linux/arch/mips/pci/pci-octeon.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2005-2009 Cavium Networks
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/pci.h>
  11#include <linux/interrupt.h>
  12#include <linux/time.h>
  13#include <linux/delay.h>
  14#include <linux/swiotlb.h>
  15
  16#include <asm/time.h>
  17
  18#include <asm/octeon/octeon.h>
  19#include <asm/octeon/cvmx-npi-defs.h>
  20#include <asm/octeon/cvmx-pci-defs.h>
  21#include <asm/octeon/pci-octeon.h>
  22
  23#include <dma-coherence.h>
  24
  25#define USE_OCTEON_INTERNAL_ARBITER
  26
  27/*
  28 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  29 * addresses. Use PCI endian swapping 1 so no address swapping is
  30 * necessary. The Linux io routines will endian swap the data.
  31 */
  32#define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
  33#define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
  34
  35/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  36#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
  37
  38u64 octeon_bar1_pci_phys;
  39
  40/**
  41 * This is the bit decoding used for the Octeon PCI controller addresses
  42 */
  43union octeon_pci_address {
  44        uint64_t u64;
  45        struct {
  46                uint64_t upper:2;
  47                uint64_t reserved:13;
  48                uint64_t io:1;
  49                uint64_t did:5;
  50                uint64_t subdid:3;
  51                uint64_t reserved2:4;
  52                uint64_t endian_swap:2;
  53                uint64_t reserved3:10;
  54                uint64_t bus:8;
  55                uint64_t dev:5;
  56                uint64_t func:3;
  57                uint64_t reg:8;
  58        } s;
  59};
  60
  61int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
  62                                         u8 slot, u8 pin);
  63enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  64
  65/**
  66 * Map a PCI device to the appropriate interrupt line
  67 *
  68 * @dev:    The Linux PCI device structure for the device to map
  69 * @slot:   The slot number for this device on __BUS 0__. Linux
  70 *               enumerates through all the bridges and figures out the
  71 *               slot on Bus 0 where this device eventually hooks to.
  72 * @pin:    The PCI interrupt pin read from the device, then swizzled
  73 *               as it goes through each bridge.
  74 * Returns Interrupt number for the device
  75 */
  76int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  77{
  78        if (octeon_pcibios_map_irq)
  79                return octeon_pcibios_map_irq(dev, slot, pin);
  80        else
  81                panic("octeon_pcibios_map_irq not set.");
  82}
  83
  84
  85/*
  86 * Called to perform platform specific PCI setup
  87 */
  88int pcibios_plat_dev_init(struct pci_dev *dev)
  89{
  90        uint16_t config;
  91        uint32_t dconfig;
  92        int pos;
  93        /*
  94         * Force the Cache line setting to 64 bytes. The standard
  95         * Linux bus scan doesn't seem to set it. Octeon really has
  96         * 128 byte lines, but Intel bridges get really upset if you
  97         * try and set values above 64 bytes. Value is specified in
  98         * 32bit words.
  99         */
 100        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
 101        /* Set latency timers for all devices */
 102        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
 103
 104        /* Enable reporting System errors and parity errors on all devices */
 105        /* Enable parity checking and error reporting */
 106        pci_read_config_word(dev, PCI_COMMAND, &config);
 107        config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
 108        pci_write_config_word(dev, PCI_COMMAND, config);
 109
 110        if (dev->subordinate) {
 111                /* Set latency timers on sub bridges */
 112                pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
 113                /* More bridge error detection */
 114                pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
 115                config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
 116                pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
 117        }
 118
 119        /* Enable the PCIe normal error reporting */
 120        pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 121        if (pos) {
 122                /* Update Device Control */
 123                pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
 124                /* Correctable Error Reporting */
 125                config |= PCI_EXP_DEVCTL_CERE;
 126                /* Non-Fatal Error Reporting */
 127                config |= PCI_EXP_DEVCTL_NFERE;
 128                /* Fatal Error Reporting */
 129                config |= PCI_EXP_DEVCTL_FERE;
 130                /* Unsupported Request */
 131                config |= PCI_EXP_DEVCTL_URRE;
 132                pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
 133        }
 134
 135        /* Find the Advanced Error Reporting capability */
 136        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 137        if (pos) {
 138                /* Clear Uncorrectable Error Status */
 139                pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 140                                      &dconfig);
 141                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 142                                       dconfig);
 143                /* Enable reporting of all uncorrectable errors */
 144                /* Uncorrectable Error Mask - turned on bits disable errors */
 145                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
 146                /*
 147                 * Leave severity at HW default. This only controls if
 148                 * errors are reported as uncorrectable or
 149                 * correctable, not if the error is reported.
