linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/mm.h>
  14#include <linux/mmzone.h>
  15#include <linux/module.h>
  16#include <linux/personality.h>
  17#include <linux/reboot.h>
  18#include <linux/slab.h>
  19#include <linux/swap.h>
  20#include <linux/proc_fs.h>
  21#include <linux/bitops.h>
  22#include <linux/kexec.h>
  23
  24#include <asm/dma.h>
  25#include <asm/io.h>
  26#include <asm/machvec.h>
  27#include <asm/numa.h>
  28#include <asm/patch.h>
  29#include <asm/pgalloc.h>
  30#include <asm/sal.h>
  31#include <asm/sections.h>
  32#include <asm/system.h>
  33#include <asm/tlb.h>
  34#include <asm/uaccess.h>
  35#include <asm/unistd.h>
  36#include <asm/mca.h>
  37#include <asm/paravirt.h>
  38
  39DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  40
  41extern void ia64_tlb_init (void);
  42
  43unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  44
  45#ifdef CONFIG_VIRTUAL_MEM_MAP
  46unsigned long VMALLOC_END = VMALLOC_END_INIT;
  47EXPORT_SYMBOL(VMALLOC_END);
  48struct page *vmem_map;
  49EXPORT_SYMBOL(vmem_map);
  50#endif
  51
  52struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  53EXPORT_SYMBOL(zero_page_memmap_ptr);
  54
  55void
  56__ia64_sync_icache_dcache (pte_t pte)
  57{
  58        unsigned long addr;
  59        struct page *page;
  60
  61        page = pte_page(pte);
  62        addr = (unsigned long) page_address(page);
  63
  64        if (test_bit(PG_arch_1, &page->flags))
  65                return;                         /* i-cache is already coherent with d-cache */
  66
  67        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  68        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  69}
  70
  71/*
  72 * Since DMA is i-cache coherent, any (complete) pages that were written via
  73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  74 * flush them when they get mapped into an executable vm-area.
  75 */
  76void
  77dma_mark_clean(void *addr, size_t size)
  78{
  79        unsigned long pg_addr, end;
  80
  81        pg_addr = PAGE_ALIGN((unsigned long) addr);
  82        end = (unsigned long) addr + size;
  83        while (pg_addr + PAGE_SIZE <= end) {
  84                struct page *page = virt_to_page(pg_addr);
  85                set_bit(PG_arch_1, &page->flags);
  86                pg_addr += PAGE_SIZE;
  87        }
  88}
  89
  90inline void
  91ia64_set_rbs_bot (void)
  92{
  93        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  94
  95        if (stack_size > MAX_USER_STACK_SIZE)
  96                stack_size = MAX_USER_STACK_SIZE;
  97        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  98}
  99
 100/*
 101 * This performs some platform-dependent address space initialization.
 102 * On IA-64, we want to setup the VM area for the register backing
 103 * store (which grows upwards) and install the gateway page which is
 104 * used for signal trampolines, etc.
 105 */
 106void
 107ia64_init_addr_space (void)
 108{
 109        struct vm_area_struct *vma;
 110
 111        ia64_set_rbs_bot();
 112
 113        /*
 114         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 115         * the problem.  When the process attempts to write to the register backing store
 116         * for the first time, it will get a SEGFAULT in this case.
