linux/arch/powerpc/include/asm/mmu-hash64.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_MMU_HASH64_H_
   2#define _ASM_POWERPC_MMU_HASH64_H_
   3/*
   4 * PowerPC64 memory management structures
   5 *
   6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
   7 *   PPC64 rework.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; either version
  12 * 2 of the License, or (at your option) any later version.
  13 */
  14
  15#include <asm/asm-compat.h>
  16#include <asm/page.h>
  17
  18/*
  19 * Segment table
  20 */
  21
  22#define STE_ESID_V      0x80
  23#define STE_ESID_KS     0x20
  24#define STE_ESID_KP     0x10
  25#define STE_ESID_N      0x08
  26
  27#define STE_VSID_SHIFT  12
  28
  29/* Location of cpu0's segment table */
  30#define STAB0_PAGE      0x6
  31#define STAB0_OFFSET    (STAB0_PAGE << 12)
  32#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  33
  34#ifndef __ASSEMBLY__
  35extern char initial_stab[];
  36#endif /* ! __ASSEMBLY */
  37
  38/*
  39 * SLB
  40 */
  41
  42#define SLB_NUM_BOLTED          3
  43#define SLB_CACHE_ENTRIES       8
  44#define SLB_MIN_SIZE            32
  45
  46/* Bits in the SLB ESID word */
  47#define SLB_ESID_V              ASM_CONST(0x0000000008000000) /* valid */
  48
  49/* Bits in the SLB VSID word */
  50#define SLB_VSID_SHIFT          12
  51#define SLB_VSID_SHIFT_1T       24
  52#define SLB_VSID_SSIZE_SHIFT    62
  53#define SLB_VSID_B              ASM_CONST(0xc000000000000000)
  54#define SLB_VSID_B_256M         ASM_CONST(0x0000000000000000)
  55#define SLB_VSID_B_1T           ASM_CONST(0x4000000000000000)
  56#define SLB_VSID_KS             ASM_CONST(0x0000000000000800)
  57#define SLB_VSID_KP             ASM_CONST(0x0000000000000400)
  58#define SLB_VSID_N              ASM_CONST(0x0000000000000200) /* no-execute */
  59#define SLB_VSID_L              ASM_CONST(0x0000000000000100)
  60#define SLB_VSID_C              ASM_CONST(0x0000000000000080) /* class */
  61#define SLB_VSID_LP             ASM_CONST(0x0000000000000030)
  62#define SLB_VSID_LP_00          ASM_CONST(0x0000000000000000)
  63#define SLB_VSID_LP_01          ASM_CONST(0x0000000000000010)
  64#define SLB_VSID_LP_10          ASM_CONST(0x0000000000000020)
  65#define SLB_VSID_LP_11          ASM_CONST(0x0000000000000030)
  66#define SLB_VSID_LLP            (SLB_VSID_L|SLB_VSID_LP)
  67
  68#define SLB_VSID_KERNEL         (SLB_VSID_KP)
  69#define SLB_VSID_USER           (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  70
  71#define SLBIE_C                 (0x08000000)
  72#define SLBIE_SSIZE_SHIFT       25
  73
  74/*
  75 * Hash table
  76 */
  77
  78#define HPTES_PER_GROUP 8
  79
  80#define HPTE_V_SSIZE_SHIFT      62
  81#define HPTE_V_AVPN_SHIFT       7
  82#define HPTE_V_AVPN             ASM_CONST(0x3fffffffffffff80)
  83#define HPTE_V_AVPN_VAL(x)      (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  84#define HPTE_V_COMPARE(x,y)     (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  85#define HPTE_V_BOLTED           ASM_CONST(0x0000000000000010)
  86#define HPTE_V_LOCK             ASM_CONST(0x0000000000000008)
  87#define HPTE_V_LARGE            ASM_CONST(0x0000000000000004)