 150                 */
 151                /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
 152                /* Clear Correctable Error Status */
 153                pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
 154                pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
 155                /* Enable reporting of all correctable errors */
 156                /* Correctable Error Mask - turned on bits disable errors */
 157                pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
 158                /* Advanced Error Capabilities */
 159                pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
 160                /* ECRC Generation Enable */
 161                if (config & PCI_ERR_CAP_ECRC_GENC)
 162                        config |= PCI_ERR_CAP_ECRC_GENE;
 163                /* ECRC Check Enable */
 164                if (config & PCI_ERR_CAP_ECRC_CHKC)
 165                        config |= PCI_ERR_CAP_ECRC_CHKE;
 166                pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
 167                /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
 168                /* Report all errors to the root complex */
 169                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
 170                                       PCI_ERR_ROOT_CMD_COR_EN |
 171                                       PCI_ERR_ROOT_CMD_NONFATAL_EN |
 172                                       PCI_ERR_ROOT_CMD_FATAL_EN);
 173                /* Clear the Root status register */
 174                pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
 175                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
 176        }
 177
 178        dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
 179
 180        return 0;
 181}
 182
 183/**
 184 * Return the mapping of PCI device number to IRQ line. Each
 185 * character in the return string represents the interrupt
 186 * line for the device at that position. Device 1 maps to the
 187 * first character, etc. The characters A-D are used for PCI
 188 * interrupts.
 189 *
 190 * Returns PCI interrupt mapping
 191 */
 192const char *octeon_get_pci_interrupts(void)
 193{
 194        /*
 195         * Returning an empty string causes the interrupts to be
 196         * routed based on the PCI specification. From the PCI spec:
 197         *
 198         * INTA# of Device Number 0 is connected to IRQW on the system
 199         * board.  (Device Number has no significance regarding being
 200         * located on the system board or in a connector.) INTA# of
 201         * Device Number 1 is connected to IRQX on the system
 202         * board. INTA# of Device Number 2 is connected to IRQY on the
 203         * system board. INTA# of Device Number 3 is connected to IRQZ
 204         * on the system board. The table below describes how each
 205         * agent's INTx# lines are connected to the system board
 206         * interrupt lines. The following equation can be used to
 207         * determine to which INTx# signal on the system board a given
 208         * device's INTx# line(s) is connected.
 209         *
 210         * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
 211         * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
 212         * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
 213         * INTD# = 3)
 214         */
 215        switch (octeon_bootinfo->board_type) {
 216        case CVMX_BOARD_TYPE_NAO38:
 217                /* This is really the NAC38 */
 218                return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
 219        case CVMX_BOARD_TYPE_EBH3100:
 220        case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 221        case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 222                return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
 223        case CVMX_BOARD_TYPE_BBGW_REF:
 224                return "AABCD";
 225        case CVMX_BOARD_TYPE_THUNDER:
 226        case CVMX_BOARD_TYPE_EBH3000:
 227        default:
 228                return "";
 229        }
 230}
 231
 232/**
 233 * Map a PCI device to the appropriate interrupt line
 234 *
 235 * @dev:    The Linux PCI device structure for the device to map
 236 * @slot:   The slot number for this device on __BUS 0__. Linux
 237 *               enumerates through all the bridges and figures out the
 238 *               slot on Bus 0 where this device eventually hooks to.
 239 * @pin:    The PCI interrupt pin read from the device, then swizzled
 240 *               as it goes through each bridge.