 117         */
 118        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 119        if (vma) {
 120                INIT_LIST_HEAD(&vma->anon_vma_chain);
 121                vma->vm_mm = current->mm;
 122                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 123                vma->vm_end = vma->vm_start + PAGE_SIZE;
 124                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 125                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 126                down_write(&current->mm->mmap_sem);
 127                if (insert_vm_struct(current->mm, vma)) {
 128                        up_write(&current->mm->mmap_sem);
 129                        kmem_cache_free(vm_area_cachep, vma);
 130                        return;
 131                }
 132                up_write(&current->mm->mmap_sem);
 133        }
 134
 135        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 136        if (!(current->personality & MMAP_PAGE_ZERO)) {
 137                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 138                if (vma) {
 139                        INIT_LIST_HEAD(&vma->anon_vma_chain);
 140                        vma->vm_mm = current->mm;
 141                        vma->vm_end = PAGE_SIZE;
 142                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 143                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
 144                        down_write(&current->mm->mmap_sem);
 145                        if (insert_vm_struct(current->mm, vma)) {
 146                                up_write(&current->mm->mmap_sem);
 147                                kmem_cache_free(vm_area_cachep, vma);
 148                                return;
 149                        }
 150                        up_write(&current->mm->mmap_sem);
 151                }
 152        }
 153}
 154
 155void
 156free_initmem (void)
 157{
 158        unsigned long addr, eaddr;
 159
 160        addr = (unsigned long) ia64_imva(__init_begin);
 161        eaddr = (unsigned long) ia64_imva(__init_end);
 162        while (addr < eaddr) {
 163                ClearPageReserved(virt_to_page(addr));
 164                init_page_count(virt_to_page(addr));
 165                free_page(addr);
 166                ++totalram_pages;
 167                addr += PAGE_SIZE;
 168        }
 169        printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
 170               (__init_end - __init_begin) >> 10);
 171}
 172
 173void __init
 174free_initrd_mem (unsigned long start, unsigned long end)
 175{
 176        struct page *page;
 177        /*
 178         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 179         * Thus EFI and the kernel may have different page sizes. It is
 180         * therefore possible to have the initrd share the same page as
 181         * the end of the kernel (given current setup).
 182         *
 183         * To avoid freeing/using the wrong page (kernel sized) we:
 184         *      - align up the beginning of initrd
 185         *      - align down the end of initrd
 186         *
 187         *  |             |
 188         *  |=============| a000
 189         *  |             |
 190         *  |             |
 191         *  |             | 9000
 192         *  |/////////////|
 193         *  |/////////////|
 194         *  |=============| 8000
 195         *  |///INITRD////|
 196         *  |/////////////|
 197         *  |/////////////| 7000
 198         *  |             |
 199         *  |KKKKKKKKKKKKK|
 200         *  |=============| 6000
 201         *  |KKKKKKKKKKKKK|
 202         *  |KKKKKKKKKKKKK|
 203         *  K=kernel using 8KB pages
 204         *
 205         * In this example, we must free page 8000 ONLY. So we must align up
 206         * initrd_start and keep initrd_end as is.
 207         */
 208        start = PAGE_ALIGN(start);
 209        end = end & PAGE_MASK;
 210
 211        if (start < end)
 212                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 213
 214        for (; start < end; start += PAGE_SIZE) {
 215                if (!virt_addr_valid(start))
 216                        continue;
 217                page = virt_to_page(start);
 218                ClearPageReserved(page);
 219                init_page_count(page);
 220                free_page(start);
 221                ++totalram_pages;
 222        }
 223}
 224
 225/*
 226 * This installs a clean page in the kernel's page table.
 227 */
 228static struct page * __init
 229put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 230{
 231        pgd_t *pgd;
 232        pud_t *pud;
 233        pmd_t *pmd;
 234        pte_t *pte;
 235
 236        if (!PageReserved(page))
 237                printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
 238                       page_address(page));
 239
 240        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 241
 242        {
 243                pud = pud_alloc(&init_mm, pgd, address);
 244                if (!pud)
 245                        goto out;
 246                pmd = pmd_alloc(&init_mm, pud, address);
 247                if (!pmd)
 248                        goto out;
 249                pte = pte_alloc_kernel(pmd, address);
 250                if (!pte)
 251                        goto out;
 252                if (!pte_none(*pte))
 253                        goto out;
 254                set_pte(pte, mk_pte(page, pgprot));
 255        }
 256  out:
 257        /* no need for flush_tlb */
 258        return page;
 259}
 260
 261static void __init
 262setup_gate (void)
 263{
 264        void *gate_section;
 265        struct page *page;
 266
 267        /*
 268         * Map the gate page twice: once read-only to export the ELF
 269         * headers etc. and once execute-only page to enable
 270         * privilege-promotion via "epc":
 271         */
 272        gate_section = paravirt_get_gate_section();
 273        page = virt_to_page(ia64_imva(gate_section));
 274        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 275#ifdef HAVE_BUGGY_SEGREL
 276        page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
 277        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 278#else
 279        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 280        /* Fill in the holes (if any) with read-only zero pages: */
 281        {
 282                unsigned long addr;
 283
 284                for (addr = GATE_ADDR + PAGE_SIZE;
 285                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 286                     addr += PAGE_SIZE)
 287                {
 288                        put_kernel_page(ZERO_PAGE(0), addr,
 289                                        PAGE_READONLY);
 290                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 291                                        PAGE_READONLY);
 292                }
 293        }
 294#endif
 295        ia64_patch_gate();
 296}
 297
 298void __devinit
 299ia64_mmu_init (void *my_cpu_data)
 300{
 301        unsigned long pta, impl_va_bits;
 302        extern void __devinit tlb_init (void);
 303
 304#ifdef CONFIG_DISABLE_VHPT
 305#       define VHPT_ENABLE_BIT  0
 306#else
 307#       define VHPT_ENABLE_BIT  1
 308#endif
 309
 310        /*
 311         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 312         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 313         * virtual address space are implemented but if we pick a large enough page size
 314         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 315         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 316         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 317         * problem in practice.  Alternatively, we could truncate the top of the mapped
 318         * address space to not permit mappings that would overlap with the VMLPT.