  88#define HPTE_V_SECONDARY        ASM_CONST(0x0000000000000002)
  89#define HPTE_V_VALID            ASM_CONST(0x0000000000000001)
  90
  91#define HPTE_R_PP0              ASM_CONST(0x8000000000000000)
  92#define HPTE_R_TS               ASM_CONST(0x4000000000000000)
  93#define HPTE_R_RPN_SHIFT        12
  94#define HPTE_R_RPN              ASM_CONST(0x3ffffffffffff000)
  95#define HPTE_R_FLAGS            ASM_CONST(0x00000000000003ff)
  96#define HPTE_R_PP               ASM_CONST(0x0000000000000003)
  97#define HPTE_R_N                ASM_CONST(0x0000000000000004)
  98#define HPTE_R_C                ASM_CONST(0x0000000000000080)
  99#define HPTE_R_R                ASM_CONST(0x0000000000000100)
 100
 101#define HPTE_V_1TB_SEG          ASM_CONST(0x4000000000000000)
 102#define HPTE_V_VRMA_MASK        ASM_CONST(0x4001ffffff000000)
 103
 104/* Values for PP (assumes Ks=0, Kp=1) */
 105/* pp0 will always be 0 for linux     */
 106#define PP_RWXX 0       /* Supervisor read/write, User none */
 107#define PP_RWRX 1       /* Supervisor read/write, User read */
 108#define PP_RWRW 2       /* Supervisor read/write, User read/write */
 109#define PP_RXRX 3       /* Supervisor read,       User read */
 110
 111#ifndef __ASSEMBLY__
 112
 113struct hash_pte {
 114        unsigned long v;
 115        unsigned long r;
 116};
 117
 118extern struct hash_pte *htab_address;
 119extern unsigned long htab_size_bytes;
 120extern unsigned long htab_hash_mask;
 121
 122/*
 123 * Page size definition
 124 *
 125 *    shift : is the "PAGE_SHIFT" value for that page size
 126 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 127 *            directly to a slbmte "vsid" value
 128 *    penc  : is the HPTE encoding mask for the "LP" field:
 129 *
 130 */
 131struct mmu_psize_def
 132{
 133        unsigned int    shift;  /* number of bits */
 134        unsigned int    penc;   /* HPTE encoding */
 135        unsigned int    tlbiel; /* tlbiel supported for that page size */
 136        unsigned long   avpnm;  /* bits to mask out in AVPN in the HPTE */
 137        unsigned long   sllp;   /* SLB L||LP (exact mask to use in slbmte) */
 138};
 139
 140#endif /* __ASSEMBLY__ */
 141
 142/*
 143 * Segment sizes.
 144 * These are the values used by hardware in the B field of
 145 * SLB entries and the first dword of MMU hashtable entries.
 146 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 147 */
 148#define MMU_SEGSIZE_256M        0
 149#define MMU_SEGSIZE_1T          1
 150
 151
 152#ifndef __ASSEMBLY__
 153
 154/*
 155 * The current system page and segment sizes
 156 */
 157extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 158extern int mmu_linear_psize;
 159extern int mmu_virtual_psize;
 160extern int mmu_vmalloc_psize;
 161extern int mmu_vmemmap_psize;
 162extern int mmu_io_psize;
 163extern int mmu_kernel_ssize;
 164extern int mmu_highuser_ssize;
 165extern u16 mmu_slb_size;
 166extern unsigned long tce_alloc_start, tce_alloc_end;
 167
 168/*
 169 * If the processor supports 64k normal pages but not 64k cache
 170 * inhibited pages, we have to be prepared to switch processes
 171 * to use 4k pages when they create cache-inhibited mappings.
 172 * If this is the case, mmu_ci_restrictions will be set to 1.