 241 * Returns Interrupt number for the device
 242 */
 243int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
 244                                      u8 slot, u8 pin)
 245{
 246        int irq_num;
 247        const char *interrupts;
 248        int dev_num;
 249
 250        /* Get the board specific interrupt mapping */
 251        interrupts = octeon_get_pci_interrupts();
 252
 253        dev_num = dev->devfn >> 3;
 254        if (dev_num < strlen(interrupts))
 255                irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
 256                        OCTEON_IRQ_PCI_INT0;
 257        else
 258                irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
 259        return irq_num;
 260}
 261
 262
 263/*
 264 * Read a value from configuration space
 265 */
 266static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
 267                              int reg, int size, u32 *val)
 268{
 269        union octeon_pci_address pci_addr;
 270
 271        pci_addr.u64 = 0;
 272        pci_addr.s.upper = 2;
 273        pci_addr.s.io = 1;
 274        pci_addr.s.did = 3;
 275        pci_addr.s.subdid = 1;
 276        pci_addr.s.endian_swap = 1;
 277        pci_addr.s.bus = bus->number;
 278        pci_addr.s.dev = devfn >> 3;
 279        pci_addr.s.func = devfn & 0x7;
 280        pci_addr.s.reg = reg;
 281
 282#if PCI_CONFIG_SPACE_DELAY
 283        udelay(PCI_CONFIG_SPACE_DELAY);
 284#endif
 285        switch (size) {
 286        case 4:
 287                *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
 288                return PCIBIOS_SUCCESSFUL;
 289        case 2:
 290                *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
 291                return PCIBIOS_SUCCESSFUL;
 292        case 1:
 293                *val = cvmx_read64_uint8(pci_addr.u64);
 294                return PCIBIOS_SUCCESSFUL;
 295        }
 296        return PCIBIOS_FUNC_NOT_SUPPORTED;
 297}
 298
 299
 300/*
 301 * Write a value to PCI configuration space
 302 */
 303static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
 304                               int reg, int size, u32 val)
 305{
 306        union octeon_pci_address pci_addr;
 307
 308        pci_addr.u64 = 0;
 309        pci_addr.s.upper = 2;
 310        pci_addr.s.io = 1;
 311        pci_addr.s.did = 3;
 312        pci_addr.s.subdid = 1;
 313        pci_addr.s.endian_swap = 1;
 314        pci_addr.s.bus = bus->number;
 315        pci_addr.s.dev = devfn >> 3;
 316        pci_addr.s.func = devfn & 0x7;
 317        pci_addr.s.reg = reg;
 318
 319#if PCI_CONFIG_SPACE_DELAY
 320        udelay(PCI_CONFIG_SPACE_DELAY);
 321#endif
 322        switch (size) {
 323        case 4:
 324                cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
 325                return PCIBIOS_SUCCESSFUL;
 326        case 2:
 327                cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
 328                return PCIBIOS_SUCCESSFUL;
 329        case 1:
 330                cvmx_write64_uint8(pci_addr.u64, val);
 331                return PCIBIOS_SUCCESSFUL;
 332        }
 333        return PCIBIOS_FUNC_NOT_SUPPORTED;
 334}
 335
 336
 337static struct pci_ops octeon_pci_ops = {
 338        octeon_read_config,
 339        octeon_write_config,
 340};
 341
 342static struct resource octeon_pci_mem_resource = {
 343        .start = 0,
 344        .end = 0,
 345        .name = "Octeon PCI MEM",
 346        .flags = IORESOURCE_MEM,
 347};
 348
 349/*
 350 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
 351 * bridge
 352 */
 353static struct resource octeon_pci_io_resource = {
 354        .start = 0x4000,
 355        .end = OCTEON_PCI_IOSPACE_SIZE - 1,
 356        .name = "Octeon PCI IO",
 357        .flags = IORESOURCE_IO,
 358};
 359
 360static struct pci_controller octeon_pci_controller = {
 361        .pci_ops = &octeon_pci_ops,
 362        .mem_resource = &octeon_pci_mem_resource,
 363        .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
 364        .io_resource = &octeon_pci_io_resource,
 365        .io_offset = 0,
 366        .io_map_base = OCTEON_PCI_IOSPACE_BASE,
 367};
 368
 369
 370/*
 371 * Low level initialize the Octeon PCI controller
 372 */
 373static void octeon_pci_initialize(void)
 374{
 375        union cvmx_pci_cfg01 cfg01;
 376        union cvmx_npi_ctl_status ctl_status;
 377        union cvmx_pci_ctl_status_2 ctl_status_2;
 378        union cvmx_pci_cfg19 cfg19;
 379        union cvmx_pci_cfg16 cfg16;
 380        union cvmx_pci_cfg22 cfg22;
 381        union cvmx_pci_cfg56 cfg56;
 382
 383        /* Reset the PCI Bus */
 384        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
 385        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 386