 319         * --davidm 00/12/06
 320         */
 321#       define pte_bits                 3
 322#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 323        /*
 324         * The virtual page table has to cover the entire implemented address space within
 325         * a region even though not all of this space may be mappable.  The reason for
 326         * this is that the Access bit and Dirty bit fault handlers perform
 327         * non-speculative accesses to the virtual page table, so the address range of the
 328         * virtual page table itself needs to be covered by virtual page table.
 329         */
 330#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 331#       define POW2(n)                  (1ULL << (n))
 332
 333        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 334
 335        if (impl_va_bits < 51 || impl_va_bits > 61)
 336                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 337        /*
 338         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 339         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 340         * the test makes sure that our mapped space doesn't overlap the
 341         * unimplemented hole in the middle of the region.
 342         */
 343        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 344            (mapped_space_bits > impl_va_bits - 1))
 345                panic("Cannot build a big enough virtual-linear page table"
 346                      " to cover mapped address space.\n"
 347                      " Try using a smaller page size.\n");
 348
 349
 350        /* place the VMLPT at the end of each page-table mapped region: */
 351        pta = POW2(61) - POW2(vmlpt_bits);
 352
 353        /*
 354         * Set the (virtually mapped linear) page table address.  Bit
 355         * 8 selects between the short and long format, bits 2-7 the
 356         * size of the table, and bit 0 whether the VHPT walker is
 357         * enabled.
 358         */
 359        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 360
 361        ia64_tlb_init();
 362
 363#ifdef  CONFIG_HUGETLB_PAGE
 364        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 365        ia64_srlz_d();
 366#endif
 367}
 368
 369#ifdef CONFIG_VIRTUAL_MEM_MAP
 370int vmemmap_find_next_valid_pfn(int node, int i)
 371{
 372        unsigned long end_address, hole_next_pfn;
 373        unsigned long stop_address;
 374        pg_data_t *pgdat = NODE_DATA(node);
 375
 376        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 377        end_address = PAGE_ALIGN(end_address);
 378
 379        stop_address = (unsigned long) &vmem_map[
 380                pgdat->node_start_pfn + pgdat->node_spanned_pages];
 381
 382        do {
 383                pgd_t *pgd;
 384                pud_t *pud;
 385                pmd_t *pmd;
 386                pte_t *pte;
 387
 388                pgd = pgd_offset_k(end_address);
 389                if (pgd_none(*pgd)) {
 390                        end_address += PGDIR_SIZE;
 391                        continue;
 392                }
 393
 394                pud = pud_offset(pgd, end_address);
 395                if (pud_none(*pud)) {
 396                        end_address += PUD_SIZE;
 397                        continue;
 398                }
 399
 400                pmd = pmd_offset(pud, end_address);
 401                if (pmd_none(*pmd)) {
 402                        end_address += PMD_SIZE;
 403                        continue;
 404                }
 405
 406                pte = pte_offset_kernel(pmd, end_address);
 407retry_pte:
 408                if (pte_none(*pte)) {
 409                        end_address += PAGE_SIZE;
 410                        pte++;
 411                        if ((end_address < stop_address) &&
 412                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 413                                goto retry_pte;
 414                        continue;
 415                }
 416                /* Found next valid vmem_map page */
 417                break;
 418        } while (end_address < stop_address);
 419
 420        end_address = min(end_address, stop_address);
 421        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 422        hole_next_pfn = end_address / sizeof(struct page);
 423        return hole_next_pfn - pgdat->node_start_pfn;
 424}
 425
 426int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 427{
 428        unsigned long address, start_page, end_page;
 429        struct page *map_start, *map_end;
 430        int node;
 431        pgd_t *pgd;
 432        pud_t *pud;
 433        pmd_t *pmd;
 434        pte_t *pte;
 435
 436        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 437        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 438
 439        start_page = (unsigned long) map_start & PAGE_MASK;
 440        end_page = PAGE_ALIGN((unsigned long) map_end);
 441        node = paddr_to_nid(__pa(start));
 442
 443        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 444                pgd = pgd_offset_k(address);
 445                if (pgd_none(*pgd))
 446                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 447                pud = pud_offset(pgd, address);
 448
 449                if (pud_none(*pud))