 173 */
 174extern int mmu_ci_restrictions;
 175
 176/*
 177 * This function sets the AVPN and L fields of the HPTE  appropriately
 178 * for the page size
 179 */
 180static inline unsigned long hpte_encode_v(unsigned long va, int psize,
 181                                          int ssize)
 182{
 183        unsigned long v;
 184        v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
 185        v <<= HPTE_V_AVPN_SHIFT;
 186        if (psize != MMU_PAGE_4K)
 187                v |= HPTE_V_LARGE;
 188        v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
 189        return v;
 190}
 191
 192/*
 193 * This function sets the ARPN, and LP fields of the HPTE appropriately
 194 * for the page size. We assume the pa is already "clean" that is properly
 195 * aligned for the requested page size
 196 */
 197static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
 198{
 199        unsigned long r;
 200
 201        /* A 4K page needs no special encoding */
 202        if (psize == MMU_PAGE_4K)
 203                return pa & HPTE_R_RPN;
 204        else {
 205                unsigned int penc = mmu_psize_defs[psize].penc;
 206                unsigned int shift = mmu_psize_defs[psize].shift;
 207                return (pa & ~((1ul << shift) - 1)) | (penc << 12);
 208        }
 209        return r;
 210}
 211
 212/*
 213 * Build a VA given VSID, EA and segment size
 214 */
 215static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
 216                                   int ssize)
 217{
 218        if (ssize == MMU_SEGSIZE_256M)
 219                return (vsid << 28) | (ea & 0xfffffffUL);
 220        return (vsid << 40) | (ea & 0xffffffffffUL);
 221}
 222
 223/*
 224 * This hashes a virtual address
 225 */
 226
 227static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
 228                                     int ssize)
 229{
 230        unsigned long hash, vsid;
 231
 232        if (ssize == MMU_SEGSIZE_256M) {
 233                hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
 234        } else {
 235                vsid = va >> 40;
 236                hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
 237        }
 238        return hash & 0x7fffffffffUL;
 239}
 240
 241extern int __hash_page_4K(unsigned long ea, unsigned long access,
 242                          unsigned long vsid, pte_t *ptep, unsigned long trap,
 243                          unsigned int local, int ssize, int subpage_prot);
 244extern int __hash_page_64K(unsigned long ea, unsigned long access,
 245                           unsigned long vsid, pte_t *ptep, unsigned long trap,
 246                           unsigned int local, int ssize);
 247struct mm_struct;
 248unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
 249extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
 250int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
 251                     pte_t *ptep, unsigned long trap, int local, int ssize,
 252                     unsigned int shift, unsigned int mmu_psize);
 253extern void hash_failure_debug(unsigned long ea, unsigned long access,
 254                               unsigned long vsid, unsigned long trap,
 255                               int ssize, int psize, unsigned long pte);
 256extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 257                             unsigned long pstart, unsigned long prot,
 258                             int psize, int ssize);
 259extern void add_gpage(unsigned long addr, unsigned long page_size,
 260                          unsigned long number_of_pages);
 261extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
 262
 263extern void hpte_init_native(void);
 264extern void hpte_init_lpar(void);
 265extern void hpte_init_iSeries(void);
 266extern void hpte_init_beat(void);
 267extern void hpte_init_beat_v3(void);
 268
 269extern void stabs_alloc(void);
 270extern void slb_initialize(void);
 271extern void slb_flush_and_rebolt(void);
 272extern void stab_initialize(unsigned long stab);
 273
 274extern void slb_vmalloc_update(void);
 275extern void slb_set_size(u16 size);
 276#endif /* __ASSEMBLY__ */
 277
 278/*
 279 * VSID allocation
 280 *
 281 * We first generate a 36-bit "proto-VSID".  For kernel addresses this
 282 * is equal to the ESID, for user addresses it is:
 283 *      (context << 15) | (esid & 0x7fff)
 284 *
 285 * The two forms are distinguishable because the top bit is 0 for user
 286 * addresses, whereas the top two bits are 1 for kernel addresses.
 287 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
 288 * now.
 289 *
 290 * The proto-VSIDs are then scrambled into real VSIDs with the
 291 * multiplicative hash:
 292 *
 293 *      VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 294 *      where   VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
 295 *              VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
 296 *
 297 * This scramble is only well defined for proto-VSIDs below
 298 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
 299 * reserved.  VSID_MULTIPLIER is prime, so in particular it is
 300 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 301 * Because the modulus is 2^n-1 we can compute it efficiently without
 302 * a divide or extra multiply (see below).