 387        udelay(2000);           /* Hold PCI reset for 2 ms */
 388
 389        ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
 390        ctl_status.s.max_word = 1;
 391        ctl_status.s.timer = 1;
 392        cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
 393
 394        /* Deassert PCI reset and advertize PCX Host Mode Device Capability
 395           (64b) */
 396        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
 397        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 398
 399        udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
 400
 401        ctl_status_2.u32 = 0;
 402        ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
 403                                           before any PCI reads. */
 404        ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
 405        ctl_status_2.s.bar2_enb = 1;
 406        ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
 407        ctl_status_2.s.bar2_esx = 1;
 408        ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
 409        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 410                /* BAR1 hole */
 411                ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
 412                ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
 413                ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
 414                ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
 415                ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
 416                ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
 417        }
 418
 419        octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
 420        udelay(2000);           /* Wait 2 ms before doing PCI reads */
 421
 422        ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
 423        pr_notice("PCI Status: %s %s-bit\n",
 424                  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
 425                  ctl_status_2.s.ap_64ad ? "64" : "32");
 426
 427        if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
 428                union cvmx_pci_cnt_reg cnt_reg_start;
 429                union cvmx_pci_cnt_reg cnt_reg_end;
 430                unsigned long cycles, pci_clock;
 431
 432                cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 433                cycles = read_c0_cvmcount();
 434                udelay(1000);
 435                cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 436                cycles = read_c0_cvmcount() - cycles;
 437                pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
 438                            (cycles / (mips_hpt_frequency / 1000000));
 439                pr_notice("PCI Clock: %lu MHz\n", pci_clock);
 440        }
 441
 442        /*
 443         * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
 444         * in PCI-X mode to allow four oustanding splits. Otherwise,
 445         * should not change from its reset value. Don't write PCI_CFG19
 446         * in PCI mode (0x82000001 reset value), write it to 0x82000004
 447         * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
 448         * MRBCM -> must be one.
 449         */
 450        if (ctl_status_2.s.ap_pcix) {
 451                cfg19.u32 = 0;
 452                /*
 453                 * Target Delayed/Split request outstanding maximum
 454                 * count. [1..31] and 0=32.  NOTE: If the user
 455                 * programs these bits beyond the Designed Maximum
 456                 * outstanding count, then the designed maximum table
 457                 * depth will be used instead.  No additional
 458                 * Deferred/Split transactions will be accepted if
 459                 * this outstanding maximum count is
 460                 * reached. Furthermore, no additional deferred/split
 461                 * transactions will be accepted if the I/O delay/ I/O
 462                 * Split Request outstanding maximum is reached.
 463                 */
 464                cfg19.s.tdomc = 4;
 465                /*
 466                 * Master Deferred Read Request Outstanding Max Count
 467                 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
 468                 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
 469                 * 5 2 110 6 3 111 7 3 For example, if these bits are
 470                 * programmed to 100, the core can support 2 DAC
 471                 * cycles, 4 SAC cycles or a combination of 1 DAC and
 472                 * 2 SAC cycles. NOTE: For the PCI-X maximum
 473                 * outstanding split transactions, refer to
 474                 * CRE0[22:20].