 450                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 451                pmd = pmd_offset(pud, address);
 452
 453                if (pmd_none(*pmd))
 454                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 455                pte = pte_offset_kernel(pmd, address);
 456
 457                if (pte_none(*pte))
 458                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 459                                             PAGE_KERNEL));
 460        }
 461        return 0;
 462}
 463
 464struct memmap_init_callback_data {
 465        struct page *start;
 466        struct page *end;
 467        int nid;
 468        unsigned long zone;
 469};
 470
 471static int __meminit
 472virtual_memmap_init(u64 start, u64 end, void *arg)
 473{
 474        struct memmap_init_callback_data *args;
 475        struct page *map_start, *map_end;
 476
 477        args = (struct memmap_init_callback_data *) arg;
 478        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 479        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 480
 481        if (map_start < args->start)
 482                map_start = args->start;
 483        if (map_end > args->end)
 484                map_end = args->end;
 485
 486        /*
 487         * We have to initialize "out of bounds" struct page elements that fit completely
 488         * on the same pages that were allocated for the "in bounds" elements because they
 489         * may be referenced later (and found to be "reserved").
 490         */
 491        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 492        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 493                    / sizeof(struct page));
 494
 495        if (map_start < map_end)
 496                memmap_init_zone((unsigned long)(map_end - map_start),
 497                                 args->nid, args->zone, page_to_pfn(map_start),
 498                                 MEMMAP_EARLY);
 499        return 0;
 500}
 501
 502void __meminit
 503memmap_init (unsigned long size, int nid, unsigned long zone,
 504             unsigned long start_pfn)
 505{
 506        if (!vmem_map)
 507                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 508        else {
 509                struct page *start;
 510                struct memmap_init_callback_data args;
 511
 512                start = pfn_to_page(start_pfn);
 513                args.start = start;
 514                args.end = start + size;
 515                args.nid = nid;
 516                args.zone = zone;
 517
 518                efi_memmap_walk(virtual_memmap_init, &args);
 519        }
 520}
 521
 522int
 523ia64_pfn_valid (unsigned long pfn)
 524{
 525        char byte;
 526        struct page *pg = pfn_to_page(pfn);
 527
 528        return     (__get_user(byte, (char __user *) pg) == 0)
 529                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 530                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 531}
 532EXPORT_SYMBOL(ia64_pfn_valid);
 533
 534int __init find_largest_hole(u64 start, u64 end, void *arg)
 535{
 536        u64 *max_gap = arg;
 537
 538        static u64 last_end = PAGE_OFFSET;
 539
 540        /* NOTE: this algorithm assumes efi memmap table is ordered */
 541
 542        if (*max_gap < (start - last_end))
 543                *max_gap = start - last_end;
 544        last_end = end;
 545        return 0;
 546}
 547
 548#endif /* CONFIG_VIRTUAL_MEM_MAP */
 549
 550int __init register_active_ranges(u64 start, u64 len, int nid)
 551{
 552        u64 end = start + len;
 553
 554#ifdef CONFIG_KEXEC
 555        if (start > crashk_res.start && start < crashk_res.end)
 556                start = crashk_res.end;
 557        if (end > crashk_res.start && end < crashk_res.end)
 558                end = crashk_res.start;
 559#endif
 560
 561        if (start < end)
 562                add_active_range(nid, __pa(start) >> PAGE_SHIFT,
 563                        __pa(end) >> PAGE_SHIFT);
 564        return 0;
 565}
 566
 567static int __init
 568count_reserved_pages(u64 start, u64 end, void *arg)
 569{
 570        unsigned long num_reserved = 0;
 571        unsigned long *count = arg;
 572
 573        for (; start < end; start += PAGE_SIZE)
 574                if (PageReserved(virt_to_page(start)))
 575                        ++num_reserved;
 576        *count += num_reserved;
 577        return 0;
 578}
 579
 580int
 581find_max_min_low_pfn (u64 start, u64 end, void *arg)
 582{
 583        unsigned long pfn_start, pfn_end;
 584#ifdef CONFIG_FLATMEM
 585        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 586        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 587#else
 588        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 589        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 590#endif
 591        min_low_pfn = min(min_low_pfn, pfn_start);
 592        max_low_pfn = max(max_low_pfn, pfn_end);
 593        return 0;
 594}
 595
 596/*
 597 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 598 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 599 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 600 * useful for performance testing, but conceivably could also come in handy for debugging
 601 * purposes.
