140                /* nothing more available in this segment */
 141                if (range_end == end)
 142                        return 0;
 143        }
 144        return 0;
 145}
 146
 147#ifdef CONFIG_SMP
 148static void *cpu_data;
 149/**
 150 * per_cpu_init - setup per-cpu variables
 151 *
 152 * Allocate and setup per-cpu data areas.
 153 */
 154void * __cpuinit
 155per_cpu_init (void)
 156{
 157        static bool first_time = true;
 158        void *cpu0_data = __cpu0_per_cpu;
 159        unsigned int cpu;
 160
 161        if (!first_time)
 162                goto skip;
 163        first_time = false;
 164
 165        /*
 166         * get_free_pages() cannot be used before cpu_init() done.
 167         * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
 168         * to avoid that AP calls get_zeroed_page().
 169         */
 170        for_each_possible_cpu(cpu) {
 171                void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
 172
 173                memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
 174                __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
 175                per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
 176
 177                /*
 178                 * percpu area for cpu0 is moved from the __init area
 179                 * which is setup by head.S and used till this point.
 180                 * Update ar.k3.  This move is ensures that percpu
 181                 * area for cpu0 is on the correct node and its
 182                 * virtual address isn't insanely far from other
 183                 * percpu areas which is important for congruent
 184                 * percpu allocator.
 185                 */
 186                if (cpu == 0)
 187                        ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
 188                                    (unsigned long)__per_cpu_start);
 189
 190                cpu_data += PERCPU_PAGE_SIZE;
 191        }
 192skip:
 193        return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
 194}
 195
 196static inline void
 197alloc_per_cpu_data(void)
 198{
 199        cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
 200                                   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 201}
 202
 203/**
 204 * setup_per_cpu_areas - setup percpu areas
 205 *
 206 * Arch code has already allocated and initialized percpu areas.  All
 207 * this function has to do is to teach the determined layout to the
 208 * dynamic percpu allocator, which happens to be more complex than
 209 * creating whole new ones using helpers.
 210 */
 211void __init
 212setup_per_cpu_areas(void)
 213{
 214        struct pcpu_alloc_info *ai;
 215        struct pcpu_group_info *gi;
 216        unsigned int cpu;
 217        ssize_t static_size, reserved_size, dyn_size;
 218        int rc;
 219
 220        ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
 221        if (!ai)
 222                panic("failed to allocate pcpu_alloc_info");
 223        gi = &ai->groups[0];
 224
 225        /* units are assigned consecutively to possible cpus */
 226        for_each_possible_cpu(cpu)
 227                gi->cpu_map[gi->nr_units++] = cpu;
 228
 229        /* set parameters */
 230        static_size = __per_cpu_end - __per_cpu_start;
 231        reserved_size = PERCPU_MODULE_RESERVE;
 232        dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
 233        if (dyn_size < 0)
 234                panic("percpu area overflow static=%zd reserved=%zd\n",
 235                      static_size, reserved_size);
 236
 237        ai->static_size         = static_size;
 238        ai->reserved_size       = reserved_size;
 239        ai->dyn_size            = dyn_size;
 240        ai->unit_size           = PERCPU_PAGE_SIZE;
 241        ai->atom_size           = PAGE_SIZE;
 242        ai->alloc_size          = PERCPU_PAGE_SIZE;
 243
 244        rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
 245        if (rc)
 246                panic("failed to setup percpu area (err=%d)", rc);
 247
 248        pcpu_free_alloc_info(ai);
 249}
 250#else
 251#define alloc_per_cpu_data() do { } while (0)
 252#endif /* CONFIG_SMP */
 253
 254/**
 255 * find_memory - setup memory map
 256 *
 257 * Walk the EFI memory map and find usable memory for the system, taking
 258 * into account reserved areas.
 259 */
 260void __init
 261find_memory (void)
 262{
 263        unsigned long bootmap_size;
 264
 265        reserve_memory();
 266
 267        /* first find highest page frame number */
 268        min_low_pfn = ~0UL;
 269        max_low_pfn = 0;
 270        efi_memmap_walk(find_max_min_low_pfn, NULL);
 271        max_pfn = max_low_pfn;
 272        /* how many bytes to cover all the pages */
 273        bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
 274
 275        /* look for a location to hold the bootmap */
 276        bootmap_start = ~0UL;
 277        efi_memmap_walk(find_bootmap_location, &bootmap_size);
 278        if (bootmap_start == ~0UL)
 279                panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
 280
 281        bootmap_size = init_bootmem_node(NODE_DATA(0),
 282                        (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
 283
 284        /* Free all available memory, then mark bootmem-map as being in use. */
 285        efi_memmap_walk(filter_rsvd_memory, free_bootmem);
 286        reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
 287
 288        find_initrd();
 289
 290        alloc_per_cpu_data();
 291}
 292
 293static int count_pages(u64 start, u64 end, void *arg)
 294{
 295        unsigned long *count = arg;
 296
 297        *count += (end - start) >> PAGE_SHIFT;
 298        return 0;
 299}
 300
 301/*
 302 * Set up the page tables.
 303 */
 304
 305void __init
 306paging_init (void)
 307{
 308        unsigned long max_dma;
 309        unsigned long max_zone_pfns[MAX_NR_ZONES];
 310
 311        num_physpages = 0;
 312        efi_memmap_walk(count_pages, &num_physpages);
 313
 314        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 315#ifdef CONFIG_ZONE_DMA
 316        max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 317        max_zone_pfns[ZONE_DMA] = max_dma;
 318#endif
 319        max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
 320
 321#ifdef CONFIG_VIRTUAL_MEM_MAP
 322        efi_memmap_walk(filter_memory, register_active_ranges);
 323        efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
 324        if (max_gap < LARGE_GAP) {
 325                vmem_map = (struct page *) 0;
 326                free_area_init_nodes(max_zone_pfns);
 327        } else {
 328                unsigned long map_size;
 329
 330                /* allocate virtual_mem_map */
 331
 332                map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
 333                        sizeof(struct page));
 334                VMALLOC_END -= map_size;
 335                vmem_map = (struct page *) VMALLOC_END;
 336                efi_memmap_walk(create_mem_map_page_table, NULL);
 337
 338                /*
 339                 * alloc_node_mem_map makes an adjustment for mem_map
 340                 * which isn't compatible with vmem_map.
 341                 */
 342                NODE_DATA(0)->node_mem_map = vmem_map +
 343                        find_min_pfn_with_active_regions();
 344                free_area_init_nodes(max_zone_pfns);
 345
 346                printk("Virtual mem_map starts at 0x%p\n", mem_map);
 347        }
 348#else /* !CONFIG_VIRTUAL_MEM_MAP */
 349        add_active_range(0, 0, max_low_pfn);
 350        free_area_init_nodes(max_zone_pfns);
 351#endif /* !CONFIG_VIRTUAL_MEM_MAP */
 352        zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
 353}
 354