 475                 */
 476                cfg19.s.mdrrmc = 2;
 477                /*
 478                 * Master Request (Memory Read) Byte Count/Byte Enable
 479                 * select. 0 = Byte Enables valid. In PCI mode, a
 480                 * burst transaction cannot be performed using Memory
 481                 * Read command=4?h6. 1 = DWORD Byte Count valid
 482                 * (default). In PCI Mode, the memory read byte
 483                 * enables are automatically generated by the
 484                 * core. Note: N3 Master Request transaction sizes are
 485                 * always determined through the
 486                 * am_attr[<35:32>|<7:0>] field.
 487                 */
 488                cfg19.s.mrbcm = 1;
 489                octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
 490        }
 491
 492
 493        cfg01.u32 = 0;
 494        cfg01.s.msae = 1;       /* Memory Space Access Enable */
 495        cfg01.s.me = 1;         /* Master Enable */
 496        cfg01.s.pee = 1;        /* PERR# Enable */
 497        cfg01.s.see = 1;        /* System Error Enable */
 498        cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
 499
 500        octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
 501
 502#ifdef USE_OCTEON_INTERNAL_ARBITER
 503        /*
 504         * When OCTEON is a PCI host, most systems will use OCTEON's
 505         * internal arbiter, so must enable it before any PCI/PCI-X
 506         * traffic can occur.
 507         */
 508        {
 509                union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
 510
 511                pci_int_arb_cfg.u64 = 0;
 512                pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
 513                cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
 514        }
 515#endif  /* USE_OCTEON_INTERNAL_ARBITER */
 516
 517        /*
 518         * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
 519         * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
 520         * 1..7.
 521         */
 522        cfg16.u32 = 0;
 523        cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
 524        octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
 525
 526        /*
 527         * Should be written to 0x4ff00. MTTV -> must be zero.
 528         * FLUSH -> must be 1. MRV -> should be 0xFF.
 529         */
 530        cfg22.u32 = 0;
 531        /* Master Retry Value [1..255] and 0=infinite */
 532        cfg22.s.mrv = 0xff;
 533        /*
 534         * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
 535         * N3K operation.
 536         */
 537        cfg22.s.flush = 1;
 538        octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
 539
 540        /*
 541         * MOST Indicates the maximum number of outstanding splits (in -1
 542         * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
 543         * affected by the MOST selection.  Should generally be written
 544         * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
 545         * depending on the desired MOST of 3, 2, 1, or 0, respectively.
 546         */
 547        cfg56.u32 = 0;
 548        cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
 549        cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
 550        cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
 551        cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
 552        cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
 553                                   [0=512B,1=1024B,2=2048B,3=4096B] */
 554        cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
 555                                   .. 7=32] */
 556
 557        octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
 558
 559        /*
 560         * Affects PCI performance when OCTEON services reads to its
 561         * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
 562         * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
 563         * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
 564         * these values need to be changed so they won't possibly prefetch off
 565         * of the end of memory if PCI is DMAing a buffer at the end of
 566         * memory. Note that these values differ from their reset values.
 567         */
 568        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
 569        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
 570        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
 571}
 572
 573
 574/*
 575 * Initialize the Octeon PCI controller
 576 */
 577static int __init octeon_pci_setup(void)
 578{
 579        union cvmx_npi_mem_access_subidx mem_access;
 580        int index;
 581
 582        /* Only these chips have PCI */
 583        if (octeon_has_feature(OCTEON_FEATURE_PCIE))
 584                return 0;
 585
 586        /* Point pcibios_map_irq() to the PCI version of it */
 587        octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
 588
 589        /* Only use the big bars on chips that support it */
 590        if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
 591            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 592            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
 593                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
 594        else
 595                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
 596
 597        /* PCI I/O and PCI MEM values */
 598        set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
 599        ioport_resource.start = 0;
 600        ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
 601        if (!octeon_is_pci_host()) {
 602                pr_notice("Not in host mode, PCI Controller not initialized\n");
 603                return 0;
 604        }
 605
 606        pr_notice("%s Octeon big bar support\n",
 607                  (octeon_dma_bar_type ==
 608                  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
 609
 610        octeon_pci_initialize();
 611
 612        mem_access.u64 = 0;
 613        mem_access.s.esr = 1;   /* Endian-Swap on read. */
 614        mem_access.s.esw = 1;   /* Endian-Swap on write. */
 615        mem_access.s.nsr = 0;   /* No-Snoop on read. */
 616        mem_access.s.nsw = 0;   /* No-Snoop on write. */
 617        mem_access.s.ror = 0;   /* Relax Read on read. */
 618        mem_access.s.row = 0;   /* Relax Order on write. */
 619        mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
 620        cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
 621
 622        /*
 623         * Remap the Octeon BAR 2 above all 32 bit devices
 624         * (0x8000000000ul).  This is done here so it is remapped
 625         * before the readl()'s below. We don't want BAR2 overlapping
 626         * with BAR0/BAR1 during these reads.