 303 *
 304 * This scheme has several advantages over older methods:
 305 *
 306 *      - We have VSIDs allocated for every kernel address
 307 * (i.e. everything above 0xC000000000000000), except the very top
 308 * segment, which simplifies several things.
 309 *
 310 *      - We allow for 15 significant bits of ESID and 20 bits of
 311 * context for user addresses.  i.e. 8T (43 bits) of address space for
 312 * up to 1M contexts (although the page table structure and context
 313 * allocation will need changes to take advantage of this).
 314 *
 315 *      - The scramble function gives robust scattering in the hash
 316 * table (at least based on some initial results).  The previous
 317 * method was more susceptible to pathological cases giving excessive
 318 * hash collisions.
 319 */
 320/*
 321 * WARNING - If you change these you must make sure the asm
 322 * implementations in slb_allocate (slb_low.S), do_stab_bolted
 323 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
 324 *
 325 * You'll also need to change the precomputed VSID values in head.S
 326 * which are used by the iSeries firmware.
 327 */
 328
 329#define VSID_MULTIPLIER_256M    ASM_CONST(200730139)    /* 28-bit prime */
 330#define VSID_BITS_256M          36
 331#define VSID_MODULUS_256M       ((1UL<<VSID_BITS_256M)-1)
 332
 333#define VSID_MULTIPLIER_1T      ASM_CONST(12538073)     /* 24-bit prime */
 334#define VSID_BITS_1T            24
 335#define VSID_MODULUS_1T         ((1UL<<VSID_BITS_1T)-1)
 336
 337#define CONTEXT_BITS            19
 338#define USER_ESID_BITS          16
 339#define USER_ESID_BITS_1T       4
 340
 341#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
 342
 343/*
 344 * This macro generates asm code to compute the VSID scramble
 345 * function.  Used in slb_allocate() and do_stab_bolted.  The function
 346 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 347 *
 348 *      rt = register continaing the proto-VSID and into which the
 349 *              VSID will be stored
 350 *      rx = scratch register (clobbered)
 351 *
 352 *      - rt and rx must be different registers
 353 *      - The answer will end up in the low VSID_BITS bits of rt.  The higher
 354 *        bits may contain other garbage, so you may need to mask the
 355 *        result.
 356 */
 357#define ASM_VSID_SCRAMBLE(rt, rx, size)                                 \
 358        lis     rx,VSID_MULTIPLIER_##size@h;                            \
 359        ori     rx,rx,VSID_MULTIPLIER_##size@l;                         \
 360        mulld   rt,rt,rx;               /* rt = rt * MULTIPLIER */      \
 361                                                                        \
 362        srdi    rx,rt,VSID_BITS_##size;                                 \
 363        clrldi  rt,rt,(64-VSID_BITS_##size);                            \
 364        add     rt,rt,rx;               /* add high and low bits */     \
 365        /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and         \
 366         * 2^36-1+2^28-1.  That in particular means that if r3 >=       \
 367         * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has     \
 368         * the bit clear, r3 already has the answer we want, if it      \
 369         * doesn't, the answer is the low 36 bits of r3+1.  So in all   \
 370         * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
 371        addi    rx,rt,1;                                                \
 372        srdi    rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */   \
 373        add     rt,rt,rx
 374
 375
 376#ifndef __ASSEMBLY__
 377
 378#ifdef CONFIG_PPC_SUBPAGE_PROT
 379/*
 380 * For the sub-page protection option, we extend the PGD with one of
 381 * these.  Basically we have a 3-level tree, with the top level being
 382 * the protptrs array.  To optimize speed and memory consumption when
 383 * only addresses < 4GB are being protected, pointers to the first
 384 * four pages of sub-page protection words are stored in the low_prot
 385 * array.
 386 * Each page of sub-page protection words protects 1GB (4 bytes
 387 * protects 64k).  For the 3-level tree, each page of pointers then
 388 * protects 8TB.