 602 */
 603
 604static int nolwsys __initdata;
 605
 606static int __init
 607nolwsys_setup (char *s)
 608{
 609        nolwsys = 1;
 610        return 1;
 611}
 612
 613__setup("nolwsys", nolwsys_setup);
 614
 615void __init
 616mem_init (void)
 617{
 618        long reserved_pages, codesize, datasize, initsize;
 619        pg_data_t *pgdat;
 620        int i;
 621
 622        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 623        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 624        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 625
 626#ifdef CONFIG_PCI
 627        /*
 628         * This needs to be called _after_ the command line has been parsed but _before_
 629         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 630         * been freed.
 631         */
 632        platform_dma_init();
 633#endif
 634
 635#ifdef CONFIG_FLATMEM
 636        BUG_ON(!mem_map);
 637        max_mapnr = max_low_pfn;
 638#endif
 639
 640        high_memory = __va(max_low_pfn * PAGE_SIZE);
 641
 642        for_each_online_pgdat(pgdat)
 643                if (pgdat->bdata->node_bootmem_map)
 644                        totalram_pages += free_all_bootmem_node(pgdat);
 645
 646        reserved_pages = 0;
 647        efi_memmap_walk(count_reserved_pages, &reserved_pages);
 648
 649        codesize =  (unsigned long) _etext - (unsigned long) _stext;
 650        datasize =  (unsigned long) _edata - (unsigned long) _etext;
 651        initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
 652
 653        printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
 654               "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
 655               num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
 656               reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
 657
 658
 659        /*
 660         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 661         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 662         * code can tell them apart.
 663         */
 664        for (i = 0; i < NR_syscalls; ++i) {
 665                extern unsigned long sys_call_table[NR_syscalls];
 666                unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
 667
 668                if (!fsyscall_table[i] || nolwsys)
 669                        fsyscall_table[i] = sys_call_table[i] | 1;
 670        }
 671        setup_gate();
 672}
 673
 674#ifdef CONFIG_MEMORY_HOTPLUG
 675int arch_add_memory(int nid, u64 start, u64 size)
 676{
 677        pg_data_t *pgdat;
 678        struct zone *zone;
 679        unsigned long start_pfn = start >> PAGE_SHIFT;
 680        unsigned long nr_pages = size >> PAGE_SHIFT;
 681        int ret;
 682
 683        pgdat = NODE_DATA(nid);
 684
 685        zone = pgdat->node_zones + ZONE_NORMAL;
 686        ret = __add_pages(nid, zone, start_pfn, nr_pages);
 687
 688        if (ret)
 689                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 690                       __func__,  ret);
 691
 692        return ret;
 693}
 694#endif
 695
 696/*
 697 * Even when CONFIG_IA32_SUPPORT is not enabled it is
 698 * useful to have the Linux/x86 domain registered to
 699 * avoid an attempted module load when emulators call
 700 * personality(PER_LINUX32). This saves several milliseconds
 701 * on each such call.
 702 */
 703static struct exec_domain ia32_exec_domain;
 704
 705static int __init
 706per_linux32_init(void)
 707{
 708        ia32_exec_domain.name = "Linux/x86";
 709        ia32_exec_domain.handler = NULL;
 710        ia32_exec_domain.pers_low = PER_LINUX32;
 711        ia32_exec_domain.pers_high = PER_LINUX32;
 712        ia32_exec_domain.signal_map = default_exec_domain.signal_map;
 713        ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
 714        register_exec_domain(&ia32_exec_domain);
 715
 716        return 0;
 717}
 718
 719__initcall(per_linux32_init);
 720