 627         */
 628        octeon_npi_write32(CVMX_NPI_PCI_CFG08,
 629                           (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
 630        octeon_npi_write32(CVMX_NPI_PCI_CFG09,
 631                           (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
 632
 633        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 634                /* Remap the Octeon BAR 0 to 0-2GB */
 635                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
 636                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 637
 638                /*
 639                 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
 640                 * BAR 1 hole).
 641                 */
 642                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
 643                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 644
 645                /* BAR1 movable mappings set for identity mapping */
 646                octeon_bar1_pci_phys = 0x80000000ull;
 647                for (index = 0; index < 32; index++) {
 648                        union cvmx_pci_bar1_indexx bar1_index;
 649
 650                        bar1_index.u32 = 0;
 651                        /* Address bits[35:22] sent to L2C */
 652                        bar1_index.s.addr_idx =
 653                                (octeon_bar1_pci_phys >> 22) + index;
 654                        /* Don't put PCI accesses in L2. */
 655                        bar1_index.s.ca = 1;
 656                        /* Endian Swap Mode */
 657                        bar1_index.s.end_swp = 1;
 658                        /* Set '1' when the selected address range is valid. */
 659                        bar1_index.s.addr_v = 1;
 660                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 661                                           bar1_index.u32);
 662                }
 663
 664                /* Devices go after BAR1 */
 665                octeon_pci_mem_resource.start =
 666                        OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
 667                        (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
 668                octeon_pci_mem_resource.end =
 669                        octeon_pci_mem_resource.start + (1ul << 30);
 670        } else {
 671                /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
 672                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
 673                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 674
 675                /* Remap the Octeon BAR 1 to map 0-128MB */
 676                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
 677                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 678
 679                /* BAR1 movable regions contiguous to cover the swiotlb */
 680                octeon_bar1_pci_phys =
 681                        virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
 682
 683                for (index = 0; index < 32; index++) {
 684                        union cvmx_pci_bar1_indexx bar1_index;
 685
 686                        bar1_index.u32 = 0;
 687                        /* Address bits[35:22] sent to L2C */
 688                        bar1_index.s.addr_idx =
 689                                (octeon_bar1_pci_phys >> 22) + index;
 690                        /* Don't put PCI accesses in L2. */
 691                        bar1_index.s.ca = 1;
 692                        /* Endian Swap Mode */
 693                        bar1_index.s.end_swp = 1;
 694                        /* Set '1' when the selected address range is valid. */
 695                        bar1_index.s.addr_v = 1;
 696                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 697                                           bar1_index.u32);
 698                }
 699
 700                /* Devices go after BAR0 */
 701                octeon_pci_mem_resource.start =
 702                        OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
 703                        (4ul << 10);
 704                octeon_pci_mem_resource.end =
 705                        octeon_pci_mem_resource.start + (1ul << 30);
 706        }
 707
 708        register_pci_controller(&octeon_pci_controller);
 709
 710        /*
 711         * Clear any errors that might be pending from before the bus
 712         * was setup properly.
 713         */
 714        cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
 715
 716        octeon_pci_dma_init();
 717
 718        return 0;
 719}
 720
 721arch_initcall(octeon_pci_setup);
 722