 389 */
 390struct subpage_prot_table {
 391        unsigned long maxaddr;  /* only addresses < this are protected */
 392        unsigned int **protptrs[2];
 393        unsigned int *low_prot[4];
 394};
 395
 396#define SBP_L1_BITS             (PAGE_SHIFT - 2)
 397#define SBP_L2_BITS             (PAGE_SHIFT - 3)
 398#define SBP_L1_COUNT            (1 << SBP_L1_BITS)
 399#define SBP_L2_COUNT            (1 << SBP_L2_BITS)
 400#define SBP_L2_SHIFT            (PAGE_SHIFT + SBP_L1_BITS)
 401#define SBP_L3_SHIFT            (SBP_L2_SHIFT + SBP_L2_BITS)
 402
 403extern void subpage_prot_free(struct mm_struct *mm);
 404extern void subpage_prot_init_new_context(struct mm_struct *mm);
 405#else
 406static inline void subpage_prot_free(struct mm_struct *mm) {}
 407static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
 408#endif /* CONFIG_PPC_SUBPAGE_PROT */
 409
 410typedef unsigned long mm_context_id_t;
 411
 412typedef struct {
 413        mm_context_id_t id;
 414        u16 user_psize;         /* page size index */
 415
 416#ifdef CONFIG_PPC_MM_SLICES
 417        u64 low_slices_psize;   /* SLB page size encodings */
 418        u64 high_slices_psize;  /* 4 bits per slice for now */
 419#else
 420        u16 sllp;               /* SLB page size encoding */
 421#endif
 422        unsigned long vdso_base;
 423#ifdef CONFIG_PPC_SUBPAGE_PROT
 424        struct subpage_prot_table spt;
 425#endif /* CONFIG_PPC_SUBPAGE_PROT */
 426} mm_context_t;
 427
 428
 429#if 0
 430/*
 431 * The code below is equivalent to this function for arguments
 432 * < 2^VSID_BITS, which is all this should ever be called
 433 * with.  However gcc is not clever enough to compute the
 434 * modulus (2^n-1) without a second multiply.
 435 */
 436#define vsid_scramble(protovsid, size) \
 437        ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
 438
 439#else /* 1 */
 440#define vsid_scramble(protovsid, size) \
 441        ({                                                               \
 442                unsigned long x;                                         \
 443                x = (protovsid) * VSID_MULTIPLIER_##size;                \
 444                x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
 445                (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
 446        })
 447#endif /* 1 */
 448
 449/* This is only valid for addresses >= PAGE_OFFSET */
 450static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
 451{
 452        if (ssize == MMU_SEGSIZE_256M)
 453                return vsid_scramble(ea >> SID_SHIFT, 256M);
 454        return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
 455}
 456
 457/* Returns the segment size indicator for a user address */
 458static inline int user_segment_size(unsigned long addr)
 459{
 460        /* Use 1T segments if possible for addresses >= 1T */
 461        if (addr >= (1UL << SID_SHIFT_1T))
 462                return mmu_highuser_ssize;
 463        return MMU_SEGSIZE_256M;
 464}
 465
 466/* This is only valid for user addresses (which are below 2^44) */
 467static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 468                                     int ssize)
 469{
 470        if (ssize == MMU_SEGSIZE_256M)
 471                return vsid_scramble((context << USER_ESID_BITS)
 472                                     | (ea >> SID_SHIFT), 256M);
 473        return vsid_scramble((context << USER_ESID_BITS_1T)
 474                             | (ea >> SID_SHIFT_1T), 1T);
 475}
 476
 477/*
 478 * This is only used on legacy iSeries in lparmap.c,
 479 * hence the 256MB segment assumption.
 480 */
 481#define VSID_SCRAMBLE(pvsid)    (((pvsid) * VSID_MULTIPLIER_256M) %     \
 482                                 VSID_MODULUS_256M)
 483#define KERNEL_VSID(ea)         VSID_SCRAMBLE(GET_ESID(ea))
 484
 485#endif /* __ASSEMBLY__ */
 486
 487#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
 488